JP2005236678A - Receiver for mobile object - Google Patents

Receiver for mobile object Download PDF

Info

Publication number
JP2005236678A
JP2005236678A JP2004043472A JP2004043472A JP2005236678A JP 2005236678 A JP2005236678 A JP 2005236678A JP 2004043472 A JP2004043472 A JP 2004043472A JP 2004043472 A JP2004043472 A JP 2004043472A JP 2005236678 A JP2005236678 A JP 2005236678A
Authority
JP
Japan
Prior art keywords
antenna
frequency
correction
doppler
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004043472A
Other languages
Japanese (ja)
Inventor
Atsushi Kosaka
敦志 匂坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004043472A priority Critical patent/JP2005236678A/en
Publication of JP2005236678A publication Critical patent/JP2005236678A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a receiver for a mobile object which reduces the influence of Doppler variation, using simple processings. <P>SOLUTION: This receiver 1, for a mobile object which is mounted on a mobile object and receives modulated radio waves, is provided with a first antenna 2 having directivity in a moving direction of the mobile object, a second antenna 3 having directivity in a direction reverse to the moving direction of the mobile object, a correction means 7 for correcting a reception signal received by the first antenna 2 and also correcting a reception signal received by the second antenna 3, and a combining means 7 for combining two correction signals which have been corrected by the correction means 7. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、変調された電波を受信するための移動体用受信装置に関する。   The present invention relates to a mobile receiver for receiving modulated radio waves.

地上波デジタル放送も開始し、変調された電波を自動車等の移動体において受信する受信装置の開発が進められている。地上波デジタル放送の伝送方式として、直交波周波数分割多重(以下、OFDM[Orthogonal Frequency Division Multiplexing]と記載する)方式が用いられている。OFDM方式は、無線等に用いられるデジタル変調方式であり、狭い周波数の範囲を効率的に利用した広帯域伝送に適している。   Terrestrial digital broadcasting has also begun, and development of receivers that receive modulated radio waves in a moving body such as an automobile is underway. An orthogonal wave frequency division multiplexing (hereinafter referred to as OFDM [Orthogonal Frequency Division Multiplexing]) method is used as a transmission method for terrestrial digital broadcasting. The OFDM scheme is a digital modulation scheme used for radio and the like, and is suitable for wideband transmission that efficiently utilizes a narrow frequency range.

移動体において電波を受信する場合、移動体が高速になるほど、ドップラ効果による受信周波数の偏移(ドップラシフト)が大きくなる。特に、OFDM方式の場合、搬送波の周波数に対してプラス側及びマイナス側の両方に拡がりを有するドップラ分散の影響を受け易く、ドップラ分散の影響により回線品質が劣化する。そこで、移動体用受信装置には、指向性を有する複数のアンテナによってドップラ分散の影響を抑えるものがある(特許文献1参照)。この移動体用受信装置には、例えば、指向性アンテナによる受信信号と既知信号との相互相関ベクトルを算出し、この相互相関ベクトルによってフェージング変動の平均値を算出し、その平均値に基づいてドップラシフトを補正するものがある。
特開2003−87213号公報 特開2003−283405号公報
When a radio wave is received by a mobile body, the shift of the reception frequency (Doppler shift) due to the Doppler effect increases as the mobile body becomes faster. In particular, in the case of the OFDM system, it is easily affected by Doppler dispersion having a spread on both the plus side and the minus side with respect to the frequency of the carrier wave, and the line quality deteriorates due to the influence of Doppler dispersion. Therefore, some mobile receivers suppress the influence of Doppler dispersion by using a plurality of antennas having directivity (see Patent Document 1). In this mobile receiver, for example, a cross-correlation vector between a received signal by a directional antenna and a known signal is calculated, an average value of fading fluctuation is calculated based on the cross-correlation vector, and Doppler is calculated based on the average value. There is something that corrects the shift.
JP 2003-87213 A JP 2003-283405 A

しかしながら、従来の移動体用受信装置は、ドップラ分散の影響を軽減するために相互相関ベクトルやフェージング変動の平均値の算出等を行わなければならないので、処理が複雑化する。そのため、この移動体用受信装置は、構成が複雑化し、高コストとなる。   However, since the conventional mobile receiver has to calculate a cross-correlation vector and an average value of fading fluctuations in order to reduce the influence of Doppler dispersion, the processing becomes complicated. Therefore, the configuration of the mobile receiver is complicated and expensive.

そこで、本発明は、簡単な処理によりドップラ分散の影響を軽減する移動体用受信装置を提供することを課題とする。   Therefore, an object of the present invention is to provide a mobile receiver that reduces the influence of Doppler dispersion by simple processing.

