JP2005240089A - Method and apparatus for injecting pulverized fine coal - Google Patents

Method and apparatus for injecting pulverized fine coal Download PDF

Info

Publication number
JP2005240089A
JP2005240089A JP2004050686A JP2004050686A JP2005240089A JP 2005240089 A JP2005240089 A JP 2005240089A JP 2004050686 A JP2004050686 A JP 2004050686A JP 2004050686 A JP2004050686 A JP 2004050686A JP 2005240089 A JP2005240089 A JP 2005240089A
Authority
JP
Japan
Prior art keywords
pulverized coal
branch pipe
flowing
resistance
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004050686A
Other languages
Japanese (ja)
Other versions
JP4292578B2 (en
Inventor
Yasuhiro Fukumoto
泰洋 福本
Takashi Watanabe
隆志 渡辺
Kunihiro Tanimoto
邦弘 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004050686A priority Critical patent/JP4292578B2/en
Publication of JP2005240089A publication Critical patent/JP2005240089A/en
Application granted granted Critical
Publication of JP4292578B2 publication Critical patent/JP4292578B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method and apparatus for injecting pulverized fine coal with which even in the case of simultaneously injecting the pulverized fine coal and waste plastics through a part among the plurality of tuyeres, uniform combustion can be obtained in the whole used tuyeres without developing the shortage of oxygen in these tuyeres. <P>SOLUTION: In the method for injecting the pulverized fine coal, by which the pulverized fine coal flowing carried with pneumatic transportation is divided with the plurality of branch pipes 11 with a divider 9 and the divided pulverized fine coal making flow of a part of the branch pipe 11a, is injected into a blast furnace 2 as it is, and the pulverized fine coal making flow of the remaining branch pipe 11a is injected into the blast furnace 2 by colliding against powdery or fine piece synthetic resin material, resistant means 13, 19 as the resistance of the gas-flowing are arranged at the downstream side of the divider 9 in the remaining branch pipe 11a and the pulverized fine coal amount making flow of this branch pipe 11a is made to be less than the pulverized fine coal amount making flow of the branch pipe 11b injecting only the pulverized fine coal. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高炉の炉内に補助燃料を吹込む操業の一形態であって、微粉炭と粉粒状ないし細片状の合成樹脂材を同時に吹き込む技術に関するものである。   The present invention relates to a technique for injecting auxiliary fuel into a furnace of a blast furnace, and relates to a technique for simultaneously injecting pulverized coal and granular or flaky synthetic resin material.

高炉操業においては、燃料であるコークスの一部の代わりとして微粉炭を高炉羽口から吹き込む、微粉炭吹込み高炉操業が行なわれている。高炉への微粉炭吹込み操業は、高炉用コークスに比べて微粉炭が安価であるために、大きなコスト低減効果が得られる。また、高炉への微粉炭吹き込み量を増やすことにより高炉用コークスの製造設備であるコークス炉の負荷軽減を図ることができ、コークス炉の延命にも寄与する。
そこで、高炉操業においては、より一層多量の微粉炭を吹き込むための操業技術開発が要請されるに至り、現在では120kg/T以上の微粉炭多量吹込み操業が行われている。
In blast furnace operation, pulverized coal injection blast furnace operation is performed in which pulverized coal is injected from a blast furnace tuyere instead of a part of coke as fuel. The operation of injecting pulverized coal into the blast furnace provides a significant cost reduction effect because pulverized coal is less expensive than blast furnace coke. In addition, by increasing the amount of pulverized coal injected into the blast furnace, it is possible to reduce the load on the coke oven, which is a blast furnace coke manufacturing facility, and contribute to the extension of the life of the coke oven.
Therefore, in blast furnace operation, the development of operation technology for injecting a larger amount of pulverized coal has been requested, and at present, a large amount of pulverized coal injection operation of 120 kg / T or more is being performed.

また、最近では大量に排出される使用済みプラスチックの処理問題を解決することを主目的として、使用済みプラスチックを破砕あるいは造粒して(以下、本明細書において「廃プラスチック」という)、高炉の補助燃料として微粉炭と共に羽口から吹き込む技術が開発されている。
このような、廃プラスチックを羽口から吹き込む場合の問題点として、廃プラスチックは破砕あるいは造粒されているものの、その粒径が微粉炭に比べると大きくまた着火性が悪いことから、未燃焼のままレースウェイから高炉内に侵入・蓄積して、炉内の通気性を阻害し、高炉の生産性を悪化させることが挙げられる。
In recent years, the used plastic has been crushed or granulated (hereinafter referred to as “waste plastic” in this specification) mainly for the purpose of solving the processing problem of used plastic discharged in large quantities. Technology has been developed to inject from the tuyere with pulverized coal as auxiliary fuel.
As a problem when blowing waste plastic from the tuyere, although the waste plastic is crushed or granulated, its particle size is larger than pulverized coal and its ignitability is poor. Intrusion and accumulation from the raceway into the blast furnace may impede air permeability in the furnace and deteriorate the productivity of the blast furnace.

このような問題点を解決するものとして、羽口部の送風支管を貫通させて設置した廃プラスチック吹き込み用ランスから廃プラスチックを吹き込むとともに、廃プラスチック吹き込み位置より送風支管の送風方向で50〜500ミリメートル手前に(上流側に)設置した微粉炭吹き込み用ランスから微粉炭を吹き込み、微粉炭の燃焼を先行させて形成した1500〜2000℃の高温雰囲気の温度場に廃プラスチックを吹き込むことにより、廃プラスチックの燃焼促進を図るというものがある(先行文献1参照)。   In order to solve such problems, waste plastic is blown from a waste plastic blowing lance installed through the blower branch of the tuyere, and 50 to 500 mm in the blowing direction of the blower branch from the waste plastic blowing position. By blowing pulverized coal from a pulverized coal blowing lance installed in front (upstream side), and blowing waste plastic into a temperature field of a high temperature atmosphere of 1500 to 2000 ° C. formed by preceding combustion of pulverized coal, waste plastic There is one that promotes combustion (see Prior Literature 1).

また、他の先行技術としては、微粉炭及びプラスチック粉をそれぞれの供給ホッパーから切り出して混合し、その混合粉体を分配器まで空気で搬送し、分配器で数10本の各羽口に分配して、送風支管内に挿入されたノズルから羽口を通して炉内へ吹き込むという方法がある(先行文献2参照)。   As another prior art, pulverized coal and plastic powder are cut out from each supply hopper and mixed, and the mixed powder is conveyed to the distributor by air and distributed to several tens of tuyere by the distributor. Then, there is a method of blowing into the furnace through the tuyere from the nozzle inserted into the blower branch pipe (refer to the prior art document 2).

