JPS62228419A - Apparatus for supplying powdery substance to vertical furnace - Google Patents

Apparatus for supplying powdery substance to vertical furnace

Info

Publication number
JPS62228419A
JPS62228419A JP22535586A JP22535586A JPS62228419A JP S62228419 A JPS62228419 A JP S62228419A JP 22535586 A JP22535586 A JP 22535586A JP 22535586 A JP22535586 A JP 22535586A JP S62228419 A JPS62228419 A JP S62228419A
Authority
JP
Japan
Prior art keywords
pipe
powder
tuyere
sec
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22535586A
Other languages
Japanese (ja)
Other versions
JPH0372126B2 (en
Inventor
Katsutoshi Igawa
井川 勝利
Hisao Hamada
浜田 尚夫
Shiko Takada
高田 至康
Shinobu Takeuchi
忍 竹内
Kazuhiko Sato
和彦 佐藤
Eiji Katayama
英司 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Publication of JPS62228419A publication Critical patent/JPS62228419A/en
Publication of JPH0372126B2 publication Critical patent/JPH0372126B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0026Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide in the flame of a burner or a hot gas stream

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To stabilize supplying of powdery substance and prevent wear of each pipe of apparatus, by specifying an angle formed by aperture surface of an introducing pipe for powdery material with center axis of blowing pipe, moving velocity of powdery material in the introducing pipe and a distance from aperture of the introducing pipe to tuyere top end. CONSTITUTION:Powdery granule ore supplied from a hopper 1 is charged from tuyere into vertical furnace through a supplying pipe 3, the introducing pipe 4 and a blowing pipe 5. I this time, the angle theta3 formed by aperture surface of the pipe 4 with center axis of the pipe 5, the powder moving velocity V0 in the pipe 5 and the distance L from introducing pipe aperture to tuyere to end are determined so that a inequality I is satisfied. In the inequality, DE' is shown in a formula II, Wf: upper limit powder supplying velocity (kg/sec), V0: blowing air flow quantity (Nm<2>/sec), T: blowing air temp. ( deg.K), P: blowing air pressure (kg/m<2>), rho: blowing air density (kg/m<3>), mu: blowing air viscosity (kg/m.sec), Re: blowing air Reynolds number (-), D: tuyere diameter (m), L: aforesaid (m), theta3: aforesaid (degree), V0: aforesaid (m/sec), DE': effective eddy diffusion coefft. (m<2>/sec).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、竪型炉への粉体供給装置に関し、その粉状鉱
石の供給吹込装置についての開発成果を開示するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a powder supply device to a vertical furnace, and discloses the development results of a powder ore supply blowing device.

〔従来の技術〕[Conventional technology]

近年、鉄鉱石をはじめ各種の金属酸化物より主として成
る原料鉱石は、塊状鉱石よりは、むしろ、粉、粒状鉱石
の方が多くなりつつあり、今後もまずますその比率は増
加する傾向にあるとみられる。
In recent years, raw material ores mainly composed of various metal oxides, including iron ore, have become more powdery and granular ores than lumpy ores, and the proportion is expected to increase in the future. It will be done.

粉、粒状鉱石による製錬方法としては、流動層を用いて
粉、粒状鉱石を予備還元し、この予ii元鉱石を電気炉
、転炉その他の溶解炉で溶融還元する方式が一般的であ
る。この場合予備還元にバインダーを添加して塊成化し
、その塊成物を溶鉱炉で溶融還元する方式が多い。
A common method for smelting using powder or granular ore is to pre-reduce the powder or granular ore using a fluidized bed, and then melt and reduce the pre-reduced ore in an electric furnace, converter or other melting furnace. . In this case, there are many methods in which a binder is added to the preliminary reduction, the agglomerates are agglomerated, and the agglomerates are melted and reduced in a blast furnace.

しかしこのような方式では塊成化費用が多大にしぼる難
点を伴う。この他にアーク炉やプラズマ又は純酸素を利
用する炉を用いて予備還元鉱を塊成化せず溶融還元する
方式も企てられているが、立地条件、電力消費の面で現
在の所、工業的規模での適用が困難となっている。
However, this method has the disadvantage that the agglomeration cost is extremely high. In addition, there are plans to use arc furnaces, plasma, or furnaces that use pure oxygen to melt and reduce the pre-reduced ore without agglomerating it, but these methods are currently not possible due to site conditions and power consumption. Application on an industrial scale has become difficult.

これに対し発明者らは、炭素質固体還元剤の充填層を竪
型炉内部で不断に形成する一方、該炉のIR壁にL下2
段にわたり配設したそれぞれ複数の羽口群を通して該炉
から排出される還元性の排ガスを用いて粉、粒状鉱石を
予410Q元した部分還元鉱を、必要により加えたフラ
ックスと共に、800℃〜】300℃の高温の気流搬送
下に竪型炉内へ吹き込んで溶融還元する方法を提案して
いる(登録No、1240304)。
In response, the inventors continuously formed a packed bed of carbonaceous solid reducing agent inside a vertical furnace, while
Using the reducing exhaust gas discharged from the furnace through a plurality of tuyere groups arranged in stages, powder and granular ore are heated to 800°C to 410Q with flux added as necessary. We have proposed a method of melting and reducing by blowing into a vertical furnace while conveying a high-temperature air stream at 300°C (Registration No. 1240304).

更に、本発明者らは吹込条件を検討し、」二記のような
予備還元処理を省略しても、粉、粒状鉱石をそのまま竪
型炉に加熱下の反応性ガス吹込装入することで、有利に
直接的な溶融還元を行うことも出願している(特開昭5
9−105818)。
Furthermore, the present inventors studied the injection conditions and found that even if the preliminary reduction treatment as described in 2 was omitted, powder and granular ore could be directly charged into a vertical furnace by injection of reactive gas under heating. , has also filed an application to advantageously perform direct melt reduction (Japanese Patent Application Laid-Open No.
9-105818).