本発明に係る移動体用受信装置は、移動体に搭載され、変調された電波を受信するための移動体用受信装置であって、移動体の移動方向側に指向性を有する第1アンテナと、移動体の移動方向とは逆方向側に指向性を有する第2アンテナと、第1アンテナで受信した受信信号を補正するとともに第2アンテナで受信した受信信号を補正する補正手段と、補正手段で補正した2つの補正信号を合成する合成手段とを備えることを特徴とする。   A mobile receiver according to the present invention is a mobile receiver for receiving a modulated radio wave mounted on a mobile, the first antenna having directivity on the moving direction side of the mobile, A second antenna having directivity in the direction opposite to the moving direction of the moving body, a correction means for correcting the received signal received by the first antenna and correcting the received signal received by the second antenna, and a correcting means And a synthesizing unit for synthesizing the two correction signals corrected in (1).

この移動体用受信装置では、第1アンテナにより移動体の移動方向側からの電波を受信するとともに、第2アンテナにより移動方向とは逆方向側からの電波を受信する。そして、移動体用受信装置では、補正手段により第1アンテナで受信した受信信号におけるドップラシフトを補正するとともに第2アンテナで受信した受信信号におけるドップラシフトを補正する。さらに、移動体用受信装置では、合成手段によりその補正を施した2つの補正信号を合成する。この合成信号は、プラス側のドップラシフトとマイナス側のドップラシフトがそれぞれ補正された信号が合成された信号なので、ドップラ分散が抑えられた信号となっている。このように、移動体用受信装置では、2つの受信信号を補正後に合成するだけの簡単な処理により、ドップラ分散の影響を軽減することができる。そのため、移動体用受信装置は、簡単な構成となり、低コストで構成できる。なお、変調された電波としては、特に、変調方式を限定しないので、アナログ変調でも、デジタル変調でもよい。   In this mobile receiver, the first antenna receives radio waves from the moving direction side of the moving body, and the second antenna receives radio waves from the direction opposite to the moving direction. In the mobile receiver, the correcting means corrects the Doppler shift in the received signal received by the first antenna and corrects the Doppler shift in the received signal received by the second antenna. Further, in the mobile receiver, two correction signals subjected to the correction by the combining unit are combined. Since this combined signal is a signal obtained by combining signals obtained by correcting the plus side Doppler shift and the minus side Doppler shift, the Doppler dispersion is suppressed. As described above, the mobile receiver can reduce the influence of Doppler dispersion by a simple process of combining two received signals after correction. Therefore, the mobile receiver can be configured at a low cost with a simple configuration. Note that the modulated radio wave is not particularly limited, and may be analog modulation or digital modulation.

本発明の上記移動体用受信装置では、補正手段は、受信信号の電力分布がバランスする周波数を用いて補正する構成としてもよい。   In the mobile receiver according to the present invention, the correcting means may correct the frequency using a frequency that balances the power distribution of the received signal.

この移動体用受信装置では、各受信信号がドップラシフトによって搬送波の周波数に対して所定の拡がりを有する電力分布となっているので、その各受信信号の電力分布がバランスする周波数をそれぞれ求め、その各周波数を用いて各受信信号を補正する。このように、電力分布がバランスする周波数を用いることによって、電力分布に偏りがあってもその偏りを反映した適正な補正を行うことができるので、ドップラ分散の軽減効果を向上させることができる。   In this mobile receiver, each received signal has a power distribution having a predetermined spread with respect to the frequency of the carrier wave by Doppler shift. Therefore, a frequency at which the power distribution of each received signal is balanced is obtained, Each received signal is corrected using each frequency. As described above, by using the frequency at which the power distribution is balanced, even if the power distribution is biased, appropriate correction reflecting the bias can be performed, so that the effect of reducing Doppler dispersion can be improved.

本発明の上記移動体用受信装置では、補正手段は、移動体の速度に基づいて電力分布がバランスする周波数を求める構成としてもよい。   In the moving body receiving apparatus of the present invention, the correcting means may be configured to obtain a frequency at which the power distribution is balanced based on the speed of the moving body.

この移動体用受信装置では、移動体の速度によって受信信号の電力分布が決まるので、移動体の速度から電力分布がバランスする周波数を簡単に求めることができる。   In this mobile receiver, since the power distribution of the received signal is determined by the speed of the mobile body, the frequency at which the power distribution is balanced can be easily obtained from the speed of the mobile body.

本発明によれば、簡単な処理により、ドップラ分散の影響を軽減することができる。   According to the present invention, the influence of Doppler dispersion can be reduced by a simple process.

以下、図面を参照して、本発明に係る移動体用受信装置の実施の形態を説明する。   Embodiments of a mobile receiver according to the present invention will be described below with reference to the drawings.

