JP2005241404A - Device for measuring electrical conductivity, and its control method - Google Patents

Device for measuring electrical conductivity, and its control method Download PDF

Info

Publication number
JP2005241404A
JP2005241404A JP2004050966A JP2004050966A JP2005241404A JP 2005241404 A JP2005241404 A JP 2005241404A JP 2004050966 A JP2004050966 A JP 2004050966A JP 2004050966 A JP2004050966 A JP 2004050966A JP 2005241404 A JP2005241404 A JP 2005241404A
Authority
JP
Japan
Prior art keywords
electrical conductivity
output
sensors
solution
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004050966A
Other languages
Japanese (ja)
Inventor
Masashi Fujita
雅司 藤田
Shinichi Ohashi
伸一 大橋
Toshio Morita
利夫 森田
Kazuhiko Sano
和彦 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2004050966A priority Critical patent/JP2005241404A/en
Publication of JP2005241404A publication Critical patent/JP2005241404A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an device for measuring electrical conductivity, capable of measuring electrical conductivity of measuring object solution with high sensitivity and high precision. <P>SOLUTION: The device for measuring electrical conductivity 100 detects the variation in the electrical conductivity in measuring object solution by measuring current difference between two sensors 61 and 62, contacting with time difference in the measuring object solution inside a conduit. The output voltage and output frequency of an alternating-current oscillator 11 in a power source 10 are controlled so that the measured value of the output current of one sensor 61 becomes a desired value. A calibration circuit 50 is used, when the electrical conductivity of the solution does not vary, and an electrical conductivity meter is calibrated by controlling a supply voltage of one sensor 62 so that the measured value of the current difference between the sensors 61 and 62 becomes zero. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電気伝導率測定装置の制御方法に関し、更に詳しくは、水溶液中のイオン濃度等の測定に際して好適に利用される電気伝導率測定装置及びその制御方法に関する。   The present invention relates to a method for controlling an electrical conductivity measuring device, and more particularly to an electrical conductivity measuring device suitably used for measuring an ion concentration or the like in an aqueous solution and a control method therefor.

水溶液中のイオン濃度の測定に際して、電気伝導率測定装置が用いられている。電気伝導率測定装置は、一般に、交流電源と、測定対象の水溶液中に浸漬され、交流電源から交流電圧が印加される一対の電極(センサ)と、この一対の電極間に流れる電流値を検出する信号処理部とから構成されている。電気伝導率測定装置には、測定対象の電気伝導率を高感度且つ高精度に測定するための要求が益々増大しており、従来から様々な提案が成されている。   In measuring the ion concentration in an aqueous solution, an electrical conductivity measuring device is used. An electrical conductivity measuring device generally detects an AC power source, a pair of electrodes (sensors) immersed in an aqueous solution to be measured and applied with an AC voltage from the AC power source, and a current value flowing between the pair of electrodes. And a signal processing unit. There are increasing demands for measuring the electrical conductivity of a measurement object with high sensitivity and high accuracy, and various proposals have been made in the past.

特許文献1には、測定対象溶液に所定の時間差をもって接し、特性が揃った2つのセンサを用い、そのセンサの出力信号の差分値を求めることで、測定対象溶液の特性値(例えば電気伝導率)の変化を高感度且つ高精度に測定可能な測定装置が記載されている。図2は、該特許文献に記載された測定装置の原理を示している。測定対象溶液64は、導管63内を一定の流速で矢印方向に流れている。2つのセンサ(Aセンサ、Bセンサ)61,62は、それそれが一対の電極で構成され、所定の離隔距離をおいてこの導管63内を流れる溶液に接している。つまり、双方のセンサ61,62は、一定の時間差で測定対象溶液64に接することとなる。センサ61,62には、それぞれ交流電圧が印加されており、その電圧によって流れるセンサ61,62の出力電流の差が、増幅器を含む信号処理装置70によって検出される。   In Patent Document 1, a characteristic value (for example, electrical conductivity) of a measurement target solution is obtained by using two sensors that are in contact with the measurement target solution with a predetermined time difference and obtaining a difference value between output signals of the sensors. ) Is measured with high sensitivity and high accuracy. FIG. 2 shows the principle of the measuring apparatus described in the patent document. The solution to be measured 64 flows in the direction of the arrow in the conduit 63 at a constant flow rate. The two sensors (A sensor, B sensor) 61 and 62 are each composed of a pair of electrodes, and are in contact with the solution flowing in the conduit 63 at a predetermined separation distance. That is, both the sensors 61 and 62 come into contact with the measurement target solution 64 with a certain time difference. An alternating voltage is applied to each of the sensors 61 and 62, and a difference in output currents of the sensors 61 and 62 flowing by the voltages is detected by a signal processing device 70 including an amplifier.

図3は、上記構成を有する電気伝導率測定装置の全体構成をブロック図で示している。交流電源装置として構成される交流発振器80の出力電圧は、一方のAセンサ61にはその極性が反転して印加され、また、他方のBセンサ62には、そのままの極性で印加される。これによって、双方のセンサ61,62に流れる電流は、互いに逆方向となる。双方のセンサ61,62の出力電流の差分値が、信号処理装置70の入力段増幅器71に入力され増幅される。入力段増幅器71の出力は、溶液の温度で電気伝導率を補正するための温度補償回路72によって補正され、同期整流回路73及び出力段の直流増幅器74を経由して電気伝導率指示計75に出力される。   FIG. 3 is a block diagram showing the overall configuration of the electrical conductivity measuring apparatus having the above configuration. The output voltage of the AC oscillator 80 configured as an AC power supply device is applied to one A sensor 61 with its polarity reversed, and is applied to the other B sensor 62 with the same polarity. As a result, the currents flowing through both sensors 61 and 62 are in opposite directions. The difference value between the output currents of both sensors 61 and 62 is input to the input stage amplifier 71 of the signal processing device 70 and amplified. The output of the input stage amplifier 71 is corrected by a temperature compensation circuit 72 for correcting the electrical conductivity at the temperature of the solution, and is supplied to the electrical conductivity indicator 75 via the synchronous rectifier circuit 73 and the DC amplifier 74 of the output stage. Is output.

