JP2005242803A - 機械の性能推定器、性能推定方法及び性能推定プログラム - Google Patents

機械の性能推定器、性能推定方法及び性能推定プログラム Download PDF

Info

Publication number
JP2005242803A
JP2005242803A JP2004053372A JP2004053372A JP2005242803A JP 2005242803 A JP2005242803 A JP 2005242803A JP 2004053372 A JP2004053372 A JP 2004053372A JP 2004053372 A JP2004053372 A JP 2004053372A JP 2005242803 A JP2005242803 A JP 2005242803A
Authority
JP
Japan
Prior art keywords
data
performance
machine
model
models
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004053372A
Other languages
English (en)
Inventor
Masaharu Tanaka
雅晴 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004053372A priority Critical patent/JP2005242803A/ja
Publication of JP2005242803A publication Critical patent/JP2005242803A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】運転環境の変動による推定誤差を低減することができ、又、未知の制御方式を有する機械や未知の運転環境下に設置される機械に対応することができる性能推定器、性能推定方法、及び性能推定プログラムを提供すること
【解決手段】性能推定器20aは、機械110が稼動する際の環境を示す運転環境データOPE・ENVを入力するデータ分類部30と、そのデータ分類部30に接続され複数のモデル50〜50が構築されたモデル部50とを備える。このデータ分類部30は、運転環境データOPE・ENVの集合をデータ値に基づいて複数のデータ群OPE・ENV〜OPE・ENVに分類する。そして、データ分類部30は、その複数のデータ群OPE・ENV〜OPE・ENVのそれぞれを複数のモデル50〜50に出力する。複数のモデル50〜50のそれぞれは、複数のデータ群OPE・ENV〜OPE・ENVのそれぞれを学習データとして用いることにより、運転環境データOPE・ENVから期待される機械110の性能を算出するようにそれぞれ学習する。
【選択図】 図2