本実施の形態では、本発明に係る移動体受信装置を、自動車に搭載され、OFDM方式で変調された電波を受信する車載用受信装置に適用する。本実施の形態に係る車載用受信装置は、自動車の前後方向に指向性を有する2本のアンテナを備えており、この2本のアンテナで電波を受信する。   In the present embodiment, the mobile receiver according to the present invention is applied to an in-vehicle receiver that is mounted on an automobile and receives radio waves modulated by the OFDM method. The in-vehicle receiving apparatus according to the present embodiment includes two antennas having directivity in the front-rear direction of the automobile, and receives radio waves with these two antennas.

図1〜図3を参照して、車載用受信装置1の構成について説明する。図1は、本実施の形態に係る車載用受信装置の構成図である。図2は、図1のドップラ補正/合成部における処理の説明図である。図3は、図1の2本の指向性アンテナによる受信信号の電力分布及び補正信号の電力分布を示す図である。   With reference to FIGS. 1-3, the structure of the vehicle-mounted receiving apparatus 1 is demonstrated. FIG. 1 is a configuration diagram of a vehicle-mounted receiving device according to the present embodiment. FIG. 2 is an explanatory diagram of processing in the Doppler correction / synthesis unit of FIG. FIG. 3 is a diagram showing the power distribution of the received signal and the power distribution of the correction signal by the two directional antennas of FIG.

車載用受信装置1は、自動車に搭載され、地上波デジタルテレビ放送の受信装置である。車載用受信装置1では、OFDM方式によってデジタル信号で変調された電波を受信し、受信した電波を復調する。特に、車載用受信装置1では、自動車の移動に伴うドップラ分散の影響を低減し、高い回線品質を確保する。そのために、車載用受信装置1は、前方向アンテナ2、後方向アンテナ3、RF/IF部4,5、車速センサ6、ドップラ補正/合成部7、OFDM復調部8を備えている。   The in-vehicle receiving device 1 is mounted on an automobile and is a receiving device for terrestrial digital television broadcasting. The in-vehicle receiver 1 receives a radio wave modulated with a digital signal by the OFDM method and demodulates the received radio wave. In particular, the in-vehicle receiver 1 reduces the influence of Doppler dispersion accompanying the movement of the automobile and ensures high line quality. For this purpose, the in-vehicle receiver 1 includes a front antenna 2, a rear antenna 3, RF / IF units 4 and 5, a vehicle speed sensor 6, a Doppler correction / synthesis unit 7, and an OFDM demodulation unit 8.

なお、本実施の形態では、前方向アンテナ2が特許請求の範囲に記載する第1アンテナに相当し、後方向アンテナ3が特許請求の範囲に記載する第2アンテナに相当し、ドップラ補正/合成部7が特許請求の範囲に記載する補正手段及び合成手段に相当する。   In this embodiment, the forward antenna 2 corresponds to the first antenna described in the claims, the rear antenna 3 corresponds to the second antenna described in the claims, and Doppler correction / synthesis is performed. The unit 7 corresponds to correction means and synthesis means described in the claims.

前方向アンテナ2は、自動車の前方向(移動方向)側で利得が高くなるような指向性(図2の符号FAで図示する指向性)を有するアンテナである。前方向アンテナ2では、自動車の前方向側からの電波を受信し、受信した電波に対応する電気信号(受信信号)FRをRF/IF部4に出力する。後方向アンテナ3は、自動車の後方向(移動方向とは逆方向)側で利得が高くなるような指向性(図2の符号RAで図示する指向性)を有するアンテナである。後方向アンテナ3では、自動車の後方向側からの電波を受信し、受信した電波に対応する電気信号(受信信号)RRをRF/IF部5に出力する。このように、前方向アンテナ2と後方向アンテナ3とは、逆方向の指向性により空間的に分離したアンテナである。   The forward antenna 2 is an antenna having directivity (directivity illustrated by reference sign FA in FIG. 2) such that the gain is increased on the front side (moving direction) side of the automobile. The forward antenna 2 receives radio waves from the front side of the automobile and outputs an electrical signal (reception signal) FR corresponding to the received radio waves to the RF / IF unit 4. The rear antenna 3 is an antenna having a directivity (directivity illustrated by the symbol RA in FIG. 2) such that the gain is increased on the rear side (the direction opposite to the moving direction) of the automobile. The rear antenna 3 receives radio waves from the rear side of the automobile and outputs an electrical signal (reception signal) RR corresponding to the received radio waves to the RF / IF unit 5. Thus, the front antenna 2 and the rear antenna 3 are antennas spatially separated by the directivity in the reverse direction.