上記公報に記載の電気伝導率測定装置では、双方のセンサ61,62の出力電流の差分値を、電気伝導率測定装置の出力信号として取り出すことにより、測定対象溶液の電気伝導率の大きさに依存することなく、双方のセンサの差分値の測定レンジが設定でき、差分値が精度高く検出できる。その結果、測定対象溶液の電気伝導率の変化が高感度且つ高精度に測定できる利点がある。
特開平2003−270183号公報
In the electrical conductivity measuring device described in the above publication, the difference between the output currents of the two sensors 61 and 62 is taken out as an output signal of the electrical conductivity measuring device, thereby obtaining the magnitude of the electrical conductivity of the solution to be measured. Without depending, the measurement range of the difference value of both sensors can be set, and the difference value can be detected with high accuracy. As a result, there is an advantage that a change in electric conductivity of the solution to be measured can be measured with high sensitivity and high accuracy.
Japanese Patent Laid-Open No. 2003-270183

上記型式の電気伝導率測定装置は、上述の利点を有するものであるが、以下の点が問題となる。まず、双方のセンサ自体に特性の違いがあると、或いは、双方のセンサ間に配線抵抗や取付け構造に違いがあると、それらの違いが直接に測定結果に影響するという問題である。   Although the above-described type of electrical conductivity measuring device has the above-mentioned advantages, the following points are problematic. First, if there is a difference in characteristics between the two sensors themselves, or if there is a difference in wiring resistance or mounting structure between the two sensors, the difference directly affects the measurement result.

また、広い範囲の電気伝導率の測定を行うためには、センサに印加する電圧を広範囲に変えて測定レンジを調節する必要があり、この場合、電圧を余り低くするとセンサの感度が低下するという問題もある。   In order to measure a wide range of electrical conductivity, it is necessary to adjust the measurement range by changing the voltage applied to the sensor over a wide range. In this case, if the voltage is too low, the sensitivity of the sensor will decrease. There is also a problem.

本発明は、上記型式の電気伝導率測定装置における問題に鑑み、該電気伝導率測定装置を利用して、更に精度及び感度高く測定対象溶液の電気伝導率が測定できるように、上記電気伝導率測定装置を制御する方法を提供することを目的とする。   In view of the problems in the above-described type of electrical conductivity measuring device, the present invention uses the electrical conductivity measuring device so that the electrical conductivity of the solution to be measured can be measured with higher accuracy and sensitivity. An object is to provide a method for controlling a measuring device.

また、本発明は、上記型式の従来の電気伝導率測定装置を改良し、もって、測定対象溶液の電気伝導率を、更に高感度且つ高精度で測定できる電気伝導率測定装置を提供することを目的とする。   In addition, the present invention provides an electrical conductivity measuring device that improves the conventional conductivity measuring device of the above-described type and can measure the electrical conductivity of the solution to be measured with higher sensitivity and accuracy. Objective.

更に、本発明は、上記形式の電気伝導率測定装置に限らず、測定対象溶液の電気伝導率が感度及び精度高く測定できる電気伝導率測定装置を提供することを目的とする。   Furthermore, this invention aims at providing the electrical conductivity measuring apparatus which can measure the electrical conductivity of a measuring object solution not only with the above-described type electrical conductivity measuring apparatus with high sensitivity and accuracy.

上記目的を達成するために、本発明の電気伝導率測定装置の制御方法は、測定対象溶液に所定の時間差をもって接する一対の電気伝導率センサと、前記電気伝導率センサのそれぞれに作動のための交流電源を印加する電源部と、前記電気伝導率センサの出力電流の差分値を計測し測定対象溶液の電気伝導率差分値として出力する信号処理部とを備える電気伝導率測定装置を制御する方法において、
前記一対のセンサの一方の出力電流を計測し、該計測された出力電流が所望の値になるように、前記電源部が出力する交流電源の電圧及び周波数を調整することを特徴とする。
In order to achieve the above object, a method for controlling an electrical conductivity measuring device according to the present invention includes a pair of electrical conductivity sensors that are in contact with a measurement target solution with a predetermined time difference, and each of the electrical conductivity sensors for operation. A method for controlling an electrical conductivity measurement device comprising: a power supply unit that applies an AC power supply; and a signal processing unit that measures a differential value of an output current of the electrical conductivity sensor and outputs the differential value as an electrical conductivity differential value of a solution to be measured In
The output current of one of the pair of sensors is measured, and the voltage and frequency of the AC power output from the power supply unit are adjusted so that the measured output current becomes a desired value.

上記本発明の電気伝導率測定装置の制御方法の好適な態様では、測定対象溶液の電気伝導率に時間的な変化がないときに、前記信号処理部から出力される電気伝導率差分値が零となるように、前記一対のセンサの少なくとも一方に印加される電圧を調整する。   In a preferred aspect of the control method of the electrical conductivity measuring device of the present invention, when the electrical conductivity of the solution to be measured does not change with time, the electrical conductivity difference value output from the signal processing unit is zero. Thus, the voltage applied to at least one of the pair of sensors is adjusted.