この場合、粉体の供給を重力落下としているため、炉上
部に設置される粉体ホッパと羽口先までの水モ面に対す
る配管角度を大きくとる必要がある。しかし角度の設定
は溶鉱炉周辺ではレイアウトに大きくとることがむずか
しい。かといって小さすぎると安定供給を阻害するため
、供給、吹込システム全体を考慮して決定されなければ
ならない。さらに本状のように羽口からのみ莫大な量の
粉、粒状鉱石を吹込む方式では、従来高炉などで補助的
な供給として行われている圧送にょる吹込方式では搬送
ガス量、配管摩耗などの問題を生じるためそのまま採用
する事は困難であり、本状に適した粉体供給、吹込装置
を別途開発する必要がある。
In this case, since the powder is supplied by falling by gravity, it is necessary to set a large piping angle with respect to the water surface between the powder hopper installed at the top of the furnace and the tip of the tuyere. However, it is difficult to set the angle in the layout around the blast furnace. On the other hand, if it is too small, stable supply will be hindered, so it must be determined by considering the entire supply and blowing system. Furthermore, in a method like this, in which a huge amount of powder or granular ore is injected only through the tuyeres, the injection method using pressure feeding, which is conventionally used as an auxiliary supply in blast furnaces, reduces the amount of conveyed gas, pipe wear, etc. It is difficult to use it as is because of the problems that arise, and it is necessary to separately develop powder supply and blowing equipment suitable for this situation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、高炉等の竪型炉の羽口へ粉体を供給する場合
に羽口近傍の環境が悪いため粉体ホッパを羽口近傍の直
上に設とすることができないので、粉体が通過する供給
管、導入管、送風管のそれぞれの角度を好適化し、導入
管への供給速度が低速の場合の粉体供給の安定を図ると
共にそれぞれの管の摩耗を防止することを目的とする。
In the present invention, when powder is supplied to the tuyere of a vertical furnace such as a blast furnace, the powder hopper cannot be installed directly above the tuyere because of the poor environment near the tuyere. The purpose is to optimize the angles of the supply pipes, introduction pipes, and blower pipes that pass through, to stabilize powder supply when the supply speed to the introduction pipes is slow, and to prevent wear on each pipe. .

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明の技術手段は次の通りである。 The technical means of the present invention are as follows.

竪型溶鉱炉羽口に連接される8風吹込用送風管の壁をl
′j通し該羽口中心部に斜めに突出した粉体原料吹込み
用導入管より粉体を供給する装置において、導入管の開
孔面が送風管の中心軸となす角度0と導入管内の粉体移
動速度UOと導入管開孔から羽口先端までの距離りとが
下記式を満足するようにしたことを特徴とする竪型溶鉱
炉羽口への粉体供給装置である。
The wall of the 8-air blowing pipe connected to the vertical blast furnace tuyere
In a device for supplying powder from an inlet pipe for blowing powder raw materials that protrudes diagonally through the center of the tuyere, the angle 0 between the opening surface of the inlet pipe and the central axis of the blower pipe and the angle in the inlet pipe. This is a powder supply device to a vertical blast furnace tuyere, characterized in that the powder moving speed UO and the distance from the introduction pipe opening to the tip of the tuyere satisfy the following formula.

Wf< [8,9X 10−IPDE AX (L 2
 +D2 ) l/2 ]/Tl1exp[(■oII
T× (L  (L2 +D2 ) l/2 )/L71X1
03 DE’ ・D2 Pl但し DE ’ =0.015 (2,5−1,5cosθ)
X e’X P  (0,05UO   O,07)x
  (Re)  0815  X uL/ pWf:上
限粉体供給速度〔kg/5ec)vo :送風空気’f
ii、%  (Nm’/ s e c:iT:送風空気
温度〔OK〕 P:送風空気圧力〔kg/Cm’) ρ:送風空気密度〔kg/m’) 終:送風空気粘度〔kg/m拳5ec)Re:送風空気
レイノルズ数〔−〕 〕D:羽ロ径m) L:導入管開孔面中心から羽口先端までの距離(m ) θ:導入管の開孔面が送風管の中心軸と接する角度〔度
〕 UO:導入管内の粉体移動速度 〔m/sec〕 DE′ :有効渦拡散係数Crn’/5ee)さらに本
発明の好ましい実施態様として導管内への粉体移動を重
力落下によることとし、さらに導入管内の搬送ガスの流
速をsm、”sec以L1しm/sec未満とするよう
にしたことを特徴とする。
Wf< [8,9X 10-IPDE AX (L 2
+D2 ) l/2 ]/Tl1exp[(■oII
T×(L(L2+D2)l/2)/L71X1
03 DE' ・D2 Pl However, DE' = 0.015 (2,5-1,5cosθ)
X e'X P (0,05UO O,07)x
(Re) 0815 X uL/ pWf: Upper limit powder supply rate [kg/5ec) vo: Blowing air 'f
ii, % (Nm'/sec: iT: Blowing air temperature [OK] P: Blowing air pressure [kg/Cm') ρ: Blowing air density [kg/m') End: Blowing air viscosity [kg/m'] fist5ec) Re: Reynolds number of the blowing air [-] ] D: Wing diameter (m) L: Distance from the center of the inlet pipe opening surface to the tip of the tuyere (m) θ: When the opening surface of the inlet pipe is Angle in contact with the central axis [degrees] UO: Powder movement speed in the introduction pipe [m/sec] DE': Effective eddy diffusion coefficient Crn'/5ee) Furthermore, as a preferred embodiment of the present invention, powder movement into the conduit is The method is characterized in that the flow rate of the carrier gas in the introduction pipe is set to be less than sm, sec and less than m/sec.

