JP2005235980A - Wiring substrate and its manufacturing method, and semiconductor package - Google Patents

Wiring substrate and its manufacturing method, and semiconductor package Download PDF

Info

Publication number
JP2005235980A
JP2005235980A JP2004042471A JP2004042471A JP2005235980A JP 2005235980 A JP2005235980 A JP 2005235980A JP 2004042471 A JP2004042471 A JP 2004042471A JP 2004042471 A JP2004042471 A JP 2004042471A JP 2005235980 A JP2005235980 A JP 2005235980A
Authority
JP
Japan
Prior art keywords
layer
wiring
plating
wiring board
terminal portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004042471A
Other languages
Japanese (ja)
Inventor
Shinichiro Hori
晋一郎 堀
Kenzaburo Kawai
研三郎 川合
Shinji Kumon
慎児 久門
Masaki Yazaki
雅樹 矢崎
Yoichi Miura
陽一 三浦
Kiyotake Ikura
清武 伊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2004042471A priority Critical patent/JP2005235980A/en
Publication of JP2005235980A publication Critical patent/JP2005235980A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48235Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To provide an interposer in which two types of terminals for W/B bonding and FC bonding are formed at a narrow pitch with sufficient accuracy and flatly on one surface. <P>SOLUTION: A method of manufacturing a wiring substrate includes a whole surface Ni plating step of performing plating on a Cu plate 110 made into a supporting substrate, a step of electrolytically plating an Ni layer 141, an Au layer 142 and an Ni layer 143 to the first terminal by arranging a first resist 130 on the Ni plating layer 120 to a plating-proof mask, a first wiring forming step of forming first wiring 150 by arranging a second resist 135 to the plating-proof mask and precipitating Cu after the resist is removed, a wiring layer forming step of forming the multilayer wiring of desired number N of the wiring layers after the second resist is removed, a second terminal plating step of forming the Ni layer, the Au layer on a region for forming the terminal section of the N-th wiring layer with the Cu plate as a power supply layer, and an Ni etching step of removing the Cu plate by etching and further etching the exposed Ni layer to the state that the Au layer formed in the first terminal is exposed. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

本発明は、配線基板に関し、特に、1方の面に、Auめっきを施した端子部と、Cu無垢の端子部との2種類の、いずれもアディティブ工法により形成された半導体チップとの接続用の端子部を、それらの表面を一平面上にして形成した配線基板に関する。   The present invention relates to a wiring board, and in particular, for connection to a semiconductor chip formed by an additive method, two types of terminals, one end of which is plated with Au and one terminal portion made of pure Cu. The wiring board is formed so that the surface of each of the terminal portions is on a single plane.

近年、半導体パッケージにおいては高集積、高性能化が進み、小サイズ、より高性能なものが要求されている。
これらの半導体パッケージに搭載される半導体チップも、ますます薄小サイズで、狭ピッチ、多ピン(多端子)となってきた。
最近では、半導体チップの多端子化や配線の引き回しに対応すべく、インターポーザとして樹脂を基材とする配線基板が半導体パッケージ用として使用されるようになってきているが、このインターポーザとしての半導体用パッケージ用の樹脂を基材とする配線基板についても、より小サイズ、より高性能という要求に対応すべく、より薄小にし、且つ、狭ピッチの接続端子を実現してきた。
一方、半導体パッケージをより高性能にするために、SIP(System in Package)と呼ばれる、複数のチップを搭載した半導体パッケージや、半導体パッケージ自体をスタック構造(積み重ね構造)にする半導体パッケージが、利用されることも多くなっている。
このような構造の半導体パッケージにも、インターポーザとしての樹脂を基材とする配線基板を用いるようになってきている。
In recent years, high integration and high performance of semiconductor packages have been advanced, and small size and higher performance are required.
The semiconductor chips mounted on these semiconductor packages are also increasingly thin and small in size and have a narrow pitch and a large number of pins (multiple terminals).
Recently, in order to cope with the increase in the number of terminals of a semiconductor chip and the routing of wiring, a wiring board based on a resin as an interposer has come to be used for a semiconductor package. Wiring substrates based on resin for packaging have also been made thinner and narrow pitch connection terminals to meet the demand for smaller size and higher performance.
On the other hand, in order to make a semiconductor package higher performance, a semiconductor package called a SIP (System in Package) on which a plurality of chips are mounted or a semiconductor package having a stacked structure (stacked structure) is used. There are also many things.
