JP2005186211A - Method for cutting substrate - Google Patents

Method for cutting substrate Download PDF

Info

Publication number
JP2005186211A
JP2005186211A JP2003430692A JP2003430692A JP2005186211A JP 2005186211 A JP2005186211 A JP 2005186211A JP 2003430692 A JP2003430692 A JP 2003430692A JP 2003430692 A JP2003430692 A JP 2003430692A JP 2005186211 A JP2005186211 A JP 2005186211A
Authority
JP
Japan
Prior art keywords
cutting
grinding wheel
substrate
aluminum nitride
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003430692A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yamane
一洋 山根
Masanobu Azuma
正信 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2003430692A priority Critical patent/JP2005186211A/en
Publication of JP2005186211A publication Critical patent/JP2005186211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting method capable of reducing the breaking occurring at the machining end part while suppressing a grinding wheel abrasion amount during cutting when a substrate made of an aluminum nitride sintered body is cut with a cutting grinding wheel. <P>SOLUTION: When the substrate made of the aluminum nitride sintered body is cut by a rotating grinding wheel, the substrate is cut by the rotating grinding wheel using diamond abrasive grains having an average grain size (X;μm) satisfying the range expressed by formula (1): 2d≤x≤150/d to the average crystal grain size (d;μm) of the aluminum nitride sintered body. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、窒化アルミニウム焼結体よりなる基板の新規な切断方法に関する。   The present invention relates to a novel method for cutting a substrate made of an aluminum nitride sintered body.

窒化アルミニウム、アルミナ、窒化ほう素等に代表されるセラミック材料は電気特性、光学特性、熱特性等の優れた特徴があることから広範囲に使用されている。これらのセラミック材料の中でも特に窒化アルミニウムは熱伝導性だけでなく、絶縁性、誘電特性、熱膨張特性の点で優れた特性を有することから、半導体実装用の高機能放熱基板として急速に普及しつつある。このような放熱基板は通常以下のような方法で製造される。   Ceramic materials represented by aluminum nitride, alumina, boron nitride and the like are widely used because they have excellent characteristics such as electrical characteristics, optical characteristics, and thermal characteristics. Among these ceramic materials, aluminum nitride, in particular, has not only thermal conductivity, but also has excellent properties in terms of insulation, dielectric properties, and thermal expansion characteristics, so it has rapidly spread as a highly functional heat dissipation substrate for semiconductor mounting. It's getting on. Such a heat dissipation substrate is usually manufactured by the following method.

上記窒化アルミニウム焼結体よりなる基板は、焼結基板の表面を研削又は研磨により、一定の面粗さに仕上げ、当該面上に、Ti,Cr,Ni−Cr,TaN,Al,Mo,W,Zrなどの第1薄膜層、Ni,Ptなどの第2薄膜層、Co,Cu,Au,Ag,Pdなどの第3薄膜層をこの順序で形成することにより一般的に製造されている。このようにして表面に金属薄膜層が形成された後に、必要に応じてパターニングされ、次いで、切断分割され最終製品の寸法、形状に仕上げられその金属薄膜層上に電子素子(例えばレーザーダイオード)が薄膜半田を用いてマウントされる。   The substrate made of the aluminum nitride sintered body is finished to a certain surface roughness by grinding or polishing the surface of the sintered substrate, and Ti, Cr, Ni—Cr, TaN, Al, Mo, W, W are formed on the surface. , Zr, etc., a second thin film layer, such as Ni, Pt, and a third thin film layer, such as Co, Cu, Au, Ag, and Pd, are generally formed in this order. After the metal thin film layer is formed on the surface in this way, it is patterned as necessary, then cut and divided to finish the size and shape of the final product, and an electronic device (for example, a laser diode) is formed on the metal thin film layer. Mounted using thin film solder.

上記基板の切断は、電子素子の小型化、高密度化につれて加工精度も近年著しい精度の向上が求められている。   In the cutting of the substrate, as the electronic elements are miniaturized and densified, the processing accuracy has been required to be significantly improved in recent years.

従来、窒化アルミニウム焼結体よりなる基板の切断には、回転研削砥石が一般に使用されている。この回転研削砥石を使用した切断装置は、工作物を高精度で切断するための装置上の改良が種々提案されている(特許文献1〜3参照)。   Conventionally, a rotary grinding wheel is generally used for cutting a substrate made of an aluminum nitride sintered body. Various improvements on the cutting apparatus using the rotary grinding wheel have been proposed for cutting a workpiece with high accuracy (see Patent Documents 1 to 3).

特許第3132114号公報Japanese Patent No. 3132114 特開平 4−13552号公報JP-A-4-13552 特開平10−64853号公報Japanese Patent Laid-Open No. 10-64853

しかしながら、窒化アルミニウム焼結体等の硬質材料を切断加工する場合、例えばある大きさのブロックやウエーハに切断して多数の製品を切り出す場合や多数の溝加工を行う場合に、回転研削砥石を使用した高精度の切断加工については、検討が不十分である。   However, when cutting hard materials such as aluminum nitride sintered bodies, for example, when cutting a large number of products by cutting into blocks or wafers of a certain size, or when performing a number of grooving, a rotating grinding wheel is used. However, the high-accuracy cutting has not been studied sufficiently.

即ち、窒化アルミニウム焼結体よりなる基板は比較的脆い部材であるため、これに加工を行う際に加工端部にカケが生じ、品質が悪化するという問題が生じる。近年では切断時の位置精度が高精度化したこと、および切断端部と電子素子のマウント位置との距離が近くなったことより、品質の悪化を防ぐためカケをできるだけ小さくすることを必要とされる。   That is, since the substrate made of the aluminum nitride sintered body is a relatively fragile member, when processing is performed on the substrate, chipping occurs at the processing end portion, which causes a problem that quality deteriorates. In recent years, the position accuracy at the time of cutting has become higher, and the distance between the cutting end and the mounting position of the electronic element has become closer, so it is necessary to make the chip as small as possible to prevent quality deterioration. The

一方、窒化アルミニウム焼結体よりなる基板は比較的硬い材料でもあるため、研削砥石の摩耗が大きく、経済性に悪影響を及ぼす。   On the other hand, since a substrate made of an aluminum nitride sintered body is also a relatively hard material, wear of the grinding wheel is great, which adversely affects the economy.

これらの傾向は、対象とする窒化アルミニウム焼結体の種類によって、カケの発生度合いや砥石の摩耗量に違いがあるため、両者を満足する切断方法の提案が望まれるところであった。   These tendencies vary depending on the type of aluminum nitride sintered body to be used, and there is a difference in the degree of chipping and the amount of wear on the grindstone.

本発明者等は、上記課題を解決すべく鋭意研究を重ねてきた。その結果、窒化アルミニウム焼結体の如き多結晶材料を回転研削砥石により切断する場合、加工端部カケの幅は窒化アルミニウム焼結体の平均結晶粒径と研削砥石の砥粒の平均粒径の積に比例し、砥石の摩耗量は多結晶材料の平均結晶粒径と研削砥石の砥粒の平均粒径の商に比例するという関係を見出した。   The present inventors have intensively studied to solve the above problems. As a result, when a polycrystalline material such as an aluminum nitride sintered body is cut with a rotating grinding wheel, the width of the processed end chip is equal to the average crystal grain size of the aluminum nitride sintered body and the average grain size of the abrasive grains of the grinding wheel. It has been found that the wear amount of the grinding wheel is proportional to the product, and is proportional to the quotient of the average crystal grain size of the polycrystalline material and the average grain size of the abrasive grains of the grinding wheel.

上記知見に基づき、切断する窒化アルミニウム焼結体の平均結晶粒径を基にして研削砥石の砥粒の平均粒径を特定の範囲に設定することによって、切断時に砥石摩耗を抑えた上でカケの小さい切断面が得られる切断方法を完成し、本発明を提出するに至った。   Based on the above knowledge, by setting the average grain size of the grinding stone to a specific range based on the average crystal grain size of the aluminum nitride sintered body to be cut, it is possible to reduce the wear of the grinding wheel while suppressing grinding wheel wear during cutting. The present inventors have completed a cutting method capable of obtaining a small cut surface and submitted the present invention.

即ち、本発明は、窒化アルミニウム焼結体よりなる基板を回転研削砥石により切断するに際し、上記基板を、該窒化アルミニウム焼結体の平均結晶粒径(d;μm)に対して、下記(1)式で示される範囲を満足する平均粒径(x;μm)を有するダイヤモンド砥粒を用いた回転研削砥石によって切断することをすることを特徴とする基板の切断方法である。   That is, according to the present invention, when a substrate made of an aluminum nitride sintered body is cut with a rotary grinding grindstone, the substrate is compared with the following (1) with respect to the average crystal grain size (d; μm) of the aluminum nitride sintered body. The substrate is cut by a rotating grinding wheel using diamond abrasive grains having an average particle diameter (x; μm) satisfying the range represented by the formula (1).

2d≦x≦150/d (1)     2d ≦ x ≦ 150 / d (1)

本発明の基板の切断方法は、窒素化アルミニウム焼結体よりなる基板の切断において、切断する基板の平均結晶粒径から切断用研削砥石の砥粒の平均粒径の範囲を採用することによって、切断時の砥石摩耗量を抑えながら、加工端部に発生するカケを小さくすることができるという効果を発揮する。   The substrate cutting method of the present invention employs a range of the average particle size of the abrasive grains of the cutting grindstone from the average crystal particle size of the substrate to be cut in the cutting of the substrate made of the aluminum nitride sintered body, The effect that the chip | tip which generate | occur | produces in a process edge part can be made small is suppressed, suppressing the grinding stone wear amount at the time of a cutting | disconnection.

従って、経済的に且つ精密な窒化アルミニウム焼結体よりなる基板の切断を行なうことが出来る。   Therefore, the substrate made of an aluminum nitride sintered body can be cut economically and precisely.

本発明の切断方法において、窒化アルミニウム焼結体よりなる基板は公知のものが特に制限なく使用されるが、特に、焼結体を構成する結晶粒径が1〜8μm程度のものに対して本発明の切断方法は特に有効であり、また、かかる結晶粒径を有するものは、基板表面の精度も上げることができ好適である。また、基板の形状は、加工が容易であるという観点から、その厚さは50μm〜5cm、特に100μm〜2cmであるのが好適である。   In the cutting method of the present invention, known substrates are used without particular limitation as the substrate made of the aluminum nitride sintered body. In particular, the substrate for the crystal grain size constituting the sintered body is about 1 to 8 μm. The cutting method of the invention is particularly effective, and those having such a crystal grain size are preferable because they can increase the accuracy of the substrate surface. The thickness of the substrate is preferably 50 μm to 5 cm, particularly preferably 100 μm to 2 cm, from the viewpoint of easy processing.

本発明の切断方法は、窒化アルミニウム焼結体よりなる基板を対象とする態様であれば、如何なる状態においても適用できる。   The cutting method of the present invention can be applied in any state as long as it is a mode for a substrate made of an aluminum nitride sintered body.

例えば、未加工の状態の基板、各種ホーニング加工、ラップ加工、鏡面加工等を施した基板、半導体素子搭載用基板として基板表面に蒸着法、スパッタリング法、化学気相蒸着(CVD)法等によりメタライズ層を形成した基板等が挙げられる。   For example, an unprocessed substrate, a substrate subjected to various honing processing, lapping processing, mirror processing, etc., a substrate for mounting a semiconductor element, metallized on the substrate surface by vapor deposition, sputtering, chemical vapor deposition (CVD), etc. Examples thereof include a substrate on which a layer is formed.

本発明の切断に用いられる回転切削砥石は、公知のものが特に制限無く使用されるが、ダイヤモンド砥粒を使用した研削砥石を使用したものが好適である。上記ダイヤモンド砥粒は、ダイヤモンド砥粒が結合剤を用いて固着された研削砥石である。ダイヤモンド砥粒には天然または合成工業用ダイヤモンド粉末が用いられ、結合剤は、レジンボンド、メタルレジンボンド、メタルボンド、ビトリファイドボンド、電着ボンド、電鋳金属ボンド等のいずれの方法でも良い。また、研削砥石全体が砥粒と結合剤で構成されていても良く、切断にかかわらない部分を金属等の他材料で構成していても良い。   As the rotary cutting grindstone used for the cutting of the present invention, known ones are used without particular limitation, but those using a grinding grindstone using diamond abrasive grains are suitable. The diamond abrasive is a grinding wheel to which diamond abrasive is fixed using a binder. Natural or synthetic industrial diamond powder is used for the diamond abrasive grains, and the binder may be any method such as resin bond, metal resin bond, metal bond, vitrified bond, electrodeposition bond, and electroformed metal bond. Moreover, the whole grinding wheel may be comprised with the abrasive grain and the binder, and the part which does not relate to a cutting | disconnection may be comprised with other materials, such as a metal.

本発明に用いられる回転研削砥石の外径、厚み等は特に制限されず、切断の対象となる基板に応じて適宜決定すればよいが、研削砥石の厚みは切断溝の蛇行、砥石摩耗量の増大等の悪影響が生じない範囲内においてできる限り薄いほうが好ましい。   The outer diameter, thickness, etc. of the rotary grinding wheel used in the present invention are not particularly limited and may be appropriately determined according to the substrate to be cut, but the thickness of the grinding wheel is determined by the meandering of the cutting groove, the amount of grinding wheel wear. It is preferable that the thickness be as thin as possible within a range where no adverse effects such as increase occur.

また、一般的な研削砥石先端の形状は角型であるが、Rまたはテーパが付いていても良い。   Further, the shape of the tip of a general grinding wheel is a square shape, but it may be R or tapered.

本発明で用いられる回転研削砥石中の砥粒の平均粒径(x;μm)は、2d≦x≦150/d(d;窒化アルミニウム焼結体の平均結晶粒径〔μm〕)の条件を満たさなければならない。   The average grain size (x; μm) of the abrasive grains in the rotary grinding wheel used in the present invention satisfies the condition of 2d ≦ x ≦ 150 / d (d: average crystal grain size [μm] of the aluminum nitride sintered body). Must be met.

即ち、xが150/dを超える場合は、窒化アルミニウム焼結体よりなる基板の加工端部に発生するカケの幅が大きくなり、また、xが2dより小さい場合は、上記基板の加工端のカケは防止できるが、研削砥石の摩耗が大きくなり、本発明の目的を達成することが出来ない。   That is, when x exceeds 150 / d, the width of the chip generated at the processed end portion of the substrate made of the aluminum nitride sintered body is increased, and when x is smaller than 2d, the processed end of the substrate is Although chipping can be prevented, wear of the grinding wheel is increased, and the object of the present invention cannot be achieved.

上記の回転研削砥石中の砥粒の平均粒径(x;μm)について、特に好ましい範囲は、3d≦x≦110/dである。   A particularly preferable range for the average grain size (x; μm) of the abrasive grains in the rotary grinding wheel is 3d ≦ x ≦ 110 / d.

本発明における切断時の基板の固定方法は特に制限されず、公知の方法が制限なく使用できる。例えば、真空吸引、UVテープによる貼付け、固形ワックスによる貼付け、接着剤による貼付け等が適応され、これらを併用しても良い。また、切断を行う研削盤は市販されているものが好適に使用できる。   The method for fixing the substrate at the time of cutting in the present invention is not particularly limited, and a known method can be used without limitation. For example, vacuum suction, sticking with UV tape, sticking with solid wax, sticking with an adhesive, etc. are applicable, and these may be used in combination. Moreover, what is marketed can be used conveniently for the grinding machine which cut | disconnects.

本発明で対象とする切断方法は、公知のものが制限なく使用できる。例えば、アップカット、ダウンカット、クリープフィード研削、ハイスピードストローク研削等が挙げられる。   A known cutting method can be used without limitation in the present invention. For example, up cut, down cut, creep feed grinding, high speed stroke grinding and the like can be mentioned.

また、砥石回転数は、5000rpm以上であれば良いが、好ましくは20000rpm以上であることが好ましい。また回転数の上限は、特に制限されないが、100000rpm、特に、60000rpm程度である。   Moreover, although the grindstone rotation speed should just be 5000 rpm or more, Preferably it is 20000 rpm or more. The upper limit of the rotational speed is not particularly limited, but is about 100,000 rpm, particularly about 60000 rpm.

また、基板の送り速度は、300mm/s以下であれば良いが、30mm/s以下が好ましい。これら以外の加工条件による制限は受けない。   The substrate feed rate may be 300 mm / s or less, but is preferably 30 mm / s or less. There are no restrictions due to other processing conditions.

本発明を更に具体的に説明するため以下実施例及び比較例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。   In order to describe the present invention more specifically, examples and comparative examples will be described below, but the present invention is not limited to these examples.

実施例1〜6
平均結晶粒径3.3μm、4.4μmの鏡面加工を施した窒化アルミニウム焼結体基板(50.8mm×50.8mm×0.3mm)を砥粒の平均粒径が12μm(ディスコ社製、B1A803SD1200N50M51、52D×0.1T×40H)、15μm(ディスコ社製、B1A803SD800N50M51、52D×0.1T×40H)、25μm(ディスコ社製、B1A803SD600N50M51、52D×0.1T×40H)の研削砥石を用いて、切断機(ディスコ社製、DAD522)にて砥石回転数が23000rpm、送り速度が6mm/sの条件にて100回(切断距離5080mm)、ダウンカットにて切断した。
Examples 1-6
An aluminum nitride sintered body substrate (50.8 mm × 50.8 mm × 0.3 mm) subjected to mirror finishing with an average crystal grain size of 3.3 μm and 4.4 μm has an average grain size of 12 μm (manufactured by Disco Corporation, B1A803SD1200N50M51, 52D × 0.1T × 40H), 15 μm (Disco, B1A803SD800N50M51, 52D × 0.1T × 40H), 25 μm (Disco, B1A803SD600N50M51, 52D × 0.1T × 40H) Using a cutting machine (DAD522, manufactured by Disco Corporation), cutting was performed by down-cutting 100 times (cutting distance 5080 mm) under the conditions of a grinding wheel rotational speed of 23000 rpm and a feed rate of 6 mm / s.

窒化アルミニウム焼結体基板はUVシート(UDV−100A)に貼り付けて多孔質チャックにて真空吸着し固定した。基板を完全に切断するため、UVシートに50μm切込む条件とした。切断前と切断後での砥石の半径減少量を砥石摩耗量とし、切断機セットアップ機能にて測定した。切断後の加工端部を200倍の測定顕微鏡にて観察し、切断1本(50.8mm)内での切断端部の最大カケの幅を測定し、これを全ての切断で行い、平均を加工端部カケ幅とした。実施例では加工端部カケ幅は小さい上に、砥石摩耗量も小さい。   The aluminum nitride sintered body substrate was attached to a UV sheet (UDV-100A) and vacuum-adsorbed and fixed with a porous chuck. In order to completely cut the substrate, the UV sheet was cut by 50 μm. The amount of decrease in the radius of the grindstone before and after cutting was defined as the amount of wear of the grindstone, and measured with a cutting machine setup function. Observe the processed end after cutting with a 200x measuring microscope, measure the maximum chip width of the cut end within one cut (50.8 mm), and perform this for all cuts. It was set as the processing end part chip width. In the embodiment, the machining end chip width is small and the grinding wheel wear amount is also small.

比較例1〜4
平均結晶粒径3.3μm、4.4μm、6.7μmの鏡面加工を施した窒化アルミニウム焼結体基板(50.8mm×50.8mm×0.3mm)を砥粒の平均粒径が12μm(ディスコ社製、B1A803SD1200N50M51、52D×0.1T×40H)、15μm(ディスコ社製、B1A803SD800N50M51、52D×0.1T×40H)、25μm(ディスコ社製、B1A803SD600N50M51、52D×0.1T×40H)、35μm(ディスコ社製、B1A803SD400N50M51、52D×0.1T×40H)の研削砥石を用いて、実施例と同方法にて切断および砥石磨耗量、加工端部カケ幅の測定を行った。
Comparative Examples 1-4
An aluminum nitride sintered body substrate (50.8 mm × 50.8 mm × 0.3 mm) subjected to mirror finishing with an average crystal grain size of 3.3 μm, 4.4 μm, and 6.7 μm has an average grain size of 12 μm ( Disco, B1A803SD1200N50M51, 52D × 0.1T × 40H), 15 μm (Disco, B1A803SD800N50M51, 52D × 0.1T × 40H), 25 μm (Disco, B1A803SD600N50M51, 52D × 0.1T × 40H), 35 μm Using a grinding wheel (manufactured by Disco Corporation, B1A803SD400N50M51, 52D × 0.1T × 40H), cutting, grinding wheel wear amount, and processing edge chip width were measured in the same manner as in the examples.

Figure 2005186211
Figure 2005186211

Claims (1)

窒化アルミニウム焼結体よりなる基板を回転研削砥石により切断するに際し、上記基板を、該窒化アルミニウム焼結体の平均結晶粒径(d;μm)に対して、下記(1)式で示される範囲を満足する平均粒径(x;μm)を有するダイヤモンド砥粒を用いた回転研削砥石によって切断することをすることを特徴とする基板の切断方法。
2d≦x≦150/d (1)
When a substrate made of an aluminum nitride sintered body is cut with a rotating grinding wheel, the substrate is in a range represented by the following formula (1) with respect to the average crystal grain size (d; μm) of the aluminum nitride sintered body. A method for cutting a substrate, comprising cutting with a rotating grinding wheel using diamond abrasive grains having an average particle size (x; μm) satisfying
2d ≦ x ≦ 150 / d (1)
JP2003430692A 2003-12-25 2003-12-25 Method for cutting substrate Pending JP2005186211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003430692A JP2005186211A (en) 2003-12-25 2003-12-25 Method for cutting substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003430692A JP2005186211A (en) 2003-12-25 2003-12-25 Method for cutting substrate

Publications (1)

Publication Number Publication Date
JP2005186211A true JP2005186211A (en) 2005-07-14

Family

ID=34788984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003430692A Pending JP2005186211A (en) 2003-12-25 2003-12-25 Method for cutting substrate

Country Status (1)

Country Link
JP (1) JP2005186211A (en)

Similar Documents

Publication Publication Date Title
JP6282613B2 (en) Dicing blade
US11781244B2 (en) Seed crystal for single crystal 4H—SiC growth and method for processing the same
EP2930751B1 (en) Handle substrate for compound substrate for use with semiconductor
JP2010234597A (en) Cutting blade, method for manufacturing cutting blade, and cutting apparatus
JP2010021394A (en) Method of manufacturing semiconductor wafer
JP5976228B2 (en) Dicing blade
JP2017024161A (en) Polishing tool and manufacturing method of the same, and manufacturing method of polished product
KR20150073214A (en) Method for producing polished article
JP2003136410A (en) Super-abrasive grains vitrified bond grinding wheel
JP2005186211A (en) Method for cutting substrate
EP1201367B1 (en) Dresser for polishing cloth and manufacturing method therefor
JP4371853B2 (en) Substrate cutting method
JP3456979B2 (en) Beveling wheel for peripheral processing of silicon wafer
JP2008036771A (en) Grinding wheel for hard fragile substrate
JP2022047538A (en) Chamfer grinding method and chamfer grinding device
KR20180001446A (en) Cutting grindstone
JPH0912328A (en) Wheel cutter and its production
JP5566189B2 (en) Thin blade
JP2005246580A (en) Method for cutting substrate
JP2010269414A (en) Thin-edged blade
JP2010247287A (en) Manufacturing method for silicon carbide single crystal substrate
JP2006315136A (en) Cup-type grindstone for grinding sapphire
JP3213255B2 (en) Super abrasive whetstone
JP2024027073A (en) Ceramic wafer having surface profile and method for manufacturing the same
CN113400103A (en) Mechanical processing method of silicon target material