また、本発明の第1の視点に係る電気伝導率測定装置は、測定対象溶液に所定の時間差をもって接する一対の電気伝導率センサと、前記電気伝導率センサのそれぞれに作動のための交流電源を印加する電源部と、前記電気伝導率センサの出力電流の差分値を計測し測定対象溶液の電気伝導率差分値として出力する信号処理部とを備える電気伝導率測定装置において、
前記電源部は、出力電圧及び出力周波数が可変に設定可能であることを特徴とする。
The electrical conductivity measuring apparatus according to the first aspect of the present invention includes a pair of electrical conductivity sensors that are in contact with a measurement target solution with a predetermined time difference, and an AC power source for operating each of the electrical conductivity sensors. In an electrical conductivity measurement device comprising: a power supply unit to be applied; and a signal processing unit that measures a differential value of an output current of the electrical conductivity sensor and outputs the differential value of the electrical conductivity of the measurement target solution.
The power supply unit is characterized in that an output voltage and an output frequency can be variably set.

本発明の第1の視点に係る電気伝導率測定装置の好ましい態様では、測定対象溶液の電気伝導率に時間的な変化がないときに動作し、前記信号処理部から出力される電気伝導率差分値が零となるように、前記一対のセンサの少なくとも一方に印加される電圧を調整する校正回路を更に備える。   In a preferred embodiment of the electrical conductivity measurement device according to the first aspect of the present invention, the electrical conductivity difference that operates when there is no temporal change in the electrical conductivity of the solution to be measured and is output from the signal processing unit. A calibration circuit is further provided for adjusting a voltage applied to at least one of the pair of sensors so that the value becomes zero.

更に、本発明の第2の視点に係る電気伝導率測定装置は、測定対象溶液の電気伝導率を検出する電気伝導率センサと、前記電気伝導率センサに作動のための交流電源を印加する電源部と、前記電気伝導率センサの出力に基づいて測定対象溶液の電気伝導率として出力する信号処理部とを備える電気伝導率測定装置において、
前記電源部は、出力電圧及び出力周波数が可変に設定可能であることを特徴とする。
Furthermore, an electrical conductivity measuring device according to a second aspect of the present invention includes an electrical conductivity sensor that detects electrical conductivity of a solution to be measured, and a power source that applies an AC power source for operation to the electrical conductivity sensor. And a signal processing unit that outputs the electrical conductivity of the measurement target solution based on the output of the electrical conductivity sensor.
The power supply unit is characterized in that an output voltage and an output frequency can be variably set.

本発明の電気伝導率測定装置及びその制御方法によると、電源部が出力する交流電源の電圧を調整することにより、1台の測定装置で広い範囲の電気伝導率の測定が可能となる。この場合、測定対象溶液の電気伝導率が高い場合には、交流電源の出力電圧を低くし、且つ、その出力周波数を高くすることにより、センサの感度が低下する事態を防止する。   According to the electrical conductivity measuring device and the control method thereof of the present invention, it is possible to measure a wide range of electrical conductivity with a single measuring device by adjusting the voltage of the AC power source output from the power supply unit. In this case, when the electric conductivity of the solution to be measured is high, the output voltage of the AC power supply is lowered and the output frequency thereof is raised to prevent the sensor sensitivity from being lowered.

以下、図面を参照し、本発明の実施形態例に基づいて本発明を更に詳細に説明する。図1は、本発明の一実施形態例に係る電気伝導率測定装置の全体を回路図で示している。電気伝導率測定装置100は、交流電源部10と、それぞれが一対の電極から構成される一対のセンサ(Aセンサ及びBセンサ)61,62と、一対のセンサ61,62の各出力電流と、双方の出力電流の差分値との何れかを選択して増幅する交流増幅部20と、交流電源部10の出力波形に基づいて交流増幅部20の出力を同期整流する同期整流部30と、同期整流部30を介して出力される交流増幅部20の出力を増幅する直流増幅部40と、直流増幅部40の出力に基づいて電源部10の電圧を制御する校正回路50と、直流増幅部40の出力を表示するパネルメータPMとから構成される。   Hereinafter, with reference to the drawings, the present invention will be described in more detail based on exemplary embodiments of the present invention. FIG. 1 is a circuit diagram showing an entire electrical conductivity measuring apparatus according to an embodiment of the present invention. The electrical conductivity measuring apparatus 100 includes an AC power supply unit 10, a pair of sensors (A sensor and B sensor) 61 and 62 each composed of a pair of electrodes, output currents of the pair of sensors 61 and 62, An AC amplifying unit 20 that selects and amplifies one of the difference values of both output currents, a synchronous rectifying unit 30 that synchronously rectifies the output of the AC amplifying unit 20 based on the output waveform of the AC power supply unit 10, DC amplifier 40 that amplifies the output of AC amplifier 20 output via rectifier 30, calibration circuit 50 that controls the voltage of power supply unit 10 based on the output of DC amplifier 40, and DC amplifier 40 And a panel meter PM for displaying the output.

一対のセンサ61,62は、図2に示した従来の電気伝導率測定装置と同様に、特性がよく揃ったセンサで構成され、測定対象溶液64に所定の時間差をもって接している。   The pair of sensors 61 and 62 are composed of sensors having well-equipped characteristics, as in the conventional electrical conductivity measuring device shown in FIG. 2, and are in contact with the measurement target solution 64 with a predetermined time difference.