A wiring board having a resin as a base material as an interposer is also used for a semiconductor package having such a structure.

これらの半導体パッケージにおいて、狭ピッチな接続端子をもつ半導体チップと半導体用パッケージ用の基板との接合には、図6(a)に示すようなワイヤボンディング接合(以下、W/B接合と言う)や、図6(b)に示すようなフリップチップ接合(以下、FC接合と言う)が用いられている。
フリップチップ接合の場合は、インターポーザとしての半導体用パッケージ用の基板側の接続パッド表面を0.1〜0.3μm程度の薄いAu層、もしくは下地のCu層を剥き出しの状態とし、その上に印刷法等により半田層を形成させる。
また、W/B接合の場合は、基板側の接続パッド表面を0.5〜1μm程度のAu層とする。
W/B接合において、配線基板側の接合用パッド表面のAuめっき厚を厚くする理由は、W/B接合を行う場合、ワイヤーにAu線、基板側の接合するパッド表面をAuめっきとして、W/Bする際に圧力と超音波(振動+熱)をかけて表面の酸化膜を破壊させてAu−Au接合させるのが通常であり、ワイヤの受け側であるパッド表面のAuめっき層の厚みが薄いと、下地のNi層が露出してしまうため、W/B工程時にパッド表面のAuめっきの下地のNiめっきを露出させないために厚いAu層を必要とする。
FC接合においては、基板側の接合用パッド部表面のAuめっきを薄くする、もしくは基板側の接合するをCu無垢とすることが通常である。
FC接合では、基板側の接合用パッド部をAuめっき、もしくはCu無垢とし、チップ側にAuバンプ−基板側に半田をつけ接続する方法と、チップ側に半田ボール、基板側に半田プリコートして接合する方法が一般的で、いずれも接合部に半田を用いる。
はんだ付け信頼性を損なわないために、Sn−Pb系半田を使用する接合の場合には、基板側の接合するパッドにAuめっきを用いないで、Cu無垢あるいはCu上をフラックスで覆った状態にすることも多い。
FC接合において基板側の接合するパッドのAuめっきを薄くする理由は、基板側受けパッド部をAuめっきして行う場合、Auは、錫系の半田に容易に溶食されやすく、半田とAuめっきとの間に生成される金属間化合物の部分で機械的強度が低減し、剥離が生じやすくなるが、Auめっきの厚みを薄くすることにより、前述の金属間化合物の生成割合が小さくなり、機械的強度への影響は実質的になくすことができるためである。
In these semiconductor packages, wire bonding bonding (hereinafter referred to as W / B bonding) as shown in FIG. 6A is used for bonding a semiconductor chip having a narrow pitch connection terminal and a substrate for a semiconductor package. Alternatively, flip chip bonding (hereinafter referred to as FC bonding) as shown in FIG. 6B is used.
In the case of flip chip bonding, the surface of a connection pad on the substrate side for a semiconductor package as an interposer is exposed to a thin Au layer of about 0.1 to 0.3 μm, or the underlying Cu layer is printed on the surface. A solder layer is formed by a method or the like.
In the case of W / B bonding, the surface of the connection pad on the substrate side is an Au layer of about 0.5 to 1 μm.
In W / B bonding, the reason for increasing the Au plating thickness on the bonding pad surface on the wiring board side is that, when W / B bonding is performed, Au wire is used for the wire, and the pad surface to be bonded on the substrate side is Au plated. / B is usually performed by applying pressure and ultrasonic waves (vibration + heat) to destroy the oxide film on the surface and bonding Au-Au, and the thickness of the Au plating layer on the pad surface on the wire receiving side If the thickness is too small, the underlying Ni layer is exposed, so that a thick Au layer is required in order not to expose the underlying Ni plating of the Au plating on the pad surface during the W / B process.
In FC bonding, it is usual to thin the Au plating on the surface of the bonding pad portion on the substrate side, or to make the bonding on the substrate side pure Cu.
In FC bonding, the bonding pad portion on the substrate side is Au-plated or pure Cu, Au bump on the chip side-soldering connection on the substrate side, solder balls on the chip side, and solder pre-coating on the substrate side The joining method is general, and all use solder at the joint.