〔竹田〕[Takeda]

まず本発明の粉体供給、吹込方式を使用する溶融口元装
置の系統を、第2図に基づいて説明する。■は粉、粒状
η、石供給ホッパ、2は定量切出装置、3は供給管、4
は搬送カスを吹き込む導入管、5は送風管、6は炭素質
固体還元剤供給装置、7.7aはF下2段に、設置され
た複数の羽「1群である。この羽口群を通して、たとえ
ば高温の空気を加熱下に吹き込むことにより竪型炉内8
の充填層内に青火する。
First, the system of the melting mouth apparatus using the powder supply and blowing method of the present invention will be explained based on FIG. ■ is powder, granular η, stone supply hopper, 2 is quantitative cutting device, 3 is supply pipe, 4
7.7a is a group of multiple blades installed in the lower two stages of F. Through this group of tuyere , for example, by blowing high-temperature air under heating into the vertical furnace 8.
blue fire in the packed bed.

粉状鉱石は供給ホッパ下部の定量切出装置から排出され
供給管内を自由落下し、導入管内へ至る。ここで少量の
搬送ガスで加速されで、所定の傾斜を有する導入管内を
一定の深さを形成しながら流下して送X管内に至る。送
風管内の高速気流により拡散されて羽lコヘ吹き込まれ
し・−スウェイ部並に上下段羽口間の炭材充填層を介し
て溶融還元される。
Powdered ore is discharged from the quantitative cutting device at the bottom of the supply hopper, falls freely within the supply pipe, and reaches the introduction pipe. Here, it is accelerated by a small amount of carrier gas, and flows down the inlet pipe having a predetermined slope to a certain depth, reaching the inside of the X-transmission pipe. It is diffused by the high-speed airflow in the blast pipe and blown into the blades, where it is melted and reduced through the sway section and the carbonaceous packed bed between the upper and lower tuyeres.

粉体を溶鉱炉の羽口へ吹き込むに当っては吹き込まれた
粉体が羽口先のレースウェイ内で十分に溶融することが
必要であり、そのためには過剰なj4を吹込まず常に最
も適切な量を安定して吹き込むことが重要である。もし
過剰量が吹き込まれるとレースウェイ内で溶融しにくく
なり、充填層の閉塞原因となり円滑な操業が困難となる
からである。
When blowing powder into the tuyere of a blast furnace, it is necessary that the injected powder melts sufficiently within the raceway at the tip of the tuyere. It is important to infuse it stably. This is because if an excessive amount is blown in, it becomes difficult to melt within the raceway, causing clogging of the packed bed and making smooth operation difficult.

本発明の粉体供給装置は重力による自由落■供給を主と
するため、圧送方式のように多量の搬送ガスを必要とし
ないが粉体を安定供給するためには供給管及び導入管の
水平方向に対する取付角度を基本的には粉体の安息角以
上とする必要がある。本発明者らが実験した結果、第1
図に示すように前者の角度(θ2)は粉体流の観察から
50°以北が望ましいことが判明した。50°以上であ
れば下流に流れる流れに大差はない。従って、本装置を
溶鉱炉に設置する場合、レイアウトと50°〜90°の
範囲で任意に決めればよい事になる。50°〜90°範
囲の配管を複数組合せることも勿論可能である。
Since the powder supply device of the present invention mainly uses free-fall supply using gravity, it does not require a large amount of carrier gas unlike the pressure-feeding method, but in order to stably supply powder, it is necessary to Basically, the mounting angle with respect to the direction must be greater than the angle of repose of the powder. As a result of experiments conducted by the inventors, the first
As shown in the figure, it was found from observation of the powder flow that the former angle (θ2) is preferably north of 50°. If the angle is 50° or more, there is no significant difference in the flow flowing downstream. Therefore, when installing this device in a blast furnace, the angle can be arbitrarily determined within the range of 50° to 90° with respect to the layout. Of course, it is also possible to combine a plurality of pipings in the range of 50° to 90°.

後者の角度(02)は送風管との取合及び後述する羽口
先端部との距離などの関係で35°以下に制約されるた
め、粉体によっては流下しない。
The latter angle (02) is limited to 35° or less due to the connection with the blow pipe and the distance from the tip of the tuyere, which will be described later, so that some powders do not flow down.

しかし流速については後述するが適量の搬送カスを流す
ことによって導入管−Lに到達した粉体は滞留すること
なく導入管内の斜面にを所定の深さの粉体流となって流
下する。
However, although the flow rate will be described later, by flowing an appropriate amount of conveyed waste, the powder that has reached the introduction pipe -L does not stay and flows down the slope in the introduction pipe as a powder flow to a predetermined depth.

導入管への供給量はホッパ下部に設けられた定量切出装
置のバルブ回転数によって制御される。
The amount supplied to the inlet pipe is controlled by the valve rotation speed of a fixed-quantity cutting device provided at the bottom of the hopper.

搬送ガス穢は粉体が滞留しない最少限以上流しておけば
よく、これより多くした場合でも導入管への供給t;、
が切出清によって決まっているので羽[Iへの吹込量は
変わらないが溶鉱炉内へ流入するガス着を軽減する意味
で必要最小限が好ましい。種々の粉体の供給、吹込実験
によればこの最少流7走は第8図に示すように粉体の安
7u角が犬きくなると増加する。
The carrier gas should be allowed to flow at least as much as possible so that the powder does not accumulate, and even if the amount is more than this, it will not be necessary to supply it to the inlet pipe.
Since the amount of gas blown into the blade is determined by the cutting amount, the amount blown into the blade [I will not change, but it is preferable to keep it to the minimum necessary level in order to reduce the amount of gas flowing into the blast furnace. According to experiments on supplying and blowing various powders, this minimum flow rate increases as the angle of the powder becomes larger, as shown in FIG.

以北のように01.02を設定することによりレイアウ
ト、hの制約を十分考慮した」二での粉体の安定供給が
可能となった。尚、ホッパ内と羽[J部分との圧力を等
圧に維持するための手段としては、切出装置下部とホッ
パ内を連結する配管を設置すれば解決できる0本発明で
は供給管、及び導入管内に空間部が存在するように粉体
の供給、吹込を制御するからである。
By setting 01.02 as shown in the north, it became possible to stably supply powder at 1.02 with sufficient consideration given to layout and h constraints. In addition, as a means to maintain the pressure in the hopper and the blade [J part] at the same pressure, it can be solved by installing a pipe connecting the lower part of the cutting device and the inside of the hopper. This is because the powder supply and blowing are controlled so that a space exists within the pipe.