RF/IF部4,5は、指向性アンテナ2,3からのRF[Radio Frequency](高周波数)である受信信号FR,RRをIF[Intermidiate Frequency](中間周波数)の受信信号FR’、RR’にそれぞれ変換する周波数ダウンコンバータである。なお、スペックによっては中間周波数に落とす必要がない場合があり、この場合にはRF/IF部は不要である。   The RF / IF units 4 and 5 receive the received signals FR and RR, which are RF [Radio Frequency] (high frequency), from the directional antennas 2 and 3, and receive signals FR ′ and RR of IF [Intermidiate Frequency] (intermediate frequency). It is a frequency down converter that converts each to '. Depending on the specifications, there is a case where it is not necessary to reduce the frequency to an intermediate frequency. In this case, the RF / IF unit is not necessary.

自動車は電波塔に対して移動するので、前方向から到来する電波と後方向から到来する電波が同時に存在する環境では前方向アンテナ2で受信する電波と後方向アンテナ3で受信する電波とは逆方向にそれぞれドップラシフトする。そのため、受信信号FR’は搬送波周波数(f)の信号がプラス側に周波数オフセットを受け、受信信号RR’はその搬送波周波数(f)の信号がマイナス側に周波数オフセットを受ける(図3の実線で示すグラフ参照)。図3には、指向性アンテナ2,3で受信した電波に対応した受信信号FR’,RR’の電力分布を示しており、横軸が周波数であり、縦軸が電力である。図3から判るように、この受信した電波の電力分布は、最大ドップラ周波数+fd,−fdまでそれぞれ拡がりを有し、+fd,−fdに近づくほど電力分布量が増加する。この電力分布S(t)は、式(1)で表される。   Since the automobile moves with respect to the radio tower, the radio wave received by the forward antenna 2 and the radio wave received by the backward antenna 3 are opposite in an environment where radio waves coming from the front direction and radio waves coming from the rear direction exist at the same time. Doppler shift in each direction. Therefore, the received signal FR ′ has a frequency offset on the plus side of the signal having the carrier frequency (f), and the received signal RR ′ has a frequency offset on the minus side of the signal having the carrier frequency (f) (in FIG. 3, a solid line). See the graph). FIG. 3 shows the power distribution of the received signals FR ′ and RR ′ corresponding to the radio waves received by the directional antennas 2 and 3, where the horizontal axis is frequency and the vertical axis is power. As can be seen from FIG. 3, the power distribution of the received radio waves spreads up to the maximum Doppler frequencies + fd and −fd, and the power distribution amount increases as it approaches + fd and −fd. This power distribution S (t) is expressed by equation (1).

Figure 2005236678
式(1)において、S(f)は周囲360°から均一に到来波が分布していると仮定したときの周波数fの電力の分布を示し(但し、fはドップラシフトがないときの周波数が0となるようにオフセットしている)、Pは送信電力及び送信側や受信側のアンテナ利得で決まる定数であり、fdは最大ドップラ周波数(最大周波数オフセット、ドップラ分散幅)である。fdは、車速Vに比例するので、車速Vが判れば求めることができる。したがって、高速になるほど、最大ドップラ周波数が増加し、ドップラ分散幅が拡大する。
Figure 2005236678
In equation (1), S (f) indicates the distribution of power at frequency f when it is assumed that the incoming waves are uniformly distributed from the surrounding 360 ° (where f is the frequency when there is no Doppler shift). P is a constant determined by the transmission power and the antenna gain on the transmission side and the reception side, and fd is the maximum Doppler frequency (maximum frequency offset, Doppler dispersion width). Since fd is proportional to the vehicle speed V, it can be obtained if the vehicle speed V is known. Therefore, as the speed increases, the maximum Doppler frequency increases and the Doppler dispersion width increases.

車速センサ6は、自動車の速度を検出するセンサであり、例えば、車輪の回転速度を検出する車輪速センサである。車速センサ6では、その検出値を車速信号SSとしてドップラ補正/合成部7に送信する。なお、車速センサ6は、車載用受信装置1専用のセンサではなく、パワーステアリング装置等の他の装置と共用される。   The vehicle speed sensor 6 is a sensor that detects the speed of the automobile, for example, a wheel speed sensor that detects the rotational speed of the wheel. The vehicle speed sensor 6 transmits the detected value to the Doppler correction / synthesis unit 7 as a vehicle speed signal SS. The vehicle speed sensor 6 is not a sensor dedicated to the in-vehicle receiver 1 but is shared with other devices such as a power steering device.