Description

本発明は、機械の性能推定器に関し、特に、学習的に構築される機械の性能推定器、性能推定方法及び性能推定プログラムに関する。
機械の性能や出力は、高精度に制御されることが求められる。ある時点における機械の出力の評価は、その出力の「実測値」と、機械への入力から期待される出力を示す「モデル値」とを比較することにより行われる。その「モデル値」は、機械への入力である周囲の環境情報や機械の運転情報を、所定のモデルに与えることによって算出される。例えば、風力発電施設の場合、「機械」とは風車であり、「機械の出力」とは発電量(風車の回転数)であり、「機械への入力」とは風速等である。この「実測値」と「モデル値」とが食い違う場合、評価中の機械に何らかの異常が発生したと判断され得る。
従って、「モデル値」は、可能な限り高精度に算出されることが求められる。一般的に、「機械の出力」は様々な要因に依存するため、「機械への入力」の情報量を増加させることにより、算出される「モデル値」の精度は向上する。最近の記憶媒体の大容量化に伴い、多数のセンサによって測定される高時間分解能の測定データを、モデルへの入力データとして用いることが可能になってきている。一方、モデル自体の推定精度が低い場合、機械が正常であるにも関わらず、「実測値」の「モデル値」からの逸脱が、その機械の異常として誤って判断される可能性が増加する。従って、モデルへの入力データの量を増加させるだけでなく、モデル自体の精度を向上させることは本質的に重要である。
非特許文献1は、推定モデルとしてニューラルネットワークを用いることによって、風力発電タービンによる発電量を推定する手法を開示している。この手法によれば、一基の風力発電タービンに対して一つのニューラルネットワークが構築される。ニューラルネットワークに入力される入力データは、2台の気象塔により測定される風速及び風向の4つのパラメータを有する。1500セット(組)のこのような入力データを用いることによって、ニューラルネットワークの学習(トレーニング)が行われる。ここで、学習手法としてバックプロパゲーション法が用いられる。非特許文献1は、以上のように構築されたニューラルネットワークを用いることによって、風力発電タービンの発電量の推定精度が、従来の方法による場合と比較して格段に向上することを示している。
推定モデルとして、線形回帰モデル、非線形回帰モデル、ロジスティック回帰モデル、自己回帰モデル、ニューラルネットワークモデル、RBF(Radial Basis Function)ネットワークモデルなどは周知である。学習手法として、勾配法やバックプロパゲーション法(BP法)などは周知である。最適化手法として、遺伝的アルゴリズム、タブー探索法、局所探索法、焼きなまし法などは周知である。
機械の性能を推定する推定モデル及び性能推定器の更なる高精度化が望まれる。
Shuhui Li, Donald C. Wunsch, Edgar A. O'Hair, and Michael G. Giesselmann, "Using Neural Networks to Estimate Wind Turbine Power Generation", IEEE Transactions on Energy Conversion, Vol. 16, No.3, September 2001, pp. 276-282. 坂和正俊、田中雅博著、「ニューロコンピューティング入門」、森北出版、1997 坂和正俊、田中雅博著、「遺伝的アルゴリズム」、朝倉書店、1995 山西健司、「情報論的学習理論の現状と展望」、ISPJ Magazine, Vol. 42, No. 1, 2001年1月
本発明の目的は、機械の性能を高精度に推定することができる性能推定器、性能推定方法、及び性能推定プログラムを提供することにある。
本発明の他の目的は、機械が稼動する際の運転環境の変動による推定誤差を低減することができる性能推定器、性能推定方法、及び性能推定プログラムを提供することにある。
本発明の更に他の目的は、機械の性能推定にかかる時間を抑制することができる性能推定器、性能推定方法、及び性能推定プログラムを提供することにある。
本発明の更に他の目的は、未知の制御方式を有する機械や未知の運転環境下に設置される機械に対応することができる性能推定器、性能推定方法、及び性能推定プログラムを提供することにある。
以下に、[発明を実施するための最良の形態]で使用される番号・符号を用いて、[課題を解決するための手段]を説明する。これらの番号・符号は、[特許請求の範囲]の記載と[発明を実施するための最良の形態]との対応関係を明らかにするために括弧付きで付加されたものである。ただし、それらの番号・符号を、[特許請求の範囲]に記載されている発明の技術的範囲の解釈に用いてはならない。
本発明に係る性能推定器(20a)は、機械(110)が稼動する際の環境を示す運転環境データ(OPE、ENV)を入力するデータ分類部(30)と、そのデータ分類部(30)に接続され複数のモデル(50〜50)が構築されたモデル部(50)とを備える。このデータ分類部(30)は、運転環境データ(OPE・ENV)の集合をデータ値に基づいて複数のデータ群(OPE・ENV〜OPE・ENV)に分類する。そして、データ分類部(30)は、その複数のデータ群(OPE・ENV〜OPE・ENV)のそれぞれを複数のモデル(50〜50)に出力する。複数のモデル(50〜50)のそれぞれは、複数のデータ群(OPE・ENV〜OPE・ENV)のそれぞれを学習データとして用いることにより、運転環境データ(OPE・ENV)から期待される機械(110)の性能を算出するようにそれぞれ学習する。
このように、複数のモデル(50〜50)は、機械(110)の運転環境に応じて使い分けられる。従って、あらゆる運転環境における機械(110)の性能を、高精度に推定することが可能となり、運転環境の変動による推定誤差が低減する。また、各モデルが対応しなければならない運転環境の変動幅が減少するので、各モデルの構造の複雑化が抑制される。従って、機械(110)の性能推定にかかる時間が抑制される。
この複数のモデル(50〜50)のそれぞれの構造は、遺伝的アルゴリズムによって最適化される。あるいは、上記データ分類部(30)による分類の基準、及び複数のモデル(50〜50)のそれぞれの構造は、遺伝的アルゴリズムによって最適化される。従って、未知の制御方式を有する機械や未知の運転環境下に設置される機械に対応することが可能となる。このように構築された性能推定器(20a)において、データ分類部(30)は、一つの運転環境データ(OPE、ENV)をデータ値に基づいて対応する一つのモデル(50)に出力する。そして、その一つのモデル(50)は、一つの運転環境データ(OPE、ENV)から期待される機械(110)の性能を算出する。
本発明に係る性能推定器(20c)は、機械(110)が稼動する際の環境を示す運転環境データ(OPE、ENV)を入力するデータ抽出部(40)と、そのデータ抽出部(40)に接続されたデータ分類部(30)と、そのデータ分類部(30)に接続され複数のモデル(50〜50)が構築されたモデル部(50)とを備える。このデータ抽出部(40)は、第一条件に合致する運転環境データ(OPE、ENV)のみを、抽出データ(OPE´、ENV´)としてデータ分類部(30)に出力する。この第一条件は、例えば、時間的に隣接する運転環境データ(OPE、ENV)への変化率が所定の値以下であることを示す。データ分類部(30)は、抽出データ(OPE´、ENV´)の集合をデータ値に基づいて複数のデータ群(OPE・ENV〜OPE・ENV)に分類し、その複数のデータ群(OPE・ENV〜OPE・ENV)のそれぞれを複数のモデル(50〜50)に出力する。複数のモデル(50〜50)のそれぞれは、複数のデータ群(OPE・ENV〜OPE・ENV)のそれぞれを学習データとして用いることにより、運転環境データ(OPE、ENV)から期待される機械(110)の性能を算出するようにそれぞれ学習する。
この第一条件、データ分類部(30)による分類の基準、及び複数のモデル(50〜50)のそれぞれの構造は、遺伝的アルゴリズムによって最適化される。従って、未知の制御方式を有する機械や未知の運転環境下に設置される機械に対応することが可能となる。このように構築された性能推定器(20c)において、データ分類部(30)は、一つの抽出データ(OPE´、ENV´)をデータ値に基づいて一つのモデル(50)に出力する。そして、その一つのモデル(50)は、一つの抽出データ(OPE´、ENV´)から期待される機械の性能を算出する。
本発明に係る性能推定器(20b)は、機械(110)が稼動する際の環境を示す運転環境データ(OPE、ENV)を入力するデータ抽出部(40)と、そのデータ抽出部(40)に接続され、モデルが構築されたモデル部(50)とを備える。このデータ抽出部(40)は、時間的に隣接する運転環境データへの変化率が所定の値以下である運転環境データ(OPE、ENV)のみを、抽出データ(OPE´、ENV´)としてモデル(50)に出力する。このモデル(50)は、抽出データ(OPE´、ENV´)の集合を学習データとして用いることにより、運転環境データ(OPE、ENV)から期待される機械(110)の性能を算出するように学習する。従って、機械の性能を高精度に推定することが可能となる。
以上のような性能推定器(20)において、モデル(50)は、回帰モデル、ニューラルネットワークモデル、RBFネットワークモデルのいずれかである。
本発明に係る健全度評価装置(10)は、上記のような性能推定器(20)と、その性能推定器(20)に接続された健全度算出器(70)とを備える。この性能推定器(20)は、運転環境データ(OPE、ENV)から期待される機械(110)の性能を算出し、算出された性能を示す推定性能データ(EP)を健全度算出器(70)に出力する。健全度算出器(70)は、その推定性能データ(EP)と、機械(110)の実際の性能を示す実測性能データ(RP)に基づき、機械(110)の健全度を算出する。例えば、この健全度算出器(70)は、残差算出部(71)と、残差分布算出部(72)と、比較部(74)とを備える。残差算出部(71)は、推定性能データ(EP)と実測性能データ(RP)を入力し、その推定性能データ(EP)と実測性能データ(RP)との差を算出する。残差分布算出部(72)は、残差算出部(71)に接続され、所定期間(T)の差の分布を示す残差分布(Fres)を算出する。比較部(74)は、残差分布算出部(72)に接続され、残差分布(Fres)と機械が正常な時の残差分布(Fnml)とを比較することによって健全度(SND)を算出する。
以上のような推定性能器(20)や健全度評価装置(10)が実装される機械(110)は、例えば、風車である。この時、運転環境データ(OPE、ENV)は、風速、風向、季節、及び風車のピッチ角を含む。すなわち、本発明に係る風力発電システム(100)は、風車(110)と、風車(110)に接続された健全度評価装置(10)と、風車(110)が稼働する際の環境を検出するセンサ群(120)とから構成される。このセンサ群(120)は、検出された環境を示す運転環境データ(OPE、ENV)を健全度評価装置(10)に出力する。そして、健全度評価装置(10)は、運転環境データ(OPE、ENV)から風車(110)の発電量を推定する。そして、健全度評価装置(10)は、推定された発電量(EP)と測定された発電量(RP)とに基づき、風車(110)の健全度(SND)を評価する。
本発明に係る性能推定方法は、(A)複数のモデル(50〜50)を構築するステップと、(B)一つの運転環境データ(OPE、ENV)を、複数のモデル(50〜50)のいずれかに供給するステップと、(C)その一つの運転環境データ(OPE、ENV)から期待される機械(110)の性能を推定するステップとを備える。その複数のモデル(50〜50)の各々は、運転環境データ(OPE、ENV)から期待される機械(110)の性能を算出するように構築される。
上記(A)構築するステップは、(a)運転環境データ(OPE、ENV)の集合をデータ値に基づいて複数のデータ群(OPE・ENV〜OPE・ENV)に分類するステップと、(b)複数のデータ群(OPE・ENV〜OPE・ENV)のそれぞれを、学習データとして複数のモデル(50〜50)のそれぞれに供給するステップと、(c)複数のモデル(50〜50)のそれぞれを、運転環境データ(OPE、ENV)から期待される機械(110)の性能を算出するように学習させるステップとを含む。
上記(c)学習させるステップは、複数のモデル(50〜50)のそれぞれの構造を、遺伝的アルゴリズムによって最適化するステップを含む。あるいは、上記(c)学習させるステップは、複数のモデル(50〜50)のそれぞれの構造、及び上記(a)分類するステップにおける分類の基準を、遺伝的アルゴリズムによって最適化するステップを含む。また、上記(c)学習させるステップは、複数のモデル(50〜50)のそれぞれにおける重みパラメータの分布を、勾配法又はバックプロパゲーション法により学習させるステップを更に含んでもよい。そして、その学習ステップは、アンサンブル学習法により実行されてもよい。
本発明に係る性能推定方法において、上記(a)分類するステップは、時間的に隣接する運転環境データへの変化率が所定の値以下である運転環境データ(OPE、ENV)のみを用いることにより実行されてもよい。
本発明に係る性能推定方法は、(A)運転環境データ(OPE、ENV)から期待される機械(110)の性能を算出するモデル(50)を構築するステップと、(B)一つの運転環境データ(OPE、ENV)が、第一条件に適合するかを判定するステップと、(C)第一条件に適合する一つの運転環境データ(OPE、ENV)を、モデル(50)に供給するステップと、(D)一つの運転環境データ(OPE、ENV)から期待される機械の性能を推定するステップとを備える。ここで、この第一条件は、例えば、時間的に隣接する運転環境データ(OPE、ENV)への変化率が所定の値以下であることを示す。
上記(A)構築するステップは、(a)運転環境データ(OPE、ENV)の集合から、第一条件に合致する運転環境データ(OPE、ENV)を抽出データ(OPE´、ENV´)として抽出するステップと、(b)抽出データ(OPE´、ENV´)の集合を、学習データとしてモデル(50)に供給するステップと、(c)モデル(50)を、運転環境データ(OPE、ENV)から期待される機械(110)の性能を算出するように学習させるステップとを含む。
上記(c)学習させるステップは、モデル(50)の構造を、遺伝的アルゴリズムによって最適化するステップを含む。あるいは、上記(c)学習させるステップは、モデル(50)の構造、及び上記(a)抽出するステップにおける第一条件を、遺伝的アルゴリズムによって最適化するステップを含む。また、上記(c)学習させるステップは、モデル(50)における重みパラメータの分布を、勾配法又はバックプロパゲーション法により学習させるステップを更に含んでもよい。そして、その学習ステップは、アンサンブル学習法により実行されてもよい。
以上に示された機械(110)の性能推定は、コンピュータにより実行されてもよい。この場合、健全度評価装置(10)は、コンピュータにより構成される。また、データ分類部(30)やデータ抽出部(40)、健全度算出器(70)は、中央演算処理装置によって実行されるコンピュータプログラムである。また、モデル部(50、50〜50)、メモリ上に構築される。
本発明に係る性能推定器、性能推定方法、及び性能推定プログラムによれば、機械の性能を高精度に推定することが可能となる。
本発明に係る性能推定器、性能推定方法、及び性能推定プログラムによれば、機械が稼動する際の運転環境の変動による推定誤差を低減することが可能となる。
本発明に係る性能推定器、性能推定方法、及び性能推定プログラムによれば、機械の性能推定にかかる時間を抑制することが可能となる。
本発明に係る性能推定器、性能推定方法、及び性能推定プログラムによれば、未知の制御方式を有する機械や未知の運転環境下に設置される機械の性能を推定することが可能となる。
添付図面を参照して、本発明による性能推定器、性能推定方法、及び性能推定プログラムを説明する。
図1は、本発明に係る性能推定器が実装された機械システムの構成を示すブロック図である。図1において、機械システム100は、機械110、環境センサ120及び健全度評価装置10を備える。機械110は、運転状態や制御状態を示す運転データOPE、及び機械110の実際の性能・出力を示す実測性能データRPを健全度評価装置10に出力する。環境センサ120は、機械110が稼働する際の周囲の環境や機械110に入力される入力パラメータを示す環境データENVを健全度評価装置10に出力する。健全度評価装置10は、機械110に備えつけられてもよいし、ネットワークを介して接続されていてもよい。
例えば、機械システム100として風力発電システムが例示される。この場合、機械110は、風車(風力発電タービン)により構成され、実測性能データRPは、実測された発電量(風車の回転数)を示す。また、環境センサ120は、風速や風向などを測定する各種センサ群により構成され、環境データENVは、風速・風向・季節・時間帯・気温・空気密度などを示す。一般的に、発電量に対して最も支配的なパラメータは「風速」である。また、特に、山の斜面や断崖などに沿って配置される風車において、「風向」も重要なパラメータとなる。更に、季節や時間帯によっても風のパターンは著しく変動する。これら、センサ群によって検出されるパラメータの量が増加する程、後述される機械110の性能・出力の推定は精密になる。
また、運転データOPEとして、風車のピッチ角や発電制御信号などが例示される。風速が非常に大きい場合、風車にかかる負担が過剰にならないように、風車のピッチ角が適正な値に変更される。また、風速が非常に小さい場合、風力によって風車が回転しなくなる。この時、発電機がモータにならないように、例えば、風車の停止制御が行われる。このように、運転データOPEも、機械110の性能・出力の推定に寄与し得る。以上に説明された運転データOPE及び環境データENVは、以下「運転環境データ」と参照される。この「運転環境データ」は、j次元ベクトル(jは自然数)であり、後述されるように機械110の性能・出力の推定に用いられる。
図1において、健全度評価装置10は、性能推定器20、健全度算出器70、表示装置80、記憶装置90を備える。性能推定器20は、運転環境データ(運転データOPE、環境データENV)を入力し、入力された運転環境データから期待される機械110の性能・出力を推定する。ここで、その推定処理は、後述される推定モデルを用いることによって実行される。健全度算出器70は、上記で推定された性能・出力を示す推定性能データEPを性能推定器20から受け取り、実際の性能・出力を示す実測性能データRPを機械110から受け取る。そして、健全度算出器70は、実測性能データRPと推定性能データEPを比較し、機械110の「健全度」を算出する。ここで、「健全度」とは、実測性能と期待される性能との割合に基づく量であり、機械110の動作の正常さを示す。
健全度算出器70は、算出された「健全度」を示す健全度データSNDを表示装置80や記憶装置90に出力する。機械110のオペレータは、表示装置80に表示される健全度データSNDを監視することによって、機械110の運転状況を把握することができる。また、「健全度」のトレンドを解析することによって、機械110の異常を早期に検知したり、故障を予知したりすることが可能となる。また、健全度データSNDが記憶装置90に格納されることにより、「健全度」の経年変化を調べることが可能となる。
本発明において、性能推定器20は、入力された運転環境データ(OPE、ENV)を「加工」した後に、機械110の性能・出力を推定する。以下、本発明に係る健全度評価装置10の構成について更に詳細に説明する。
(第一の実施の形態)
図2は、本発明の第一の実施の形態に係る性能推定器の構成を示すブロック図である。本実施の形態において、性能推定器20aは、データ分類部30と、データ分類部30に接続されたモデル部50を備える。データ分類部30は、運転環境データ(運転データOPE、環境データENV)を入力する。この運転環境データXは、j次元ベクトル(jは自然数)であり、X=(X1、X2…Xj)で表される。運転環境は機械110の設置場所や時間に依存して変動するので、運転環境データXの集合は、運転環境を示すj次元空間(以下、運転環境空間と参照される)の中でその機械110に固有のパターンで分布する。
本実施の形態において、運転環境空間は複数の領域に分割され、運転環境データXの集合は領域ごとに分類される。図3は、その運転環境データの分類の基準(分類条件)の例を示す図表である。図3において、運転環境データ(OPE、ENV)は4次元ベクトルであり、その要素として風速Vw、風向φ、季節、ピッチ角λを有するとする。この時、例えば、風速Vw(第一次元)は、その大きさによって3つの範囲に分割される。また、風向φ(第二次元)は、その角度によって2つの範囲に分割される。また、季節(第三次元)は、春夏秋冬の4つの範囲に分割される。また、ピッチ角λ(第四次元)は、その角度によって2つの範囲に分割される。このように、第一、第二、第三、第四次元における運転環境データの分類数は、それぞれn=3、n=2、n=4、n=2となり、総分類数Nは、N=3×2×4×2=48で与えられる。すなわち、運転環境データが分布する4次元運転環境空間は、48の領域に分割される。このような「分類条件」は、予めマニュアルで設定されてもよいし、後述されるように数学的アルゴリズムにより決定されてもよい。
一般的に、運転環境を示すj次元空間において、第i次元(iは1以上j以下の整数)における分類数がnである時、その空間の総分類数Nは、N=Πn(i=1、2…j)で与えられる。このように分割されたN個の領域の各々には、複数の運転環境データが対応し得る。以下、この1つの領域に対応する運転環境データの集合は、「データ群」と参照される。本実施の形態において、運転環境データの集合から、N個のデータ群が生成される。すなわち、データ分類部30は、入力された運転環境データの集合を、そのデータ値に基づいてN個のデータ群に分類する。
データ分類部30は、例えば図2に示されるように、マルチプレクサ(MUX)31と分類条件判定部32とを備える。データ分類部30に供給された運転環境データ(OPE、ENV)は、MUX31と分類条件判定部32に分配される。分類条件判定部32は、図3に示されたような分類条件を参照し、供給された運転環境データが上述のN個の領域のいずれに対応するかを判定する。そして、分類条件判定部32は、その判定結果に基づき制御信号をMUX31に出力する。MUX31は、その制御信号に基づき、入力された運転環境データを、分類運転環境データ(例えばOPE、ENV)として出力する。
また、本発明の第一の実施の形態によれば、性能推定器20aのモデル部50には、N個のモデル50〜50が構築される。つまり、上述のN個の「データ群」のそれぞれに対して推定モデルが構築される。例えば、ある運転環境データが「風速:10m/s、風向:25°、季節:春、ピッチ角45°」を示す場合、そのデータは分類条件(図3参照)に基づき、対応する領域(データ群)に分類され、対応する1つのモデル50に分類運転環境データとして供給される。また、例えば、1万個の運転環境データが順次データ分類部30に与えられた場合、各々の運転環境データについて判定が行われ、その1万個の運転環境データは、それぞれ対応するモデルに供給される。このように、データ分類部30は、運転環境データの集合をデータ値に基づいてN個のデータ群に分類し、そのN個のデータ群のそれぞれをN個のモデル50〜50に出力する。
N個のモデル50〜50の各々は、運転環境データから期待される機械110の性能を算出するように学習的に構築される。このモデルとして、線形回帰モデル、非線形回帰モデル、ロジスティック回帰モデル、自己回帰モデル、ニューラルネットワークモデル、RBF(Radial Basis Function)ネットワークモデルなどが例示される。図4は、モデル50の例として、ニューラルネットワークを示す。このニューラルネットワークは、入力層51、隠れ層52、出力層53によって構成される。本実施の形態において、ニューラルネットワークに入力されるデータは分類運転環境データである。この分類運転環境データはj次元ベクトル(X1、X2…Xj)であり、j個のベクトル成分のそれぞれは、入力層51に配置されたj個のニューロンのそれぞれに入力される。入力層51のそれぞれに供給された信号は、隠れ層52を伝わり、最終的に出力Yとして出力層53に現れる。つまり、このニューラルネットワークは、Y=f(X1、X2…Xj)の関係で示される関数である。
この関数fの性質は、階層数や重みパラメータの分布に依存する。そして、入力データ(X1、X2…Xj)から所望の出力データYが得られるように、関数fは学習手法により構築される。つまり、入力される運転環境データから推定される機械110の性能(推定性能データEP)が、実測された性能(実測性能データRP)に合致するように、関数fは学習手法により構築される。具体的には、勾配法やバックプロパゲーション法(BP法)等の周知の学習手法により、重みパラメータの分布が決定される。学習データとしては、例えば、1年分の運転環境データが用いられる。ここで、N個のモデル50〜50のそれぞれには、上述のN個のデータ群のそれぞれが学習データとして供給される。すなわち、N個のモデル50〜50は、それぞれ独立的に構築される。
以上のように構築されたN個のモデル50〜50は、図2に示されるように、それぞれ対応する分類運転環境データOPE・ENV〜OPE・ENVを入力し、それぞれ推定データEP〜EPを出力する。この推定データEP〜EPのそれぞれは、対応する分類運転データOPE・ENV〜OPE・ENVから期待される機械110の性能を示す。そして、推定データEP〜EPのいずれかが、セレクタ35を介して、推定性能データEPとして性能推定器20aから出力される。
モデル部50が構築された後の性能推定器20aの動作は、以下の通りである。機械110の運転中、運転環境データ(OPE、ENV)は所定の周期で性能推定器20に供給される。ある1つの運転環境データを受け取った時、データ分類部30は、その1つ運転環境データのデータ値に応じた1つのモデルを複数のモデル50〜50から選択する。例えば、第二モデル50が選択された場合、データ分類部30は、その1つの運転環境データを分類運転環境データ(OPE、ENV)として第二モデル50に出力する。その第二モデル50は、その分類運転環境データ(OPE、ENV)から期待される性能、すなわち、その1つの運転環境データから期待される性能を算出する。そして、第二モデル50は、算出された性能を示す推定データEPを出力する。その推定データEPが、推定性能データEPとして性能推定器20aから健全度算出器70に出力される(図1参照)。
本実施の形態に係る性能推定器20aの効果は以下の通りである。運転環境は時間的に著しく変動するため、一つのモデルであらゆる運転環境における機械110の性能を推定しようとする場合、複雑な推定モデルが必要とされる。特に、推定誤差を低減するために運転環境データの次元数やデータ量が増加すると、モデルは非常に複雑になり、最悪の場合、モデルの構築が不可能になる。本実施の形態に係る性能推定器20aは、複数のモデル50〜50を有し、その複数のモデル50〜50は、機械110の運転環境に応じて使い分けられる。従って、あらゆる運転環境における機械110の性能を、高精度に推定することが可能となる。つまり、運転環境の変動による推定誤差が低減する。また、各モデルが対応しなければならない運転環境の変動幅が減少するので、各モデルの構造の複雑化が抑制される。従って、性能推定にかかる時間が抑制される。これは、リアルタイムで機械110の運転状況を監視する場合に、特に好適である。
図5は、本発明に係る健全度算出器70の構成を示すブロック図である。図5において、健全度算出器70は、残差算出部71、残差分布算出部72、記憶部73、及び比較部74を備える。残差算出部71は、実測性能データRP及び性能推定器20aによって算出された推定性能データEPを入力する。そして、残差算出部71は、実測性能データRPと推定性能データEPとの残差(RP−EP)を算出し、算出された残差を示す残差データを残差分布算出部72に出力する。残差算出部71により算出される残差RP−EPの時間的な変動の例は、図6Aに示される。
残差分布算出部72は、残差算出部71から出力された残差データに基づき、所定期間の残差の分布を算出する。例えば、残差分布算出部は、図6Aに示された時刻tから期間Tの間の残差の分布を求め、その分布を時刻tにおける残差分布として決定する。図6Bは、残差分布を表す分布関数(確率密度関数)を示し、図の縦軸と横軸は、それぞれ確率密度と残差を示す。例えば、時刻tにおける残差分布は、図6B中の残差分布関数Fresにより示される。残差分布算出部72は、算出された残差分布関数Fresを比較部74に出力する。
記憶部73は、正常分布関数Fnmlを格納する。この正常分布関数Fnmlは、機械110が正常に稼動している期間の残差分布を示す確率密度関数であり、図6B中の実曲線により示される。そして、比較部74は、残差分布関数Fresと正常分布関数Fnmlを参照することによって、機械110の動作の正常さを示す「健全度」を算出する。具体的には、比較部74は、残差分布関数Fresと正常分布関数Fnmlが重なり合う部分(図6B中の斜線領域により示される)の積分値を計算することによって、「健全度」を算出する。その積分値が大きい程、「健全度」は高くなり、これは機械110がより正常であることを意味する。
比較部74は、算出された「健全度」を示す健全度データSNDを、表示装置80や記憶装置90に出力する(図1参照)。機械110のオペレータは、表示装置80に表示される健全度データSNDを監視することによって、機械110の運転状況を準リアルタイムで把握することができる。これにより、機械110の異常を早期に検知したり、故障を予知したりすることが可能となる。また、健全度データSNDが記憶装置90に格納されることにより、「健全度」の経年変化を調べることが可能となる。
本実施の形態に係る性能推定方法は要約すると以下の通りである。まず、複数のモデル50〜50が構築される。このモデルの構築において、まず、運転環境データ(OPE、ENV)の集合が、データ値に基づいて複数のデータ群に分類される。この複数のデータ群のそれぞれが、学習データとして複数のモデル50〜50に供給される。そして、複数のモデル50〜50のそれぞれは、所定の学習手法に従い、運転環境データから期待される機械110の性能を算出するように独立的に学習する。複数のモデル50〜50が構築された後の機械110の実稼動時、運転環境データが順次性能推定器20aに供給される。一つの運転環境データは、複数のモデル50〜50のいずれか適したモデルに供給される。そのモデルは、その一つの運転環境データから期待される機械110の性能を推定する。
以上に示された機械110の性能推定や健全度算出は、コンピュータ(計算機)により実行されてもよい。この場合、健全度評価装置10は、コンピュータにより構成される。また、データ分類部30や健全度算出器70は、中央演算処理装置(図示されない)によって実行されるコンピュータプログラムである。また、複数のモデル50〜50は、メモリ(記憶媒体)上に構築される。
本発明の第一の実施の形態に係る健全度評価装置10、性能推定器20a、性能推定方法による作用・効果は以下の通りである。すなわち、本実施の形態に係る性能推定器20aは、複数のモデル50〜50を有し、その複数のモデル50〜50は、機械110の運転環境に応じて使い分けられる。一つのモデルで変動幅の大きい運転環境に対応する必要が無くなる。従って、あらゆる運転環境における機械110の性能を、高精度に推定することが可能となる。つまり、運転環境の変動による推定誤差が低減する。また、各モデルが対応しなければならない運転環境の変動幅が減少するので、各モデルの構造の複雑化が抑制される。従って、性能推定にかかる時間が抑制される。これは、リアルタイムで機械110の運転状況を監視する場合に、特に好適である。更に、入力される学習データがデータ値に基づいた複数のサブセットに分類される。従って、モデルの構築における解の収束化が促進され、またモデルの構築にかかる時間が短縮される。
(第二の実施の形態)
本発明の第二の実施の形態において、性能推定器の構成は、第一の実施の形態における性能推定器20aの構成と同様である。また、健全度算出器70の構成も、第一の実施の形態における構成と同様である。本実施の形態において、性能推定器20aを構築する手法が、第一の実施の形態における手法と異なる。図7は、本発明の第二の実施の形態に係る性能推定器20aを構築する際の構成を示すブロック図である。図7において、図2に示された構成と同様の構成には同一の符号が付され、その説明は適宜省略される。
図7に示されるように、性能推定器20aの構築の際、最適化部60が、複数のモデル50〜50及びデータ分類部30の分類条件判定部32に接続される。また、最適化部60は、実測性能データRP及び、複数のモデル50〜50のそれぞれから出力される推定データEP〜EPを入力する。この最適化部60は、所定の最適化手法を用いることによって、モデル部50の構造及び運転環境データの分類の基準(分類条件;図3参照)を最適化する。その最適化手法として、周知の遺伝的アルゴリズム、タブー探索法、局所探索法、焼きなまし法などが例示される。
以下、最適化手法として遺伝的アルゴリズムが用いられる場合について説明する。また、複数のモデル50〜50の各々は、ニューラルネットワークにより構築されているとする。この時、一つの「個体(遺伝子)」を構成する要素として、モデルの個数N、各モデルにおける隠れ層の階層数、各モデルにおけるニューロン間の接続パターン、各モデルにおける重みパラメータ分布、データ分類部30における分類条件が挙げられる。
また、ある個体が性能推定器20aに適用され、複数の学習サンプルデータがその性能推定器20aに供給されるとき、推定データEP〜EPのいずれかと実測性能データRPとの差(以下、推定誤差と参照される)が算出される。つまり、一つの個体に対する一回の学習において、複数の学習サンプルデータのそれぞれに対応する複数の推定誤差が得られる。この時、その個体の「適応度(評価値)」は、その複数の推定誤差に基づいて算出される。例えば、その複数の推定誤差の平均、平均二乗、標準偏差などの逆数が、個体の「適応度」として用いられる。
本実施の形態に係る性能推定器20aの構造の最適化おいて、所定の条件を満たす「適応度」を有する「個体」が、遺伝的アルゴリズムによって探索される。図8は、性能推定器20aの構造の最適化手法の一例を示すフローチャートである。その最適化手法において、「個体」は、モデルの個数N、各モデルにおける隠れ層の階層数、各モデルにおけるニューロン間の接続パターン、及び分類条件により構成される。後述されるように、各モデルにおける重みパラメータ分布は、所定の学習手法により別途決定される。また、個体の「適応度」として、複数の推定誤差の平均(以下、推定誤差平均と参照される)の逆数が用いられる。
図8に示されるように、まず、複数の個体(個体群)がランダムに生成される(ステップS1)。
次に、その個体群の各々が性能推定器20aに適用される。そして、各々のニューラルネットワークにおける重みパラメータの分布が、勾配法又はBP法によって学習される(ステップS2)。このように、重みパラメータの分布を遺伝的アルゴリズム以外で決定することによって、遺伝的アルゴリズムを用いた最適化処理における解の収束が促進される。また、重みパラメータの分布の学習は、アンサンブル学習法により行われてもよい。つまり、勾配法やBP法による学習が、異なる初期値を用いて複数回試行されても良い。この時、学習プロセスは、例えば10回試行され、その複数の学習プロセスのそれぞれによって得られた結果の平均が、重みパラメータの分布として採用される。ニューラルネットワークの学習において、解が局所的な最小値に収束する場合、その解が最適解であるとは限らない。アンサンブル学習法を用いることによって、不適当な解が得られることが防止される。
このように、個体群のそれぞれに対応する複数の性能推定器20aが仮決定される。次に、複数の性能推定器20aのそれぞれに対して「適応度」が算出される(ステップS3)。この適応度が高いほど、つまり、推定誤差平均が小さいほど、性能推定器20aは好適である。
次に、適応度に基づいて、個体群の選択が行われる(ステップS10)。つまり、低い適応度しか有さない個体は、個体群から淘汰される。そして、個体群の交叉が行われる(ステップS11)。つまり、適応度が比較的高い個体(親)に似た個体(子)が生成される。また、突然変異が生成される(ステップS12)。これは、進化のためである。
このように、新たな個体群が生成され、その新たな個体群の各々が性能推定器20aに適用される。そして、ステップS2と同様の方法で重みパラメータの分布が決定される(ステップS13)。次に、複数の性能推定器20aのそれぞれに対して「適応度」が算出される(ステップS14)。そして、その「適応度」の分布が所定の終了条件を満たすかどうか判定される(ステップS15)。終了条件が満たされない場合(ステップS15;No)、ステップS10以下のステップが繰り返される。終了条件が満たされるまで上記ステップが繰り返され(ステップS15;Yes)、最終的に性能推定器20a(モデル)の構造が決定される(ステップS20)。このように決定された複数のモデル50〜50の構造は、互いに異なる。
性能推定器20aの構造の最適化は、図8に示された手法に限られない。例えば、重みパラメータの分布も、遺伝子的アルゴリズムを用いることによって最適化されてもよい。また、データ分類部30における分類条件は、マニュアルで設定されてもよい。
以上に示された性能推定器20aの構造の最適化は、コンピュータ(計算機)により実行されてもよい。この場合、最適化部60やデータ分類部30は、中央演算処理装置(図示されない)によって実行されるコンピュータプログラムである。また、複数のモデル50〜50は、メモリ(記憶媒体)上に構築される。
本発明の第二の実施の形態に係る性能推定器20a及び性能推定方法によれば、第一の実施の形態における効果に加えて以下のような効果が得られる。すなわち、モデルの構造(モデルの個数N、隠れ層の階層数など)がフレキシブルである。運転環境は、機械110の設置場所により大きく異なり、又、機械110の制御方式は、その機械110が設置される現場において決定される。従って、モデル構造を、設計段階において固定しないことが好適である。本実施の形態によれば、機械110の設置場所や制御方式に最適な性能推定器20aが、遺伝的アルゴリズム等により決定される。従って、本実施の形態に係る性能推定器20aは、未知の制御方式を有する機械や未知の運転環境下に設置される機械に対応することができる。
また、図3に示されるような分類条件も、機械110の設置場所に強く依存する。本実施の形態によれば、モデル部50の構造に加えて、この分類条件も遺伝的アルゴリズム等により最適化される。従って、機械110の性能推定の精度が更に向上する。また、その分類条件は、遺伝的アルゴリズム等により自動的に最適化される。従って、多数の機械により構成される機械システムにおいて、各々の機械に対してマニュアルで分類条件を設定する手間が省略される。
(第三の実施の形態)
図9は、本発明の第三の実施の形態に係る性能推定器の構成を示すブロック図である。本実施の形態において、性能推定器20bは、データ抽出部40と、データ抽出部40に接続されたモデル部50を備える。データ抽出部40は、運転環境データ(運転データOPE、環境データENV)を入力する。この運転環境データXは、j次元ベクトル(jは自然数)であり、X=(X1、X2…Xj)で表される。また、データ抽出部40は、所定の「抽出条件」に合致する運転環境データのみを、抽出運転環境データ(抽出運転データOPE´、抽出環境データENV´)としてモデル部50に出力する。
図10は、上記「抽出条件」の例を説明するための図である。図10においては、簡単のため、運転環境データの時間変化が一次元的に示されている。また、データ波形は、図中において実線で描写されているが、本質的には離散的な運転環境データの集合により構成される。図10に示されるように、運転環境データは、時間的に大きく変動する。例えば、時刻tから時刻tの期間において、運転環境データは急激に増加する。一方、時刻tから時刻tの期間において、運転環境データは急激に減少する。また、増加時・減少時共に、脈動成分がデータ波形に重なっている。これらの期間において、運転環境データは「不安定」である。それ以外の期間において、運転環境データは「安定」である。
本実施の形態において、データ抽出部40は、過渡状態におけるデータや外乱が印加されたデータを、運転環境データの集合から除く。つまり、データ抽出部40は、運転環境データの集合から、「安定」な運転環境データを抽出する。具体的には、時間的に隣接するデータへの変化率が所定の値以下である運転環境データのみが抽出される。そして、データ抽出部40は、抽出された運転環境データを、抽出運転環境データ(OPE´、ENV´)としてモデル部50に出力する。
データ抽出部40は、例えば図9に示されるように、入力ゲート部41と抽出条件判定部42とを備える。データ抽出部40に供給された運転環境データ(OPE、ENV)は、入力ゲート部41と抽出条件判定部42に分配される。抽出条件判定部42は、供給された運転環境データが、図10に示されたような抽出条件に合致するかを判定する。そして、抽出条件判定部42は、その判定結果に基づき制御信号を入力ゲート部41に出力する。入力ゲート部41は、その制御信号に基づき、入力された運転環境データの通過を許可あるいは禁止する。
モデル部50は、運転環境データから期待される機械110の性能を算出するように学習的に構築される。このモデル部50として、線形回帰モデル、非線形回帰モデル、ロジスティック回帰モデル、自己回帰モデル、ニューラルネットワークモデル、RBF(Radial Basis Function)ネットワークモデルなどが例示される。例えば、本実施の形態において、モデル部50は、図4に示されたようなニューラルネットワークにより構成される。そして、そのニューラルネットワークの学習は、勾配法やバックプロパゲーション法(BP法)等の周知の手法により行われる。学習データとしては、例えば、1年分の運転環境データが用いられる。また、この学習時においても、データ抽出部40による運転環境データの抽出は行われる。
このように構築されたモデル部50は、抽出運転環境データ(OPE´、ENV´)を入力し、運転環境データから期待される性能を示す推定性能データEPを健全度算出器70に出力する(図1参照)。健全度算出器70の構成は、第一の実施の形態における構成と同様である。
本実施の形態に係る性能推定方法は要約すると以下の通りである。まず、モデル部50が構築される。このモデル部50の構築において、まず、「抽出条件」に合致する運転環境データ(OPE、ENV)が、運転環境データの集合から抽出運転環境データ(OPE´、ENV´)として抽出される。この抽出運転環境データの集合が、学習データとしてモデル部50に供給される。そして、モデル部50は、所定の学習手法に従い、運転環境データから期待される機械110の性能を算出するように学習する。モデル部50が構築された後の機械110の実稼動時、運転環境データが順次性能推定器20bに供給される。この時、「抽出条件」に合致する運転環境データのみが、モデル部50に供給される。モデル部50は、その運転環境データから期待される機械110の性能を推定する。
以上に示された機械110の性能推定は、コンピュータ(計算機)により実行されてもよい。この場合、健全度評価装置10は、コンピュータにより構成される。また、データ抽出部40や健全度算出器70は、中央演算処理装置(図示されない)によって実行されるコンピュータプログラムである。また、モデル部50は、メモリ(記憶媒体)上に構築される。
本発明の第三の実施の形態に係る健全度評価装置10、性能推定器20b、性能推定方法による作用・効果は以下の通りである。すなわち、本実施の形態に係るモデル部50は、「抽出条件」に合致する安定な運転環境データの集合を学習データとして用いることにより構築される。つまり、信頼度の高いデータのみから推定モデルが構築される。従って、機械110の性能の推定精度が向上する。また、機械110の実稼動時においても、「抽出条件」に合致する安定な運転環境データのみに対して、性能推定及び健全度評価が行われる。従って、過渡状態にある運転環境データによって、「健全度」が実際より低く見積もられることが防止される。すなわち、健全度評価の信頼性が向上する。
(第四の実施の形態)
本発明の第四の実施の形態において、性能推定器の構成は、第三の実施の形態における性能推定器20bの構成と同様である。本実施の形態において、性能推定器20bを構築する手法が、第三の実施の形態における手法と異なる。図11は、本発明の第四の実施の形態に係る性能推定器20bを構築する際の構成を示すブロック図である。図11において、図9に示された構成と同様の構成には同一の符号が付され、その説明は適宜省略される。
図11に示されるように、性能推定器20bの構築の際、最適化部60が、モデル部50及びデータ抽出部40の抽出条件判定部42に接続される。また、最適化部60は、実測性能データRP及び、モデル部50から出力される推定性能データEPを入力する。この最適化部60は、所定の最適化手法を用いることによって、モデル部50の構造及び「抽出条件」を最適化する。その最適化手法として、周知の遺伝的アルゴリズム、タブー探索法、局所探索法、焼きなまし法などが例示される。
本実施の形態において、性能推定器20bの最適化は、第二の実施の形態における方法と同様の方法で実行される(図8参照)。但し、「個体(遺伝子)」を構成する要素は、モデル部50における隠れ層の階層数、ニューロン間の接続パターン、重みパラメータ分布、及びデータ抽出部40における抽出条件から選択される。
例えば、モデル部50における隠れ層の階層数、ニューロン間の接続パターン、及びデータ抽出部40における抽出条件が遺伝子アルゴリズムによって最適化される。そして、ニューラルネットワークにおける重みパラメータの分布は、勾配法又はBP法によって学習される。これにより、遺伝的アルゴリズムを用いた最適化処理における解の収束が促進される。また、重みパラメータの分布の学習は、アンサンブル学習法により行われてもよい。つまり、勾配法やBP法による学習が、異なる初期値を用いて複数回試行されても良い。アンサンブル学習法を用いることによって、不適当な解が得られることが防止される。
本発明の第四の実施の形態に係る性能推定器20b及び性能推定方法によれば、第三の実施の形態における効果に加えて以下のような効果が得られる。すなわち、モデルの構造(隠れ層の階層数など)がフレキシブルである。運転環境は、機械110の設置場所により大きく異なり、又、機械110の制御方式は、その機械110が設置される現場において決定される。従って、モデル構造を、設計段階において固定しないことが好適である。本実施の形態によれば、機械110の設置場所や制御方式に最適な性能推定器20bが、遺伝的アルゴリズム等により決定される。従って、本実施の形態に係る性能推定器20bは、未知の制御方式を有する機械や未知の運転環境下に設置される機械に対応することができる。また、モデル部50の構造に加えて、抽出条件も遺伝的アルゴリズム等により最適化される。従って、機械110の性能推定の精度が更に向上する。
(第五の実施の形態)
図12は、本発明の第五の実施の形態に係る性能推定器の構成を示すブロック図である。図12において、第一〜第四の実施の形態における構成と同様の構成には同一の符号が付され、その説明は適宜省略される。本実施の形態において、性能推定器20cは、データ抽出部40と、データ抽出部40に接続されたデータ分類部30と、データ分類部30に接続されたモデル部50を備える。データ分類部30の構成・動作は、第一及び第二の実施の形態において示されたものと同様である(図2参照)。また、データ抽出部40の構成・動作は、第三及び第四の実施の形態において示されたものと同様である(図9参照)。また、モデル部50の構成は、第一及び第二の実施の形態において示されたものと同様である(図2、図4参照)。
データ抽出部40は、運転環境データ(運転データOPE、環境データENV)を入力する。このデータ抽出部40は、運転環境データの集合から、図10に示されたような「抽出条件」に合致する運転環境データのみを抽出する。具体的には、時間的に隣接するデータへの変化率が所定の値以下である運転環境データのみが抽出される。そして、データ抽出部40は、抽出された運転環境データを、抽出運転環境データ(OPE´、ENV´)としてデータ分類部30に出力する。
データ分類部30は、図3に示されたような「分類条件」に基づき、入力された抽出運転環境データ(OPE´、ENV´)をいずれかのグループ(分類運転環境データ)に分類する。つまり、データ分類部30は、抽出運転環境データの集合をデータ値に基づいてN個のデータ群に分類する。そして、データ分類部30は、そのN個のデータ群のそれぞれを、学習データとして、モデル部50に構築されたN個のモデル50〜50に出力する。そのN個のモデル50〜50のそれぞれは、運転環境データから期待される機械110の性能を算出するように学習的に構築される。すなわち、N個のモデル50〜50は、それぞれ独立的に構築される。各々のモデルとして、図4に示されたようなニューラルネットワークモデルが例示される。
本実施の形態において、性能推定器20cの最適化は、第二の実施の形態における方法と同様の方法で実行される(図8参照)。ここで、「個体(遺伝子)」を構成する要素は、モデルの個数N、各モデルにおける隠れ層の階層数、各モデルにおけるニューロン間の接続パターン、各モデルにおける重みパラメータ分布、データ分類部30における「分類条件」、及びデータ抽出部40における「抽出条件」から選択される。例えば、モデルの個数N、隠れ層の階層数、ニューロン間の接続パターン、「分類条件」及び「抽出条件」が、遺伝子アルゴリズムによって最適化される。一方、ニューラルネットワークにおける重みパラメータの分布は、勾配法又はBP法によって学習される。ここで、重みパラメータの分布の学習は、アンサンブル学習法により行われてもよい。
このように、本発明の第五の実施の形態に係る性能推定器20c及び性能推定方法によれば、第一及び第二の実施の形態に係る性能推定方法が、「抽出条件」に合致する運転環境データのみを用いて実行される。従って、上記第一〜第四の実施の形態による効果の全てが得られる。つまり、機械の性能を高精度に推定することが可能となる。また、機械が稼動する際の運転環境の変動による推定誤差を低減することが可能となる。更に、機械の性能推定にかかる時間を抑制することが可能となる。また更に、未知の制御方式を有する機械や未知の運転環境下に設置される機械の性能を推定することが可能となる。
図1は、本発明に係る機械システムの構成を示すブロック図である。 図2は、本発明の第一の実施の形態に係る性能推定器の構成を示すブロック図である。 図3は、本発明の第一の実施の形態に係る運転環境データの分類基準の例を示す図表である。 図4は、ニューラルネットワークの構成を示す。 図5は、本発明に係る健全度算出器70の構成を示すブロック図である。 図6Aは、本発明に係る健全度算出方法を示すグラフである。 図6Bは、本発明に係る健全度算出方法を示すグラフである。 図7は、本発明の第二の実施の形態に係る性能推定器を構築する際の構成を示すブロック図である。 図8は、本発明の第二の実施の形態に係る性能推定器を構築する手順を示すフローチャートである。 図9は、本発明の第三の実施の形態に係る性能推定器の構成を示すブロック図である。 図10は、本発明の第三の実施の形態に係る運転環境データの抽出の基準の例を示すグラフである。 図11は、本発明の第四の実施の形態に係る性能推定器を構築する際の構成を示すブロック図である。 図12は、本発明の第五の実施の形態に係る性能推定器の構成を示すブロック図である。
符号の説明
10 健全度評価装置
20 性能推定器
30 データ分類部
31 MUX
32 分類条件判定部
40 データ抽出部
41 入力ゲート部
42 抽出条件判定部
50 モデル部
60 最適化部
70 健全度算出器
80 表示装置
90 記憶装置
100 機械システム
110 機械
120 環境センサ

Claims (32)

  1. 機械が稼動する際の環境を示す運転環境データを入力するデータ分類部と、
    前記データ分類部に接続され、複数のモデルが構築されたモデル部と
    を具備し、
    前記データ分類部は、前記運転環境データの集合をデータ値に基づいて複数のデータ群に分類し、前記複数のデータ群のそれぞれを前記複数のモデルに出力し、
    前記複数のモデルのそれぞれは、前記複数のデータ群のそれぞれを学習データとして用いることにより、前記運転環境データから期待される前記機械の性能を算出するようにそれぞれ学習する
    性能推定器。
  2. 請求項1に記載の性能推定器において、
    前記複数のモデルのそれぞれの構造は、遺伝的アルゴリズムによって最適化される
    性能推定器。
  3. 請求項1に記載の性能推定器において、
    前記データ分類部による分類の基準、及び前記複数のモデルのそれぞれの構造は、遺伝的アルゴリズムによって最適化される
    性能推定器。
  4. 請求項1乃至3のいずれかに記載の性能推定器において、
    前記機械の稼動中、前記データ分類部は、一つの前記運転環境データをデータ値に基づいて一つの前記モデルに出力し、
    前記一つのモデルは、前記一つの運転環境データから期待される前記機械の性能を算出する
    性能推定器。
  5. 機械が稼動する際の環境を示す運転環境データを入力するデータ抽出部と、
    前記データ抽出部に接続されたデータ分類部と、
    前記データ分類部に接続され、複数のモデルが構築されたモデル部と
    を具備し、
    前記データ抽出部は、第一条件に合致する前記運転環境データのみを、抽出データとして前記データ分類部に出力し、
    前記データ分類部は、前記抽出データの集合をデータ値に基づいて複数のデータ群に分類し、前記複数のデータ群のそれぞれを前記複数のモデルに出力し、
    前記複数のモデルのそれぞれは、前記複数のデータ群のそれぞれを学習データとして用いることにより、前記運転環境データから期待される前記機械の性能を算出するようにそれぞれ学習する
    性能推定器。
  6. 請求項5に記載の性能推定器において、
    前記第一条件は、時間的に隣接する前記運転環境データへの変化率が所定の値以下であることを示す
    性能推定器。
  7. 請求項5又は6に記載の性能推定器において、
    前記第一条件、前記データ分類部による分類の基準、及び前記複数のモデルのそれぞれの構造は、遺伝的アルゴリズムによって最適化される
    性能推定器。
  8. 請求項5乃至7のいずれかに記載の性能推定器において、
    前記機械の稼動中、前記データ分類部は、一つの前記抽出データをデータ値に基づいて一つの前記モデルに出力し、
    前記一つのモデルは、前記一つの抽出データから期待される前記機械の性能を算出する
    性能推定器。
  9. 機械が稼動する際の環境を示す運転環境データを入力するデータ抽出部と、
    前記データ抽出部に接続され、モデルが構築されたモデル部と
    を具備し、
    前記データ抽出部は、時間的に隣接する前記運転環境データへの変化率が所定の値以下である前記運転環境データのみを、抽出データとして前記モデルに出力し、
    前記モデルは、前記抽出データの集合を学習データとして用いることにより、前記運転環境データから期待される前記機械の性能を算出するように学習する
    性能推定器。
  10. 請求項1乃至9のいずれかに記載の性能推定器において、
    前記モデルは、回帰モデル、ニューラルネットワークモデル、RBFネットワークモデルのいずれかである
    性能推定器。
  11. 請求項1乃至10のいずれかに記載の性能推定器において、
    前記機械は、風車である
    性能推定器。
  12. 請求項11に記載の性能推定器において、
    前記運転環境データは、風速、風向、季節、及び前記風車のピッチ角を含む
    性能推定器。
  13. 請求項1乃至12のいずれかに記載の性能推定器と、
    前記性能推定器に接続された健全度算出器と
    を具備し、
    前記性能推定器は、前記運転環境データから期待される前記機械の性能を算出し、算出された前記性能を示す推定性能データを前記健全度算出器に出力し、
    前記健全度算出器は、前記推定性能データと前記機械の実際の性能を示す実測性能データに基づき、前記機械の健全度を算出する
    健全度評価装置。
  14. 請求項13に記載の健全度評価装置において、
    前記健全度算出器は、
    前記推定性能データと前記実測性能データを入力し、前記推定性能データと前記実測性能データとの差を算出する残差算出部と、
    前記残差算出部に接続され、所定期間の前記差の分布を示す残差分布を算出する残差分布算出部と、
    前記残差分布算出部に接続され、前記残差分布と前記機械が正常な時の残差分布とを比較することによって前記健全度を算出する比較部と
    を備える
    健全度評価装置。
  15. 風車と、
    前記風車に接続された請求項13又は14に記載の健全度評価装置と、
    前記風車が稼働する際の前記環境を検出するセンサ群と
    を具備し、
    前記センサ群は、検出された前記環境を示す前記運転環境データを前記健全度評価装置に出力し、
    前記健全度評価装置は、前記運転環境データから前記風車の発電量を推定し、又、前記推定された発電量と測定された発電量とに基づき、前記風車の健全度を評価する
    風力発電システム。
  16. (A)複数のモデルを構築するステップと、
    前記複数のモデルの各々は、機械が稼動する際の環境を示す運転環境データから期待される前記機械の性能を算出し、
    (B)一つの前記運転環境データを、前記複数のモデルのいずれかに供給するステップと、
    (C)前記一つの運転環境データから期待される前記機械の性能を推定するステップと
    を具備する
    性能推定方法。
  17. 請求項16に記載の性能推定方法において、
    前記(A)構築するステップは、
    (a)前記運転環境データの集合をデータ値に基づいて複数のデータ群に分類するステップと、
    (b)前記複数のデータ群のそれぞれを、学習データとして前記複数のモデルのそれぞれに供給するステップと、
    (c)前記複数のモデルのそれぞれを、前記運転環境データから期待される前記機械の性能を算出するように学習させるステップと
    を含む
    性能推定方法。
  18. 請求項17に記載の性能推定方法において、
    前記(c)学習させるステップは、
    (c−1)前記複数のモデルのそれぞれの構造を、遺伝的アルゴリズムによって最適化するステップを含む
    性能推定方法。
  19. 請求項17に記載の性能推定方法において、
    前記(c)学習させるステップは、
    (c−1)前記複数のモデルのそれぞれの構造、及び前記(a)分類するステップにおける分類の基準を、遺伝的アルゴリズムによって最適化するステップを含む
    性能推定方法。
  20. 請求項18又は19に記載の性能推定方法において、
    前記複数のモデルの各々は、ニューラルネットワークモデル又はRBFネットワークモデルであり、
    前記(c)学習させるステップは、
    (c−2)前記複数のモデルのそれぞれにおける重みパラメータの分布を、勾配法又はバックプロパゲーション法により学習させるステップを更に含む
    性能推定方法。
  21. 請求項17乃至20のいずれかに記載の性能推定方法において、
    前記(a)分類するステップは、時間的に隣接する前記運転環境データへの変化率が所定の値以下である前記運転環境データのみを用いることにより実行される
    性能推定方法。
  22. (A)機械が稼動する際の環境を示す運転環境データから期待される前記機械の性能を算出するモデルを構築するステップと、
    (B)一つの前記運転環境データが、第一条件に適合するかを判定するステップと、
    (C)前記第一条件に適合する前記一つの運転環境データを、前記モデルに供給するステップと、
    (D)前記一つの運転環境データから期待される前記機械の性能を推定するステップと
    を具備する
    性能推定方法。
  23. 請求項22に記載の性能推定方法において、
    前記第一条件は、時間的に隣接する前記運転環境データへの変化率が所定の値以下であることを示す
    性能推定方法。
  24. 請求項22又は23に記載の性能推定方法において、
    前記(A)構築するステップは、
    (a)前記運転環境データの集合から、前記第一条件に合致する前記運転環境データを抽出データとして抽出するステップと、
    (b)前記抽出データの集合を、学習データとして前記モデルに供給するステップと、
    (c)前記モデルを、前記運転環境データから期待される前記機械の性能を算出するように学習させるステップと
    を含む
    性能推定方法。
  25. 請求項24に記載の性能推定方法において、
    前記(c)学習させるステップは、
    (c−1)前記モデルの構造を、遺伝的アルゴリズムによって最適化するステップを含む
    性能推定方法。
  26. 請求項24に記載の性能推定方法において、
    前記(c)学習させるステップは、
    (c−1)前記モデルの構造、及び前記(a)抽出するステップにおける第一条件を、遺伝的アルゴリズムによって最適化するステップを含む
    性能推定方法。
  27. 請求項25又は26に記載の性能推定方法において、
    前記モデルは、ニューラルネットワークモデル又はRBFネットワークモデルであり、
    前記(c)学習させるステップは、
    (c−2)前記モデルにおける重みパラメータの分布を、勾配法又はバックプロパゲーション法により学習させるステップを更に含む
    性能推定方法。
  28. 請求項20又は27に記載の性能推定方法において、
    前記(c−2)学習させるステップは、アンサンブル学習法により実行される
    性能推定方法。
  29. (A)複数のモデルをメモリ上に構築するステップと、
    前記複数のモデルの各々は、機械が稼動する際の環境を示す運転環境データから期待される前記機械の性能を算出し、
    (B)一つの前記運転環境データを、前記複数のモデルのいずれかに供給するステップと、
    (C)前記一つの運転環境データから期待される前記機械の性能を推定するステップと
    をコンピュータに実行させるための
    性能推定プログラム。
  30. 請求項29に記載の性能推定プログラムにおいて、
    前記(A)構築するステップは、
    (a)前記運転環境データの集合をデータ値に基づいて複数のデータ群に分類するステップと、
    (b)前記複数のデータ群のそれぞれを、学習データとして前記複数のモデルのそれぞれに供給するステップと、
    (c)前記複数のモデルのそれぞれを、前記運転環境データから期待される前記機械の性能を算出するように学習させるステップと
    を含む
    性能推定プログラム。
  31. 請求項30に記載の性能推定プログラムにおいて、
    前記(c)学習させるステップは、
    (c−1)前記複数のモデルのそれぞれの構造、及び前記(a)分類するステップにおける分類の基準を、遺伝的アルゴリズムによって最適化するステップを含む
    性能推定プログラム。
  32. 請求項31に記載の性能推定プログラムにおいて、
    前記複数のモデルの各々は、ニューラルネットワークモデル又はRBFネットワークモデルであり、
    前記(c)学習させるステップは、
    (c−2)前記複数のモデルのそれぞれにおける重みパラメータの分布を、勾配法又はバックプロパゲーション法により学習させるステップを更に含む
    性能推定プログラム。
JP2004053372A 2004-02-27 2004-02-27 機械の性能推定器、性能推定方法及び性能推定プログラム Withdrawn JP2005242803A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004053372A JP2005242803A (ja) 2004-02-27 2004-02-27 機械の性能推定器、性能推定方法及び性能推定プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004053372A JP2005242803A (ja) 2004-02-27 2004-02-27 機械の性能推定器、性能推定方法及び性能推定プログラム

Publications (1)

Publication Number Publication Date
JP2005242803A true JP2005242803A (ja) 2005-09-08

Family

ID=35024461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004053372A Withdrawn JP2005242803A (ja) 2004-02-27 2004-02-27 機械の性能推定器、性能推定方法及び性能推定プログラム

Country Status (1)

Country Link
JP (1) JP2005242803A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008015817A (ja) * 2006-07-06 2008-01-24 Yokohama National Univ 進化計算システム及び進化計算方法
JP2010152751A (ja) * 2008-12-25 2010-07-08 Nec Corp 統計モデル学習装置、統計モデル学習方法、およびプログラム
JP5083320B2 (ja) * 2007-08-22 2012-11-28 富士通株式会社 化合物の物性予測装置、物性予測方法およびその方法を実施するためのプログラム
WO2016052049A1 (ja) * 2014-10-02 2016-04-07 シャープ株式会社 信号処理装置、信号処理方法およびコンピュータプログラム
CN107110672A (zh) * 2014-11-14 2017-08-29 夏普株式会社 信号处理装置、信号处理方法及计算机程序
KR102120214B1 (ko) * 2019-11-15 2020-06-08 (주)유엠로직스 앙상블 기계학습 기법을 이용한 사이버 표적공격 탐지 시스템 및 그 탐지 방법
JP2021043728A (ja) * 2019-09-11 2021-03-18 東京エレクトロン株式会社 モデル生成方法、モデル生成装置及びプログラム
CN112868027A (zh) * 2018-10-18 2021-05-28 莱卡微系统Cms有限责任公司 显微镜工作流程的优化
JP2021524968A (ja) * 2018-05-21 2021-09-16 モビディウス リミテッド 畳み込みニューラルネットワークを使用するシーンを再構成する方法、システム、製造物品、および装置
JP7251590B1 (ja) 2021-10-07 2023-04-04 株式会社Sumco 機械学習の評価方法及び機械学習による推定モデルの生成方法
JP7439963B2 (ja) 2018-12-12 2024-02-28 株式会社オートネットワーク技術研究所 判定装置、判定プログラム、判定方法及びニューラルネットワークモデルの生成方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008015817A (ja) * 2006-07-06 2008-01-24 Yokohama National Univ 進化計算システム及び進化計算方法
JP5083320B2 (ja) * 2007-08-22 2012-11-28 富士通株式会社 化合物の物性予測装置、物性予測方法およびその方法を実施するためのプログラム
US8473448B2 (en) 2007-08-22 2013-06-25 Fujitsu Limited Compound property prediction apparatus, property prediction method, and program for implementing the method
JP2010152751A (ja) * 2008-12-25 2010-07-08 Nec Corp 統計モデル学習装置、統計モデル学習方法、およびプログラム
US10571314B2 (en) 2014-10-02 2020-02-25 Sharp Kabushiki Kaisha Signal processing apparatus and signal processing method
WO2016052049A1 (ja) * 2014-10-02 2016-04-07 シャープ株式会社 信号処理装置、信号処理方法およびコンピュータプログラム
CN106796127A (zh) * 2014-10-02 2017-05-31 夏普株式会社 信号处理装置、信号处理方法以及计算机程序
JPWO2016052049A1 (ja) * 2014-10-02 2017-08-17 シャープ株式会社 信号処理装置、信号処理方法およびコンピュータプログラム
CN107110672B (zh) * 2014-11-14 2019-11-19 夏普株式会社 信号处理装置、信号处理方法及计算机程序
CN107110672A (zh) * 2014-11-14 2017-08-29 夏普株式会社 信号处理装置、信号处理方法及计算机程序
JP7414367B2 (ja) 2018-05-21 2024-01-16 モビディウス リミテッド 畳み込みニューラルネットワークを使用するシーンを再構成する方法、システム、製造物品、および装置
JP2021524968A (ja) * 2018-05-21 2021-09-16 モビディウス リミテッド 畳み込みニューラルネットワークを使用するシーンを再構成する方法、システム、製造物品、および装置
JP7331097B2 (ja) 2018-10-18 2023-08-22 ライカ マイクロシステムズ シーエムエス ゲゼルシャフト ミット ベシュレンクテル ハフツング 顕微鏡のワークフローの最適化
CN112868027A (zh) * 2018-10-18 2021-05-28 莱卡微系统Cms有限责任公司 显微镜工作流程的优化
JP2022505252A (ja) * 2018-10-18 2022-01-14 ライカ マイクロシステムズ シーエムエス ゲゼルシャフト ミット ベシュレンクテル ハフツング 顕微鏡のワークフローの最適化
JP7439963B2 (ja) 2018-12-12 2024-02-28 株式会社オートネットワーク技術研究所 判定装置、判定プログラム、判定方法及びニューラルネットワークモデルの生成方法
JP7224263B2 (ja) 2019-09-11 2023-02-17 東京エレクトロン株式会社 モデル生成方法、モデル生成装置及びプログラム
JP2021043728A (ja) * 2019-09-11 2021-03-18 東京エレクトロン株式会社 モデル生成方法、モデル生成装置及びプログラム
KR102120214B1 (ko) * 2019-11-15 2020-06-08 (주)유엠로직스 앙상블 기계학습 기법을 이용한 사이버 표적공격 탐지 시스템 및 그 탐지 방법
JP2023056139A (ja) * 2021-10-07 2023-04-19 株式会社Sumco 機械学習の評価方法及び機械学習による推定モデルの生成方法
JP7251590B1 (ja) 2021-10-07 2023-04-04 株式会社Sumco 機械学習の評価方法及び機械学習による推定モデルの生成方法

Similar Documents

Publication Publication Date Title
US8370108B2 (en) Diagnostic device
CN110685868A (zh) 一种基于改进梯度提升机的风电机组故障检测方法及装置
CN105719002A (zh) 一种基于组合预测的风电机组状态参数异常辨识方法
CN109102101B (zh) 风电场风速的预测方法和系统
WO2018171165A1 (zh) 预测风机的故障的方法和设备
JP2016201088A (ja) 異常検出システムおよび方法
US20120296606A1 (en) Method, computer program, and system for performing interpolation on sensor data for high system availability
CN110362045B (zh) 一种考虑海洋气象因素的海上双馈风电机组故障判别方法
Niu et al. Lebesgue sampling based deep belief network for lithium-ion battery diagnosis and prognosis
CN111950505A (zh) 一种ssa-aann的风力发电机传感器状态评估方法
JP2005242803A (ja) 機械の性能推定器、性能推定方法及び性能推定プログラム
CN110594107A (zh) 一种基于快速梯度提升机的风电机组故障检测方法及装置
CN110874665B (zh) 用于风力发电机组的控制装置和方法
CN102339347A (zh) 用于技术系统的计算机辅助分析的方法
CN115809405A (zh) 基于多特征融合的风机主轴齿轮箱温度异常检测方法
CN115822887A (zh) 风电机组的性能评估与能效诊断方法及系统
CN113048807A (zh) 一种空冷机组背压异常检测方法
CN116050665A (zh) 供热设备故障预测方法
CN115453356A (zh) 一种动力设备运行状态监测分析方法、系统、终端及介质
CN110210641A (zh) 用于风电场的风向预测方法及装置
CN113033898A (zh) 基于k均值聚类与bi-lstm神经网络的电负荷预测方法及系统
CN117096871A (zh) 一种基于时空分布的风电功率概率密度的预测方法
TW202119298A (zh) 結合因子隱藏式馬可夫模型(fhmm)與發電量預測之太陽能板發電系統異常診斷分析裝置與方法
CN114227701B (zh) 一种基于生产数据的机器人故障预测方法
KR102656115B1 (ko) 연료전지 시스템의 잔여 수명 예측 방법 및 이를 수행하는 디지털 트윈 장치

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501