In the case of joining using Sn-Pb solder in order not to impair the soldering reliability, without using Au plating for the pads to be joined on the substrate side, the Cu is solid or the Cu is covered with a flux. There are many things to do.
The reason for thinning the Au plating of the pads to be bonded on the substrate side in the FC bonding is that when the substrate side receiving pad portion is plated with Au, Au is easily eroded by tin-based solder, and the solder and Au plating. The mechanical strength is reduced at the part of the intermetallic compound produced between the two, and peeling easily occurs. However, by reducing the thickness of the Au plating, the production rate of the aforementioned intermetallic compound is reduced, and the machine This is because the influence on the mechanical strength can be substantially eliminated.

しかし、SIPの場合、例えば図6(c)に示すように、複数のチップを搭載するためにW/B接合とFC接合の両方の端子接合方法が用いられることが多くなってきている。 このような場合には、W/B接合のための基板側端子と、FC接合のための基板側端子とで、異なる端子の表面仕様とすることが必要となる。
しかし、狭ピッチな接続端子をもつ半導体チップと接続するためには、これと接続する配線基板も、その端子を精度良く狭いピッチで配設することが要求され、特に、FC接合する場合には、この要求は強い。
また、FC接合する場合には、導体チップと接続する側の一面に狭ピッチな接続端子部全体がほぼ平坦であることが好ましい。
したがって、半導体チップと接続する側の一面に、W/B接合のための基板側端子と、FC接合のための基板側端子との、異なる表面仕様の端子を2種配する場合には、接続端子を狭ピッチで配設でき、異なる表面仕様の端子を2種配することができ、更に半導体チップと接続する側の一面全体がほぼ平坦であることが好ましい。
このような、狭ピッチな接続端子をもつ半導体チップと接続するための、端子を精度良く狭いピッチで配設した配線基板の製造方法として、特開2003−209336号公報にて開示されているように、図3〜図4にその製造工程を示す、コア基材を用いない、配線形成方法を採る製造方法が知られている。
しかしながら、この製造方法の場合、以下に説明するように、半導体チップと接続するための、端子を、その一面に精度良く狭いピッチで配設した配線基板を得ることはできるが、一面に異なる2つの表面仕様の端子を形成するものではない。
この製造方法の場合、半導体チップと接続する側の一面全体がほぼ平坦であり、この点では好ましい。
特開2003−209336号公報
However, in the case of SIP, for example, as shown in FIG. 6C, in order to mount a plurality of chips, terminal bonding methods of both W / B bonding and FC bonding are often used. In such a case, it is necessary to make the surface specifications of the terminals different between the substrate side terminal for W / B bonding and the substrate side terminal for FC bonding.
However, in order to connect to a semiconductor chip having a narrow pitch connection terminal, it is required that the wiring board connected to the semiconductor chip be arranged with a narrow pitch with high precision, particularly in the case of FC bonding. This demand is strong.
In addition, in the case of FC bonding, it is preferable that the entire connection terminal portion having a narrow pitch is substantially flat on one surface connected to the conductor chip.
Therefore, when two types of terminals with different surface specifications, that is, a substrate-side terminal for W / B bonding and a substrate-side terminal for FC bonding are arranged on one surface connected to the semiconductor chip, It is preferable that the terminals can be arranged at a narrow pitch, two types of terminals having different surface specifications can be arranged, and the entire surface on the side connected to the semiconductor chip is substantially flat.
As a method for manufacturing a wiring board in which terminals are arranged with a narrow pitch with high precision for connecting to a semiconductor chip having such a narrow pitch connection terminal, it is disclosed in Japanese Patent Laid-Open No. 2003-209336. Moreover, the manufacturing method which employ | adopts the wiring formation method which does not use a core base material which shows the manufacturing process in FIGS. 3-4 is known.
However, in the case of this manufacturing method, as will be described below, it is possible to obtain a wiring board in which terminals for connecting to a semiconductor chip are arranged on one surface with a narrow pitch with high accuracy. It does not form one surface specification terminal.
In the case of this manufacturing method, the entire surface on the side connected to the semiconductor chip is almost flat, which is preferable in this respect.