しかしながら、先行文献1のものは、先ず微粉炭を燃焼させ、その燃焼熱により送風空気を加熱し、次いで加熱された空気で廃プラスチックを加熱するという過程をとるので、廃プラスチックの加熱が間接的であり大きな効果は見込めない。
また、先行技術2の方法は、混合粉体の分配器以降の搬送用配管内の粒子の搬送速度が廃プラスチックと微粉炭で等しい場合には、廃プラスチックと微粉炭粒子は分離して羽口に吹き込まれることになり、微粉炭の燃焼熱を廃プラスチックに与えるという効果がえられず、廃プラスチックの燃焼性改善の十分な効果はみられない。
However, since the thing of the prior art document 1 takes the process of burning pulverized coal first, heating blowing air with the combustion heat, and then heating waste plastic with the heated air, heating of waste plastic is indirect. Therefore, a big effect cannot be expected.
Further, in the method of Prior Art 2, when the transport speed of particles in the transport pipe after the mixed powder distributor is the same for waste plastic and pulverized coal, the waste plastic and pulverized coal particles are separated and the tuyere Therefore, the effect of giving the combustion heat of the pulverized coal to the waste plastic is not obtained, and the sufficient effect of improving the combustibility of the waste plastic is not seen.

このようなことから、微粉炭の燃焼熱を直接廃プラスチック粒子に与えることができれば、さらに効果は向上するとの着想のもとに、微粉炭と廃プラスチックとをそれぞれ異なる搬送路で気体搬送し、気体搬送されてきたそれぞれの混合流体を合流させ、こうして得られた合流体を、補助燃料用の吹込みランスから噴射させ、高炉の炉内へ吹き込む方法が提案されている(先行文献3参照)。
特開平8−260007号公報 特開平7−228905号公報 特開2002−146416号公報
For this reason, if the combustion heat of pulverized coal can be directly applied to the waste plastic particles, the idea is that the effect will be further improved. A method has been proposed in which the mixed fluids that have been transported in the gas are joined together, and the resultant fluid obtained is injected from the auxiliary fuel blowing lance and blown into the furnace of the blast furnace (refer to Reference 3). .
JP-A-8-260007 JP 7-228905 A JP 2002-146416 A

確かに、先行文献3の方法によれば、微粉炭が廃プラスチックに付着して吹き込まれるため、微粉炭の燃焼熱を廃プラスチックに直接与えることができ、廃プラスチックの燃焼性の改善効果が期待できる。
しかしながら、実操業においては、数十ある羽口のすべてに微粉炭と廃プラスチックを同時に吹き込むとは限らない。
例えば、34の羽口のうちの26については微粉炭のみの吹込みを行い、残りの8について微粉炭と廃プラスチックの同時吹込みを行うという場合がある。このような場合に34の羽口に連通する分岐管には分配器で分配された概略等量の微粉炭が流れるが、このうちの一部について微粉炭と廃プラスチックの同時吹込みするとなると、同時吹込みをする羽口では微粉炭のみの羽口に比較して酸素不足となって燃焼性が悪くなるという問題がある。つまり、着火性の悪い廃プラスチックに対して着火性をよくするために微粉炭を廃プラスチックに付着させたものの、微粉炭の燃焼で酸素が使われ酸素不足になってしまい廃プラスチックの燃焼ができないという問題がある。ここで、酸素富化率を高めることも考えられるが、酸素富化率を高めると羽口先温度が上昇することになり、羽口先温度が限界値で操業している通常操業では、酸素富化率を高めることができないのが現状である。
すなわち、本発明の課題は、微粉炭のみの吹込みと微粉炭及び合成樹脂材の吹込みが混在する微粉炭吹込み操業において、微粉炭の総吹込み量を減らすことなく、また、酸素富化率を高めることなく、微粉炭及び合成樹脂材同時吹込みにおける燃焼性を改善して、すべての羽口において均等な燃焼を実現するにはいかにすべきかという点にある。
Certainly, according to the method of the prior art document 3, since the pulverized coal adheres to the waste plastic and is blown in, the combustion heat of the pulverized coal can be directly applied to the waste plastic, and the improvement effect of the combustibility of the waste plastic is expected. it can.
However, in actual operation, pulverized coal and waste plastics are not always blown into all the dozens of tuyere.
For example, 26 of the 34 tuyere may be blown with only pulverized coal, and the remaining 8 may be blown with pulverized coal and waste plastic simultaneously. In such a case, an approximately equal amount of pulverized coal distributed by the distributor flows into the branch pipe communicating with the tuyere of 34, but when pulverized coal and waste plastic are simultaneously blown for some of them, There is a problem that the tuyere that performs simultaneous blowing has a shortage of oxygen and the combustibility becomes worse compared to the tuyeres with only pulverized coal. In other words, although pulverized coal is attached to waste plastic to improve the ignitability of waste plastic with poor ignitability, oxygen is consumed by the combustion of pulverized coal and the waste plastic cannot be burned. There is a problem. Here, it is conceivable to increase the oxygen enrichment rate, but increasing the oxygen enrichment rate increases the tuyere temperature, and in normal operations where the tuyere temperature is operating at the limit value, oxygen enrichment The current situation is that the rate cannot be increased.
That is, an object of the present invention is to reduce the total amount of pulverized coal without reducing the total amount of pulverized coal in the operation of pulverized coal injection in which only pulverized coal and pulverized coal and synthetic resin material are mixed. In order to improve the combustibility in simultaneous blowing of pulverized coal and synthetic resin material without increasing the conversion rate, it is necessary to realize uniform combustion in all tuyere.

本発明はかかる課題を解決するためになされたものであり、複数ある羽口のうちの一部について微粉炭と廃プラスチックとの同時吹込みを行う場合においても、その羽口での酸素不足が生じないで全ての羽口において均等な燃焼ができる微粉炭及び合成樹脂材の同時吹込み方法及び装置を得ることを目的としている。   The present invention has been made to solve such a problem, and even when pulverized coal and waste plastic are simultaneously blown into a part of a plurality of tuyere, oxygen deficiency at the tuyere is present. An object is to obtain a method and an apparatus for simultaneously blowing pulverized coal and a synthetic resin material that can be uniformly burned in all tuyere without occurring.

(1)本発明に係る微粉炭吹込み方法は、気流輸送される微粉炭粉流を分配器によって複数の分岐管に分岐し、分岐された一部の分岐管を流れる微粉炭はそのまま高炉に吹込み、残りの分岐管を流れる微粉炭は粉粒状ないし細片状の合成樹脂材に衝突させて高炉に吹き込む微粉炭吹込み方法であって、前記合成樹脂材に衝突させる微粉炭が流れる分岐管に気流抵抗をつけ、該分岐管を流れる微粉炭量が微粉炭のみの吹込みとなる分岐管を流れる微粉炭量より少なくなるようにしたものである。 (1) In the pulverized coal injection method according to the present invention, the pulverized coal powder flow transported by airflow is branched into a plurality of branch pipes by a distributor, and the pulverized coal flowing through a part of the branched branch pipes is directly supplied to the blast furnace. The pulverized coal flowing through the remaining branch pipe is blown into the blast furnace by colliding with the powdered or flake-shaped synthetic resin material, and the pulverized coal flowing into the blast furnace flows. The pipe is provided with airflow resistance so that the amount of pulverized coal flowing through the branch pipe is less than the amount of pulverized coal flowing through the branch pipe where only the pulverized coal is blown.

(2)また、上記(1)における気流抵抗は、分岐管を流れる気流の抵抗となる方向にガスを吹き込むことによってつけられることを特徴とするものである。 (2) Further, the airflow resistance in (1) is characterized in that the airflow resistance is applied by blowing a gas in a direction that becomes the resistance of the airflow flowing through the branch pipe.

(3)また、上記(1)における気流抵抗は、分岐管の管径を絞り込むことと、分岐管を流れる気流の抵抗となる方向にガスを吹き込むことの両方によってつけられることを特徴とするものである。 (3) In addition, the airflow resistance in (1) above is provided by both narrowing down the diameter of the branch pipe and blowing gas in a direction that causes resistance of the airflow flowing through the branch pipe. It is.

(4)また、上記(1)〜(3)に記載のものにおいて、微粉炭のみの吹込みとなる分岐管を流れる微粉炭量と、微粉炭および合成樹脂材の吹込みとなる分岐管を流れる微粉炭量及び合成樹脂材の合計量とがほぼ等しくなるように気流抵抗をつけることを特徴とするものである。 (4) Moreover, in what is described in said (1)-(3), the amount of pulverized coal which flows through the branch pipe used as injection of only pulverized coal, and the branch pipe used as injection of pulverized coal and a synthetic resin material are provided. The airflow resistance is provided so that the amount of pulverized coal flowing and the total amount of the synthetic resin material are substantially equal.

(5)また、本発明に係る微粉炭吹込み装置は、気流輸送される微粉炭粉流を分配器によって複数の分岐管に分岐し、分岐された一部の分岐管を流れる微粉炭はそのまま高炉に吹き込み、残りの分岐管を流れる微粉炭は粉粒状ないし細片状の合成樹脂材に衝突させて高炉に吹き込む微粉炭吹込み装置であって、前記合成樹脂材に衝突させる微粉炭が流れる分岐管に気流抵抗を与える抵抗手段を備えたものである。 (5) Moreover, the pulverized coal blowing apparatus according to the present invention branches the pulverized coal powder flow transported by airflow into a plurality of branch pipes by a distributor, and the pulverized coal flowing through a part of the branched branches is left as it is. The pulverized coal that blows into the blast furnace and flows through the remaining branch pipe is a pulverized coal blowing device that collides with a granular or strip-shaped synthetic resin material and blows into the blast furnace, and the pulverized coal that collides with the synthetic resin material flows It is provided with resistance means for giving airflow resistance to the branch pipe.

(6)また、上記(5)に記載の抵抗手段は、分岐管を流れる微粉炭粉流に抵抗となる方向にガスを噴射するガス噴射装置であることを特徴とするものである。 (6) Moreover, the resistance means as described in said (5) is a gas injection apparatus which injects gas in the direction which becomes resistance to the pulverized coal powder flow which flows through a branch pipe.

(7)また、上記(6)に記載のものにおいて、分岐管の途中に管径を絞り込む縮径管を設けたものである。 (7) Further, in the above-described (6), a reduced diameter pipe for narrowing the pipe diameter is provided in the middle of the branch pipe.

(8)また、上記(6)又は(7)に記載のものにおいて、ガス噴射装置はガス流量、流速のいずれか又は両方を調整可能としたことを特徴とするものである。 (8) Further, in the above (6) or (7), the gas injection device is characterized in that either or both of the gas flow rate and the flow velocity can be adjusted.

本発明においては、気流輸送される微粉炭粉流を分配器によって複数の分岐管に分岐し、分岐された一部の分岐管を流れる微粉炭はそのまま高炉に吹込み、残りの分岐管を流れる微粉炭は合成樹脂材に衝突させて高炉に吹き込む方法であって、前記残りの分岐管に気流抵抗をつけたことにより、該分岐管を流れる微粉炭量が微粉炭のみの吹込みとなる分岐管を流れる微粉炭量より少なくなり、各分岐管を流れる燃料の量が平均化して合成樹脂材の燃焼性の改善が図られる。   In the present invention, the pulverized coal powder stream transported by airflow is branched into a plurality of branch pipes by a distributor, and the pulverized coal flowing through the branched branch pipes is directly blown into the blast furnace and flows through the remaining branch pipes. The pulverized coal is a method in which the pulverized coal is blown into a blast furnace by colliding with a synthetic resin material, and by adding airflow resistance to the remaining branch pipe, the amount of pulverized coal flowing through the branch pipe becomes a blow of only pulverized coal The amount of pulverized coal flowing through the pipe is reduced, and the amount of fuel flowing through each branch pipe is averaged to improve the combustibility of the synthetic resin material.

図1は、本発明の一実施の形態の説明図であり微粉炭及び合成樹脂材を高炉2の羽口4から吹き込む方法及び装置の全体説明図、図2は図1の一部を詳細に説明した詳細説明図である。以下、図1及び図2に基づいて本実施形態の装置構成及び動作説明をする。   FIG. 1 is an explanatory view of an embodiment of the present invention, and is an overall explanatory view of a method and apparatus for blowing pulverized coal and a synthetic resin material from a tuyere 4 of a blast furnace 2. FIG. 2 shows a part of FIG. It is detailed explanatory drawing demonstrated. The apparatus configuration and operation of this embodiment will be described below with reference to FIGS.

<装置構成の説明>
本実施の形態における装置は、微粉炭を貯留する微粉炭貯留タンク1と、この微粉炭貯留タンク1に貯留されている微粉炭を所定量ずつ微粉炭輸送管7に切り出す微粉炭噴射装置3を備えている。微粉炭輸送管7には切り出された微粉炭を気流輸送するための窒素ガスを供給する圧縮窒素供給装置5が設けられており、この圧縮窒素供給装置5から噴出される窒素ガスによって微粉炭は微粉炭輸送管7内を羽口側に向かって気流輸送される。微粉炭輸送管7は途中で分配器9によって羽口の数と同数(本例では34)の微粉炭分岐管11に分配される。分配された微粉炭分岐管11のうちの8本(図中符号11aを付したもの)については後述の廃プラスチック輸送管39と合流して粉粒体吹込み用ランス23に接続される。微粉炭分岐管11aには気流の流れに直交する方向から流量制御用の窒素ガスを吹き込むための流量制御管13が接続されており、流量制御管13には流量制御管13に窒素ガスを吹き込むための圧縮窒素供給装置15が設けられている。微粉炭分岐管11aにおける流量制御管13の接続部17の内面には磨耗防止のためにセラミックのコーティングが施されている。
<Description of device configuration>
The apparatus in the present embodiment includes a pulverized coal storage tank 1 that stores pulverized coal, and a pulverized coal injection device 3 that cuts the pulverized coal stored in the pulverized coal storage tank 1 into a pulverized coal transport pipe 7 by a predetermined amount. I have. The pulverized coal transport pipe 7 is provided with a compressed nitrogen supply device 5 for supplying nitrogen gas for air-transporting the cut pulverized coal, and the pulverized coal is discharged by the nitrogen gas ejected from the compressed nitrogen supply device 5. The pulverized coal transport pipe 7 is air-transported toward the tuyere side. The pulverized coal transport pipe 7 is distributed on the way to the pulverized coal branch pipes 11 of the same number as the number of tuyere (34 in this example) by the distributor 9. Eight of the distributed pulverized coal branch pipes 11 (with reference numeral 11a in the figure) join with a waste plastic transport pipe 39, which will be described later, and are connected to a pulverization blowing lance 23. The pulverized coal branch pipe 11a is connected with a flow rate control pipe 13 for blowing nitrogen gas for flow rate control from a direction orthogonal to the flow of the air flow. The flow rate control pipe 13 blows nitrogen gas into the flow rate control pipe 13. A compressed nitrogen supply device 15 is provided. A ceramic coating is applied to the inner surface of the connecting portion 17 of the flow control pipe 13 in the pulverized coal branch pipe 11a to prevent wear.