電源部10は、出力電圧及び出力周波数が可変に設定される交流発振器11と、交流発振器11の2つの出力端子のうち一方の出力端子から出力される電圧を制御する電圧制御部12と、電圧制御部12の出力電圧と交流発振器11の出力電圧とを加算する加算部13と、加算部13の出力電圧を受け取り、Bセンサ62に入力される電圧の極性を反転する極性反転部14と、交流発振器11の出力電圧と所定電圧値とを比較して、交流発振器11の出力電圧が所定値以上のときに出力が「1」となるコンパレータ15とを有する。Aセンサ61には、交流発振器11の2つの出力端子のうち他方の出力端子から出力される出力電圧がそのまま印加される。   The power supply unit 10 includes an AC oscillator 11 in which an output voltage and an output frequency are variably set, a voltage control unit 12 that controls a voltage output from one of the two output terminals of the AC oscillator 11, and a voltage An addition unit 13 that adds the output voltage of the control unit 12 and the output voltage of the AC oscillator 11; a polarity inversion unit 14 that receives the output voltage of the addition unit 13 and inverts the polarity of the voltage input to the B sensor 62; Comparing the output voltage of the AC oscillator 11 with a predetermined voltage value, the comparator 15 has an output “1” when the output voltage of the AC oscillator 11 is equal to or higher than the predetermined value. The output voltage output from the other output terminal of the two output terminals of the AC oscillator 11 is applied to the A sensor 61 as it is.

交流増幅部20は、電磁シールド及び静電シールド機能を有する容器内に、各センサ61,62と共に収容されるヘッドアンプ21と、ヘッドアンプ21の出力の温度補正を行う温度補償回路25と、ヘッドアンプ21の出力レンジを計測するレンジ計測回路27とを備える。   The AC amplifying unit 20 includes a head amplifier 21 housed together with the sensors 61 and 62 in a container having an electromagnetic shield and electrostatic shield function, a temperature compensation circuit 25 that performs temperature correction of the output of the head amplifier 21, and a head. A range measuring circuit 27 for measuring the output range of the amplifier 21;

ヘッドアンプ21は、センサ61,62の出力電流の何れか又はその差分値を選択する選択スイッチ22と、選択スイッチ22を介してセンサからの出力電流を入力し、その出力電流の電流−電圧変換を行うi−v変換器(増幅器)23と、i−v変換器23の出力側から入力側に信号をフィードバックする可変抵抗器からなるレンジ設定器24とから構成される。ヘッドアンプ21の内部、及び、ヘッドアンプ21から温度補償回路25までの間の配線には、外来ノイズの影響を軽減するために電磁及び静電シールドが可能なシールド線が使用される。   The head amplifier 21 inputs one of the output currents of the sensors 61 and 62, or a selection switch 22 for selecting a difference value thereof, and an output current from the sensor via the selection switch 22, and converts the output current into a current-voltage. Iv converter (amplifier) 23 for performing the above and a range setting unit 24 including a variable resistor for feeding back a signal from the output side to the input side of the iv converter 23. In the head amplifier 21 and wiring between the head amplifier 21 and the temperature compensation circuit 25, shield wires capable of electromagnetic and electrostatic shielding are used to reduce the influence of external noise.

温度補償回路25は、一方の入力がグランドGNDに接続され他方の入力がi−v変換器23の出力に接続される温度補償用の差動増幅器26と、センサ61,62付近に配置されて測定対象溶液の温度を計測し、差動増幅器26の出力をその他方の入力側にフィードバックするサーミスタThとから構成される。レンジ計測回路27は、i−v変換器23の出力を半波整流する整流回路28と、一方の入力が所定の電源に接続され他方の入力に整流回路27の出力が接続される比較器29と、比較器29の出力結果に応答して光出力を発生する発光ダイオードLDとから構成される。   The temperature compensation circuit 25 is arranged in the vicinity of the sensors 61 and 62 and a differential amplifier 26 for temperature compensation in which one input is connected to the ground GND and the other input is connected to the output of the iv converter 23. The thermistor Th is configured to measure the temperature of the solution to be measured and feed back the output of the differential amplifier 26 to the other input side. The range measurement circuit 27 includes a rectifier circuit 28 that half-wave rectifies the output of the iv converter 23, and a comparator 29 that has one input connected to a predetermined power source and the other input connected to the output of the rectifier circuit 27. And a light emitting diode LD that generates an optical output in response to the output result of the comparator 29.

同期整流回路30は、直流カットコンデンサ31を介して温度補償回路25の出力に接続される入力を有する。同期整流回路30は、電源部10のコンパレータ14の出力が「1」のときに、交流増幅部20の出力を通過させる機能を有する。   The synchronous rectifier circuit 30 has an input connected to the output of the temperature compensation circuit 25 via a DC cut capacitor 31. The synchronous rectifier circuit 30 has a function of passing the output of the AC amplifying unit 20 when the output of the comparator 14 of the power supply unit 10 is “1”.

直流増幅部40は、同期整流回路30の出力からリップルを除去する平滑回路41と、ゲイン設定のためのフィードバック抵抗42を有し平滑回路41の出力を増幅して電気伝導率測定装置の出力信号として出力する直流増幅器43と、直流増幅器43の出力からドリフトを除去するドリフト除去回路44とから構成される。校正回路50は、直流増幅器43の出力と零電圧とを比較するコンパレータ51と、コンパレータ51の比較結果に基づいて電源部10の電圧制御部12に出力する制御信号を選択する零点調整回路52とから構成される。   The DC amplifying unit 40 includes a smoothing circuit 41 that removes ripples from the output of the synchronous rectifier circuit 30 and a feedback resistor 42 for gain setting, and amplifies the output of the smoothing circuit 41 to output signals from the electrical conductivity measuring device. And a drift removing circuit 44 for removing drift from the output of the DC amplifier 43. The calibration circuit 50 includes a comparator 51 that compares the output of the DC amplifier 43 with the zero voltage, and a zero adjustment circuit 52 that selects a control signal to be output to the voltage control unit 12 of the power supply unit 10 based on the comparison result of the comparator 51. Consists of