次に残された問題は配管、特に羽口の摩耗対策である。The next remaining issue is how to prevent wear on the piping, especially the tuyeres.

本発明は粉体の供給を重力落下としている関係で気流に
よる圧送方式と比べて粉体は分散状態とならないため粉
体と搬送ガスは分離されたような状態となり粉体流速は
圧送方式の1/10〜1/100と遅く、配管摩耗対策
上極めて有利といえる。供給管内は自由落下でその終末
速度は2〜3m/Sec、導入管内のU。は062〜3
m/secとなる。従って供給管及び導入管内の摩耗は
大きな問題にはならない、しかし送風管との合流点から
羽口先に至る部分では100〜200m/secの送風
の影響を受けるため、送風管内での摩耗、特に導入管の
先端部分及び送風管内の羽口先部分の摩耗対策を考慮し
なければならない。
In the present invention, the powder is supplied by falling by gravity, so the powder is not dispersed compared to a pressure-feeding method using airflow, so the powder and the carrier gas are separated, and the powder flow rate is 1. The speed is as slow as 1/10 to 1/100, which can be said to be extremely advantageous in terms of pipe wear countermeasures. The inside of the supply pipe is a free fall with a terminal velocity of 2 to 3 m/Sec, and U inside the introduction pipe. is 062~3
m/sec. Therefore, wear inside the supply pipe and introduction pipe is not a big problem. However, since the part from the confluence with the blow pipe to the tip of the tuyere is affected by air flow of 100 to 200 m/sec, wear inside the blow pipe, especially the introduction pipe, is not a big problem. Countermeasures against wear at the tip of the pipe and the tip of the tuyere inside the blast pipe must be considered.

木発明者らは種々の模型実験を実施し羽口先端部の摩耗
が導入管の先端開孔面の形状特に送風管中心軸との相対
角度が送風管内での粉体の拡散状況に多大な影響を及ぼ
すことを粉体流の観察結果及び配管内の摩耗状況から発
見した。
The inventors conducted various model experiments and found that wear at the tip of the tuyere greatly affects the state of powder dispersion within the blast tube due to the shape of the aperture surface at the tip of the introduction tube, especially the relative angle to the central axis of the blast tube. It was discovered from the observation results of powder flow and the state of wear inside the piping that this had an effect.

乱流中の1点から粉流体を吹込んだ場合、粉流体は乱流
中の渦拡散によって次第に拡がり混合していく、この時
の粉流体と乱流体との比は(1)式で示されることが知
られている。
When powder fluid is injected from one point in turbulent flow, the powder fluid gradually spreads and mixes due to eddy diffusion in the turbulent flow.The ratio of powder fluid to turbulent fluid at this time is shown by equation (1). It is known that

φcal= (Wf*Ust r) / (4πWa’ * DB e 5)exp (−U
st r (S−1)/2DE )・・・・・・(1) DE =0.0154 (Re) 0875/ 1・・
・・・・(2) ここに、 Wf:粉体吹込速度 〔kg/5ec)Ustr:乱流
速度 〔m/sec〕 Wa’:乱流質量速度〔kg/rr1′・SeC〕S:
fQ線の長さくm) 見:吹込点からの軸方向距離〔m〕 ρ:乱流体の密度〔kg/m’) u、:乱流体の粘度〔kg/m@5ec)Re:乱流体
のレイノルズ数〔−〕 DE:渦拡散係数(rn’/5ec) である。
φcal= (Wf*Ustr)/(4πWa'*DB e5)exp (-U
str (S-1)/2DE)... (1) DE =0.0154 (Re) 0875/ 1...
...(2) Where, Wf: Powder injection speed [kg/5ec] Ustr: Turbulent flow speed [m/sec] Wa': Turbulent mass velocity [kg/rr1'・SeC] S:
fQ line length (m) See: Axial distance from the injection point [m] ρ: Density of turbulent fluid [kg/m') u,: Viscosity of turbulent fluid [kg/m@5ec) Re: Distance of turbulent fluid Reynolds number [-] DE: Eddy diffusion coefficient (rn'/5ec).

L記(2)式を用いて渦拡散係数DEを求め、配管内の
摩耗状況との対応を求めてφcalを算出した結果2.
0X10−4が摩耗限界であることがわかった。相対角
度03を変化させ、摩耗を生じない限界長さ文を求めφ
=’z、oxto−+を(1)式に午えてDEを計算す
ると、第5図(a)に示すように相対角度03=0つま
り同一軸面に設置した場合の渦拡散係数DEが最少とな
り0.014rn’ / s e cとなる。従って導
入管と送風管の接合する部分の開孔面は送風管の中心軸
と一致させるのがよいことが明らかになった0次に搬送
ガス流計を変化させて(粉体を導入管内で移送させる)
粉体流速を変化させ、流速UOのDEに及ぼす効果を0
3と同様の手法で検討した結果、第5図(b)に示すよ
うに渦拡散係数DBはUOの増加と共にアップすること
がわかった。以上から03及びUOの効果を補正して有
効製拡散係数DE′を求める実験式(3)をえることが
できた。
2. The eddy diffusion coefficient DE was determined using the equation (2) in L, and φcal was calculated by determining the correspondence with the wear condition in the piping.
It was found that 0x10-4 was the wear limit. Change the relative angle 03 and find the limit length that does not cause wear φ
='z, oxto-+ is calculated using equation (1), and as shown in Figure 5 (a), the relative angle 03 = 0, that is, the eddy diffusion coefficient DE is the minimum when installed on the same axial plane. Therefore, it becomes 0.014rn'/sec. Therefore, it became clear that it is best to align the aperture surface of the joint between the introduction pipe and the blower pipe with the central axis of the blower pipe. transport)
By changing the powder flow rate, the effect of flow rate UO on DE is reduced to 0.
As a result of investigation using the same method as in 3, it was found that the eddy diffusion coefficient DB increases as the UO increases, as shown in FIG. 5(b). From the above, we were able to obtain the experimental formula (3) for calculating the effective diffusion coefficient DE' by correcting the effects of 03 and UO.