JP 2003-209336 A

ここで、図3〜図4に示す半導体用パッケージ用の配線基板の作製方法を簡単に説明しておく。
先ず、支持基材とするCu板310(図3(a))上にレジスト320を製版し(図3(b))、レジスト320を耐めっきマスクとして電解めっきにより、順にNi層、Au層、Ni層、Cu層を形成し(図3(c))、レジスト320を剥離して第1層目の配線として端子部330を形成する。(図3(d))
ここでは、端子部を第1層目の配線と言う。
尚、場合によっては、上記Ni層、Au層、Ni層、Cu層に代え、順にNi層、Cu層を配設することもある。
次に、絶縁性樹脂340をラミネートし、レーザによりブラインドビア形成用の孔345を開けた(図3(e))後、必要に応じデスミア処理を行い、順に、Cu無電解めっき、レジスト製版、Cu電解めっきによる回路形成、レジスト剥離、不要のCu無電解めっきのエッチングの各処理を行い、ブラインドビア318を形成とともに第2層目の配線315を形成する。(図4(f))
尚、このように、配線部をめっき形成し、エッチングを伴う処理を行い回路を形成する方法をセミアディティブ工法と言い、また、これに対し、エッチングを行わず配線部を選択めっきのみで形成する方法をアディティブ工法と言い、積層した導電層(Cu層)を選択エッチングして配線部を形成する方法をサブトラクティブ工法と言う。
次に、第2層目の配線315にカバーレイヤーが必要な場合は、2層目の配線315を覆うようにソルダーレジスト層360を形成し、2層目の配線315の所定の端子形成領域が露出するようにソルダーレジスト層360の開孔部365を形成する。(図4(g)) 次に、前記Cu板310を給電層として電解めっきにより、ソルダーレジスト層360の開孔部360から露出した配線部315の端子形成領域上に、順に、Ni層、Au層を析出する。(図4(h))
その後、支持基材とするCu板310をエッチングにて除去し、更に、Cu板310のエッチング除去によりにより露出したNi層をエッチングにて除去し、目的とする配線基板を得る。(図4(i))
従来は、このようにして、端子部330、端子部380にめっき被膜が形成された状態で配線基板が形成されていたため、第1層目の配線(端子部330)側をチップ搭載面とする場合、第1層目の端子部330の表面は同一厚みの全面Auとなり、Auめっき層の厚さが異なる仕様の、W/B接合用、FC接合用の表面めっき仕様を同時に満たした配線基板を得ることができなかった。
Here, a method for manufacturing a wiring substrate for a semiconductor package shown in FIGS. 3 to 4 will be briefly described.
First, a resist 320 is made on a Cu plate 310 (FIG. 3A) as a supporting base (FIG. 3B), and an Ni layer, an Au layer, An Ni layer and a Cu layer are formed (FIG. 3C), and the resist 320 is peeled off to form a terminal portion 330 as a first layer wiring. (Fig. 3 (d))
Here, the terminal portion is referred to as a first layer wiring.
In some cases, instead of the Ni layer, Au layer, Ni layer, and Cu layer, a Ni layer and a Cu layer may be provided in this order.
Next, after laminating insulating resin 340 and opening holes 345 for forming blind vias by laser (FIG. 3 (e)), desmear treatment is performed as necessary, and in order, Cu electroless plating, resist plate-making, Circuit formation by Cu electrolytic plating, resist stripping, and unnecessary Cu electroless plating etching are performed to form a blind via 318 and a second-layer wiring 315. (Fig. 4 (f))
In addition, a method of forming a circuit by forming a wiring portion and performing a process involving etching in this way is called a semi-additive construction method. On the other hand, a wiring portion is formed only by selective plating without performing etching. The method is referred to as an additive method, and the method of forming a wiring portion by selectively etching a laminated conductive layer (Cu layer) is referred to as a subtractive method.
Next, when a cover layer is required for the second layer wiring 315, a solder resist layer 360 is formed so as to cover the second layer wiring 315, and a predetermined terminal formation region of the second layer wiring 315 is formed. An opening 365 of the solder resist layer 360 is formed so as to be exposed. (FIG. 4 (g)) Next, an Ni layer and an Au layer are sequentially formed on the terminal formation region of the wiring portion 315 exposed from the opening portion 360 of the solder resist layer 360 by electrolytic plating using the Cu plate 310 as a power feeding layer. Deposit the layer. (Fig. 4 (h))
Thereafter, the Cu plate 310 as a supporting base is removed by etching, and the Ni layer exposed by the etching removal of the Cu plate 310 is removed by etching to obtain a target wiring board. (Fig. 4 (i))
Conventionally, since the wiring substrate is formed in such a manner that the plating film is formed on the terminal portion 330 and the terminal portion 380, the first layer wiring (terminal portion 330) side is used as the chip mounting surface. In this case, the surface of the terminal layer 330 of the first layer is the entire surface Au with the same thickness, and the wiring board satisfying the surface plating specifications for W / B bonding and FC bonding of the specifications in which the thickness of the Au plating layer is different. Could not get.