微粉炭分岐管11aにおける流量制御管13接続部の下流側には微粉炭分岐管11aの管径を縮径して流路抵抗をつけるための縮径部19が設けられている。本実施の形態においては、縮径部19と流量制御管13から噴射される窒素ガスが微粉炭分岐管11aを流れる気流の抵抗となる抵抗手段になる。
微粉炭分岐管11aにおける縮径部19の下流側では後述の廃プラスチック輸送管39が連結されそれ以降は粉粒体輸送管21となる。粉粒体輸送管21の先端部には粉粒体吹込み用ランス23が設けられている。粉粒体吹込み用ランス23は、図2に示すように、その先端(噴射口)の位置が熱風の送風支管25の内部ないし羽口4の内部であって、羽口4の先端(炉内側の先端)よりも手前(上流側)の位置にくるように設置されている。
In the pulverized coal branch pipe 11a, on the downstream side of the connection portion of the flow control pipe 13, a reduced diameter portion 19 is provided for reducing the pipe diameter of the pulverized coal branch pipe 11a to provide flow resistance. In the present embodiment, the nitrogen gas injected from the reduced diameter portion 19 and the flow rate control pipe 13 serves as resistance means that serves as resistance of the airflow flowing through the pulverized coal branch pipe 11a.
A waste plastic transport pipe 39, which will be described later, is connected to the downstream side of the reduced diameter portion 19 in the pulverized coal branch pipe 11a. At the tip of the granular material transport tube 21, a granular material blowing lance 23 is provided. As shown in FIG. 2, the lance 23 for blowing the granular material has a tip (injection port) located inside the hot air blowing branch 25 or the inside of the tuyere 4, and the tip of the tuyere 4 (furnace) It is installed so as to be in a position before (upstream side) than the inner tip.

なお、微粉炭分岐管11aと廃プラスチック輸送管39の合流点29から粉粒体吹込み用ランス23の先端(出口)までの距離はできるだけ短くすることが好ましい。なぜなら、合流点29以後においては廃プラスチックの表面に微粉炭が付着することになるが、この付着した微粉炭が廃プラスチックの表面から離脱しないうちに粉粒体吹込みランス23から噴射するには前記距離が短い方が好ましいからである。
分配器9によって分岐された残りの26本の微粉炭分岐管11bは、廃プラスチック輸送管39と合流することなく羽口近くまで配管され、その先端に微粉炭吹込みランス31が取り付けられて羽口に設置される。
It is preferable that the distance from the junction 29 of the pulverized coal branch pipe 11a and the waste plastic transport pipe 39 to the tip (exit) of the pulverized powder blowing lance 23 is as short as possible. This is because pulverized coal adheres to the surface of the waste plastic after the junction 29, but the adhered pulverized coal is ejected from the granular material blowing lance 23 before it is detached from the surface of the waste plastic. This is because a shorter distance is preferable.
The remaining 26 pulverized coal branch pipes 11b branched by the distributor 9 are piped to the vicinity of the tuyere without joining the waste plastic transport pipe 39, and a pulverized coal blowing lance 31 is attached to the tip of the pipe. Installed in the mouth.

廃プラスチック貯留タンク33には、ペットボトル等の容器、包装材等の産業廃棄物を破砕あるいは造粒して約10mm以下の径(長さ)にした廃プラスチックが貯留されている。廃プラスチック貯留タンク33の下方には廃プラスチック吹込みタンク35が設置され、該タンク35には廃プラスチックの輸送路となる廃プラスチック輸送管39が接続されている。また、廃プラスチック貯留タンク33にはタンク内の廃プラスチックを廃プラスチック輸送管39に送り出して輸送する輸送ガスとしての空気を供給する圧縮空気供給装置37が設置されている。
廃プラスチック輸送管39と微粉炭分岐管11aとは、前述したように、途中で所定の角度θをもって連結されて粉粒体輸送管21となり粉粒体吹込み用ランス23に連結されている。
The waste plastic storage tank 33 stores waste plastic having a diameter (length) of about 10 mm or less by crushing or granulating industrial waste such as containers such as PET bottles and packaging materials. A waste plastic blowing tank 35 is installed below the waste plastic storage tank 33, and a waste plastic transport pipe 39 serving as a transport path for the waste plastic is connected to the tank 35. Further, the waste plastic storage tank 33 is provided with a compressed air supply device 37 for supplying air as a transport gas for sending the waste plastic in the tank to the waste plastic transport pipe 39 for transport.
As described above, the waste plastic transport pipe 39 and the pulverized coal branch pipe 11a are connected at a predetermined angle θ in the middle to become the powder transport pipe 21 and are connected to the powder blowing lance 23.

<動作説明>
以上のように構成された本実施の形態においては、微粉炭貯留タンク1に貯留されている微粉炭が微粉炭噴射装置3によって微粉炭輸送管7に所定量が切り出される。切り出された微粉炭は圧縮窒素供給装置5から噴出される窒素ガスによって微粉炭輸送管7内を羽口側に向かって気流輸送され、分配器9に運ばれる。
気流輸送された微粉炭は分配器9で34本の微粉炭分岐管11に分配される。このとき、8本の微粉炭分岐管11aでは流量制御管13から流量制御用の窒素ガスが気流に直交する方向に噴射されており、また、その下流側には縮径部19が設けられていることから流路抵抗が大きくなっている。このため、残りの26本の微粉炭分岐管11bに比較して微粉炭気流が流れにくくなり、分配器9で分配される微粉炭量は少なくなる。
<Description of operation>
In the present embodiment configured as described above, a predetermined amount of pulverized coal stored in the pulverized coal storage tank 1 is cut out to the pulverized coal transport pipe 7 by the pulverized coal injection device 3. The cut out pulverized coal is air-flowed toward the tuyere side through the pulverized coal transport pipe 7 by the nitrogen gas ejected from the compressed nitrogen supply device 5 and is carried to the distributor 9.
The pulverized coal transported by airflow is distributed to 34 pulverized coal branch pipes 11 by a distributor 9. At this time, in the eight pulverized coal branch pipes 11a, nitrogen gas for flow control is injected from the flow control pipe 13 in a direction orthogonal to the air flow, and a reduced diameter portion 19 is provided on the downstream side thereof. Therefore, the flow path resistance is increased. For this reason, it becomes difficult for the pulverized coal airflow to flow as compared with the remaining 26 pulverized coal branch pipes 11b, and the amount of pulverized coal distributed by the distributor 9 is reduced.