DE ’ =0.015 (2,5−1,5c o s
θ)Xexp (0,05UO −0,07)X (R
e) 0815×g/p−(3)ここに、 0:導入管の開孔面が送風管の中心軸と接する角度(O
≦θ≦90) UO :導入管内の粉体供給速度 Re+送風空気レイノルズ数 牌:送風空気粘度 p:送風空気密度 である。
DE' = 0.015 (2,5-1,5cos
θ)Xexp (0,05UO -0,07)X (R
e) 0815×g/p-(3) where, 0: Angle (O
≦θ≦90) UO: Powder supply speed Re in the introduction pipe + Reynolds number of blown air Tile: Viscosity of blown air p: Density of blown air.

次に、送風管径、羽口先端位置から導入管開孔面先端と
の距離を定めるため粉体供給速度との関係を求めなけれ
ばならない、(1)式に本発明の粉体供給実験で得られ
た摩耗を生じない限界φ=2.0X10−4を与えWf
を求めると(4)式がえられる。
Next, in order to determine the diameter of the blast pipe and the distance from the position of the tip of the tuyere to the tip of the opening surface of the inlet pipe, the relationship with the powder supply rate must be found. Given the obtained limit φ = 2.0X10-4 that does not cause wear, Wf
By calculating, equation (4) is obtained.

Wf =  [8,9X I O−’FD+:X  (
L 2  +D 2 )  !/ 2 ]/T・ ex
p  [(V(、aTX (L   (L2  +D2 )  I/2  ’j/
1.71X103  DE  @D2  F]・・・・
・・(4) この(4)式中のDEに(3)式で求めたDE′を入れ
ることによって、送風条件粉体供給条件が定まれば導入
管先端の取付場所が定まる。
Wf = [8,9X I O-'FD+:X (
L2 + D2)! / 2] /T.ex
p [(V(, aTX (L (L2 +D2) I/2 'j/
1.71X103 DE @D2 F]...
...(4) By substituting DE' obtained by equation (3) into DE in equation (4), once the air blowing conditions and powder supply conditions are determined, the installation location of the tip of the introduction tube is determined.

第6図にその例を示したが、斜線部分が羽口先の摩耗を
防止できる領域である。
An example is shown in FIG. 6, and the shaded area is the area where wear of the tuyere tip can be prevented.

次の問題点は導入管先端の粉体摩耗である0本方式は粉
体の飛出速度が遅いため、導入管先端部で送風空気によ
って発生する渦流の影響を大きく受け、粒子が先端部上
面に衝突して内面から摩耗侵食されてしまう、飛出流速
の速い圧送方式はみられなかった現象である。ここでも
本発明者らは模型実験で鋭意検討を重ねた結果、搬送ガ
ス流速の増加が渦発生防止に効果があることが判明した
。しかし搬送ガス流速を大きくとりすぎると粒子の飛出
角度が下向きとなりすぎ、送風管底面の摩耗を引き起こ
すこともわかった。種々検討した結果、5 m / s
 e c以上15m/sec未満で導入管先端部も羽口
周辺も摩耗することなく安定した吹込ができた。以上の
関係を第4図に示す。
The next problem is powder abrasion at the tip of the inlet tube.With the 0-piece method, the powder ejects at a slow speed, so it is greatly affected by the eddy current generated by the blown air at the tip of the inlet tube, and the particles fall onto the upper surface of the tip. This is a phenomenon that has not been observed in pumping systems with high extrusion flow speeds, which cause abrasion and erosion from the inner surface due to impact. As a result of intensive studies conducted by the present inventors through model experiments, it was found that increasing the flow rate of the carrier gas is effective in preventing the generation of vortices. However, it was also found that if the flow rate of the carrier gas is set too high, the flying angle of the particles becomes too downward, causing wear on the bottom of the blast tube. As a result of various studies, 5 m/s
Stable blowing was possible without abrasion at the tip of the introduction tube or around the tuyere at a speed of ec or more and less than 15 m/sec. The above relationship is shown in FIG.

以上のように溶鉱炉羽口へ粉体を重力落下を主体として
供給する木刀式では供給管の水モ面との角度を50’以
」二、導入管の水平面どの角度を30〜35°、導入管
と送風管の接合する部分の開孔面をDE′が最少となる
ように送風管の中心軸と一致させ、取付位置は(3)、
(4)式を満足する領域とすることで配管内粉体の棚つ
り閉塞及び羽口先摩耗を生じることなく、搬送ガス流速
を5m/sec以上15m/S8C未満に維持すること
によって安定した粉体の定量吹込が可能となることが明
らかになった0本発明は高炉における粉体の補助的吹込
としても十分に活用できる。
As mentioned above, in the wooden sword method, which supplies powder to the blast furnace tuyere mainly by gravity fall, the angle between the supply pipe and the water surface is set at 50' or more, and the horizontal plane of the introduction pipe is set at an angle of 30 to 35°. The opening surface of the part where the pipe and the blower pipe join is aligned with the central axis of the blower pipe so that DE' is minimized, and the installation position is (3).
By keeping the formula (4) in the range that satisfies the equation, there will be no shelf blockage of the powder in the piping and wear of the tuyere tips, and by maintaining the carrier gas flow velocity between 5 m/sec and 15 m/S8C, the powder can be stabilized. The present invention, which has been shown to enable quantitative injection of powder, can be fully utilized as an auxiliary injection of powder in blast furnaces.