上記のように、SIPの場合等インターポーザとしての半導体パッケージ用の樹脂を基材とする配線基板で、その一面においてW/B接合とFC接合の両方の端子接合方法が用いられることがあるが、用いられる配線基板において、W/B接合のための端子、FC接合のための端子という、仕様の異なる2種類の端子を、その一方の側に、精度良く、狭ピッチで、且つ前記一方の側を平坦状にして形成することは、図3〜図4に示す従来の配線基板の製造方法ではできず、この対応が求められていた。
本発明は、これに対応するもので、具体的には、W/B接合のための端子、FC接合のための端子という、仕様の異なる2種類の端子を、その一方の面に、精度良く、狭ピッチで配設し、且つ前記一方側を平坦状にして形成したインターポーザとしての半導体パッケージ用の配線基板と、その製造方法を提供しようとするものである。
As described above, in the case of SIP, a wiring board based on a resin for a semiconductor package as an interposer or the like, a terminal bonding method of both W / B bonding and FC bonding may be used on one side, In the wiring board to be used, two types of terminals having different specifications, that is, a terminal for W / B bonding and a terminal for FC bonding, are provided on one side of the one side with high accuracy and a narrow pitch. However, it is not possible to form the substrate in a flat shape by the conventional method for manufacturing a wiring board shown in FIGS.
The present invention corresponds to this, and specifically, two types of terminals having different specifications, that is, a terminal for W / B bonding and a terminal for FC bonding, are accurately provided on one surface thereof. An object of the present invention is to provide a wiring board for a semiconductor package as an interposer which is arranged with a narrow pitch and is formed with the one side being flat, and a method for manufacturing the same.

本発明の配線基板の製造方法は、1方の側に、その表面にAuめっきを施した第1の端子部と、Cu無垢の第2の端子部との2種類の、半導体チップとの接続用の端子部を有し、且つ、これらの端子部領域を含み前記1方の側を平面状にして形成し、他方の面に配線基板へ接続するための端子部を備えた配線基板の製造方法であって、順に、(a)支持基材とするCu板上の一面全面にNiめっきを施しNiめっき層を形成する全面Niめっき工程と、(b)形成されたNiめっき層上に形成しようとする第1の端子部の形状に合わせて、第1のレジストを配設し、第1のレジストを耐めっきマスクとして電解めっきを行い、順に、Ni層、Au層、Ni層を形成し、第1の端子部用のめっき層の形成を行う第1の端子めっき工程と、(c)第1のレジストを剥離した後、Cu板側に形成しようとするCu無垢の端子部を含む配線の形状に合わせて、第2のレジストを配設し、第2のレジストを耐めっきマスクとして電解めっき法によりCuを析出させ、Cu無垢の第2の端子部を含む第1の配線を形成する第1の配線形成工程と、(d)第2のレジストを剥離した後、アディティブ工法、セミアディティブ工法、サブトラクティブ工法等により配線層を1層以上、前記第1の配線を含めて、各配線層間を接続した状態で形成し、所望の配線層数N(但しNは2以上の整数)の多層配線とする配線層形成工程と、(e)Cu板を給電層として電解めっきを行い、N層目の配線層の(Auめっき層を被膜した)端子部を形成する領域に、選択的に、順にNi層、Au層を形成する第2の端子めっき工程と、(f)Cu板をエッチング除去し、更に、Cu板のエッチング除去により露出したNi層をエッチングして、第1の端子めっき工程で形成したAu層と、第1の配線形成工程で形成され且つ全面Niめっき上に形成されたCu層とを露出させた状態とするNiエッチング工程を行うことを特徴とするものである。
そして、上記の配線基板の製造方法であって、配線層形成工程後、N層目の配線層の(Auめっき層を被膜した)端子部を形成する領域を開口して露出させて、N層目配線層を覆うようにソルダーレジスト層を形成し、更に、Cu板を給電層として電解めっきを行い、N層目の配線層の(Auめっき層を被膜した)端子部を形成する領域に、選択的に、順にNi層、Au層を形成する第2の端子めっき工程を行うことを特徴とするものである。 そしてまた、上記のいずれかの配線基板の製造方法であって、N=2であり、2層目の配線層の形成およびブラインドビアの形成は、第2のレジストを剥離した後、絶縁性の樹脂をラミネートし、レーザによりブラインドビア形成用の孔を開け、Cu無電解めっきを全面に行い、形成する配線やブラインドビアの形状に合わせてレジスト製版を行い、Cu無電解めっき層を通電層としてCu電解めっきを行い、レジスト剥離、不要のCu無電解めっき層のエッチングを経て、ブラインドビア形成とともに第2層目の配線を形成する、セミアディティブ工法によるものであることを特徴とするものである。
また、上記のいずれかの配線基板の製造方法であって、インターポーザとしての半導体パッケージ用の配線基板の製造方法であることを特徴とするものである。
尚、ここで、N層目の配線層とは、第1の配線がある 1層目の配線層からN層目となる配線層のことである。
The method for manufacturing a wiring board according to the present invention has two types of connection to a semiconductor chip, one side having a first terminal portion plated with Au and the second terminal portion having pure Cu. Of a wiring board having a terminal portion for use, and including the terminal portion region, the one side being formed in a planar shape, and a terminal portion for connecting to the wiring substrate on the other surface It is a method, Comprising: (a) Ni plating process which forms Ni plating layer by giving Ni plating to the whole one surface on Cu board used as a support base material, (b) It forms on the formed Ni plating layer A first resist is arranged in accordance with the shape of the first terminal portion to be processed, and electroplating is performed using the first resist as a plating-resistant mask, and a Ni layer, an Au layer, and a Ni layer are formed in this order. A first terminal plating step for forming a plating layer for the first terminal portion; and (c). After the resist 1 is peeled off, a second resist is disposed in accordance with the shape of the wiring including the solid Cu terminal portion to be formed on the Cu plate side, and electrolytic plating is performed using the second resist as a plating-resistant mask. A first wiring forming step of depositing Cu by a method and forming a first wiring including a second terminal portion made of pure Cu; and (d) after removing the second resist, an additive method and a semi-additive method. The wiring layer is formed in a state where one or more wiring layers, including the first wiring, are connected between the wiring layers by a subtractive method or the like, and a desired number of wiring layers N (where N is an integer of 2 or more) A wiring layer forming step for wiring; and (e) performing electrolytic plating using a Cu plate as a power feeding layer, and selectively forming a terminal portion (coated with an Au plating layer) of the Nth wiring layer, Second layer to form Ni layer and Au layer in order A terminal plating step; and (f) an Au layer formed by the first terminal plating step by etching the Ni plate exposed by etching and removing the Cu plate, and further forming a first wiring. A Ni etching step is performed in which the Cu layer formed in the step and formed on the entire surface of the Ni plating is exposed.
Then, in the above method for manufacturing a wiring board, after the wiring layer forming step, an area for forming a terminal portion (coated with an Au plating layer) of the Nth wiring layer is opened and exposed, and the N layer A solder resist layer is formed so as to cover the eye wiring layer, and further, electrolytic plating is performed using the Cu plate as a power feeding layer, and a terminal portion of the Nth wiring layer (coated with an Au plating layer) is formed, A second terminal plating step for forming a Ni layer and an Au layer in order is selectively performed. Also, in any one of the above wiring board manufacturing methods, N = 2, and the second wiring layer and the blind via are formed after the second resist is peeled off, Laminate resin, open holes for blind via formation by laser, perform Cu electroless plating on the whole surface, perform resist plate making according to the shape of wiring to be formed and blind via, and use Cu electroless plating layer as current-carrying layer It is characterized by a semi-additive process in which Cu electrolytic plating is performed, resist stripping, unnecessary Cu electroless plating layer etching is performed, and blind via formation and second-layer wiring are formed. .
In addition, any one of the above-described methods for manufacturing a wiring substrate, which is a method for manufacturing a wiring substrate for a semiconductor package as an interposer.
Here, the Nth wiring layer is a wiring layer which is the Nth layer from the first wiring layer where the first wiring is present.

本発明の配線基板は、1方の側に、Auめっきを施した端子部と、Cu無垢の端子部との2種類の、半導体チップとの接続用の端子部を有し、且つ、これらの端子部領域を含み前記1方の側の表面を平面状にして形成していることを特徴とするものである。
そして、上記の配線基板であって、少なくとも一部の、Auめっきを施した端子部とCu無垢の端子部とが、前記1方の側にて、 前記1方の側の表面に沿う接続用配線にて接続されていることを特徴とするものである。
そしてまた、上記のいずれかの配線基板であって、配線層が2層以上で、隣接する配線層間はブラインドビアで接続されており、前記1方の側に対向する他方側に配線基板へ接続するための端子部を備えていることを特徴とするものである。
また、上記のいずれかの配線基板であって、前記1方側の、Auめっきを施した端子部とCu無垢の端子部とは、あるいは、Auめっきを施した端子部とCu無垢の端子部と前記接続用配線とは、いずれも、アディティブ工法により形成されたものであることを特徴とするものである。
また、上記のいずれかの配線基板であって、インターポーザとしての半導体パッケージ用の配線基板であることを特徴とするものである。
The wiring board of the present invention has, on one side, two types of terminal portions for connection with a semiconductor chip, a terminal portion plated with Au and a terminal portion made of Cu, and these The surface of the one side including the terminal portion region is formed in a planar shape.
And it is said wiring board, Comprising: At least one part of the terminal part which gave Au plating and the terminal part of pure Cu are for connection along the surface of said one side in said one side It is connected by wiring.
Further, in any one of the above wiring boards, the wiring layer has two or more layers, the adjacent wiring layers are connected by blind vias, and the other side facing the one side is connected to the wiring board. The terminal part for carrying out is provided, It is characterized by the above-mentioned.
Also, in any one of the above wiring boards, the one-side-side plated terminal portion and the pure Cu terminal portion, or the plated gold portion and the pure Cu terminal portion And the connection wiring are both formed by an additive method.
In addition, any of the above wiring boards is a wiring board for a semiconductor package as an interposer.

本発明の半導体パッケージは、請求項8に記載の配線基板を用いていることを特徴とするものである。   A semiconductor package according to the present invention uses the wiring board according to claim 8.

(作用)
本発明の配線基板の製造方法は、このような構成にすることにより、W/B接合のためのAuめっきを施した端子部、FC接合のためのCu無垢の端子部という、仕様の異なる2種類の端子を、その一方の面に、精度良く、狭ピッチで配設し、且つ前記一方側を平坦状にして形成したインターポーザとしての半導体パッケージ用の配線基板を製造する、配線基板の製造方法の提供を可能としている。
本発明においては、Niめっき工程により支持基材であるCu板の一面全面にNiめっきを施すことにより、該NiめっきによりNi層上に、Cu無垢とする端子部を含む第1の配線層を形成するもので、第2の端子めっき工程の後、Cu板の除去を、Cuが無垢の端子部を含む配線部を損なうことなく選択的に除去できるものとしている。
尚、本発明によれば、第1層目のCu層からなる配線(第1の配線のこと)は、絶縁層に完全に埋め込まれた形状となり、強固に固定され、更に、Cuと絶縁層との境界に段差も生じないため、Cu導体が剥き出しになる部分において、表面の平坦性を実現することができる。
尚、FC接合において、アンダーフィラー接着(アンダーフィル樹脂による接着)の際、平坦性が悪いと、気泡発生の原因となり、剥れが発生することがあるが、本発明の製造方法では、半導体チップ搭載側を平坦性を良くすることができ、剥れが発生しずらいものとできる。
また、第1の配線側のW/B接合のためのAuめっきを施した端子部の表面も絶縁層の内側に配置されるため、強固に保持できる。
N層目の配線層にカバーレイヤーが必要な場合には、配線層形成工程後、N層目の配線層の、その表面にAuめっき層を被膜した端子部を形成する領域を開口して露出させて、N層目配線層を覆うように絶縁性の樹脂層(ソルダーレジスト層等)を形成し、更に、Cu板を給電層として電解めっきを行い、N層目の配線層の前記その表面にAuめっき層を被膜した端子部を形成する領域に、選択的に、順にNi層、Au層を形成する第2の端子めっき工程を行う形態も挙げられる。
N=2で、2層目の配線層の形成およびブラインドビアの形成は、第2のレジストを剥離した後、絶縁性の樹脂をラミネートし、レーザによりブラインドビア形成用の孔を開け、Cu無電解めっきを全面に行い、形成する配線やブラインドビアの形状に合わせてレジスト製版を行い、Cu無電解めっき層を通電層としてCu電解めっきを行い、レジスト剥離、不要のCu無電解めっき層をエッチングを経て、ブラインドビア形成とともに第2層目の配線を形成する、セミアディティブ工法を採ることにより、第2層目の配線を微細に形成することができ、且つ、全体を薄く形成することを可能としている。
(Function)
The manufacturing method of the wiring board according to the present invention has different specifications such as a terminal portion subjected to Au plating for W / B bonding and a pure Cu terminal portion for FC bonding by adopting such a configuration. A method of manufacturing a wiring board for manufacturing a wiring board for a semiconductor package as an interposer in which types of terminals are arranged on one surface with high precision and at a narrow pitch and the one side is formed flat. It is possible to provide.