本測定装置100の作動にあたり、ヘッドアンプ21の選択スイッチ22は、Aセンサ61の出力電流単独、Bセンサ62の出力電流単独、又は、双方のセンサ61、62の出力電流の差出力の何れかを選択する。測定対象溶液の静的な電気伝導率の測定を行う場合には、Aセンサ61の出力電流単独が選択される。また、測定対象溶液の差分値を求める際にも、測定対象溶液が導管内に始めて導入され、従って、溶液の電気伝導率の大きさが予め予測できない場合にも、まず、Aセンサ61の出力電流の単独測定が選択される。Aセンサ61の出力電流単独測定の場合には、交流発振器11が、デフォルトで指定された所定の電圧及び周波数の交流電圧を発生し、これをAセンサ61に供給する。Aセンサ61の出力である信号電流は、i−v変換器23によって交流の信号電圧に変換される。   In the operation of the measuring apparatus 100, the selection switch 22 of the head amplifier 21 is either the output current of the A sensor 61 alone, the output current of the B sensor 62 alone, or the difference output of the output currents of both the sensors 61 and 62. Select. When measuring the static electrical conductivity of the solution to be measured, the output current of the A sensor 61 alone is selected. Further, when the difference value of the measurement target solution is obtained, the measurement target solution is first introduced into the conduit. Therefore, even when the magnitude of the electric conductivity of the solution cannot be predicted in advance, first, the output of the A sensor 61 is output. A single measurement of current is selected. In the case of measuring the output current of the A sensor 61 alone, the AC oscillator 11 generates an AC voltage having a predetermined voltage and frequency specified by default and supplies the AC voltage to the A sensor 61. The signal current that is the output of the A sensor 61 is converted into an AC signal voltage by the iv converter 23.

i−v変換器23の出力電圧は、温度補償回路25によって温度補正が行われ、その後、同期整流回路30によって直流電圧信号に変換される。この直流電圧信号は、平滑回路41を経由して出力段の直流増幅器42によって増幅され、測定対象溶液の電気伝導率の指示値としてパネルメータPMに指示され、また、測定結果の電気伝導率信号として外部に出力される。レンジ測定回路27の発光ダイオードLDの出力を監視し、発光ダイオードLDの発光の有無によって、i−v変換器23の感度が調整される。また、このi−v変換器23の感度調節によっても、電気伝導率の指示値がパネルメータPMのレンジに納まらない場合には、交流発振器11の出力電圧及び出力周波数の設定が変更される。   The output voltage of the iv converter 23 is subjected to temperature correction by the temperature compensation circuit 25 and then converted to a DC voltage signal by the synchronous rectification circuit 30. This DC voltage signal is amplified by the output stage DC amplifier 42 via the smoothing circuit 41, is instructed to the panel meter PM as an instruction value of the electric conductivity of the solution to be measured, and the electric conductivity signal of the measurement result Is output to the outside. The output of the light emitting diode LD of the range measuring circuit 27 is monitored, and the sensitivity of the iv converter 23 is adjusted depending on whether or not the light emitting diode LD emits light. Further, even when the sensitivity adjustment of the iv converter 23 is performed, if the instruction value of the electrical conductivity does not fall within the range of the panel meter PM, the settings of the output voltage and output frequency of the AC oscillator 11 are changed.

測定対象溶液の電気伝導率が高すぎる場合には、交流発振器11の出力電圧を下げて、センサ61に流れる電流を低下させる。この場合、必要に応じ、センサ61の感度低下を補償するために、交流発振器11の出力周波数を高くする。また、測定対象溶液の電気伝導率が低すぎる場合には、交流発振器11の出力電圧を上げて、センサ61に流れる電流を増大させる。パネルメータPMの指示値が適正範囲に納まれば、Aセンサ61単独の測定によるレンジ設定及び電源設定を終了する。引き続き、本測定装置100を用いて、同種の測定対象溶液、或いは、同程度の電気伝導率を有する測定対象溶液の電気伝導率を測定するには、Aセンサ61の出力電流を選択して、その測定を行う。なお、レンジ設定等に際して、Aセンサ61の出力電流に代えてBセンサ62の出力電流を選択し、電源制御部12の出力電圧を零として行ってもよい。   When the electric conductivity of the solution to be measured is too high, the output voltage of the AC oscillator 11 is lowered to reduce the current flowing through the sensor 61. In this case, the output frequency of the AC oscillator 11 is increased as necessary in order to compensate for the sensitivity reduction of the sensor 61. When the electric conductivity of the solution to be measured is too low, the output voltage of the AC oscillator 11 is increased and the current flowing through the sensor 61 is increased. When the indicated value of the panel meter PM is within the appropriate range, the range setting and power supply setting by the measurement of the A sensor 61 alone are finished. Subsequently, in order to measure the electrical conductivity of the same type of measurement target solution or the measurement target solution having the same degree of electrical conductivity using the present measuring apparatus 100, the output current of the A sensor 61 is selected, Make that measurement. In setting the range or the like, the output current of the B sensor 62 may be selected instead of the output current of the A sensor 61 and the output voltage of the power supply control unit 12 may be set to zero.