未発明により、重力落下供給吹込方式としてのL/イ7
ウト−ヒの制約と安定供給の2面性を考慮したシステム
全体としての水平面に対する配管取付角度の設定、及び
送風管または羽口内の摩耗防止を考慮した送風管との取
付部の形状、位置の設定を行うことにより、極めて少な
い搬送ガス量を用いて、重力落下を主体とする粉体供給
吹込を、レイアウト−ヒの制約を最少限として、安定的
に吹込み操業することが可能となった。
Due to uninvention, L/I7 as a gravity drop supply blowing method
Setting the piping installation angle with respect to the horizontal plane for the system as a whole, taking into account the two-sided nature of supply constraints and stable supply, and determining the shape and position of the attachment part with the blower pipe, taking into account the prevention of wear inside the blower pipe or tuyere. By configuring the settings, it is now possible to stably operate powder supply blowing, which is mainly based on gravity falling, using an extremely small amount of carrier gas, with minimal layout constraints. .

〔実施例〕〔Example〕

実施例I 第1図に実施例の系統図を示した。図中に示されている
諸元は次の通りである。
Example I FIG. 1 shows a system diagram of the example. The specifications shown in the figure are as follows.

供給管の傾斜0.=80°、70’ 導入管の傾斜θ2=35゜ 導入管開口の角度θ3=0 導入管の開口から羽口までの距離 L=300mm 送風管内径2D= 100mm この試験炉を用いて粉体吹込実験を行った。Supply pipe slope 0. =80°, 70' Inclination of introduction pipe θ2 = 35° Introductory tube opening angle θ3=0 Distance from the opening of the introduction pipe to the tuyere L=300mm Blower pipe inner diameter 2D = 100mm Powder injection experiments were conducted using this test furnace.

粉体:安9角がそれぞれ35°、37.5°、40°の
3種の粉体 溶鉱炉内径+1.2m 送風羽口:上段 3本 下段 3本 送風isl : 250〜350 N rnj/ h 
r羽[J温度=800℃ 圧カニ0.6kg/Cm” 羽口径:50φmm 供給管内径:50φ 導入管内径:25φ 搬送ガス:N2ガス −に記試験炉を用いて、粉体吹込実験を行い供給管角度
01.導入管角度θ2を検討した結果を第8図に示す。
Powder: Three types of powder blast furnaces with angles of 35°, 37.5°, and 40°, respectively. Inner diameter of blast furnace + 1.2 m. Blowing tuyeres: 3 on the upper stage, 3 on the lower stage. Air blowing isl: 250 to 350 N rnj/h.
R wing [J temperature = 800°C Pressure crab 0.6 kg/Cm" Wing diameter: 50 φ mm Supply pipe inner diameter: 50 φ Introductory pipe inner diameter: 25 φ Carrier gas: N2 gas - Powder injection experiment was conducted using the test furnace described in The results of examining the supply pipe angle 01 and the introduction pipe angle θ2 are shown in FIG.

01が50°以下では粉体の流れが不安定で、時として
管内に滞留し棚つりの原因となり、50°以上が好まし
い結果となった。
When 01 is less than 50°, the flow of the powder is unstable, and it sometimes stays in the tube, causing shelf suspension, whereas a value of 50° or more is preferable.

01は60°、02は30’、35°で行い各種粉体の
安定吹込のために必要な搬送ガス流量を検討した結果、
第8図に示すような曲線かえられ、粉体の安5u角に応
じたある値以−Lの搬送ガスを流すことによって、安定
した粉体供給、吹込を行うことができた。
As a result of examining the carrier gas flow rate required for stable blowing of various powders,
By changing the curve as shown in FIG. 8 and flowing a carrier gas of a certain value or more according to the 5u angle of the powder, stable powder supply and blowing could be performed.

実施例2 実施例1と同様の仕様のコールドモデルを製作し、羽口
送風管、羽口をアクリル製とし、管内面の摩耗状況から
導入管と送風管との接合する部分の開孔面と送風管中心
軸との取付角度03を検討した結果、第5図に示すよう
に03=Oで最小となり、この時の渦拡散係数DBを(
2)式より求めテDE =0.OL 4m’/ s e
 cを得、この値を(1)式に代入してφcal=2.
0X10−4を求めた。φcal=2.0X10−’で
は管内摩耗は全く生じていないことから(1)式にφc
al=2.0X10−4及びo3=oにおけるDE=0
.014m’/ s e cをそれぞれ代入するとWf
 = [8,82X I 0−3F A×(L 2 +
D2 ) l/2 ] /T@eXp[(volIT× (L  (第2 +D2 ) l/2 )/9.57x
 10−2] かえられた。
Example 2 A cold model with the same specifications as Example 1 was manufactured, and the tuyere blower pipe and tuyere were made of acrylic, and the aperture surface of the joint between the introduction pipe and the blower pipe was determined from the wear condition of the inner surface of the pipe. As a result of examining the installation angle 03 with respect to the center axis of the blower pipe, as shown in Fig. 5, it becomes the minimum at 03=O, and the eddy diffusion coefficient DB at this time is (
2) Determine from the formula DE=0. OL 4m'/s e
c, and substitute this value into equation (1) to obtain φcal=2.
0X10-4 was determined. When φcal=2.0X10-', no wear occurred inside the pipe, so φc
DE=0 at al=2.0X10-4 and o3=o
.. By substituting 014m'/s e c, Wf
= [8,82X I 0-3F A×(L 2 +
D2 ) l/2 ] /T@eXp[(volIT× (L (2nd + D2 ) l/2 )/9.57x
10-2] Changed.

この実験式は送風条件が定まればL限粉体吹込速度と導
入管と送風羽口先端との距離が定まることを示している
This experimental formula shows that once the blowing conditions are determined, the L-limit powder blowing speed and the distance between the introduction pipe and the tip of the blowing tuyere are determined.

次にこの式を満足する値L=O,12m、D=0、05
 mφで実施例1の溶鉱炉でホット実験を行った結果、
羽口を摩耗させることなく安定して粉体の蜜漬吹込を行
うことができた。
Next, the value that satisfies this formula L=O, 12m, D=0, 05
As a result of conducting a hot experiment in the blast furnace of Example 1 with mφ,
It was possible to stably inject powder into honey without wearing out the tuyeres.