ドップラ補正/合成部7は、RF/IF部4,5からの受信信号FR’、RR’を個々に補正し、補正後の受信信号を合成する。上記したように、逆方向の指向性を有するアンテナ2,3で電波を受信した場合、プラス側とマイナス側との逆方向にそれぞれ周波数オフセットを受けるので、ドップラシフト(ドップラ分散)の影響を軽減するためには周波数オフセットした分をそれぞれ補正する必要がある。そこで、ドップラ補正/合成部7では、プラス側に周波数オフセットを受けている受信信号FR’をマイナス方向に補正し、マイナス側に周波数オフセットを受けている受信信号RR’をプラス方向に補正する。受信信号FR’、RR’の受信電力は、図3に示すように、最大ドップラ周波数+fd,−fd側に偏って分布している。したがって、補正する周波数を単純に最大ドップラ周波数の2分の1(fd/2)としたのでは、電力分布的にアンバランスを生じ、ドップラ分散の影響の軽減効果が十分に得られない。そこで、ドップラ補正/合成部7では、0〜+fd(−fd〜0)までの電力分布の2分の1を示す周波数を求め、電力分布的にバランスする周波数で補正を施す。具体的には、ドップラ補正/合成部7では、式(2)からxの値を求める。   The Doppler correction / synthesis unit 7 individually corrects the reception signals FR ′ and RR ′ from the RF / IF units 4 and 5 and synthesizes the corrected reception signals. As described above, when radio waves are received by the antennas 2 and 3 having the directivity in the reverse direction, the frequency offset is received in the reverse direction on the plus side and the minus side, respectively, thus reducing the effect of Doppler shift (Doppler dispersion). In order to do this, it is necessary to correct each frequency offset. Therefore, the Doppler correction / synthesis unit 7 corrects the reception signal FR ′ that has received the frequency offset on the plus side in the minus direction, and corrects the reception signal RR ′ that has received the frequency offset on the minus side in the plus direction. As shown in FIG. 3, the received power of the received signals FR ′ and RR ′ is distributed to the maximum Doppler frequency + fd, −fd side. Therefore, if the frequency to be corrected is simply set to half the maximum Doppler frequency (fd / 2), an imbalance is generated in the power distribution, and the effect of reducing the influence of Doppler dispersion cannot be sufficiently obtained. Therefore, the Doppler correction / combination unit 7 obtains a frequency indicating a half of the power distribution from 0 to + fd (−fd to 0), and performs correction at a frequency that balances the power distribution. Specifically, the Doppler correction / synthesis unit 7 obtains the value of x from Expression (2).

Figure 2005236678
式(2)では、図3に示すFR’(RR’)の電力分布において、0〜+fd(−fd〜0)における面積の2分の1の面積となる周波数をxとしている。このxは、車速Vが判れば一意的に求めることができる。そこで、ドップラ補正/合成部7では、車速センサ6からの車速信号SSに基づいて、式(2)にから周波数xを求める。さらに、ドップラ補正/合成部7では、この周波数xを用いて、式(3)により受信信号FR’をマイナス方向に補正した補正信号FHを求め、式(4)により受信信号RR’をプラス方向に補正した補正信号RHを求める(図2参照)。
Figure 2005236678
In Expression (2), in the power distribution of FR ′ (RR ′) shown in FIG. 3, x is a frequency that is an area that is a half of the area in 0 to + fd (−fd to 0). This x can be uniquely determined if the vehicle speed V is known. Therefore, the Doppler correction / synthesis unit 7 obtains the frequency x from Equation (2) based on the vehicle speed signal SS from the vehicle speed sensor 6. Further, the Doppler correction / synthesis unit 7 uses this frequency x to obtain a correction signal FH obtained by correcting the reception signal FR ′ in the minus direction by Expression (3), and sets the reception signal RR ′ in the plus direction by Expression (4). The correction signal RH corrected to (1) is obtained (see FIG. 2).

Figure 2005236678
この補正により、補正信号FHの電力分布は受信信号FR’の電力分布から周波数x分マイナス方向にシフトし、補正信号RHの電力分布は受信信号RR’の電力分布から周波数x分プラス方向に移動する(図3に一点鎖線で示すグラフ参照)。さらに、ドップラ補正/合成部7では、式(5)により、個々に補正を施した補正信号FHと補正信号RHとを加算し、合成信号Cを求める(図2参照)。そして、ドップラ補正/合成部7では、求めた合成信号CをOFDM復調部8に出力する。
Figure 2005236678
By this correction, the power distribution of the correction signal FH is shifted in the minus direction by the frequency x from the power distribution of the reception signal FR ′, and the power distribution of the correction signal RH is moved in the plus direction by the frequency x from the power distribution of the reception signal RR ′. (Refer to the graph indicated by the alternate long and short dash line in FIG. 3). Further, the Doppler correction / synthesis unit 7 adds the correction signal FH and the correction signal RH that have been individually corrected by the equation (5) to obtain a combined signal C (see FIG. 2). Then, the Doppler correction / synthesis unit 7 outputs the obtained synthesized signal C to the OFDM demodulation unit 8.