本測定装置100によって、測定対象溶液の電気伝導率の変化を測定する際には、まず、その測定に先行して、上記Aセンサ61の出力電流単独の選択による測定が行われ、次いで、双方のセンサ間の零点調整が行われる。零点調整は、測定対象溶液が滞留しているとき、或いは、測定対象溶液の電気伝導率に時間的な変動が見られないときに行われる。まず、選択スイッチ22が、Aセンサ61及びBセンサ62の出力の差電流を選択する。交流発振器11は、Aセンサ61単独の測定で設定された電圧及び周波数の出力を発生する。その結果、双方のセンサ61,62には、同じ電圧値で極性が異なる交流電圧がそれぞれ印加される。双方のセンサ61,62の出力の差信号は、交流増幅部20、同期整流部30、及び、直流増幅部40を経由して、その値がパネルメータPMに指示される。校正回路50では、出力段の直流増幅器43の出力が零にならない場合には、コンパレータ51及び零点調整回路52の作用によって、電源部10の電圧制御部12に入力される制御信号を変化させる。例えば、双方の出力の差信号が零以上の場合には、Bセンサ62に供給される電圧を上げて、Bセンサ62の出力電流を大きくする。これによって、双方のセンサ61,62の差電流を低下させる。双方のセンサ61,62の差電流の指示値が零になった時点で、零点調整を終了する。電圧制御部12は、例えば乗算機能を有するD/A変換器として構成され、零点調整回路52が出力するデジタル電圧信号と交流発振器11の出力電圧とを乗算する。   When measuring the change in the electrical conductivity of the solution to be measured by the measurement apparatus 100, first, prior to the measurement, measurement is performed by selecting the output current of the A sensor 61 alone. Zero adjustment between the sensors is performed. The zero point adjustment is performed when the measurement target solution is retained or when there is no temporal variation in the electrical conductivity of the measurement target solution. First, the selection switch 22 selects the difference current between the outputs of the A sensor 61 and the B sensor 62. The AC oscillator 11 generates an output of voltage and frequency set by the measurement of the A sensor 61 alone. As a result, AC voltages having the same voltage value and different polarities are applied to both sensors 61 and 62, respectively. The difference signal of the outputs of both the sensors 61 and 62 is instructed to the panel meter PM via the AC amplifier 20, the synchronous rectifier 30, and the DC amplifier 40. In the calibration circuit 50, when the output of the DC amplifier 43 in the output stage does not become zero, the control signal input to the voltage control unit 12 of the power supply unit 10 is changed by the action of the comparator 51 and the zero point adjustment circuit 52. For example, when the difference signal between both outputs is zero or more, the voltage supplied to the B sensor 62 is increased to increase the output current of the B sensor 62. As a result, the difference current between the sensors 61 and 62 is reduced. When the indicated value of the difference current between the sensors 61 and 62 becomes zero, the zero point adjustment is finished. The voltage control unit 12 is configured as a D / A converter having a multiplication function, for example, and multiplies the digital voltage signal output from the zero adjustment circuit 52 and the output voltage of the AC oscillator 11.

本測定装置100では、測定対象溶液の電気伝導率が時間的に変化している場合に、Aセンサ61の出力とBセンサ61の出力の差信号を測定することで、電気伝導率の変動を測定する。選択スイッチ22は、Aセンサ61及びBセンサ62の出力電流の差信号を選択する。交流発振器11は、零点調整が行われた際と同じ電圧値及び周波数の交流電源を出力し、電圧制御部12の出力は、零点調整の終了時点と同じ出力電圧を発生する。パネルメータPMの指示値を監視しながら、ヘッドアンプ21のレンジ設定器24による設定が行われる。この場合、Aセンサ61単独での測定で設定されたレンジよりも1〜2桁程度低いレンジが設定できる。このため、高い感度による差電流の計測が可能となる。また、Aセンサ61とBセンサ62の特性の違い等による影響が予め零点調整によって除去されているため、高い精度によって差信号の計測が可能となる。   In this measuring apparatus 100, when the electrical conductivity of the solution to be measured changes with time, the difference in electrical conductivity is measured by measuring the difference signal between the output of the A sensor 61 and the output of the B sensor 61. taking measurement. The selection switch 22 selects a difference signal between output currents of the A sensor 61 and the B sensor 62. The AC oscillator 11 outputs an AC power supply having the same voltage value and frequency as when the zero point adjustment is performed, and the output of the voltage control unit 12 generates the same output voltage as the end point of the zero point adjustment. The setting by the range setting unit 24 of the head amplifier 21 is performed while monitoring the indicated value of the panel meter PM. In this case, it is possible to set a range that is about 1 to 2 digits lower than the range set by the measurement with the A sensor 61 alone. For this reason, the difference current can be measured with high sensitivity. In addition, since the influence due to the difference in characteristics between the A sensor 61 and the B sensor 62 is removed in advance by the zero point adjustment, the difference signal can be measured with high accuracy.

なお、上記実施形態例では、一対の電気伝導率センサの差分値を計測する電気導電率測定装置を例として説明したが、交流電源の出力電圧及び出力周波数を設定可能な電源部は、センサを単独で有する電気伝導率測定装置にも適用可能である。この場合にも高感度且つ高精度に広い範囲で測定対象溶液の電気伝導率の測定が可能になる。   In the above embodiment, the electric conductivity measuring device that measures the difference value between the pair of electric conductivity sensors has been described as an example. However, the power supply unit that can set the output voltage and the output frequency of the AC power supply is the sensor. The present invention can also be applied to an electric conductivity measuring device that is provided alone. Also in this case, the electric conductivity of the solution to be measured can be measured in a wide range with high sensitivity and high accuracy.

また、上記実施形態例の電気伝導率測定装置は、CPUを利用して全体の制御を行うことも出来る。例えば、CPUは、プログラムに従って、レンジ設定及び電源設定を行う第1モード、双方のセンサの出力電流の差分値を零調整する第2モード、及び、実際の溶液の電気伝導率の変化を測定する第3モードを順次に選択する。CPUは、各モードを実行するプログラム部分によって、電源部10、交流増幅部20、直流増幅部40等の動作を各モード内で制御する。測定対象溶液を本測定装置に導入した後は、これらモードを順次に選択して実行することにより、電気伝導率の絶対値、及び、電気伝導率の時間的な変化が自動的に測定される。   Moreover, the electrical conductivity measuring apparatus of the said embodiment can also perform the whole control using CPU. For example, according to the program, the CPU measures the first mode in which the range setting and the power supply setting are performed, the second mode in which the difference value between the output currents of both sensors is zeroed, and the actual change in electrical conductivity of the solution. The third mode is selected sequentially. The CPU controls the operations of the power supply unit 10, the AC amplifying unit 20, the DC amplifying unit 40, and the like in each mode by a program portion that executes each mode. After the solution to be measured is introduced into the measurement device, the absolute value of electrical conductivity and the temporal change in electrical conductivity are automatically measured by selecting and executing these modes in sequence. .

以上、本発明をその好適な実施形態例に基づいて説明したが、本発明の電気伝導率測定装置は、上記実施形態例の構成にのみ限定されるものではなく、上記実施形態例の構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。   As mentioned above, although this invention was demonstrated based on the suitable embodiment example, the electrical conductivity measuring apparatus of this invention is not limited only to the structure of the said embodiment example, From the structure of the said embodiment example. Various modifications and changes are also included in the scope of the present invention.

本発明の一実施形態例に係る電気伝導率測定装置の全体を示すブロック図。1 is a block diagram showing an entire electrical conductivity measuring device according to an embodiment of the present invention. 従来の電気伝導率測定装置におけるセンサの配置を示す模式的ブロック図。The typical block diagram which shows arrangement | positioning of the sensor in the conventional electrical conductivity measuring apparatus. 従来の電気伝導率測定装置の全体を示すブロック図。The block diagram which shows the whole conventional electric conductivity measuring apparatus.

符号の説明Explanation of symbols

100:電気伝導率測定装置
10:電源部
11:交流発振器
12:電圧制御部
13:加算部
14:極性反転部
20:交流増幅部
21:ヘッドアンプ
22:選択スイッチ
23:i−v変換器
24:レンジ設定抵抗
25:温度補償回路
26:差動増幅器
27:レンジ計測回路
28:半波整流回路
29:コンパレータ
30:同期整流回路
31:直流バイパスコンデンサ
40:直流増幅部
41:平滑回路
42:フィードバック抵抗
43:直流増幅器
44:ドリフト除去回路
50:校正回路
51:コンパレータ
52:零点調整回路
61,62:センサ
63:導管
64:測定対象溶液
Th:サーミスタ
LD:発光ダイオード
PM:パネルメータ
DESCRIPTION OF SYMBOLS 100: Electrical conductivity measuring apparatus 10: Power supply part 11: AC oscillator 12: Voltage control part 13: Addition part 14: Polarity inversion part 20: AC amplification part 21: Head amplifier 22: Selection switch 23: iv converter 24 : Range setting resistor 25: Temperature compensation circuit 26: Differential amplifier 27: Range measurement circuit 28: Half-wave rectifier circuit 29: Comparator 30: Synchronous rectifier circuit 31: DC bypass capacitor 40: DC amplifier 41: Smoothing circuit 42: Feedback Resistance 43: DC amplifier 44: Drift removal circuit 50: Calibration circuit 51: Comparator 52: Zero point adjustment circuit 61, 62: Sensor 63: Conduit 64: Solution to be measured Th: Thermistor LD: Light emitting diode PM: Panel meter

Claims (5)

測定対象溶液に所定の時間差をもって接する一対の電気伝導率センサと、前記電気伝導率センサのそれぞれに作動のための交流電源を印加する電源部と、前記電気伝導率センサの出力電流の差分値を計測し測定対象溶液の電気伝導率差分値として出力する信号処理部とを備える電気伝導率測定装置を制御する方法において、
前記一対のセンサの一方の出力電流を計測し、該計測された出力電流が所望の値になるように、前記電源部が出力する交流電源の電圧及び周波数を調整することを特徴とする電気伝導率測定装置の制御方法。
A pair of electrical conductivity sensors that are in contact with the solution to be measured with a predetermined time difference, a power supply unit that applies an AC power supply for operation to each of the electrical conductivity sensors, and a difference value between output currents of the electrical conductivity sensors. In a method for controlling an electrical conductivity measuring device comprising a signal processing unit that measures and outputs the electrical conductivity difference value of a solution to be measured,
Electrical conductivity characterized by measuring one output current of the pair of sensors and adjusting the voltage and frequency of the AC power supply output by the power supply unit so that the measured output current becomes a desired value. Control method of rate measuring device.
更に、測定対象溶液の電気伝導率に時間的な変化がないときに、前記信号処理部から出力される電気伝導率差分値が零となるように、前記一対のセンサの少なくとも一方に印加される電圧を調整することを特徴とする、請求項1に記載の電気伝導率測定装置の制御方法。   Furthermore, when there is no temporal change in the electrical conductivity of the solution to be measured, it is applied to at least one of the pair of sensors so that the electrical conductivity difference value output from the signal processing unit becomes zero. The method of controlling an electrical conductivity measuring device according to claim 1, wherein the voltage is adjusted. 測定対象溶液に所定の時間差をもって接する一対の電気伝導率センサと、前記電気伝導率センサのそれぞれに作動のための交流電源を印加する電源部と、前記電気伝導率センサの出力電流の差分値を計測し測定対象溶液の電気伝導率差分値として出力する信号処理部とを備える電気伝導率測定装置において、
前記電源部は、出力電圧及び出力周波数が可変に設定可能であることを特徴とする電気伝導率測定装置。
A pair of electrical conductivity sensors that are in contact with the solution to be measured with a predetermined time difference, a power supply unit that applies an AC power supply for operation to each of the electrical conductivity sensors, and a difference value between output currents of the electrical conductivity sensors. In an electrical conductivity measuring device comprising a signal processing unit that measures and outputs the electrical conductivity difference value of the solution to be measured,
The power supply unit is capable of variably setting an output voltage and an output frequency.
測定対象溶液の電気伝導率に時間的な変化がないときに動作し、前記信号処理部から出力される電気伝導率差分値が零となるように、前記一対のセンサの少なくとも一方に印加される電圧を調整する校正回路を更に備えることを特徴とする、請求項3に記載の電気伝導率測定装置。   It operates when there is no temporal change in the electric conductivity of the solution to be measured, and is applied to at least one of the pair of sensors so that the electric conductivity difference value output from the signal processing unit becomes zero. The electrical conductivity measuring device according to claim 3, further comprising a calibration circuit for adjusting the voltage. 測定対象溶液の電気伝導率を検出する電気伝導率センサと、前記電気伝導率センサに作動のための交流電源を印加する電源部と、前記電気伝導率センサの出力に基づいて測定対象溶液の電気伝導率として出力する信号処理部とを備える電気伝導率測定装置において、
前記電源部は、出力電圧及び出力周波数が可変に設定可能であることを特徴とする電気伝導率測定装置。
An electrical conductivity sensor that detects the electrical conductivity of the solution to be measured, a power supply unit that applies an AC power supply for operation to the electrical conductivity sensor, and an electric power of the solution to be measured based on the output of the electrical conductivity sensor In an electrical conductivity measuring device comprising a signal processing unit that outputs as conductivity,
The power supply unit is capable of variably setting an output voltage and an output frequency.
JP2004050966A 2004-02-26 2004-02-26 Device for measuring electrical conductivity, and its control method Pending JP2005241404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004050966A JP2005241404A (en) 2004-02-26 2004-02-26 Device for measuring electrical conductivity, and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004050966A JP2005241404A (en) 2004-02-26 2004-02-26 Device for measuring electrical conductivity, and its control method