実施例3 実施例1と同様の仕様のコールドモデルを製作し、羽口
送風管1羽口をアクリル製とし、搬送ガス流速を変化さ
せ、管内面の摩耗状況から搬送ガス流速の適正域を検討
した結果、5m/sec以下では飛出粒子が導入管先端
部の内面に衝突し摩耗が著しい、5m/sec以上とす
ると飛出粒子の角度が徐々に下向きに変化してくる。こ
のため送風管下面の羽[1周辺が摩耗し始め、15m/
sec以北では顕著になるため好ましくない、従って5
m/sec以上15m/sec未満が適切な範囲である
ことがわかった。
Example 3 A cold model with the same specifications as Example 1 was manufactured, one tuyere of the tuyere blow pipe was made of acrylic, the carrier gas flow rate was changed, and the appropriate range of the carrier gas flow rate was examined based on the wear condition of the inner surface of the tube. As a result, when the speed is less than 5 m/sec, the ejected particles collide with the inner surface of the tip of the introduction tube, causing significant wear, and when the speed is more than 5 m/sec, the angle of the ejected particles gradually changes downward. As a result, the area around the blade [1] on the lower surface of the blower pipe began to wear out, and
It is not preferable because it becomes noticeable north of sec, therefore 5
It was found that a suitable range is m/sec or more and less than 15 m/sec.

〔発明の効果〕〔Effect of the invention〕

重力落丁供給吹込方式としてのレイアウト、hの制約と
安定供給の2而性を考慮したシステム全体と1.ての水
モ面に対する配管取付角度の設定、及び送風管または羽
口内の摩耗防止を考慮した送風管との取付部の形状、位
置の設定、吹込管内へ流す搬送ガス流樋を適正レベルに
設定するなどにより、搬送ガス量の極めて少ない、重力
落下を主体とする粉体供給吹込装置をレイアウト上の制
約を最小限として実現することができ、竪型溶融炉の安
定吹込操業が可能となった。
The layout of the gravity drop supply blowing method, the entire system considering the constraints of h and stable supply, and 1. Setting the piping installation angle with respect to the water flow surface, setting the shape and position of the attachment part with the blast pipe in consideration of preventing wear inside the blast pipe or tuyere, and setting the carrier gas flow gutter that flows into the blow pipe to an appropriate level. By doing this, we were able to create a powder supply blowing device that uses gravity drop as its main method, with an extremely small amount of carrier gas, with minimal layout constraints, and stable blowing operation of vertical melting furnaces became possible. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は(a)粉体供給、吹込装置の系統図及び(b)
羽口周辺取合図、第2図は粉体吹込装置レイアウト例を
示す系統図、第3図は配管取付角度の粉体吹込速度に及
ぼす影響を示すグラフ、第4図は導入管先端部及び羽口
先が摩耗しないための搬送ガスの関係を示すグラフ、第
5(a)図は導入管と送風管の接合する部分の開孔面が
送風管の中心軸と接する角度θ3と(1)式でφcal
=2−OXIO−4として求まる渦拡散係数DE′との
関係を示すグラフ、第5(b)図は導入管内粉体流速U
、とD6′の関係を示すグラフ、第6図は送風条件が定
まっている場合の羽口先が摩耗しないための上限粉体の
吹込速度Wfと導入管先端から羽口先端までの距離の関
係を示すグラフ、第7図は粉体切出速度とロータリーバ
ルブ回転数の関係を示すグラフ、第8図は各種粉体の吹
込に必要な搬送ガス下限流速と上限吹込速度との関係を
示すグラフである。 l・・・粉粒状鍼石ホッパ 2・・・定量切出装置3・
・・供給管      4・・・導入管5・・・送風管 6・・・炭素質固体還元剤供給装置 7・・・」二段羽口群    7a・・・下段羽口群8
・・・竪型炉
Figure 1 shows (a) a system diagram of powder supply and blowing equipment, and (b)
Figure 2 is a system diagram showing an example of the powder blowing device layout; Figure 3 is a graph showing the influence of the piping installation angle on the powder blowing speed; Figure 4 is a diagram showing the arrangement around the inlet pipe and the blade. Figure 5 (a), a graph showing the relationship between the carrier gas to prevent the tip from wearing out, shows the angle θ3 at which the aperture surface of the joining part of the introduction pipe and the blower pipe touches the central axis of the blower pipe, and the equation (1). φcal
Figure 5(b) is a graph showing the relationship between the eddy diffusion coefficient DE' and the eddy diffusion coefficient DE' determined as =2-OXIO-4.
, and D6', and Figure 6 shows the relationship between the upper limit powder blowing speed Wf to prevent the tuyere tip from wearing out and the distance from the inlet pipe tip to the tuyere tip when the air blowing conditions are fixed. Figure 7 is a graph showing the relationship between powder extraction speed and rotary valve rotation speed, and Figure 8 is a graph showing the relationship between carrier gas minimum flow rate and upper limit blowing speed required for blowing various powders. be. l...Powdered acupuncture stone hopper 2...Quantitative cutting device 3.
...Supply pipe 4...Introduction pipe 5...Blower pipe 6...Carbonaceous solid reducing agent supply device 7..." Two-stage tuyere group 7a...Lower-stage tuyere group 8
・・・Vertical furnace

Claims (1)