Figure 2005236678
この合成信号Cは、プラス側とマイナス側のドップラシフトの影響がそれぞれ軽減した信号を足し合わせた信号なので、ドップラ分散の影響を極力取り除いた信号となっている。
Figure 2005236678
The composite signal C is a signal obtained by adding the signals that have been reduced by the effects of the Doppler shift on the plus side and the minus side, and thus is a signal that eliminates the influence of Doppler dispersion as much as possible.

OFDM復調部8は、ドップラ補正/合成部7からの合成信号Cを復調し、変調前の元信号(情報)を取り出す。そして、OFDM復調部8では、復調信号Dを再生装置に出力する。   The OFDM demodulator 8 demodulates the combined signal C from the Doppler correction / synthesis unit 7 and extracts an original signal (information) before modulation. Then, the OFDM demodulator 8 outputs the demodulated signal D to the playback device.

図1を参照して、車載用受信装置1の動作について説明する。車載用受信装置1では、前方向アンテナ2で前方向側の電波を受信するとともに、後方向アンテナ3で後方向側の電波を受信する。そして、車載用受信装置1では、受信信号FR,RRを中間周波数に落とした受信信号FR’,RR’にそれぞれ変換する。さらに、車載用受信装置1では、車速信号SSに基づいて、式(2)により受信信号FR’,RR’の電力分布がバランスする周波数xを求める。続いて、車載用受信装置1では、この周波数xを用いて、式(3)、(4)により受信信号FR’、受信信号RR’をそれぞれ周波数シフトし、2本の指向性アンテナ2,3で受信した電波に対応した信号を個々に補正する。さらに、車載用受信装置1では、補正が施された補正信号FHと補正信号RHとを加算し、個々に補正した信号を合成する。最後に、車載用受信装置1では、合成信号Cを復調し、元信号を抽出する。   The operation of the in-vehicle receiving device 1 will be described with reference to FIG. In the vehicle-mounted receiving device 1, the front antenna 2 receives the front side radio wave and the rear antenna 3 receives the rear side radio wave. In the in-vehicle receiving apparatus 1, the received signals FR and RR are converted into received signals FR ′ and RR ′ that are reduced to an intermediate frequency, respectively. Further, the in-vehicle receiving apparatus 1 obtains the frequency x at which the power distributions of the received signals FR ′ and RR ′ are balanced based on the vehicle speed signal SS by the equation (2). Subsequently, the in-vehicle receiving apparatus 1 uses the frequency x to shift the frequency of the reception signal FR ′ and the reception signal RR ′ according to the equations (3) and (4), respectively, and the two directional antennas 2 and 3. Correct the signals corresponding to the radio waves received at. Further, the in-vehicle receiver 1 adds the corrected correction signal FH and the correction signal RH, and synthesizes individually corrected signals. Finally, the in-vehicle receiver 1 demodulates the synthesized signal C and extracts the original signal.

車載用受信装置1によれば、2本の指向性アンテナ2,3で受信した電波を個々に補正し、この補正を施した信号を合成するだけの簡単な処理により、ドップラ分散の影響を軽減でき、回線品質を確保することができる。そのため、車載用受信装置1は、構成を簡単化でき、低コストで構成できる。さらに、車載用受信装置1は、受信電波の電力分布がバランスする周波数によって補正を行うので、ドップラ分散の軽減効果が非常に高い。   According to the in-vehicle receiver 1, the influence of Doppler dispersion is reduced by a simple process of correcting the radio waves received by the two directional antennas 2 and 3 individually and synthesizing the corrected signals. And the line quality can be ensured. Therefore, the vehicle-mounted receiving device 1 can be simplified in configuration and can be configured at low cost. Furthermore, since the in-vehicle receiving apparatus 1 performs correction with the frequency at which the power distribution of the received radio wave balances, the effect of reducing Doppler dispersion is very high.

以上、本発明に係る実施の形態について説明したが、本発明は上記実施の形態に限定されることなく様々な形態で実施される。   As mentioned above, although embodiment which concerns on this invention was described, this invention is implemented in various forms, without being limited to the said embodiment.

例えば、本実施の形態では自動車に搭載する受信装置に適用したが、電車、船、飛行機等の他の移動体に搭載する受信装置にも適用可能である。   For example, in the present embodiment, the present invention is applied to a receiving device mounted on an automobile, but the present invention can also be applied to a receiving device mounted on another moving body such as a train, a ship, and an airplane.

また、本実施の形態ではOFDM方式で変調された電波を受信する場合に適用したが、他のデジタル変調方式で変調された電波を受信する場合やアナログ変調方式で変調された電波を受信する場合にも適用可能である。   In this embodiment, the present invention is applied when receiving radio waves modulated by the OFDM method. However, when receiving radio waves modulated by another digital modulation method or receiving radio waves modulated by the analog modulation method. It is also applicable to.

また、本実施の形態ではドップラ補正/合成部を構成したが、補正部と合成部とを別々に構成してもよい。   In this embodiment, the Doppler correction / synthesis unit is configured, but the correction unit and the synthesis unit may be configured separately.

また、本実施の形態では受信信号の電力分布がバランスする周波数によって補正を行う構成としたが、最大ドップラ周波数の中央値(fd/2)等の他の周波数によって補正を行う構成としてもよい。   In this embodiment, the correction is performed using the frequency that balances the power distribution of the received signal. However, the correction may be performed using another frequency such as the median value (fd / 2) of the maximum Doppler frequency.

本実施の形態に係る車載用受信装置の構成図である。It is a block diagram of the vehicle-mounted receiving apparatus which concerns on this Embodiment. 図1のドップラ補正/合成部における処理の説明図である。It is explanatory drawing of the process in the Doppler correction | amendment / synthetic | combination part of FIG. 図1の2本の指向性アンテナによる受信信号の電力分布及び補正信号の電力分布を示す図である。It is a figure which shows the power distribution of the received signal by the two directional antennas of FIG. 1, and the power distribution of a correction signal.

符号の説明Explanation of symbols

1…車載用受信装置、2…前方向アンテナ、3…後方向アンテナ、4,5…RF/IF部、6…車速センサ、7…ドップラ補正/合成部、8…OFDM復調部   DESCRIPTION OF SYMBOLS 1 ... In-vehicle receiver, 2 ... Forward antenna, 3 ... Backward antenna, 4, 5 ... RF / IF part, 6 ... Vehicle speed sensor, 7 ... Doppler correction / synthesis part, 8 ... OFDM demodulation part

Claims (3)

移動体に搭載され、変調された電波を受信するための移動体用受信装置であって、
移動体の移動方向側に指向性を有する第1アンテナと、
移動体の移動方向とは逆方向側に指向性を有する第2アンテナと、
前記第1アンテナで受信した受信信号を補正するとともに前記第2アンテナで受信した受信信号を補正する補正手段と、
前記補正手段で補正した2つの補正信号を合成する合成手段と
を備えることを特徴とする移動体用受信装置。
A mobile receiver for receiving a modulated radio wave mounted on a mobile,
A first antenna having directivity on the moving direction side of the moving body;
A second antenna having directivity on the side opposite to the moving direction of the moving body;
Correcting means for correcting the received signal received by the first antenna and correcting the received signal received by the second antenna;
And a combining unit that combines the two correction signals corrected by the correcting unit.
前記補正手段は、前記受信信号の電力分布がバランスする周波数を用いて補正することを特徴とする請求項1に記載する移動体用受信装置。   2. The mobile receiver according to claim 1, wherein the correction unit performs correction using a frequency at which a power distribution of the reception signal is balanced. 前記補正手段は、移動体の速度に基づいて前記電力分布がバランスする周波数を求めることを特徴とする請求項2に記載する移動体用受信装置。   3. The mobile receiver according to claim 2, wherein the correction unit obtains a frequency at which the power distribution balances based on a speed of the mobile body.
JP2004043472A 2004-02-19 2004-02-19 Receiver for mobile object Withdrawn JP2005236678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004043472A JP2005236678A (en) 2004-02-19 2004-02-19 Receiver for mobile object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004043472A JP2005236678A (en) 2004-02-19 2004-02-19 Receiver for mobile object

Publications (1)

Publication Number Publication Date
JP2005236678A true JP2005236678A (en) 2005-09-02

Family

ID=35019177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004043472A Withdrawn JP2005236678A (en) 2004-02-19 2004-02-19 Receiver for mobile object

Country Status (1)

Country Link
JP (1) JP2005236678A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300337A (en) * 2006-04-28 2007-11-15 Nippon Hoso Kyokai <Nhk> Mobile receiver
JP2013081211A (en) * 2005-10-27 2013-05-02 Qualcomm Inc Allocation of pilot pattern adapted to channel characteristics for ofdm system
US8467484B2 (en) 2007-04-24 2013-06-18 Kyocera Corporation Reception control method and wireless communication apparatus
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
US8842619B2 (en) 2005-10-27 2014-09-23 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
WO2014190463A1 (en) 2013-05-27 2014-12-04 Empire Technology Development Llc Reducing distortion in radio communication for high speed vehicle
US8917654B2 (en) 2005-04-19 2014-12-23 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9307544B2 (en) 2005-04-19 2016-04-05 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9426012B2 (en) 2000-09-13 2016-08-23 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9660776B2 (en) 2005-08-22 2017-05-23 Qualcomm Incorporated Method and apparatus for providing antenna diversity in a wireless communication system
JP2018113554A (en) * 2017-01-10 2018-07-19 ソフトバンク株式会社 Radio communication apparatus and mobile
US10805038B2 (en) 2005-10-27 2020-10-13 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10313069B2 (en) 2000-09-13 2019-06-04 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US9426012B2 (en) 2000-09-13 2016-08-23 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US11032035B2 (en) 2000-09-13 2021-06-08 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US10237892B2 (en) 2004-07-21 2019-03-19 Qualcomm Incorporated Efficient signaling over access channel
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US11039468B2 (en) 2004-07-21 2021-06-15 Qualcomm Incorporated Efficient signaling over access channel
US10517114B2 (en) 2004-07-21 2019-12-24 Qualcomm Incorporated Efficient signaling over access channel
US10194463B2 (en) 2004-07-21 2019-01-29 Qualcomm Incorporated Efficient signaling over access channel
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US10849156B2 (en) 2004-07-21 2020-11-24 Qualcomm Incorporated Efficient signaling over access channel
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US8917654B2 (en) 2005-04-19 2014-12-23 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9307544B2 (en) 2005-04-19 2016-04-05 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US9693339B2 (en) 2005-08-08 2017-06-27 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US9660776B2 (en) 2005-08-22 2017-05-23 Qualcomm Incorporated Method and apparatus for providing antenna diversity in a wireless communication system
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US9240877B2 (en) 2005-08-22 2016-01-19 Qualcomm Incorporated Segment sensitive scheduling
US9860033B2 (en) 2005-08-22 2018-01-02 Qualcomm Incorporated Method and apparatus for antenna diversity in multi-input multi-output communication systems
US9246659B2 (en) 2005-08-22 2016-01-26 Qualcomm Incorporated Segment sensitive scheduling
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US10805038B2 (en) 2005-10-27 2020-10-13 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US8842619B2 (en) 2005-10-27 2014-09-23 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
JP2013081211A (en) * 2005-10-27 2013-05-02 Qualcomm Inc Allocation of pilot pattern adapted to channel characteristics for ofdm system
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
JP4714636B2 (en) * 2006-04-28 2011-06-29 日本放送協会 Mobile receiver and method of operating the same
JP2007300337A (en) * 2006-04-28 2007-11-15 Nippon Hoso Kyokai <Nhk> Mobile receiver
US8467484B2 (en) 2007-04-24 2013-06-18 Kyocera Corporation Reception control method and wireless communication apparatus
EP3005600A4 (en) * 2013-05-27 2017-02-01 Empire Technology Development LLC Reducing distortion in radio communication for high speed vehicle
WO2014190463A1 (en) 2013-05-27 2014-12-04 Empire Technology Development Llc Reducing distortion in radio communication for high speed vehicle
JP2016521928A (en) * 2013-05-27 2016-07-25 エンパイア テクノロジー ディベロップメント エルエルシー Reducing distortion in wireless communications for high-speed vehicles
JP2018113554A (en) * 2017-01-10 2018-07-19 ソフトバンク株式会社 Radio communication apparatus and mobile

Similar Documents

Publication Publication Date Title
JP2005236678A (en) Receiver for mobile object
KR100753073B1 (en) Receiving apparatus
JP4234667B2 (en) OFDM receiver for mobile
KR20160112551A (en) Vehicle, communicating method thereof and wireless communication apparatus therein
US8284853B2 (en) Apparatus and method for spatial multiplexing with backward compatibility in a multiple input multiple output wireless communication system
US20100220818A1 (en) Digital broadcast reception device
JP2001520479A (en) System and method for mitigating intermittent interruptions in audio radio broadcasts
KR20160112552A (en) Vehicle, communicating method thereof and wireless communication apparatus therein
JP2003283405A (en) On-vehicle digital communication receiver and antenna
JPH09284191A (en) Diversity receiver
JP5442343B2 (en) Wireless device
JP4658201B2 (en) Diversity receiving apparatus and diversity receiving method
JP2007235305A (en) Receiver, receiving method and program
JP6216511B2 (en) Receiving device, semiconductor device, and receiving method
US10553938B2 (en) In-vehicle antenna and in-vehicle communication device
US20170278397A1 (en) Terminal device and method for terminal device
JP2010226233A (en) On-vehicle apparatus
JP2008076290A (en) Radar device
JP4573858B2 (en) Diversity receiver
US11588564B2 (en) Receiving device
JP2009005037A (en) Radio communication apparatus, ground-to-vehicle radio communication system, and ground-to-mobile body radio communication system
JP4760068B2 (en) Diversity receiving method and diversity receiving apparatus
JP4216644B2 (en) Digital broadcast system, broadcast re-transmission device and broadcast reception device
JP4215666B2 (en) In-vehicle digital communication receiving apparatus and receiving method thereof
JP2005150945A (en) Communication system and transmitter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061220