JP2005246110A - Method for cleaning hollow fiber membrane - Google Patents
Method for cleaning hollow fiber membrane Download PDFInfo
- Publication number
- JP2005246110A JP2005246110A JP2004055724A JP2004055724A JP2005246110A JP 2005246110 A JP2005246110 A JP 2005246110A JP 2004055724 A JP2004055724 A JP 2004055724A JP 2004055724 A JP2004055724 A JP 2004055724A JP 2005246110 A JP2005246110 A JP 2005246110A
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- fiber membrane
- cleaning
- raw water
- water chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
本発明は、膜処理装置に使用されている外圧式中空糸膜の洗浄方法に関する。更に詳しくは、中空糸膜外表面等に付着した懸濁物質等のファウリング物質を液体及び気体を使用して洗浄する中空糸膜の洗浄方法に関する。 The present invention relates to a method for cleaning an external pressure hollow fiber membrane used in a membrane treatment apparatus. More specifically, the present invention relates to a method for cleaning a hollow fiber membrane, in which a fouling material such as a suspended material adhering to the outer surface of the hollow fiber membrane is cleaned using a liquid and a gas.
中空糸膜による水処理の過程では、濾過時間の経過と共に原水中に含まれている懸濁物質等のファウリング物質が中空糸膜外表面に付着し、若しくは中空糸膜表面に形成されている微孔に侵入し、次第に中空糸膜の濾過流束が低下するという問題点が生じていた。 In the process of water treatment by the hollow fiber membrane, fouling substances such as suspended substances contained in the raw water adhere to the outer surface of the hollow fiber membrane or are formed on the surface of the hollow fiber membrane as the filtration time elapses. There has been a problem that the microfluid penetrates into the micropores and the filtration flux of the hollow fiber membrane gradually decreases.
この濾過流束を回復するための方式として、濾過水室側の開口部から中空糸膜内に液体を逆流させて洗浄する液体逆流洗浄方式、または上記方式における液体の代替えとして気体を用いる気体逆流洗浄方式の物理洗浄方法が採用されていた。 As a method for recovering this filtration flux, a liquid back-flow cleaning method in which liquid is washed back through the filtration water chamber side opening into the hollow fiber membrane, or a gas back-flow using gas as an alternative to the liquid in the above method A cleaning type physical cleaning method was employed.
しかし、液体逆流洗浄方式だと、中空糸膜外表面に形成されている微孔に侵入したファウリング物質は除去することができるが、中空糸膜外表面に付着したファウリング物質の除去及び中空糸膜間に蓄積したファウリング物質の排出がしにくいという問題点があった。しかも、使用する液体として濾過水を使用するため、大量の濾過水の使用により回収率が低下するとの問題点もあった。また、気体逆流洗浄方式は、液体逆流洗浄方式と同様に微孔に侵入したファウリング物質を除去できるほか、中空糸膜を揺動させ中空糸膜外表面に付着したファウリング物質を剥離して除去することもできる。更に、濾過水を使用しないので回収率の低下を防止することができるが、中空糸膜間に蓄積したファウリング物質の排出がしにくいという問題点があった。 However, with the liquid back-flushing method, the fouling material that has entered the micropores formed on the outer surface of the hollow fiber membrane can be removed, but the fouling material adhering to the outer surface of the hollow fiber membrane can be removed. There was a problem that it was difficult to discharge the fouling substances accumulated between the yarn membranes. In addition, since filtered water is used as the liquid to be used, there is also a problem that the recovery rate decreases due to the use of a large amount of filtered water. In addition, the gas back-flow cleaning method can remove the fouling material that has entered the micropores as well as the liquid back-flow cleaning method, and the hollow fiber membrane can be swung to peel off the fouling material adhering to the outer surface of the hollow fiber membrane. It can also be removed. Furthermore, since no filtered water is used, a reduction in the recovery rate can be prevented, but there is a problem that it is difficult to discharge the fouling material accumulated between the hollow fiber membranes.
また、濾過水室側から液体を逆流させる逆流洗浄方式と原水室側から気体を導入して中空糸膜を揺動するとともに原水室内の液体を流動させて洗浄するスクラビング洗浄方式を併用する方式が、特開昭60−19002号によって提案されている。この併用方式は、スクラビング方式との併用により液体逆流洗浄方式の短所である中空糸膜間に蓄積したファウリング物質の排出ができるようになるが、中空糸膜の揺動が不十分であるため中空糸膜外表面に付着したファウリング物質の除去が充分ではなく、特に結合部付近での除去については未解決であった。また、剥離したファウリング物質が中空糸膜の表面の再付着する問題点についても検討されていなかった。 In addition, there are a backflow cleaning method in which the liquid flows back from the filtered water chamber side and a scrubbing cleaning method in which a gas is introduced from the raw water chamber side to swing the hollow fiber membrane and the liquid in the raw water chamber is flowed for cleaning. JP-A-60-19002. This combined method can discharge the fouling material accumulated between the hollow fiber membranes, which is a disadvantage of the liquid backflow cleaning method, when combined with the scrubbing method, but the oscillation of the hollow fiber membrane is insufficient. Removal of the fouling substance adhering to the outer surface of the hollow fiber membrane is not sufficient, and removal in the vicinity of the joint has not been solved. Moreover, the problem that the peeled fouling substance re-adheres to the surface of the hollow fiber membrane has not been studied.
本発明は、かかる問題点を解決したものであって、中空糸膜の結合部付近の膜外表面に付着しているファウリング物質および膜表面に形成されている微孔に侵入しているファウリング物質を除去することができるとともに除去のために剥離したファウリング物質の再付着を防止することができる洗浄方法を提供することを目的とする。 The present invention solves such a problem, and the fouling substance adhering to the outer surface of the membrane in the vicinity of the bonding portion of the hollow fiber membrane and the fouling entering the micropore formed on the membrane surface are provided. It is an object of the present invention to provide a cleaning method capable of removing a ring substance and preventing reattachment of a fouling substance peeled for removal.
上記目的を達成するため、本発明の請求項1は、一端側の開口部と他端側の封止部からなり表面に多数の微孔が形成されている中空糸膜を開口部側で複数本結合して結合部とし、前記結合部により濾過水室側と原水室側とに区画した外圧式中空糸膜モジュールであって、前記濾過水室側より前記原水室側に向かって開口部より前記中空糸膜内を液体と気体とを同時に導入させることにより前記中空糸膜を洗浄することを特徴とする中空糸膜の洗浄方法に係るものである。
In order to achieve the above object,
また、本発明の請求項2は、前記開口部側を下方に前記封止部側を上方に位置するように立設した外圧式中空糸膜モジュールにおける請求項1の中空糸膜の洗浄方法に係るものである。 According to a second aspect of the present invention, there is provided the method for cleaning a hollow fiber membrane according to the first aspect of the present invention, wherein the external pressure type hollow fiber membrane module is erected so that the opening side is positioned downward and the sealing portion side is positioned upward. It is concerned.
本発明は、以下の効果を奏する。 The present invention has the following effects.
すなわち、上記構成を備えた本発明の中空糸膜の洗浄方法は、濾過水室側から原水室側に向かって開口部から中空糸膜内を液体と気体を同時に導入するので、中空糸膜表面に形成された微孔に侵入したファウリング物質を除去することができる。また、気体を導入したことで中空糸膜を内部から揺動することができ、膜外表面に付着しているファウリング物質を剥離することができる。特に結合部付近での剥離の効果が大きいとともに、中空糸膜間に蓄積したファウリング物質の排出の効果も大きい。したがって、濾過流束の低下を防止することができる。 That is, in the method for cleaning a hollow fiber membrane of the present invention having the above-described configuration, the liquid and gas are simultaneously introduced into the hollow fiber membrane from the opening toward the raw water chamber side from the filtered water chamber side. It is possible to remove the fouling material that has penetrated into the micropores formed on the surface. Moreover, by introducing the gas, the hollow fiber membrane can be swung from the inside, and the fouling material adhering to the outer surface of the membrane can be peeled off. In particular, the effect of peeling near the joint is great, and the effect of discharging the fouling material accumulated between the hollow fiber membranes is also great. Accordingly, it is possible to prevent the filtration flux from being lowered.
また、液体と気体を同時に導入するので、液体単独の場合と比較して濾過水の使用量を減少することができ濾過水の回収率を上げることができる。 Further, since the liquid and the gas are introduced at the same time, the amount of filtered water used can be reduced compared to the case of the liquid alone, and the recovery rate of the filtered water can be increased.
更に、中空糸膜は開口部側である結合部が下方に封止部側が上方に位置するように立設されているので、開口部から逆流した液体と気体が気体の浮力で均一に分散されて中空糸膜内を通過して中空糸膜外表面に形成された微孔全体から排出されるので、中空糸膜全体を均一に洗浄することができる。しかも、微孔から排出された液体と気体は中空糸膜の表面近くを沿って浮上するので、膜表面に付着しているファウリング物質の剥離効果が大きく、しかも剥離したファウリング物質が気体と同時に排出された液体と一緒に上方に運ばれるので、再付着を防止することができ、濾過流束の低下をより一層防止することができる。 Further, since the hollow fiber membrane is erected so that the coupling portion on the opening side is positioned below and the sealing portion side is positioned above, the liquid and gas that have flowed back from the opening portion are uniformly dispersed by the buoyancy of the gas. Since it passes through the hollow fiber membrane and is discharged from the entire micropores formed on the outer surface of the hollow fiber membrane, the entire hollow fiber membrane can be washed uniformly. Moreover, since the liquid and gas discharged from the micropores float along the surface of the hollow fiber membrane, the fouling substance adhering to the membrane surface has a great peeling effect, and the peeled fouling substance is separated from the gas. Since it is carried upward together with the liquid discharged at the same time, it is possible to prevent re-adhesion and to further prevent the reduction of the filtration flux.
以下に図面を参照して、この発明の好適な実施の形態を例示して説明する。ただし、この発明の範囲は、特に限定的記載がないかぎりは、この実施の形態に記載されている内容に限定する趣旨のものではない。 Preferred embodiments of the present invention will be described below with reference to the drawings. However, the scope of the present invention is not intended to be limited to the contents described in this embodiment unless otherwise specified.
図1は、本発明の実施例に係る中空糸膜モジュールの洗浄方法を示す概略構成図であり、以下のように構成されている。 FIG. 1 is a schematic configuration diagram showing a method for cleaning a hollow fiber membrane module according to an embodiment of the present invention, which is configured as follows.
この中空糸膜モジュール1は、原水弁61を備えた原水管62から流入された原水を中空糸膜2により濾過して流出管12から濾過水を流出するものであり、一端側の開口部3と他端側の封止部4からなり表面に多数の微孔5が形成されている中空糸膜2を開口部3側で複数本結合して結合部8とし、封止部4側を自由端とし、結合部8を下側に封止部4を上側に位置するように立設し、結合部8により区分けされた下側が濾過水室7、上側が原水室6となるように構成されている。なお、図1では中空糸膜モジュール1内のエレメントは1個であるが、複数配設されることもある。
This hollow
原水室6側には、原水を流入するための原水弁61を有した原水管62と、洗浄排水を排出するための一次ドレン弁51を有した一次ドレン管52と、中空糸膜2の封止部4の上方の空間から後述する逆流洗浄したときの液体及び気体を排出するための排気弁71を有した排気管72と、が設けられている。また、濾過水室7側には、中空糸膜2により濾過された濾過水を流出させるための流出管12が設けられている。流出管12の中間には、液体逆流洗浄を実施するために逆洗ポンプ32を介して逆洗水槽31と連結した水逆洗弁35を有する送水管33と、気体逆流洗浄を実施するためにコンプレッサー22と連結した空気逆洗弁21を有した送気管23と、濾過水室を放圧するための二次ドレン弁41を有した二次ドレン管42と、が接続されている。
On the
前述の中空糸膜モジュール1を用いた装置における原水の濾過工程では、初めに二次ドレン弁41と排気弁71を開放して放圧した後に、二次ドレン弁41を閉じて原水弁61を開放して原水室6に原水を充満させた後、排気弁71を閉じるとともに濾過弁11を開放して濾過を開始する。濾過は、原水が中空糸膜2外表面に形成されている微孔5を通過することにより行われ、濾過水は中空糸膜の内側を通って濾過水室7に流出する。そして、濾過時間の経過に伴い中空糸膜2外表面や微孔5に原水中のファウリング物質が付着して濾過流束が低下する。このときに、濾過流束を回復させるために次に示す液体と気体を同時に導入する同時逆流洗浄工程を実施する。
In the raw water filtration step in the apparatus using the hollow
液体と気体を同時に導入する同時逆流洗浄工程は、初めに、原水の流入を停止するために原水弁61を閉じて濾過工程を停止する。次に、コンプレッサーを予め稼動させておいた状態にて、全てのバルブを閉じ排気弁71を開ける。その後、水逆洗弁35を開け逆洗ポンプ32を稼動させ、同時に空気逆洗弁21を開けると濾過水と空気が開口部3から流入して中空糸膜2の内側を逆流して微孔5から原水室6側に流出する。中空糸膜2の原水室6側に流出した気体および液体は排気弁71から排出される。このときの濾過水と空気を逆送するための圧力と流量については、それぞれの流量が大きくなれば洗浄効果は高くなるが、中空糸膜の耐久性やコストを考慮して処理対象水の水質及び濾過水量に応じて適宜決定する。また、逆洗時間は膜の閉塞状況によって適宜決定する。洗浄時間が長くなるほど洗浄効果は大きくなるが、エネルギーコストが増大し水の回収率が低下するので、通常は10秒から180秒の間で実施する。なお、空気逆洗と水逆洗の洗浄時間を変化させて、どちらか一方の洗浄のみを行う時間を設けても良い。また、洗浄効果を高めるために洗浄用薬品として次亜塩素酸ナトリウムや酸を濾過水に添加しても良い。
In the simultaneous backwashing process in which the liquid and the gas are simultaneously introduced, first, the raw water valve 61 is closed to stop the filtration process in order to stop the inflow of the raw water. Next, all valves are closed and the exhaust valve 71 is opened in a state where the compressor has been operated in advance. Thereafter, the water backwash valve 35 is opened and the
同時逆洗工程終了後、濾過工程に戻るためには、逆洗ポンプ32を停止するとともに水逆洗弁35を閉じ、一次ドレン弁51を開放し排気弁71を閉じる。これで中空糸膜モジュール1内の洗浄排水が排出される。次で、一次ドレン弁51と空気逆洗弁21を閉じた後、二次ドレン弁41と排気弁71を開放して放圧する。その後、二次ドレン弁41を閉じて原水弁61を開放して原水室6に原水を充満させた後、排気弁71を閉じるとともに濾過弁11を開放して濾過を再開する。
In order to return to the filtration step after the simultaneous back washing step, the
本発明の液体と気体の同時逆流洗浄は、中空糸膜2内を液体と気体が同時に逆流して中空糸膜2外表面に形成された微孔5より原水室6側に流出するので、微孔5に侵入したファウリング物質を除去することが出来るとともに、中空糸膜2を揺動させることにより中空糸膜2外表面に付着したファウリング物質を剥離することができる。特に結合部8付近の表面に付着したファウリング物質も中空糸膜2内を気体が通過することによる揺動で容易に剥離することができる。また、微孔5から排出した気体が原水室6内の液体を激しく流動させるので中空糸膜2外表面に付着したファウリング物質を剥離するとともに、中空糸膜2間に蓄積したファウリング物質も排出することができる。
In the simultaneous backwashing of the liquid and the gas of the present invention, the liquid and the gas flow back in the
更に、開口部3側の結合部8が下方に封止部4が上方に位置するように立設されているので、気体の浮力により中空糸膜2内を逆流した液体及び気体が上方に向かって細かく分散されて均一に微孔5より流出し、中空糸膜2外表面に付着したファウリング物質の洗浄が均一に行なわれる。しかも、微孔5から中空糸膜2外に流出した液体が気体とともに中空糸膜2の表面近くを沿って浮上することによっても中空糸膜2外表面に付着しているファウリング物質の剥離が行われるとともに、剥離されたファウリング物質が上方に押し流されるのでファウリング物質の再付着が防止される。
Further, since the
また、液体と気体は、結合部8から中空糸膜2内を逆流するときに気体の浮力で上方に向かって流れるので、結合部8付近に形成された微孔5からだけでなく封止部4付近に形成された微孔5からも均一に排出される。
Further, since the liquid and the gas flow upward due to the buoyancy of the gas when flowing back through the
以下、本発明について具体的実施例により説明する。 Hereinafter, the present invention will be described with reference to specific examples.
実施例1は、ポリスルホン製で分画粒子径2.0μmの中空糸膜(バブルポイント0.05Mpa)を使用し、膜モジュールの膜面積は2m2とした。原水は、水道水に黒土を添加して濁度を15度程度としたものを使用し、原水を膜濾過流束3m/日で30分間濾過した後に洗浄を実施した。 In Example 1, a hollow fiber membrane (bubble point 0.05 Mpa) made of polysulfone and having a fractional particle diameter of 2.0 μm was used, and the membrane area of the membrane module was 2 m 2 . As raw water, black soil was added to tap water to make the turbidity about 15 degrees, and the raw water was filtered at a membrane filtration flux of 3 m / day for 30 minutes and then washed.
実施例1の洗浄方法は、水と空気を同時に導入する同時逆流洗浄であって、同時逆流洗浄を15秒間行った後に空気による気体逆流洗浄を10秒間行いながら原水室側の液体をドレンした。流入圧力は、同時逆流洗浄についても液体逆流洗浄単独の場合及び気体逆流洗浄単独の場合と同じで約0.15Mpaとした。また、逆流洗浄時の洗浄速度は、気体については膜面積1m2あたり約2Nm3/hに、液体については膜面積1m2あたり約0.3m3/hとした。なお、気体逆流洗浄開始時の逆流洗浄速度は上述の設定にも拘らず一時的に膜面積1m2あたり3乃至6Nm3/hに達した。その結果、本発明の洗浄効率は、図2に示す通り80%であった。 The cleaning method of Example 1 was simultaneous countercurrent cleaning in which water and air were simultaneously introduced, and the raw water chamber side liquid was drained while performing gas countercurrent cleaning with air for 10 seconds after performing simultaneous countercurrent cleaning for 15 seconds. The inflow pressure was set to about 0.15 Mpa for the simultaneous backwashing as in the case of the liquid backwashing alone and the case of the gas backwashing alone. In addition, the cleaning speed at the time of backwashing was about 2 Nm 3 / h per 1 m 2 of membrane area for gas and about 0.3 m 3 / h per 1 m 2 of membrane area for liquid. Note that the back-flow cleaning speed at the start of the gas back-flow cleaning temporarily reached 3 to 6 Nm 3 / h per 1 m 2 of membrane area regardless of the above setting. As a result, the cleaning efficiency of the present invention was 80% as shown in FIG.
なお、上記結果を算出するにあたっては次の計算式を用いた。
膜捕捉濁質量(mg):(原水の濁質濃度)×(濾過水量)
洗浄排水濁質量(mg):(洗浄排水の濁質濃度)×(洗浄排水量)
洗浄効率(%):(洗浄排水濁質量)/(膜捕捉濁質量)×100
In calculating the above results, the following calculation formula was used.
Membrane trapped turbid mass (mg): (turbidity concentration of raw water) x (filtered water amount)
Washing wastewater turbid mass (mg): (turbidity concentration of washing wastewater) x (washing wastewater amount)
Washing efficiency (%): (washing wastewater turbid mass) / (membrane trapped turbid mass) × 100
また、本発明でいう分画粒子径とは、中空糸膜による阻止率が90%である粒子の粒子径(S)のことをいい、異なる粒子径を有する少なくとも2種類の粒子の阻止率を測定し、その測定値を元にして次の近似式(1)において、R(%)が90となるSの値を求め、これを分画粒子径としたものである。
R=100/(1−m×exp(−a×log(s))) …(1)
なお、上記の式中、aおよびmは中空糸膜の透水性能、構造などによって定まる定数であって、2種類以上の阻止率の測定値をもとに算出される。
The fractional particle size referred to in the present invention means the particle size (S) of particles having a rejection rate of 90% by the hollow fiber membrane, and the rejection rate of at least two kinds of particles having different particle sizes. Based on the measured value, in the following approximate formula (1), the value of S at which R (%) is 90 is determined, and this is the fractional particle size.
R = 100 / (1−m × exp (−a × log (s))) (1)
In the above formula, a and m are constants determined by the water permeability and structure of the hollow fiber membrane, and are calculated based on measured values of two or more types of rejection.
比較例1は、水による液体逆流洗浄を15秒間行った後に空気による気体逆流洗浄を15秒間行い、その後に空気による気体逆流洗浄を10秒間行いながら原水室側の水をドレンした。その他の設定条件については実施例1と同じである。その結果、洗浄効率は74%であった。 In Comparative Example 1, liquid back-flow cleaning with water was performed for 15 seconds, gas back-flow cleaning with air was performed for 15 seconds, and then water on the raw water chamber side was drained while performing gas back-flow cleaning with air for 10 seconds. Other setting conditions are the same as those in the first embodiment. As a result, the cleaning efficiency was 74%.
比較例2は、空気による気体逆流洗浄を30秒間行った後に空気による気体逆流洗浄を10秒間行いながら原水室側の水をドレンした。その他の設定条件については実施例1と同じである。その結果、洗浄効率は66%であった。 In Comparative Example 2, water on the raw water chamber side was drained while performing gas backflow cleaning with air for 30 seconds and then performing gas backflow cleaning with air for 10 seconds. Other setting conditions are the same as those in the first embodiment. As a result, the cleaning efficiency was 66%.
比較例3は、水による液体逆流洗浄を30秒間行った後に空気による気体逆流洗浄を10秒間行いながら原水室側の水をドレンした。その他の設定条件については実施例1と同じである。その結果、洗浄効率は67%であった。 In Comparative Example 3, water on the raw water chamber side was drained while performing liquid back-flow cleaning with water for 30 seconds and then performing gas back-flow cleaning with air for 10 seconds. Other setting conditions are the same as those in the first embodiment. As a result, the cleaning efficiency was 67%.
実施例2は、原水として河川水をポリ塩化アルミニウムで凝集沈澱処理した濁度0.5から1.0度の処理水を使用し、装置は、実施例1の装置と同じものを用いた。中空糸膜濾過流束5m/日、洗浄間隔30分間の条件で濾過を行い、経時変化による膜間差圧を調査した。その結果、本発明は図3に示す通り上昇率が緩やかであり、10日経過後であっても膜間差圧は約10kPaであった。尚、膜間差圧は25℃での水温補正に換算した値を用いた。 In Example 2, treated water having a turbidity of 0.5 to 1.0 degrees obtained by coagulating and precipitating river water with polyaluminum chloride was used as raw water, and the same apparatus as that of Example 1 was used. Filtration was performed under the conditions of a hollow fiber membrane filtration flux of 5 m / day and a washing interval of 30 minutes, and the transmembrane pressure difference due to change with time was investigated. As a result, the increase rate of the present invention was moderate as shown in FIG. 3, and the transmembrane pressure difference was about 10 kPa even after 10 days. The transmembrane pressure difference used was a value converted to a water temperature correction at 25 ° C.
比較例4は、洗浄方法として気体逆流洗浄を実施した以外、実験条件は実施例2と同様である。その結果、膜間差圧は3日経過頃後から上昇勾配が急となり10日経過時点では約60kPaであった。 In Comparative Example 4, the experimental conditions are the same as in Example 2 except that gas backflow cleaning was performed as the cleaning method. As a result, the transmembrane pressure difference was about 60 kPa at the time point of 10 days after the rising gradient became steep after about 3 days.
本発明の膜の洗浄方法は、処理対象水中の濁質を膜によって処理する水処理分野において利用できる。 The membrane cleaning method of the present invention can be used in the field of water treatment in which turbidity in water to be treated is treated with a membrane.
1 中空糸膜モジュール
2 中空糸膜
3 開口部
4 封止部
5 微孔
6 原水室
7 濾過水室
8 結合部
11 濾過弁
12 流水管
21 空気逆洗弁
22 エアコンプレッサ
23 送気管
31 逆洗水槽
32 逆洗ポンプ
33 送水管
34 水逆洗流量調節弁
35 水逆洗弁
41 二次ドレン弁
51 一次ドレン弁
61 原水弁
71 排気弁
A 原水
B 一次ドレン
C 二次ドレン
D 濾過水
E 排気
DESCRIPTION OF
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004055724A JP2005246110A (en) | 2004-03-01 | 2004-03-01 | Method for cleaning hollow fiber membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004055724A JP2005246110A (en) | 2004-03-01 | 2004-03-01 | Method for cleaning hollow fiber membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005246110A true JP2005246110A (en) | 2005-09-15 |
Family
ID=35027117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004055724A Pending JP2005246110A (en) | 2004-03-01 | 2004-03-01 | Method for cleaning hollow fiber membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005246110A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007289940A (en) * | 2006-03-29 | 2007-11-08 | Toray Ind Inc | Washing method of hollow fiber membrane module |
JP2008253924A (en) * | 2007-04-05 | 2008-10-23 | Toshiba Corp | Microbubble generation method and microbubble generation apparatus |
JP2021023859A (en) * | 2019-08-01 | 2021-02-22 | メタウォーター株式会社 | Evaluation method for washing effect of filtration membrane, and washing method for filtration membrane |
CN114713036A (en) * | 2022-06-10 | 2022-07-08 | 北京先通国际医药科技股份有限公司 | Online filter membrane integrity testing device and method and application thereof |
-
2004
- 2004-03-01 JP JP2004055724A patent/JP2005246110A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007289940A (en) * | 2006-03-29 | 2007-11-08 | Toray Ind Inc | Washing method of hollow fiber membrane module |
JP2008253924A (en) * | 2007-04-05 | 2008-10-23 | Toshiba Corp | Microbubble generation method and microbubble generation apparatus |
JP2021023859A (en) * | 2019-08-01 | 2021-02-22 | メタウォーター株式会社 | Evaluation method for washing effect of filtration membrane, and washing method for filtration membrane |
JP7278900B2 (en) | 2019-08-01 | 2023-05-22 | メタウォーター株式会社 | Method for evaluating cleaning effect of filtration membrane and method for cleaning filtration membrane |
CN114713036A (en) * | 2022-06-10 | 2022-07-08 | 北京先通国际医药科技股份有限公司 | Online filter membrane integrity testing device and method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5453711B2 (en) | Cleaning method for external pressure hollow fiber membrane module | |
JPH07112185A (en) | Waste water treating device and washing method therefor | |
JP2009533214A (en) | Microfiltration device using flexible filter module | |
JP4867180B2 (en) | Immersion membrane separator and chemical cleaning method therefor | |
KR20120047198A (en) | Water filtration with automatic backwash | |
TW201836706A (en) | Method for washing hollow fiber membrane module and hollow fiber membrane filtration device | |
JP2007296500A (en) | Membrane separation apparatus and membrane filtration method | |
JP2876978B2 (en) | Water purification method | |
JP2007245058A (en) | Water treatment method by means of membrane filtration, and water treatment apparatus | |
JP2007289847A (en) | Raw tap water purification method and its apparatus | |
JP5151009B2 (en) | Membrane separation device and membrane separation method | |
CN104755156B (en) | The method of operation of scrubbing membrane module | |
JP2005246110A (en) | Method for cleaning hollow fiber membrane | |
JP2002248324A (en) | Membrane separation apparatus and its backwashing method | |
JP2004057883A (en) | Water cleaning method using external pressure type hollow fiber membrane module and apparatus therefor | |
JP2013212497A (en) | Water treating method | |
JP2007111576A (en) | Back-washing method of membrane module | |
JP4454922B2 (en) | Control method of filtration apparatus using hollow fiber type separation membrane | |
JPS61136404A (en) | Liquid filtering apparatus | |
JP2002035748A (en) | Water cleaning treatment apparatus using large pore size filter membrane member | |
JP2009241043A (en) | Backwashing method of membrane filter apparatus | |
CN106232212B (en) | Method for operating purification thin-film module | |
JP2007245060A (en) | Method for detecting and testing membrane damage of filtration membrane | |
CN105592915B (en) | It is configured to the chemical cleaning method of the RO/NF separation membranous systems of two row | |
JP3856376B2 (en) | Water treatment device and its operation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20061114 |
|
A621 | Written request for application examination |
Effective date: 20061115 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081009 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081021 |
|
A521 | Written amendment |
Effective date: 20081126 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090106 |