【特許請求の範囲】 1 竪型溶鉱炉羽口に連接される熱風吹込用送風管の壁
を貫通し該羽口中心部に斜めに突出した粉体原料吹込み
用導入管より粉体を供給する装置において、導入管の開
孔面が送風管の中心軸となす角度θと導入管内の粉体移
動速度U_Oと導入管開孔から羽口先端までの距離Lと
が下記式を満足することを特徴とする竪型溶鉱炉羽口へ
の粉体供給装置。 Wf<[8.9×10^−^1PD_E ×(L^2+D^2)^1^/^2] /T・exp[{Vo・T× (L−(L^2+D^2)^1^/^2} /1.71×10^3D_E’・D^2P]但し D_E’=0.015(2.5−1.5cosθ)×e
xp(0.05U_O−0.07) ×(Re)0.875×μ/ρ Wf:上限粉体供給速度〔kg/sec〕 V_O:送風空気流量〔Nm^2/sec〕T:送風空
気温度〔^0K〕 P:送風空気圧力〔kg/cm^2〕 ρ:送風空気密度〔kg/m^3〕 μ:送風空気粘度〔kg/m・sec〕 Re:送風空気レイノルズ数〔−〕 D:羽口径〔m〕 L:導入管開孔面中心から羽口先端までの 距離〔m〕 θ:導入管の開孔面が送風管の中心軸と接する角度〔度
〕 U_O:導入管内の粉体移動速度 〔m/sec〕 D_E’:有効渦拡散係数〔m^2/sec〕2 導入
管内への粉体移動を重力落下で供給することを特徴とす
る特許請求の範囲第1項に記載の竪型溶鉱炉羽口への粉
体供給装置。 3 導入管内の搬送ガスの管内流速が5m/sec以上
15m/sec未満であることを特徴とする特許請求の
範囲第1項に記載の竪型炉溶鉱炉羽口への粉体供給装置
[Scope of Claims] 1. Powder is supplied from an inlet pipe for blowing powder raw material that penetrates the wall of a hot air blowing pipe connected to a vertical blast furnace tuyere and protrudes obliquely to the center of the tuyere. In the device, it is confirmed that the angle θ formed by the aperture surface of the inlet pipe with the central axis of the blast pipe, the powder movement speed U_O in the inlet pipe, and the distance L from the inlet pipe aperture to the tip of the tuyere satisfy the following formula. Features: Powder feeding device to the vertical blast furnace tuyere. Wf<[8.9×10^-^1PD_E ×(L^2+D^2)^1^/^2] /T.exp[{Vo.T× (L-(L^2+D^2)^1^) /^2} /1.71×10^3D_E'・D^2P] However, D_E'=0.015(2.5-1.5cosθ)×e
xp(0.05U_O-0.07) ×(Re)0.875×μ/ρ Wf: Upper limit powder supply rate [kg/sec] V_O: Blow air flow rate [Nm^2/sec] T: Blow air temperature [^0K] P: Blowing air pressure [kg/cm^2] ρ: Blowing air density [kg/m^3] μ: Blowing air viscosity [kg/m・sec] Re: Blowing air Reynolds number [-] D : Tuyere diameter [m] L: Distance from the center of the inlet tube aperture surface to the tip of the tuyere [m] θ: Angle at which the inlet tube aperture surface touches the central axis of the blast tube [degrees] U_O: Powder inside the inlet tube Body movement speed [m/sec] D_E': Effective eddy diffusion coefficient [m^2/sec]2 According to claim 1, the powder is moved into the introduction pipe by gravity fall. A device for feeding powder to the tuyere of a vertical blast furnace. 3. The powder supply device to the vertical furnace blast furnace tuyeres according to claim 1, wherein the flow velocity of the carrier gas in the introduction pipe is 5 m/sec or more and less than 15 m/sec.
JP22535586A 1985-12-16 1986-09-24 Apparatus for supplying powdery substance to vertical furnace Granted JPS62228419A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-282538 1985-12-16
JP28253885 1985-12-16

Publications (2)

Publication Number Publication Date
JPS62228419A true JPS62228419A (en) 1987-10-07
JPH0372126B2 JPH0372126B2 (en) 1991-11-15

Family

ID=17653765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22535586A Granted JPS62228419A (en) 1985-12-16 1986-09-24 Apparatus for supplying powdery substance to vertical furnace

Country Status (1)

Country Link
JP (1) JPS62228419A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7076192B2 (en) * 2002-12-27 2006-07-11 Ricoh Company, Ltd. Powder conveying device and image forming apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7076192B2 (en) * 2002-12-27 2006-07-11 Ricoh Company, Ltd. Powder conveying device and image forming apparatus using the same

Also Published As

Publication number Publication date
JPH0372126B2 (en) 1991-11-15

Similar Documents

Publication Publication Date Title
CN85107375A (en) Produce the device of flammable solid particle-gas suspension stream
CN101705369A (en) Process and device for smelting copper by pulsation vortex method
US6989042B2 (en) Direct smelting process and apparatus
CN108660310A (en) A kind of Iron Ore Powder efficiently preheats prereduction device and technique
KR970009084B1 (en) Apparatus for melting fine coals and method of melting the same using the apparatus
KR20000047372A (en) Process and apparatus for producing metal from metal ores
JPS62228419A (en) Apparatus for supplying powdery substance to vertical furnace
JP6677695B2 (en) Copper rotary flotation smelting process
CN1061689C (en) Melting gasifier for producing molten metals
CN105154686A (en) Suspension smelting method and suspension smelting nozzle
CN106521068A (en) Rotational flow iron smelting method and rotational flow iron smelting device
JPS6118633A (en) Apparatus for transferring and supplying constant quantity of powder
CN108800119A (en) A kind of smelting furnace undercurrent spray combustion device
JPS59104083A (en) Device for transferring and blowing in spare reducing ore inmelting reducing device
JPH11310814A (en) Smelting reduction furnace
JPS59140313A (en) Transporting equipment of granular ore in melting and reducing apparatus
JPS59159907A (en) Method for preventing clogging in transfer pipe for preliminarily reduced high temperature granular ore
JPS5976832A (en) Blowing device for transferring preliminarily reduced ore in melt reduction device
JPS5880491A (en) Method and system for supplying reducing agent for rotary kiln
JPS6360802B2 (en)
US4915731A (en) Metallurgical method and apparatus
JPS59140311A (en) Equipment for transporting and blasting prereduced ore
JPS5948841B2 (en) Transfer device for powdery pre-reduced ore in smelting reduction equipment
JP2005240089A (en) Method and apparatus for injecting pulverized fine coal
JPS59159908A (en) Method for preventing clogging in transfer pipe for preliminarily reduced high temperature granular ore

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees