JP2005243414A - Sealed storage battery - Google Patents

Sealed storage battery Download PDF

Info

Publication number
JP2005243414A
JP2005243414A JP2004051361A JP2004051361A JP2005243414A JP 2005243414 A JP2005243414 A JP 2005243414A JP 2004051361 A JP2004051361 A JP 2004051361A JP 2004051361 A JP2004051361 A JP 2004051361A JP 2005243414 A JP2005243414 A JP 2005243414A
Authority
JP
Japan
Prior art keywords
storage battery
external terminal
terminal
connection terminal
sealed storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004051361A
Other languages
Japanese (ja)
Inventor
Manabu Kanemoto
学 金本
Minoru Kurokuzuhara
実 黒葛原
Mitsuhiro Kodama
充浩 児玉
Toshiki Tanaka
俊樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2004051361A priority Critical patent/JP2005243414A/en
Publication of JP2005243414A publication Critical patent/JP2005243414A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed storage battery, having a switching mechanism capable of interrupting and connecting charge current using a simple and compact structure due to changes in pressure in the interior of a battery during charge, and capable of suppressing boost in the internal pressure during rapid charging, suppressing an electrolyte solution from flying off to the outside of a system, as well as being superior in cycle characteristics. <P>SOLUTION: A sealed storage battery incorporates a switching mechanism, that performs switching ON and OFF of a circuit establishing a connection between a polar plate and an external terminal due to changes in the pressure in the interior of a storage battery during charge. The switching mechanism comprises a metallic sealing pad, and a connection terminal, and the sealing pad and the external terminal are insulated with an electrical insulating film. Normally, by the fact that the connecting terminal abuts both of the sealing pad and the external terminal, the switching mechanism is at ON state. When the pressure in the interior of the storage battery rises, electrical energization is interrupted by the fact that the connecting terminal is away from the sealing pad and the external terminal. As a result, the charge circuit of the storage of the circuit turns ON/OFF. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、密閉形蓄電池に関するものであり、蓄電池内部の気体圧力の変化に応じて極板と外部端子を結ぶ回路のオン・オフを司るスイッチ機構を内蔵し、急速充電に適した密閉形蓄電池に関するのである。   The present invention relates to a sealed storage battery, and has a built-in switch mechanism for controlling on / off of a circuit connecting an electrode plate and an external terminal in accordance with a change in gas pressure inside the storage battery, and is suitable for rapid charging. It is about.

ポータブル機器の電源として主に用いられている2次電池としては、ニッケルカドミウム電池やニッケル水素蓄電池などのアルカリ蓄電池、小型シール鉛電池、リチウムイオン電池がある。特に、アルカリ蓄電池はサイクル特性に優れ、耐過充電性、耐過放電性にも優れるところからサイクルサービス用の蓄電池として重用されている。
ユーザーの要望によって、充電を短時間で済ませることが望まれ、特にサイクルサービス用蓄電池に対して急速充電に適応した密閉形蓄電池の開発が望まれている。該要求に応えるために、15〜30分間という従来にない短時間で充電を完了させることのできる密閉形蓄電池の開発が行われている。
Secondary batteries mainly used as power sources for portable devices include alkaline storage batteries such as nickel cadmium batteries and nickel hydride storage batteries, small sealed lead batteries, and lithium ion batteries. In particular, alkaline storage batteries are frequently used as storage batteries for cycle services because of their excellent cycle characteristics and excellent overcharge resistance and overdischarge resistance.
It is desired that charging be completed in a short time according to the user's request, and in particular, it is desired to develop a sealed storage battery adapted to rapid charging for a cycle service storage battery. In order to meet this requirement, a sealed storage battery that can complete charging in an unprecedented short time of 15 to 30 minutes has been developed.

図4は、従来の円筒形アルカリ蓄電池31の内部構造を示す断面図である。図4に示すように、正極の外部端子を兼ねるキャップ32と封口板33に、蓄電池内部の気体圧力が上昇したときに、内部に蓄積した気体を外部に放出させるための透孔34、35が設けられており、常時は、封口板33に設けた透孔35がゴム弁36によって気密に封止されている。蓄電池内部の圧力が上昇すると、該圧力によってゴム弁36が上方に押し上げられ、透孔35が開口して内部に蓄積した気体が外に排出される(圧力開放機構)。気体が外に排出され、蓄電池内部の圧力が降下すると透孔35はゴム弁36によって再び封止される。なお、図4の37は、電槽の開放端を気密に封止するためのガスケットである。ニッケルカドミウム電池やニッケル水素蓄電池の場合、充電時に発生する酸素や水素を極板で吸収する機構を採用している。しかし、図4に示した従来の密閉形蓄電池の充電を15〜30分間で完了させようとすると、充電中の気体の吸収速度が発生速度に追いつかないために圧力開放機構が頻繁に動作し、電解液を構成する水が気体となって外に逸散する。また、充電において蓄電池内部での発熱が大きいために蓄電池の温度が上昇し、蓄電池の性能低下を起こす原因となる。   FIG. 4 is a cross-sectional view showing the internal structure of a conventional cylindrical alkaline storage battery 31. As shown in FIG. 4, when the gas pressure inside the storage battery rises, cap holes 32 that also serve as external terminals of the positive electrode and the sealing plate 33 have through holes 34 and 35 for releasing the gas accumulated therein. In general, the through hole 35 provided in the sealing plate 33 is hermetically sealed by the rubber valve 36. When the pressure inside the storage battery rises, the rubber valve 36 is pushed upward by the pressure, and the gas accumulated inside is discharged through the opening of the through hole 35 (pressure release mechanism). When the gas is discharged to the outside and the pressure inside the storage battery drops, the through hole 35 is sealed again by the rubber valve 36. In addition, 37 of FIG. 4 is a gasket for airtightly sealing the open end of a battery case. In the case of a nickel cadmium battery or a nickel metal hydride storage battery, a mechanism is adopted in which oxygen and hydrogen generated during charging are absorbed by an electrode plate. However, when the charging of the conventional sealed battery shown in FIG. 4 is completed in 15 to 30 minutes, the pressure release mechanism frequently operates because the absorption rate of the gas during charging cannot catch up with the generation rate, The water that constitutes the electrolyte becomes a gas and diffuses outside. Moreover, since the heat generation inside the storage battery is large during charging, the temperature of the storage battery rises, causing a decrease in performance of the storage battery.

前記従来電池の欠点を改良するために、図3に示すような、蓄電池内部の気体圧力の変化に応じて極板と外部端子を結ぶ回路のオン・オフを司るスイッチ機構を内蔵した密閉形蓄電池21が提案されている。(例えば特許文献1参照)   In order to improve the drawbacks of the conventional battery, as shown in FIG. 3, a sealed storage battery having a built-in switch mechanism for controlling on / off of a circuit connecting an electrode plate and an external terminal in accordance with a change in gas pressure inside the storage battery. 21 has been proposed. (For example, see Patent Document 1)

図3に示した密閉形蓄電池において、電槽30には、電極群が収納され、該電極群を構成する正極板38と正極の外部端子を兼ねるキャップ29は、正極リード板39、接続端子23、該接続端子23に接合されたスイッチ22の第1端子24、スイッチ22の第2端子25を介して電気的に接続している。電槽30の開放端は、熱可塑性樹脂の成形体であるグロメット26および該グロメット26の中央部分に設けた透孔27に嵌合させた接続端子23によって気密に封止されている。常時は、弾性体28の弾性変形に由来する応力によって第1端子24が下向きに押圧され、第1端子24と第2端子25が当接してスイッチ22がオンの状態にある。充電時に蓄電池内部の圧力(蓄電池内部に蓄積した気体圧力)が上昇して所定値を超えると、グロメット26の中央部が上方に撓み、該撓みに伴ってスイッチ22の第1端子24が上方に移動して第2端子25から離れてスイッチ22がオフの状態になり、充電が一時遮断される。このように、蓄電池に、充電時の電池内部の圧力変化に応じて充電をオン・オフさせる充電制御機能を付与した密閉形蓄電池は、充電時に電池温度が上昇するのを抑制できる効果を奏する。   In the sealed storage battery shown in FIG. 3, an electrode group is housed in the battery case 30, and a positive electrode plate 38 constituting the electrode group and a cap 29 serving as an external terminal of the positive electrode include a positive electrode lead plate 39 and a connection terminal 23. The connection terminal 23 is electrically connected via the first terminal 24 of the switch 22 and the second terminal 25 of the switch 22. The open end of the battery case 30 is hermetically sealed by a grommet 26 which is a molded body of a thermoplastic resin and a connection terminal 23 fitted in a through hole 27 provided in a central portion of the grommet 26. Normally, the first terminal 24 is pressed downward by the stress derived from the elastic deformation of the elastic body 28, the first terminal 24 and the second terminal 25 are in contact with each other, and the switch 22 is in an on state. When the pressure inside the storage battery (the gas pressure accumulated inside the storage battery) rises and exceeds a predetermined value during charging, the central portion of the grommet 26 bends upward, and the first terminal 24 of the switch 22 rises upward along with the bending. The switch 22 is turned off by moving away from the second terminal 25, and charging is temporarily interrupted. Thus, the sealed storage battery in which the storage battery is provided with a charge control function for turning on / off charging according to the pressure change inside the battery at the time of charging has an effect of suppressing an increase in battery temperature during charging.

US 2002/0119364 A1 号公報 しかし、該特許文献1に記載の構成によれば、蓄電池を気密に封止するためにガスケットに替えて構造の複雑なグロメット26を必要とする。また、グロメット26の肉薄部とスイッチの第2端子25の間にグロメットの撓み代を確保する必要があり、スイッチの占有体積が大きくなる欠点があった。また、グロメット26の肉薄部が均一に撓まない場合には、スイッチの第1端子24が上下方向に平行移動しないため、スイッチの第2端子に対して傾き、両端子の当接・離脱が正常に行われず、スイッチが機能しなくなる虞があった。さらに、グロメットが繰り返し撓むことによって、グロメット26と接続端子23の当接面の気密性が損なわれる虞があった。However, according to the configuration described in Patent Document 1, a grommet 26 having a complicated structure is required instead of the gasket in order to hermetically seal the storage battery. In addition, it is necessary to secure a bending allowance of the grommet between the thin portion of the grommet 26 and the second terminal 25 of the switch, and there is a disadvantage that the volume occupied by the switch becomes large. In addition, when the thin portion of the grommet 26 does not bend uniformly, the first terminal 24 of the switch does not move in the vertical direction, so that it tilts with respect to the second terminal of the switch, and the two terminals abut and detach. There was a risk that the switch would not function properly. Furthermore, there is a possibility that the airtightness of the contact surface between the grommet 26 and the connection terminal 23 may be impaired due to repeated bending of the grommet.

本発明は、前記従来の密閉形蓄電池の欠点に鑑みなされたものであって、、充電時の電池内部の圧力変化により充電電流を遮断および通電することが可能なスイッチ機構を持つ蓄電池であり、急速充電を行ったときに蓄電池内部の圧力上昇を抑制でき、かつ、簡単でコンパクトな構造を備える密閉形蓄電池を提供するものである。   The present invention was made in view of the drawbacks of the conventional sealed storage battery, and is a storage battery having a switch mechanism capable of cutting off and energizing a charging current due to a pressure change inside the battery during charging, It is an object of the present invention to provide a sealed storage battery having a simple and compact structure that can suppress an increase in pressure inside the storage battery when rapid charging is performed.

本発明は、密閉形蓄電池のスイッチ機構および封止の構成を以下の構成とすることによって、前記課題を解決するものである。
本発明に係る密閉形蓄電池は、充電時に、蓄電池内部の圧力変化により、極板と外部端子を結ぶ充電回路のオンとオフの切り替えを行うスイッチ機構を内蔵する密閉形蓄電池において、前記スイッチ機構は、金属製の封口板、接続端子で構成され、前記封口板と外部端子は電気絶縁層により絶縁されており、常時は、前記接続端子が封口板と外部端子の両方に当接することによって前記スイッチ機構がオンの状態にあり、蓄電池内部の圧力が上昇した時に、前記接続端子が封口板から離れることによって封口板と外部端子の電気的導通が遮断されることによって、蓄電池の充電回路がオンからオフに切り替わる密閉形蓄電池である。(請求項1)
This invention solves the said subject by making the structure of the switch mechanism and sealing of a sealed storage battery into the following structures.
The sealed storage battery according to the present invention is a sealed storage battery having a built-in switch mechanism that switches on and off a charging circuit that connects an electrode plate and an external terminal due to a pressure change inside the storage battery during charging. The sealing plate is composed of a metal sealing plate and a connection terminal, and the sealing plate and the external terminal are insulated from each other by an electrical insulating layer. Normally, the connection terminal is in contact with both the sealing plate and the external terminal, so that the switch When the mechanism is on and the internal pressure of the storage battery rises, the electrical connection between the sealing plate and the external terminal is cut off when the connection terminal is separated from the sealing plate, so that the charging circuit of the storage battery is turned on. It is a sealed storage battery that switches off. (Claim 1)

本発明係る密閉形蓄電池は、前記外部端子の側壁内面が前記封口板に対して垂直であって、前記接続端子は柱状であり、その側面が前記外部端子の側壁内面に当接し、且つ、接続端子が外部端子の側壁に対して摺動可能であることを特徴とする請求項1に記載の密閉形蓄電池である。(請求項2)
本発明係る密閉形蓄電池は、前記外部端子の壁面にガス排出用の透孔を設けたことを特徴とする請求項2に記載の密閉形蓄電池である。(請求項3)
本発明係る密閉形蓄電池は、前記外部端子の内面に、該外部端子内の空間を気密に保つための気密保持層を配置し、該気密保持層に破断を発生させることにより、前記透孔を通してガスを外部に排出できるようにしたことを特徴とする請求項3に記載の密閉形蓄電池である。(請求項4)
In the sealed storage battery according to the present invention, the side wall inner surface of the external terminal is perpendicular to the sealing plate, the connection terminal is columnar, the side surface abuts on the side wall inner surface of the external terminal, and is connected. 2. The sealed storage battery according to claim 1, wherein the terminal is slidable with respect to the side wall of the external terminal. (Claim 2)
The sealed storage battery according to the present invention is the sealed storage battery according to claim 2, wherein a gas discharge hole is provided in a wall surface of the external terminal. (Claim 3)
In the sealed storage battery according to the present invention, an airtight holding layer for keeping the space in the external terminal airtight is disposed on the inner surface of the external terminal, and the airtight holding layer is ruptured to cause the airtight holding layer to pass through the through hole. The sealed storage battery according to claim 3, wherein the gas can be discharged to the outside. (Claim 4)

請求項1、請求項2に記載の発明によれば、充電時の電池内部の圧力変化により充電電流を遮断及び通電することが可能なスイッチ機構であって、簡単、かつ、コンパクトで信頼性の高いスイッチ機構を備えた密閉形蓄電池を提供することができる。
請求項3に記載の発明によれば、前記スイッチ機構を備えた密閉形蓄電池において、蓄電池内部の圧力が異常に上昇したときに、蓄電池内部に蓄積した気体を外部端子内の空間を経由して外部に排出するので、気体の噴出速度を弱め、該気体とともに電解液が、外部に吹き出るのを抑制することができる。なお、本発明でいう蓄電池内部の圧力が異常に上昇するとは、該圧力が前記スイッチ機構の動作圧力を超えて上昇した現象をいう。
請求項4に記載の発明によれば、前記スイッチ機構を備え、気密性に優れた密閉形蓄電池であって、蓄電池内部の圧力が異常に上昇したときに、蓄電池内部に蓄積した気体を速やかに外に排出可能な密閉形蓄電池を実現できる。
According to the first and second aspects of the invention, a switch mechanism capable of cutting off and energizing a charging current by a pressure change inside the battery during charging, which is simple, compact and reliable. A sealed storage battery having a high switch mechanism can be provided.
According to the third aspect of the present invention, in the sealed storage battery provided with the switch mechanism, when the pressure inside the storage battery rises abnormally, the gas accumulated in the storage battery passes through the space in the external terminal. Since the gas is discharged to the outside, the gas ejection speed can be reduced, and the electrolyte can be prevented from blowing out together with the gas. In the present invention, the abnormal increase in the internal pressure of the storage battery means a phenomenon in which the pressure has exceeded the operating pressure of the switch mechanism.
According to a fourth aspect of the invention, there is provided a sealed storage battery having the switch mechanism and having excellent airtightness, and when the pressure inside the storage battery rises abnormally, the gas accumulated in the storage battery is quickly discharged. A sealed storage battery that can be discharged to the outside can be realized.

以下、図1を用いて、本発明の実施の形態を説明する。
図1は、本発明の実施例である円筒形の密閉形蓄電池のスイッチ機構を説明するための電池要部の断面図である。
図1(イ)において、正極板とセパレータおよび負極板の積層体を捲回した捲回式電極群(図示せず)を収納した金属製電槽8の上部開放端に、キャップ状の正極外部端子(以下キャップと記述する)1のフランジ部分2、スイッチの第2端子である金属製の封口板3、前記フランジ部分2と封口板3を絶縁するために両者の間に挿入させた電気絶縁フィルム4および熱可塑性樹脂の成形体であるガスケット7を装着して電槽8の端部をかしめることにより気密に封止する(クリンプシール)。
キャップ1の断面は、側壁の内面が封口板3に垂直な直線をなしており、キャップ1と封口板3に囲まれた空間(以下キャップ内空間という)にはスイッチの第1端子である金属製の接続端子5が配置されている。該接続端子5の側面はキャップ1の側壁内面に気密に当接しており、且つ、図1の上下方向に摺動可能である。封口板3の内面には、他端が該正極板(図示せず)に接合された正極リード板10が接合されている。
The embodiment of the present invention will be described below with reference to FIG.
FIG. 1 is a cross-sectional view of a main part of a battery for explaining a switch mechanism of a cylindrical sealed storage battery according to an embodiment of the present invention.
In FIG. 1 (a), a cap-shaped positive electrode exterior is connected to an upper open end of a metal battery case 8 containing a wound electrode group (not shown) in which a laminate of a positive electrode plate, a separator and a negative electrode plate is wound. A flange portion 2 of a terminal (hereinafter referred to as a cap) 1, a metal sealing plate 3 which is a second terminal of the switch, and an electrical insulation inserted between the flange portion 2 and the sealing plate 3 in order to insulate them. The gasket 4 which is the molded body of the film 4 and the thermoplastic resin is attached, and the end portion of the battery case 8 is caulked to be hermetically sealed (crimp seal).
The cross-section of the cap 1 is such that the inner surface of the side wall forms a straight line perpendicular to the sealing plate 3, and the space surrounded by the cap 1 and the sealing plate 3 (hereinafter referred to as the space inside the cap) is a metal that is the first terminal of the switch. A connection terminal 5 made of metal is arranged. The side surface of the connection terminal 5 is in airtight contact with the inner surface of the side wall of the cap 1 and is slidable in the vertical direction in FIG. A positive electrode lead plate 10 having the other end bonded to the positive electrode plate (not shown) is bonded to the inner surface of the sealing plate 3.

前記電気絶縁フィルム4の中央部分には、接続端子5が挿通可能な透孔が設けられおり、常時は、図1(イ)に示すように、接続端子5が弾性体(バネ)9の押圧力によって図の下方に押し下げられ、接続端子5の下面は封口板3の外面(図では上面)に当接しており、かつ、その側面がキャップ1の側壁の内面に当接しているので、キャップ1と封口板3は接続端子5を介して電気的に導通状態(スイッチがオンの状態)にある。   A through-hole through which the connection terminal 5 can be inserted is provided in the central portion of the electrical insulating film 4. Normally, the connection terminal 5 is pressed by the elastic body (spring) 9 as shown in FIG. Since the pressure is pushed downward by the pressure, the lower surface of the connection terminal 5 is in contact with the outer surface (upper surface in the drawing) of the sealing plate 3, and the side surface is in contact with the inner surface of the side wall of the cap 1. 1 and the sealing plate 3 are in an electrically conductive state (switch is turned on) through the connection terminal 5.

封口板3の中央部分に小孔6が設けられており、例えば充電時に蓄電池内部の気体圧力が上昇したときには、該圧力によって、接続端子5が図の上方に向かって摺動し、図1(ロ)に示すように、接続端子5と封口板3が離れてキャップ1と封口板3との間の電気的導通が遮断される(スイッチがオフの状態)。充電中にスイッチがオフになり、一時充電が中断されている間に、蓄電池の内部に蓄積した気体が電極によって吸収され、蓄電池内部の圧力が降下すると接続端子5が図の下方に向かって摺動し、回路がオンに切り替わって充電が再開される。   A small hole 6 is provided in the central portion of the sealing plate 3. For example, when the gas pressure inside the storage battery rises during charging, the connection terminal 5 slides upward due to the pressure, and FIG. As shown in (b), the connection terminal 5 and the sealing plate 3 are separated from each other, and the electrical continuity between the cap 1 and the sealing plate 3 is interrupted (the switch is turned off). While the switch is turned off during charging and the temporary charging is interrupted, the gas accumulated inside the storage battery is absorbed by the electrode, and when the pressure inside the storage battery drops, the connection terminal 5 slides downward in the figure. And the circuit is switched on and charging is resumed.

該実施形態によれば、スイッチの第1端子である接続端子5が、キャップ1の側壁の内面に沿って摺動するので、傾くことなく平行移動する。
そのため、接続端子5とスイッチの第2端子である封口板3の当接及び離脱は正常に行われ信頼性の高いスイッチ機能を達成できる。
また、本実施形態に係るスイッチ機構は、図3に示した従来提案されたスイッチ機構に比べて構造が極めて簡単であり、キャップ内空間内を利用して接続端子5を上下に移動させるので、スイッチの占有体積が小さくて済む利点がある。また、本実施形態に係るスイッチ機構の動作は、接続端子5の摺動によるものであり、図3に示したグロメットの撓みによるものではないので、スイッチを繰り返し動作させても、接続端子5の側面とキャップ1の側壁内面の気密性が長期に亘り維持できる利点がある。
According to this embodiment, since the connection terminal 5 that is the first terminal of the switch slides along the inner surface of the side wall of the cap 1, the connection terminal 5 moves in parallel without being inclined.
Therefore, the contact and release of the connection terminal 5 and the sealing plate 3 as the second terminal of the switch are normally performed, and a highly reliable switch function can be achieved.
Further, the switch mechanism according to the present embodiment is extremely simple in structure as compared with the conventionally proposed switch mechanism shown in FIG. 3 and moves the connection terminal 5 up and down using the space in the cap. There is an advantage that the occupied volume of the switch is small. Further, the operation of the switch mechanism according to the present embodiment is due to the sliding of the connection terminal 5 and not due to the bending of the grommet shown in FIG. There exists an advantage which can maintain the airtightness of a side surface and the side wall inner surface of the cap 1 over a long period of time.

前記の実施形態ではフランジ部2がキャップ1の一部である例を記述したが、キャップ1とフランジ部2が別々であってもよい。
この場合は、フランジ部2に相当する外部封口板2とキャップ1を接合させ、外部封口板2には内壁が垂直であって、その断面の成す直線が前記キャップの側壁の断面の内面が なす直線と連続した一本の直線をなす開口を設けることが好ましい。
このことにより、前記接続端子5は、電池内部の圧力変化に対応して傾くことなくスムースに摺動し、接続端子5の側面と外部封口板2の開口の内面を気密に当接させることができる。
In the above-described embodiment, the example in which the flange portion 2 is a part of the cap 1 has been described. However, the cap 1 and the flange portion 2 may be separate.
In this case, the outer sealing plate 2 corresponding to the flange portion 2 and the cap 1 are joined, the inner wall of the outer sealing plate 2 is vertical, and the straight line formed by the cross section forms the inner surface of the cross section of the side wall of the cap. It is preferable to provide an opening that forms a straight line continuous with the straight line.
As a result, the connection terminal 5 smoothly slides without tilting in response to the pressure change inside the battery, and the side surface of the connection terminal 5 and the inner surface of the opening of the external sealing plate 2 can be brought into airtight contact. it can.

キャップ1の壁面には、万一電池内部の圧力が異常に上昇したときに備えてガスを排出させるためのガス排出用の透孔11を設けることが好ましい。図1(ハ)は、前記実施形態において蓄電池内部の気体の圧力が異常に上昇したときの状態を示す図であって、図1(ロ)に比べて接続端子5がさらに上方に摺動し、接続端子5によって閉鎖されていたガス排出用の透孔11が開口した状態を示す図である。ガス排出口(ベント)は、例えば電槽8の側壁や底面の壁面に設けることもできるが、図1(ハ)に示すように、キャップ1の側壁にガス排出用の透孔11を設けることによって、蓄電池の内部に溜まったガスをキャップ内空間を経由して排出するので、排出の勢いを弱めることができ、排出されるガスの勢いにのって電解液が外に吹き出るのを抑制することもできる。   The wall surface of the cap 1 is preferably provided with a gas discharge through hole 11 for discharging gas in case the pressure inside the battery rises abnormally. FIG. 1 (c) is a diagram showing a state when the gas pressure inside the storage battery has abnormally increased in the embodiment, and the connection terminal 5 slides further upward compared to FIG. 1 (b). FIG. 3 is a view showing a state in which a gas discharge through hole 11 closed by a connection terminal 5 is opened. The gas discharge port (vent) can be provided, for example, on the side wall or bottom wall of the battery case 8, but as shown in FIG. 1 (c), a gas discharge through hole 11 is provided on the side wall of the cap 1. As a result, the gas accumulated in the storage battery is discharged via the space inside the cap, so that the discharge momentum can be weakened and the electrolyte is prevented from blowing out due to the discharged gas momentum. You can also.

本発明において、接続端子5、封口板3、キャップ1を構成する金属材料は特に限定されるものではないが、アルカリ蓄電池の場合には、電解液に対する耐食性が良いこと、また、接触抵抗が小さいことなどを考慮して、ニッケルまたはニッケルメッキを施した鋼材を適用することが好ましい。また、接続端子5の断面形状、厚さ、太さ(断面積の大きさ)などは特に限定されるものではないが、本発明に係るスイッチ機構においては、接続端子5の側面をキャップ1の内壁面に気密に、且つ、摺動可能に当接させなければならない。また、接続端子5を摺動させるに際して、接続端子5が平行移動するようにしなければならない。気密性を確保し、且つ、摺動時の摩擦抵抗を小さくするためには、接続端子5の断面形状を円形とすることが好ましい。接続端子5の厚さが小さいと、気密性の確保が難しく、且つ、接続端子5を平行移動させることが難しくなる。逆に、接続端子5の厚さを大きくすると、接続端子5の摺動に際して摩擦抵抗が大きくなり、且つ、スイッチ機構の占有体積が大きくなる欠点が生じる。このような条件を考慮すると、円筒形電池に適用する場合、接続端子の厚さを0.5〜2mmとすることが好ましく、0.5〜1mmとすることがさらに好ましい。また、接続端子5の断面積が小さいと、蓄電池内部の内力によって接続端子を摺動させようとする力が小さく、スイッチの感度が低くなる虞があり、断面積が大きいと、摺動に際して接続端子5が斜めになり易い欠点が生じる。このような条件を考慮すると、本発明において好ましい断面形状である円形の断面形状を適用した場合、接続端子5の直径を1〜5mmとするのが好ましく、1〜3mmとするのがさらに好ましい。   In the present invention, the metal materials constituting the connection terminal 5, the sealing plate 3, and the cap 1 are not particularly limited. However, in the case of an alkaline storage battery, the corrosion resistance to the electrolytic solution is good and the contact resistance is small. In consideration of the above, it is preferable to apply nickel or nickel-plated steel. Further, although the cross-sectional shape, thickness, thickness (cross-sectional area size) of the connection terminal 5 is not particularly limited, in the switch mechanism according to the present invention, the side surface of the connection terminal 5 is connected to the cap 1. It must be brought into airtight and slidable contact with the inner wall surface. Further, when the connection terminal 5 is slid, the connection terminal 5 must be moved in parallel. In order to ensure airtightness and reduce the frictional resistance during sliding, it is preferable that the connection terminal 5 has a circular cross-sectional shape. If the thickness of the connection terminal 5 is small, it is difficult to ensure airtightness, and it is difficult to translate the connection terminal 5. On the contrary, when the thickness of the connection terminal 5 is increased, there are disadvantages that the frictional resistance is increased when the connection terminal 5 is slid and the volume occupied by the switch mechanism is increased. Considering such conditions, when applied to a cylindrical battery, the thickness of the connection terminal is preferably 0.5 to 2 mm, and more preferably 0.5 to 1 mm. In addition, if the cross-sectional area of the connection terminal 5 is small, the force to slide the connection terminal by the internal force inside the storage battery is small, which may reduce the sensitivity of the switch. There arises a drawback that the terminal 5 tends to be inclined. Considering such conditions, when a circular cross-sectional shape which is a preferable cross-sectional shape in the present invention is applied, the diameter of the connection terminal 5 is preferably 1 to 5 mm, and more preferably 1 to 3 mm.

本発明においては、図2に示すように、キャップ1の側壁内面に気密保持層12を配置することが好ましい。該気密保持層12は、キャップ内空間を外部空間から隔離し電池から水分が外に飛散したり外部からキャップ内空間に炭酸ガスなどの異物が侵入するのを妨げる働きをする。本実施形態においては、電解液がキャップ内に侵入するのを完全に防ぐことは難しい。アルカリ蓄電池の場合、キャップ内に炭酸ガスが侵入するとKOHと反応し炭酸塩が析出する(ソルテイング)。キャップ内でソルテイングが生じると接続端子の摺動が妨げられる。前記気密保持層12の配置は、ソルテイングの発生を防ぐのに有効である。該気密保持層12は、前記合成樹脂の成形体をキャップ内にはめ込むか、合成樹脂製のフィルムや金属箔を貼付することによって形成することができる。
また。接続端子5の摺動を妨げないためには、接続端子5の側面と気密保持層12の当接面に電解液が侵入しないことが好ましい。そのためには、前記気密保持層12がポリテトラフロロエチレンやポリプロピレン等の撥水性の樹脂でできていることが好ましい。更に、図5に示すように、接続端子5の側面に、外部端子(キャップ)1と電気的に導通させるために必要な部分を除いて前記撥水性の合成樹脂でできた被覆層14を配置することが好ましい。
In the present invention, as shown in FIG. 2, it is preferable to arrange an airtight holding layer 12 on the inner surface of the side wall of the cap 1. The airtight holding layer 12 functions to isolate the cap internal space from the external space and prevent foreign matter such as carbon dioxide from entering the cap internal space from the outside by scattering water from the battery. In this embodiment, it is difficult to completely prevent the electrolytic solution from entering the cap. In the case of an alkaline storage battery, when carbon dioxide enters the cap, it reacts with KOH to precipitate a carbonate (solting). When salting occurs in the cap, sliding of the connection terminal is hindered. The arrangement of the airtight holding layer 12 is effective in preventing the occurrence of salting. The hermetic holding layer 12 can be formed by fitting the molded body of the synthetic resin into a cap or attaching a synthetic resin film or metal foil.
Also. In order not to prevent the sliding of the connection terminal 5, it is preferable that the electrolyte does not enter the side surface of the connection terminal 5 and the contact surface of the airtight holding layer 12. For this purpose, the airtight holding layer 12 is preferably made of a water-repellent resin such as polytetrafluoroethylene or polypropylene. Further, as shown in FIG. 5, a coating layer 14 made of the water-repellent synthetic resin is disposed on the side surface of the connection terminal 5 except for a portion necessary for electrical connection with the external terminal (cap) 1. It is preferable to do.

また、本発明においては、図2に示すように、前記気密保持層12のうち前記ガス排出用透孔11を覆う部分に肉薄部13を設けて、電池内部の圧力が異常に上昇したときに該肉薄部13を破断させることによりスムースに開口するようにすることが好ましい。
万一電池の内圧が異常に高まった時、該開口を経由して電池内部に溜まったガスを排出する。
Further, in the present invention, as shown in FIG. 2, when a thin portion 13 is provided in a portion of the airtight holding layer 12 that covers the gas discharge through hole 11, the pressure inside the battery rises abnormally. It is preferable that the thin portion 13 is opened smoothly by breaking.
Should the internal pressure of the battery rise abnormally, the gas accumulated in the battery is discharged through the opening.

(テスト用密閉型蓄電池の作製)
正極にニッケル電極、負極に水素吸蔵合金電極を適用し、該正極、セパレータおよび負極からなる積層体を渦巻き状に捲回した捲回式極板群を備えたAAサイズの密閉型ニッケル水素蓄電池であって、図1に示した構造を有し、作動圧力が2メガパスカル(MPa)の圧力スイッチを備えた密閉形蓄電池を10個用意した。
蓄電池の組立てに際しては、極板群上部の空き空間が可及的に小さくなるよう、高さが43mmの極板群を採用したところ、定格容量{化成済みの電池を、温度20℃において0.1ItA(0.21A)16時間充電し、1時間放置した後0.2ItA(0.42A)で放電したときに得られる容量}が2100mAhの電池を得ることができた。
(Production of sealed storage battery for testing)
AA-size sealed nickel-metal hydride storage battery comprising a wound electrode plate group in which a nickel electrode is applied to the positive electrode, a hydrogen storage alloy electrode is applied to the negative electrode, and a laminate composed of the positive electrode, the separator and the negative electrode is wound in a spiral shape Thus, ten sealed storage batteries having the structure shown in FIG. 1 and having a pressure switch with an operating pressure of 2 megapascals (MPa) were prepared.
When assembling the storage battery, the electrode plate group having a height of 43 mm was adopted so that the empty space above the electrode plate group was as small as possible. 1ItA (0.21A) was charged for 16 hours, allowed to stand for 1 hour, and then discharged at 0.2 ItA (0.42 A).

(急速充電を適用したサイクル試験)
化成済みの蓄電池を、20℃の恒温槽中で、充電レート4ItA(8.4A)の定電流で(15分間、100%充電)充電し、1時間の休止後、1ItA(2.1A)で放電した。該充放電を1サイクルとし、充放電を繰り返し行った。
(Cycle test using rapid charging)
The formed storage battery is charged in a constant temperature bath at 20 ° C. with a constant current of 4 ItA (8.4 A) (15 minutes, 100% charge), and after 1 hour rest, at 1 ItA (2.1 A) Discharged. This charging / discharging was made into 1 cycle, and charging / discharging was performed repeatedly.

(比較例1)
図4に示す、圧力スイッチ機能を備えない従来の密閉型ニッケル水素蓄電池を10個用意した。前記実施例と同様に蓄電池の組立に際しては、極板群上部の空き空間が可及的に小さくなるようして蓄電池を組立て、実施例1と同様に定格容量が2100mAhの電池を得ることができた。化成を行った後、前記実施例と同様のサイクル試験に供した。
(Comparative Example 1)
Ten conventional sealed nickel-metal hydride storage batteries having no pressure switch function shown in FIG. 4 were prepared. As in the previous embodiment, when assembling the storage battery, the storage battery is assembled so that the free space above the electrode plate group is as small as possible, and a battery with a rated capacity of 2100 mAh can be obtained as in the first embodiment. It was. After chemical conversion, it was subjected to the same cycle test as in the above example.

(比較例2)
図3に示す、従来提案に係る圧力スイッチ機能を備えた密閉型蓄電池を10個用意した。
前記実施例同様に蓄電池の組立に際しては、高さが41mm極板群を適用し、極板群上部の空き空間が可及的に小さくなるようして蓄電池を組立た。
得られた蓄電池の定格容量は2000mAhであった。なお、比較例2の場合は、前記実施例に比べて圧力スイッチの占有体積が大きく、極板群の高さを小さく設定せざるえを得なかった。化成を行った後、前記実施例と同様のサイクル試験に供した。
(Comparative Example 2)
Ten sealed storage batteries having the pressure switch function according to the conventional proposal shown in FIG. 3 were prepared.
As in the previous example, when assembling the storage battery, the electrode plate group having a height of 41 mm was applied, and the storage battery was assembled so that the empty space above the electrode plate group was as small as possible.
The rated capacity of the obtained storage battery was 2000 mAh. In the case of Comparative Example 2, the volume occupied by the pressure switch was larger than that in the previous example, and the height of the electrode plate group had to be set small. After chemical conversion, it was subjected to the same cycle test as in the above example.

(試験結果)
実施例、比較例1、比較例2の初期容量(前記サイクル試験の1サイクル目の放電容量、10個の平均値)を表1に示す。

Figure 2005243414
(Test results)
Table 1 shows the initial capacities of Examples, Comparative Examples 1 and 2 (discharge capacity at the first cycle of the cycle test, average value of 10).
Figure 2005243414

比較例1においては、充電中に電池温度が上昇して、水分の分解など複反応が盛んになって、充電受入が極端に低下したため放電容量が顕著に低くなったものと考えられる。
また、比較例2は、前記のように圧力スイッチの占有体積が大きく、実施例に比較して極板群の高さを小さくせざるを得ず、定格容量が小さくなったことが影響して急速充電においても容量が小さくなったものと考えられる。
In Comparative Example 1, it is considered that the discharge temperature was remarkably reduced because the battery temperature increased during charging, and multiple reactions such as decomposition of moisture became active and the charge acceptance was extremely reduced.
Further, in Comparative Example 2, the volume occupied by the pressure switch is large as described above, and the height of the electrode plate group has to be reduced as compared with the Example, which is influenced by the fact that the rated capacity is reduced. It is considered that the capacity is reduced even in the quick charge.

図6に実施例と比較例1のサイクル数と放電容量の関係を示す。放電容量が初期容量の38%を下回った時点をサイクル寿命と判断した。
比較例1のサイクル寿命は(10個の平均)95サイクルであったのに対して、実施例においては509サイクルであった。比較例電池においては、ガス排出弁が開いたとき、電解液が系外に飛散し、電池内部抵抗が上昇したため、早くに容量が低下したためにサイクル性能が劣ったものと考えられる。
また、図6には省略したが、比較例2のサイクル寿命は468サイクルであり、実施例に比べて少し劣った。
FIG. 6 shows the relationship between the number of cycles and the discharge capacity in Example and Comparative Example 1. The time when the discharge capacity fell below 38% of the initial capacity was determined as the cycle life.
The cycle life of Comparative Example 1 was 95 cycles (average of 10), whereas in the Examples, it was 509 cycles. In the comparative battery, it is considered that when the gas discharge valve is opened, the electrolyte is scattered outside the system and the internal resistance of the battery is increased, so that the capacity is quickly reduced and the cycle performance is inferior.
Although omitted in FIG. 6, the cycle life of Comparative Example 2 was 468 cycles, which was slightly inferior to the Example.

比較例2においては、前記のようにスイッチの第1端子が平行移動せずに、第2端子に対して斜めになって、オンとオフの切り替えが正常に機能しない場合があるために、実施例に比べて充電受け入れ率が低くなったり、電池温度が上昇して電池性能の劣化が速まったためと考えらる。   In Comparative Example 2, since the first terminal of the switch does not move in parallel as described above and is inclined with respect to the second terminal, the on / off switching may not function normally. This is probably because the charge acceptance rate is lower than in the example, or the battery temperature rises and the deterioration of battery performance is accelerated.

請求項1〜4に記載の密閉形蓄電池では、充電時の電池内圧力変化により、簡単、かつ、コンパクトな構造で充電電流を遮断及び接続することが可能で、動作の信頼性が高いスイッチ機構を持つ蓄電池であり、急速充電時に内圧上昇を抑制でき、電解液が系外に飛散することを抑制できると共に、サイクル特性の優れた密閉形蓄電池が実現できるので産業上の利用可能性は極めて大きい。   The sealed storage battery according to any one of claims 1 to 4, wherein the charging current can be cut off and connected with a simple and compact structure due to a change in the pressure in the battery at the time of charging, and the switch mechanism has high operation reliability. It is a storage battery that can suppress an increase in internal pressure during rapid charging, can suppress the electrolyte from splashing outside the system, and can realize a sealed storage battery with excellent cycle characteristics, so the industrial applicability is extremely large .

本発明に係る密閉形蓄電池のスイッチの構成を示す要部断面図である。It is principal part sectional drawing which shows the structure of the switch of the sealed storage battery which concerns on this invention. 本発明に係る密閉形蓄電池のスイッチの構成を示す要部断面図である。It is principal part sectional drawing which shows the structure of the switch of the sealed storage battery which concerns on this invention. 従来提案に係る密閉形蓄電池のスイッチの構成を示す要部断面図である。It is principal part sectional drawing which shows the structure of the switch of the sealed storage battery which concerns on a prior proposal. 従来の密閉形蓄電池の封口部の構成を示す要部断面図である。It is principal part sectional drawing which shows the structure of the sealing part of the conventional sealed storage battery. 本発明に係る密閉形蓄電池の接続端子の構成を示す断面図である。It is sectional drawing which shows the structure of the connection terminal of the sealed storage battery which concerns on this invention. 実施例電池と比較例電池のサイクル数と放電容量の関係を示すグラフである。It is a graph which shows the relationship between the cycle number of an example battery and a comparative example battery, and discharge capacity.

符号の説明Explanation of symbols

1 外部端子
2 フランジ部(外部封口板)
3 封口板
4 電気絶縁フィルム
5 接続端子
6 小孔
9 弾性体(バネ)
11 透孔
12 気密保持層
13 肉薄部





1 External terminal 2 Flange (external sealing plate)
3 Sealing plate 4 Electrical insulating film 5 Connection terminal 6 Small hole 9 Elastic body (spring)
11 Through-hole 12 Airtight holding layer 13 Thin portion





Claims (4)

充電時に、蓄電池内部の圧力変化により、極板と外部端子を結ぶ充電回路のオンとオフの切り替えを行うスイッチ機構を内蔵する密閉型蓄電池において、
前記スイッチ機構は、金属製の封口板、接続端子で構成され、
前記封口板と外部端子は電気絶縁層により絶縁されており、常時は、前記接続端子が封口板と外部端子の両方に当接することによって前記スイッチ機構がオンの状態にあり、
蓄電池内部の圧力が上昇した時に、前記接続端子が封口板から離れて封口板と外部端子の電気的導通が遮断されることによってスイッチ機構がオンからオフに切り替わることを特徴とする密閉形蓄電池。
In a sealed storage battery with a built-in switch mechanism that switches on and off a charging circuit that connects an electrode plate and an external terminal due to a pressure change inside the storage battery during charging,
The switch mechanism is composed of a metal sealing plate and a connection terminal,
The sealing plate and the external terminal are insulated by an electrical insulating layer, and the switch mechanism is normally in an on state by the contact of the connection terminal to both the sealing plate and the external terminal,
A sealed storage battery characterized in that when the internal pressure of the storage battery rises, the connection terminal is separated from the sealing plate and the electrical connection between the sealing plate and the external terminal is cut off, so that the switch mechanism is switched from on to off.
前記外部端子の側壁内面が前記封口板に対して垂直であって、前記接続端子は柱状であり、その側面が前記外部端子の側壁内面に当接し、且つ、接続端子が外部端子の側壁に対して摺動可能であることを特徴とする請求項1に記載の密閉形蓄電池。 The side wall inner surface of the external terminal is perpendicular to the sealing plate, the connection terminal is columnar, the side surface abuts against the side wall inner surface of the external terminal, and the connection terminal is against the side wall of the external terminal. The sealed storage battery according to claim 1, wherein the battery is slidable. 前記外部端子の壁面にガス排出用の透孔を設けたことを特徴とする請求項2に記載の密閉形蓄電池。 The sealed storage battery according to claim 2, wherein a gas discharge through hole is provided in a wall surface of the external terminal. 前記外部端子の内面および接続端子に、該外部端子内の空間を気密に保つための気密保持層を配置し、該気密保持層に破断を発生させることにより、前記透孔を通してガスを外部に排出できるようにしたことを特徴とする請求項3に記載の密閉形蓄電池。

























An airtight holding layer for keeping the space inside the external terminal airtight is disposed on the inner surface of the external terminal and the connection terminal, and the gas is discharged to the outside through the through holes by generating a breakage in the airtight holding layer. The sealed storage battery according to claim 3, wherein the sealed storage battery is made possible.

























JP2004051361A 2004-02-26 2004-02-26 Sealed storage battery Pending JP2005243414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004051361A JP2005243414A (en) 2004-02-26 2004-02-26 Sealed storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004051361A JP2005243414A (en) 2004-02-26 2004-02-26 Sealed storage battery

Publications (1)

Publication Number Publication Date
JP2005243414A true JP2005243414A (en) 2005-09-08

Family

ID=35024926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004051361A Pending JP2005243414A (en) 2004-02-26 2004-02-26 Sealed storage battery

Country Status (1)

Country Link
JP (1) JP2005243414A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014128909A1 (en) * 2013-02-22 2014-08-28 株式会社 日立製作所 Secondary battery and secondary battery module
JP2020194719A (en) * 2019-05-29 2020-12-03 株式会社ニフコ Pressure release valve for battery pack

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014128909A1 (en) * 2013-02-22 2014-08-28 株式会社 日立製作所 Secondary battery and secondary battery module
JP2020194719A (en) * 2019-05-29 2020-12-03 株式会社ニフコ Pressure release valve for battery pack
WO2020241466A1 (en) * 2019-05-29 2020-12-03 株式会社ニフコ Pressure relief valve for battery pack
CN113875080A (en) * 2019-05-29 2021-12-31 株式会社利富高 Pressure relief valve for battery pack
JP7059226B2 (en) 2019-05-29 2022-04-25 株式会社ニフコ Pressure release valve for battery pack

Similar Documents

Publication Publication Date Title
US3373057A (en) Battery having an automatic circuit breaker therein
JP2002515164A (en) Small battery battery
JP2002124236A (en) Sealed battery
JP6719504B2 (en) Feedthroughs, gas relief valves and associated storage batteries forming terminals for metal ion electrochemical storage batteries
JP2002500415A (en) Pressure-responsive current breaker for electrochemical cells
KR100709883B1 (en) Center pin for lithium rechargeable battery and Lithium rechargeable battery using the same and The method of making the lithium rechargeable battery
KR20130091533A (en) Secondary battery
JP2006066269A (en) Sealed-type storage battery
KR20080032911A (en) Rechargeable battery
KR101121205B1 (en) Secondary battery
JP2001325935A (en) Sealed alkaline battery
JP2005243414A (en) Sealed storage battery
KR100778978B1 (en) Can for lithium rechargeable battery and Lithium rechargeable battery using the same
JP2009231207A (en) Cylindrical battery
JP2005243386A (en) Sealed type storage battery
JP3527548B2 (en) Safety device for secondary battery and non-aqueous electrolyte secondary battery with safety device
JP2005243391A (en) Sealed storage battery
KR100696799B1 (en) Secondary Battery and Pack Battery of using the same
JP2006066175A (en) Sealed storage battery
JP4967219B2 (en) Sealed storage battery
JP2005340053A (en) Sealed storage battery
JPH11111244A (en) Sealed storage battery
KR20060037832A (en) Secondary battery
JP4537662B2 (en) Sealed storage battery
JP3225773B2 (en) Alkaline storage battery and its manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060404