つまり、気流輸送された微粉炭は分配器9で8本の微粉炭分岐管11a群と26本の微粉炭分岐管11b群のそれぞれに分配され、8本の微粉炭分岐管11a群には流路抵抗の分だけ微粉炭分岐管11b群よりも少なく分配される。
抵抗値の大きさは流量制御管13から噴射する流量制御用の窒素ガスの流量、流速を変えることによって適宜変更することができる。もっとも、流量制御用の窒素ガスの流量は所定量以上になるとそれ以上流量を増やしても微粉炭量を少なくできなくなる。この点を説明するのが図3に示すグラフであり、図3のグラフは縦軸が微粉炭分岐管11aに流れる微粉炭量(微粉炭分岐管11bを流れる微粉炭量に対する割合)を示し、横軸が流量制御管13から噴射する流量制御用の窒素ガスの流量を示している。
In other words, the pulverized coal transported by airflow is distributed by the distributor 9 to each of the eight pulverized coal branch pipes 11a and the 26 pulverized coal branch pipes 11b, and flows into the eight pulverized coal branch pipes 11a. Less than the pulverized coal branch pipe 11b group is distributed by the road resistance.
The magnitude of the resistance value can be appropriately changed by changing the flow rate and flow rate of the nitrogen gas for flow rate control injected from the flow rate control tube 13. However, if the flow rate of the nitrogen gas for flow rate control exceeds a predetermined amount, the amount of pulverized coal cannot be reduced even if the flow rate is increased further. This point is explained in the graph shown in FIG. 3, where the vertical axis shows the amount of pulverized coal flowing in the pulverized coal branch pipe 11 a (ratio to the amount of pulverized coal flowing in the pulverized coal branch pipe 11 b), The horizontal axis indicates the flow rate of the nitrogen gas for flow rate control injected from the flow rate control tube 13.

図3のグラフに示すように、この例では窒素ガス量が30Nm3になるまでは窒素ガス量を増やすに従って当該微粉炭分岐管11aを流れる微粉炭量を微粉炭分岐管11bに流れる微粉炭量の50%まで減少させることができるが、30Nm3を超えるとそれ以上窒素ガス量を増やしても微粉炭量を減少せることはできない。したがって、微粉炭分岐管11aを流れる微粉炭量をさらに減少させるためには、本実施形態のように別の抵抗手段としての縮径部19を設けて併用するのが好ましい。 As shown in the graph of FIG. 3, in this example, the amount of pulverized coal flowing through the pulverized coal branch pipe 11a as the amount of nitrogen gas is increased until the amount of nitrogen gas reaches 30 Nm 3. However, if it exceeds 30 Nm 3 , the amount of pulverized coal cannot be reduced even if the amount of nitrogen gas is increased further. Therefore, in order to further reduce the amount of pulverized coal flowing through the pulverized coal branch pipe 11a, it is preferable to provide a reduced diameter portion 19 as another resistance means as in this embodiment.

なお、最も好ましい抵抗値としては、26本の各微粉炭分岐管11bを流れる微粉炭量と、8本の各微粉炭分岐管11aを流れる微粉炭量にこの微粉炭が付着する廃プラスチック量を加えた合計量とが等しくなるような抵抗値である。このようにすることで、微粉炭と廃プラスチックの合流するラインにおいても燃焼がスムーズに行われると共にすべての羽口での燃焼がバランスすることになる。なお、この点は後述の実施例において実証する。   The most preferable resistance value is the amount of pulverized coal flowing through each of the 26 pulverized coal branch pipes 11b and the amount of waste plastic to which this pulverized coal adheres to the amount of pulverized coal flowing through each of the eight pulverized coal branch pipes 11a. The resistance value is equal to the total amount added. By doing in this way, combustion is smoothly performed in the line where pulverized coal and waste plastics merge, and combustion in all tuyere is balanced. This point will be demonstrated in the examples described later.

微粉炭分岐管11aに分配された微粉炭は合流点29以降において廃プラスチック輸送管39を流れる廃プラスチックと衝突する。微粉炭と廃プラスチックが衝突することにより、微粉炭が廃プラスチックの表面に付着して微粉炭と廃プラスチックが一体となって粉粒体輸送管21を流れてゆく。このように微粉炭と廃プラスチックが衝突して両者が一体となることが燃焼性を高めるために必要であるが、両者が合流点29以降において衝突するためには、微粉炭及び廃プラスチックが共存する気流内部において、それぞれの粒子の飛行速度に差があることが必要である。このためには合流点29直前における両者の飛行速度が異なっていれば、合流点29以降の粉粒体輸送管21においても両者の速度には差が生じ、微粉炭は廃プラスチックの表面に付着する。したがって、微粉炭分岐管11aを流れる微粉炭の飛行速度と廃プラスチック輸送管39を流れる廃プラスチックの飛行速度が異なるように圧縮窒素供給装置5,37からの窒素流速を設定する。   The pulverized coal distributed to the pulverized coal branch pipe 11 a collides with the waste plastic flowing through the waste plastic transport pipe 39 after the junction 29. When the pulverized coal and the waste plastic collide, the pulverized coal adheres to the surface of the waste plastic, and the pulverized coal and the waste plastic flow together through the granular material transport pipe 21. Thus, it is necessary for the pulverized coal and the waste plastic to collide with each other to improve the combustibility. However, in order for the two to collide after the junction 29, the pulverized coal and the waste plastic coexist. It is necessary that there is a difference in the flight speed of each particle inside the airflow. For this purpose, if the flight speeds of the two just before the junction 29 are different, the speed of the two also differs in the particulate transport pipe 21 after the junction 29, and the pulverized coal adheres to the surface of the waste plastic. To do. Therefore, the nitrogen flow rate from the compressed nitrogen supply devices 5 and 37 is set so that the flight speed of the pulverized coal flowing through the pulverized coal branch pipe 11a and the flight speed of the waste plastic flowing through the waste plastic transport pipe 39 are different.

微粉炭が付着した廃プラスチックは粉粒体輸送管21を羽口側に流れてゆき、粉粒体吹込み用ランス23から送風支管25の熱風内に噴射される。このとき、着火性のよい微粉炭が速やかに着火してその後微粉炭の燃焼熱が廃プラスチックに速やかに与えられ廃プラスチックが着火する。しかも、微粉炭分岐管11aを流れる微粉炭量は微粉炭分岐管11bよりも少なくなるように流量制御されているので、微粉炭着火時に酸素不足となることなくスムーズな燃焼が実現される。
以下の実施例において、廃プラスチック輸送管39と合流する微粉炭分岐管11aへの流量制御を行わなかった場合との比較をすることで本実施形態の効果を実証する。
Waste plastic to which pulverized coal adheres flows through the granular material transport pipe 21 toward the tuyere side, and is injected from the granular material blowing lance 23 into the hot air of the blower branch pipe 25. At this time, pulverized coal with good ignitability is quickly ignited, and then the combustion heat of the pulverized coal is quickly given to the waste plastic, and the waste plastic is ignited. Moreover, since the flow rate is controlled so that the amount of pulverized coal flowing through the pulverized coal branch pipe 11a is smaller than that of the pulverized coal branch pipe 11b, smooth combustion is realized without oxygen shortage during pulverized coal ignition.
In the following example, the effect of this embodiment is demonstrated by comparing with the case where the flow control to the pulverized coal branch pipe 11a joined to the waste plastic transport pipe 39 is not performed.

表1は微粉炭流量制御をした場合としない場合について実際に吹込みを行った結果をまとめたものである。この例では、実施の形態で示したのと同様に34の羽口のうちの26は微粉炭のみ(表中では「PCのみ」と表記)とし、残りの8については廃プラスチックと微粉炭との混合吹込み(表中では「プラ+PC」)としている。そして、微粉炭の総吹込み量は55.42T/Hでこれを34の羽口に振り分けている。また、廃プラスチックの総吹込み量は4.8T/Hであり、これを8個の羽口に振り分けている。なお、表1中では羽口1個あたりの量を示している。
また、抵抗手段としての流量制御管13から流量制御用の窒素ガスは30Nm3であり、縮径部19では分岐管11aがφ8であるところをφ7に縮径している。
Table 1 summarizes the results of actual blowing with and without pulverized coal flow control. In this example, as shown in the embodiment, 26 of the 34 tuyere are only pulverized coal (indicated as “PC only” in the table), and the remaining 8 are waste plastic and pulverized coal. The mixed blowing ("Pura + PC" in the table). And the total blowing amount of pulverized coal is 55.42T / H, and this is distributed to 34 tuyere. The total amount of waste plastic blown is 4.8 T / H, which is distributed to 8 tuyere. In Table 1, the amount per tuyere is shown.
Further, the nitrogen gas for flow control from the flow control tube 13 as the resistance means is 30 Nm 3 , and the diameter of the reduced diameter portion 19 is reduced to φ7 where the branch pipe 11 a is φ8.

Figure 2005240089
Figure 2005240089

表1から分かるように、微粉炭流量制御を行わなかった場合には、「プラ+PC」ラインと、「PCのみ」ラインに等量(1.63T/H)の微粉炭が流れている。そのため、「プラ+PC」ラインでは、前記微粉炭に加えて0.6T/Hの廃プラスチックが吹き込まれ、2.23T/Hの燃料が吹き込まれている。このため、「プラ+PC」ラインでは、酸素過剰係数が0.68と小さく、燃料全てを燃焼するには酸素不足の状態になっている。その結果、廃プラスチックの燃焼が十分できず、羽口先温度も1970℃と低くなっている。他方、「PCのみ」ラインでは、供給される燃料が微粉炭1.63T/Hのみであり、酸素過剰係数は0.96であり、ほぼ完全な燃焼が可能な状態にある。その結果、「PCのみ」ラインの羽口先温度は2194℃となっている。
このように、微粉炭流量制御を行わなかった場合には、「プラ+PC」ラインにおいて酸素不足となり、燃焼性が悪くなると共に、「プラ+PC」ラインと「PCのみ」ラインでの羽口先温度にばらつきがでている。
As can be seen from Table 1, when pulverized coal flow rate control is not performed, an equal amount (1.63 T / H) of pulverized coal flows through the “Pura + PC” line and the “PC only” line. Therefore, in the “Pura + PC” line, in addition to the pulverized coal, 0.6 T / H waste plastic is blown and 2.23 T / H fuel is blown. For this reason, in the “Pura + PC” line, the oxygen excess coefficient is as small as 0.68, and oxygen is insufficient to burn all the fuel. As a result, the waste plastic cannot be burned sufficiently and the tuyere temperature is as low as 1970 ° C. On the other hand, in the “PC only” line, the supplied fuel is only pulverized coal 1.63 T / H, the oxygen excess coefficient is 0.96, and almost complete combustion is possible. As a result, the tuyere temperature of the “PC only” line is 2194 ° C.
In this way, when the pulverized coal flow rate control is not performed, oxygen becomes insufficient in the “Pura + PC” line, the combustibility is deteriorated, and the tuyere temperature in the “Pura + PC” line and the “PC only” line is reduced. There are variations.

これに対して、微粉炭流量制御を行った場合には、「プラ+PC」ラインには1.18T/Hの微粉炭が流れ、「PCのみ」ラインには1.77T/Hの微粉炭が流れている。このように、流量制御をした場合に、「プラ+PC」ラインに流れる微粉炭量が減少して「PCのみ」ラインを流れる微粉炭量が増加したのは、「プラ+PC」ラインに流量制御用のN2を吹き込むと共に縮径管によって流路抵抗を付けたため、「プラ+PC」ラインに流れる微粉炭が減少し、その減少分が「PCのみ」ラインに流れたためである。その結果、「プラ+PC」ラインの燃料量は微粉炭量1.18T/Hに廃プラスチックの0.6T/Hを加えた1.78T/Hとなり、微粉炭流量制御を行わなかった場合の燃料量に比べると微粉炭の減少分だけ減少している。そのため、酸素過剰係数は、微粉炭流量制御を行わなかった場合の酸素過剰係数0.68から0.82に向上している。他方、「PCのみ」ラインの酸素過剰係数は0.84であり、微粉炭流量制御を行わなかった場合の0.96よりも減少しているものの燃焼性に悪影響を与えるほどではない。
また、微粉炭流量制御を行った場合には、「プラ+PC」ラインの羽口先温度が2255℃であり、「PCのみ」ラインの羽口先温度が2153℃であり、両者のバランスが取れている。
On the other hand, when pulverized coal flow rate control is performed, 1.18 T / H pulverized coal flows in the “Pura + PC” line, and 1.77 T / H pulverized coal flows in the “PC only” line. Yes. In this way, when the flow rate control is performed, the amount of pulverized coal flowing through the “Pura + PC” line decreases and the amount of pulverized coal flowing through the “PC only” line increases. since gave a flow resistance by the reduced tube with blowing N 2 of "Plastic + PC" pulverized coal is reduced to flow in the line, the decrease is due to flow through the "PC only" line. As a result, the amount of fuel in the “Pura + PC” line is 1.78 T / H, which is 1.18 T / H of pulverized coal plus 0.6 T / H of waste plastic, and is compared to the amount of fuel when pulverized coal flow rate control is not performed. The amount of pulverized coal is reduced. Therefore, the oxygen excess coefficient is improved from 0.68 to 0.82 when the pulverized coal flow rate control is not performed. On the other hand, the oxygen excess coefficient of the “PC only” line is 0.84, which is lower than 0.96 when the pulverized coal flow rate control is not performed, but does not adversely affect the combustibility.
In addition, when pulverized coal flow rate control is performed, the tuyere temperature of the “Pura + PC” line is 2255 ° C., and the tuyere temperature of the “PC only” line is 2153 ° C., which is balanced. .

以上のように、微粉炭流量制御を行ったことにより、「プラ+PC」ラインに流れる微粉炭量を「PCのみ」ラインに振り分けることができ、その結果、「プラ+PC」ラインの燃焼性が大きく改善できたことが実証された。   As described above, by controlling the pulverized coal flow rate, the amount of pulverized coal flowing in the “Pura + PC” line can be distributed to the “PC only” line. As a result, the flammability of the “Pura + PC” line is large. It was proved that it was improved.

なお、上記の実施形態においては、廃プラスチック輸送管39と合流する微粉炭分岐管11aへの流量制御手段として、流量制御管13からの窒素ガスの吹き込みを用いたことにより、窒素ガスの吹き込み流量、流速を適宜変更することで任意に抵抗値を変更できるので、種々の状況に応じた微粉炭流量制御が実現できる。
また、本実施の形態では、流量制御管13からの窒素ガスの吹き込みと縮径部19とを併用したので、広範囲の流量制御が可能となる。もっとも、微粉炭の吹込み量等との関係から流量制御範囲が狭くて済む場合には流量制御管13からの窒素ガスの吹き込みのみであってもよい。
In the above embodiment, the flow rate of nitrogen gas blown from the flow rate control pipe 13 is used as the flow rate control means to the pulverized coal branch pipe 11a that joins the waste plastic transport pipe 39. Since the resistance value can be arbitrarily changed by appropriately changing the flow velocity, pulverized coal flow rate control according to various situations can be realized.
In the present embodiment, since nitrogen gas blowing from the flow rate control pipe 13 and the reduced diameter portion 19 are used in combination, a wide range of flow rate control is possible. However, if the flow rate control range is narrow due to the relationship with the amount of pulverized coal, etc., only nitrogen gas may be blown from the flow rate control pipe 13.

なお、本実施の形態においては流量制御管13から微粉炭分岐管11aに対して直交方向に窒素ガスを噴射する例を示しが、本発明はこれに限られるものではなく、窒素ガスの噴射方向は少なくとも微粉炭分岐管11a内を流れる気流の抵抗になる方向であればよい。
また、流量制御管13の噴射角度を変更可能とすることで、窒素ガス量を変更することなく抵抗値の変更を可能とし、さらに微妙な抵抗値の変更ができる。
In the present embodiment, an example is shown in which nitrogen gas is injected from the flow rate control pipe 13 to the pulverized coal branch pipe 11a in a direction orthogonal to the pulverized coal branch pipe 11a. May be at least as long as the direction of resistance of the airflow flowing through the pulverized coal branch pipe 11a.
Further, by making it possible to change the injection angle of the flow rate control pipe 13, it is possible to change the resistance value without changing the amount of nitrogen gas, and it is possible to change the resistance value more delicately.

また、本実施の形態においては微粉炭の気流輸送用ガス、微粉炭分岐管11aへ噴射する流量制御用ガス、および廃プラスチック輸送用ガスとして窒素ガスを用いた例を示した。
しかしながら、本発明はこれに限られるものではなく、窒素ガスに代えて空気を用いてもよい。
Moreover, in this Embodiment, the example which used nitrogen gas as gas for airflow transportation of pulverized coal, the gas for flow control injected to the pulverized coal branch pipe 11a, and waste plastic transportation gas was shown.
However, the present invention is not limited to this, and air may be used instead of nitrogen gas.

本発明の一実施形態に係る微粉炭吹き込み方法及び装置の説明図である。It is explanatory drawing of the pulverized coal blowing method and apparatus which concern on one Embodiment of this invention. 図1の一部を詳細に説明する詳細説明図である。FIG. 2 is a detailed explanatory diagram illustrating a part of FIG. 1 in detail. 本発明の一実施形態における流量制御用窒素ガス量と分岐管を流れる微粉炭量の関係を説明するグラフである。It is a graph explaining the relationship between the amount of nitrogen gas for flow control in one embodiment of the present invention, and the amount of pulverized coal flowing through a branch pipe.

符号の説明Explanation of symbols

1 微粉炭貯留タンク
2 高炉
3 微粉炭噴射装置
4 羽口
5、37 圧縮窒素供給装置
7 微粉炭輸送管
9 分配器
11 微粉炭分岐管
13 流量制御管
19 縮径部
33 廃プラスチック貯留タンク
35 廃プラスチック吹込みタンク
DESCRIPTION OF SYMBOLS 1 Pulverized coal storage tank 2 Blast furnace 3 Pulverized coal injection device 4 Tuyere 5, 37 Compressed nitrogen supply device 7 Pulverized coal transport pipe 9 Distributor 11 Pulverized coal branch pipe 13 Flow control pipe 19 Reduced diameter part 33 Waste plastic storage tank 35 Waste Plastic blowing tank

Claims (8)