Publications (1)

Publication Number Publication Date
JP2005241404A true JP2005241404A (en) 2005-09-08

Family

ID=35023291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004050966A Pending JP2005241404A (en) 2004-02-26 2004-02-26 Device for measuring electrical conductivity, and its control method

Country Status (1)

Country Link
JP (1) JP2005241404A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220974A (en) * 2010-04-14 2011-11-04 Honda Motor Co Ltd Particulate matter detector and failure detection device for exhaust gas purification filter using the same
WO2012053169A1 (en) * 2010-10-20 2012-04-26 パナソニック株式会社 Microorganism number measurement device
JP2015508895A (en) * 2012-02-15 2015-03-23 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company Impedance-based bacterial detection system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220974A (en) * 2010-04-14 2011-11-04 Honda Motor Co Ltd Particulate matter detector and failure detection device for exhaust gas purification filter using the same
WO2012053169A1 (en) * 2010-10-20 2012-04-26 パナソニック株式会社 Microorganism number measurement device
US8717045B2 (en) 2010-10-20 2014-05-06 Panasonic Healthcare Co., Ltd. Microorganism number measurement device
JP5894925B2 (en) * 2010-10-20 2016-03-30 パナソニックヘルスケアホールディングス株式会社 Microbe count measuring device
EP2631636A4 (en) * 2010-10-20 2017-12-13 Panasonic Healthcare Holdings Co., Ltd. Microorganism number measurement device
JP2015508895A (en) * 2012-02-15 2015-03-23 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company Impedance-based bacterial detection system
US9709516B2 (en) 2012-02-15 2017-07-18 Becton, Dickinson And Company Impedance-based bacterial detection system

Similar Documents

Publication Publication Date Title
US9209794B2 (en) Magnetic element control device, magnetic element control method and magnetic detection device
CN110062891B (en) Sensing motor current
US9134191B2 (en) Resistive device comprising a silicon-nanowire-comprising strain gauge and method for optimizing the electrical consumption of such a device
JP2007334690A (en) Capacitance sensor circuit
JP2008157906A (en) Output impedance detection method and impedance sensor using this method, electric power monitor in load side connected high frequency electric source and control device for high frequency electric source
JP3901698B2 (en) Semiconductor integrated circuit with current detection function and power supply device using the same
JP6562241B2 (en) Non-contact voltage sensor and power measuring device
JP2005241404A (en) Device for measuring electrical conductivity, and its control method
JP2008139224A (en) Measuring apparatus
US9372217B2 (en) Cable detector
JP4744025B2 (en) Method for determining connection state of gas sensor and constant potential electrolytic gas measuring instrument
JP2986950B2 (en) Electromagnetic flow meter
JP4249081B2 (en) Measuring device and temperature compensation method of measuring device
US20050062484A1 (en) Method and apparatus for metal target proximity detection at long distances
US11391632B2 (en) Temperature sensor circuit
JP2004085344A (en) Electromagnetic flowmeter
JP2002206956A (en) Electromagnetic flowmeter
JP5877261B1 (en) Electromagnetic flow meter excitation coil short-circuit judgment method
JPH0750134B2 (en) AC / DC difference comparison device for thermoelectric AC / DC converter
JPH01312468A (en) Dc power source apparatus
JP2019184544A (en) Converter for electromagnetic flow meter, electromagnetic flow meter, and method for operating flow rate
JP4576933B2 (en) Switching power supply
JP5734015B2 (en) measuring device
JP2019007813A (en) Electromagnetic flowmeter and method for correcting electromagnetic flowmeter
JP6264185B2 (en) Electric load drive

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061027

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Effective date: 20090903

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100105

Free format text: JAPANESE INTERMEDIATE CODE: A02