気流輸送される微粉炭粉流を分配器によって複数の分岐管に分岐し、分岐された一部の分岐管を流れる微粉炭はそのまま高炉に吹込み、残りの分岐管を流れる微粉炭は粉粒状ないし細片状の合成樹脂材に衝突させて高炉に吹き込む微粉炭吹込み方法であって、
前記合成樹脂材に衝突させる微粉炭が流れる分岐管に気流抵抗をつけ、該分岐管を流れる微粉炭量が微粉炭のみの吹込みとなる分岐管を流れる微粉炭量より少なくなるようにしたことを特徴とする微粉炭吹込み方法。
The pulverized coal powder stream that is transported by airflow is branched into a plurality of branch pipes by a distributor, the pulverized coal flowing through a part of the branched branches is blown into the blast furnace as it is, and the pulverized coal flowing through the remaining branch pipes is granular. Or a pulverized coal injection method for impinging on a strip-shaped synthetic resin material and blowing it into a blast furnace,
An airflow resistance is applied to the branch pipe through which the pulverized coal that collides with the synthetic resin material flows, so that the amount of pulverized coal flowing through the branch pipe is less than the amount of pulverized coal flowing through the branch pipe where only the pulverized coal is blown. A method for injecting pulverized coal.
気流抵抗は、分岐管を流れる気流の抵抗となる方向にガスを吹き込むことによってつけられることを特徴とする請求項1記載の微粉炭吹込み方法。 The method of blowing pulverized coal according to claim 1, wherein the airflow resistance is applied by blowing gas in a direction that becomes resistance of the airflow flowing through the branch pipe. 気流抵抗は、分岐管の管径を絞り込むことと、分岐管を流れる気流の抵抗となる方向にガスを吹き込むことの両方でつけられることを特徴とする請求項1記載の微粉炭吹込み方法。 2. The pulverized coal injecting method according to claim 1, wherein the air flow resistance is applied both by narrowing a diameter of the branch pipe and by blowing a gas in a direction that causes resistance of the air current flowing through the branch pipe. 微粉炭のみの吹込みとなる分岐管を流れる微粉炭量と、微粉炭および合成樹脂材の同時吹込みとなる分岐管を流れる微粉炭量及び前記合成樹脂材の合計量とがほぼ等しくなるように抵抗手段の抵抗値を設定したことを特徴とする請求項1〜3のいずれか一項記載の微粉炭吹込み方法。 The amount of pulverized coal flowing through the branch pipe where only pulverized coal is blown, and the amount of pulverized coal flowing through the branch pipe where the pulverized coal and synthetic resin material are simultaneously blown, and the total amount of the synthetic resin material are almost equal. The pulverized coal blowing method according to claim 1, wherein a resistance value of the resistance means is set in 気流輸送される微粉炭粉流を分配器によって複数の分岐管に分岐し、分岐された一部の分岐管を流れる微粉炭はそのまま高炉に吹き込み、残りの分岐管を流れる微粉炭は粉粒状ないし細片状の合成樹脂材に衝突させて高炉に吹き込む微粉炭吹込み装置であって、
前記合成樹脂材に衝突させる微粉炭が流れる分岐管に気流抵抗を与える抵抗手段を備えたことを特徴とする微粉炭吹込み装置。
The pulverized coal powder stream that is transported by air flow is branched into a plurality of branch pipes by a distributor, and the pulverized coal flowing through a part of the branched branches is blown into the blast furnace as it is, and the pulverized coal flowing through the remaining branch pipes is not granular A pulverized coal blowing device that collides with a piece of synthetic resin material and blows into a blast furnace,
A pulverized coal injecting apparatus comprising resistance means for providing airflow resistance to a branch pipe through which pulverized coal that collides with the synthetic resin material flows.
抵抗手段は、分岐管を流れる微粉炭粉流に抵抗となる方向にガスを噴射するガス噴射装置であることを特徴とする請求項5記載の微粉炭吹込み装置。 6. The pulverized coal injecting apparatus according to claim 5, wherein the resistance means is a gas injection device that injects gas in a direction that becomes resistance to the pulverized coal powder flow that flows through the branch pipe. 分岐管の途中に管径を絞り込む縮径管を設けたことを特徴とする請求項6記載の微粉炭吹込み装置。 The pulverized coal blowing device according to claim 6, wherein a reduced diameter pipe for narrowing the pipe diameter is provided in the middle of the branch pipe. ガス噴射装置はガス流量、流速のいずれか又は両方を調整可能であることを特徴とする請求項6又は7記載の微粉炭吹込み装置。 The pulverized coal injection device according to claim 6 or 7, wherein the gas injection device is capable of adjusting either or both of a gas flow rate and a flow velocity.
JP2004050686A 2004-02-26 2004-02-26 Method and apparatus for blowing pulverized coal Expired - Lifetime JP4292578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004050686A JP4292578B2 (en) 2004-02-26 2004-02-26 Method and apparatus for blowing pulverized coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004050686A JP4292578B2 (en) 2004-02-26 2004-02-26 Method and apparatus for blowing pulverized coal

Publications (2)

Publication Number Publication Date
JP2005240089A true JP2005240089A (en) 2005-09-08
JP4292578B2 JP4292578B2 (en) 2009-07-08

Family

ID=35022128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004050686A Expired - Lifetime JP4292578B2 (en) 2004-02-26 2004-02-26 Method and apparatus for blowing pulverized coal

Country Status (1)

Country Link
JP (1) JP4292578B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103451337A (en) * 2013-08-13 2013-12-18 宝钢集团新疆八一钢铁有限公司 Method for balancing resistance loss of double-distributor pipeline
KR20140109963A (en) * 2011-12-21 2014-09-16 제이에프이 스틸 가부시키가이샤 Blast furnace operation method
KR20200072860A (en) * 2018-12-13 2020-06-23 주식회사 포스코 Device for blowing waste plastics in furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140109963A (en) * 2011-12-21 2014-09-16 제이에프이 스틸 가부시키가이샤 Blast furnace operation method
KR101629122B1 (en) 2011-12-21 2016-06-09 제이에프이 스틸 가부시키가이샤 Blast furnace operation method
CN103451337A (en) * 2013-08-13 2013-12-18 宝钢集团新疆八一钢铁有限公司 Method for balancing resistance loss of double-distributor pipeline
KR20200072860A (en) * 2018-12-13 2020-06-23 주식회사 포스코 Device for blowing waste plastics in furnace
KR102174160B1 (en) * 2018-12-13 2020-11-04 주식회사 포스코 Device for blowing waste plastics in furnace

Also Published As

Publication number Publication date
JP4292578B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
CN102597629B (en) Method of combusting particulate solid fuel with a burner
CN104641004A (en) Blow-pipe structure
JP6977739B2 (en) Method of blowing granular solid reducing agent
JP4292578B2 (en) Method and apparatus for blowing pulverized coal
KR100318121B1 (en) Process and apparatus for producing metal from metal ores
KR20150044933A (en) Slag removal device and slag removal method
KR970009084B1 (en) Apparatus for melting fine coals and method of melting the same using the apparatus
JP5949653B2 (en) Blowing method of solid reducing agent
JP4774589B2 (en) Simultaneous injection of pulverized coal and synthetic resin in a blast furnace
JP3493937B2 (en) How to blow pulverized coal into the blast furnace
CN104609187A (en) Efficient combustible solid particle grading and pneumatic conveying system
JP6041073B1 (en) Raw material charging method to blast furnace
CN101566338A (en) Method and device for combustion of solid phase fuel
JP6644460B2 (en) Gasifier
JP2018044222A (en) Granulator of sintering raw material and granulating method
JPH0694564B2 (en) Injection method of powdered fuel into blast furnace
CN113878740B (en) Mixing system
JP2004183005A (en) Method for treating waste wood in blast furnace
KR200403022Y1 (en) Moving structure of pulverized coal using air current
JP2001348605A (en) Lance for blowing synthetic resin material into vertical type metallurgical furnace and method for producing molten iron by using vertical type metallurgical furnace with attendant blowing of synthetic resin material
JPH08157916A (en) Blowing of pulverized fine coal into blast furnace and lance for blowing pulverized fine coal
KR101259307B1 (en) Apparatus for supplying pulverized coal to blast furnace
KR101629122B1 (en) Blast furnace operation method
JPH01100212A (en) Operational method for blowing fine material in blast furnace
JPS62228419A (en) Apparatus for supplying powdery substance to vertical furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090329

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4292578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term