In the present invention, the first wiring layer including the terminal portion made of pure Cu is formed on the Ni layer by performing Ni plating on the entire surface of the Cu plate as the supporting base material by the Ni plating process. In this case, after the second terminal plating step, the Cu plate can be removed selectively without damaging the wiring portion including the terminal portion where Cu is innocent.
According to the present invention, the wiring composed of the first Cu layer (the first wiring) has a shape completely embedded in the insulating layer, is firmly fixed, and further, Cu and the insulating layer. Since no step is produced at the boundary between the two, the surface flatness can be realized in the portion where the Cu conductor is exposed.
In FC bonding, when underfiller adhesion (adhesion with an underfill resin) is used, if flatness is poor, bubbles may be generated and peeling may occur. However, in the manufacturing method of the present invention, a semiconductor chip is used. Flatness can be improved on the mounting side, and peeling can hardly occur.
Moreover, since the surface of the terminal part which gave Au plating for W / B joining by the side of the 1st wiring is also arrange | positioned inside an insulating layer, it can hold | maintain firmly.
If a cover layer is required for the Nth wiring layer, after the wiring layer forming step, the Nth wiring layer is exposed by opening a region for forming a terminal portion coated with an Au plating layer on the surface. Then, an insulating resin layer (solder resist layer or the like) is formed so as to cover the Nth wiring layer, and further, electrolytic plating is performed using a Cu plate as a power feeding layer, and the surface of the Nth wiring layer Alternatively, a second terminal plating step in which a Ni layer and an Au layer are selectively formed in order in a region where a terminal portion coated with an Au plating layer is formed may be used.
When N = 2, the second wiring layer and the blind via are formed by peeling the second resist, laminating an insulating resin, opening a hole for forming a blind via with a laser, and removing Cu. Electrolytic plating is performed on the entire surface, resist plate making is performed according to the shape of the wiring to be formed and blind vias, Cu electrolytic plating is performed using the Cu electroless plating layer as a current-carrying layer, resist peeling, and unnecessary Cu electroless plating layer is etched After that, by adopting the semi-additive method of forming the second layer wiring along with the blind via formation, the second layer wiring can be formed finely and the whole can be formed thin. It is said.

本発明の配線基板は、このような構成にすることにより、W/B接合のためのAuめっきを施した端子部、FC接合のためのCu無垢の端子部という、仕様の異なる2種類の端子を、その一方の面に、精度良く、狭ピッチで配設し、且つ前記一方側を平坦状にして形成したインターポーザとしての半導体パッケージ用の配線基板の提供を可能としている。 少なくとも一部に、Auめっきを施した端子部とCu無垢の端子部とが、前記1方の側にて、前記1方の側の表面に沿う接続用配線にて接続されている構造を有する場合、
該構造におけるCu無垢の端子部と接続用配線とは、同じ処理工程で形成できるため(後述する、図1〜図2に示す工程参照)、
Cu無垢の端子部、Auめっきを施した端子部に対し、それぞれ別にブラインドビアを形成する構造のものに比べ、ブラインドビア数を削減でき、その作製を簡単なものとできる。
本発明の配線基板としては、配線層が2層以上で、隣接する配線層間はブラインドビアで接続されており、前記1方側に対向する他方側に配線基板へ接続するための端子部を備えている形態のものが挙げられる。
具体的には、前記1方の面に、Auめっきを施した端子部と、Cu無垢の端子部とは、いずれも、アディティブ工法により形成されたものが挙げられるが、この場合は、狭ピッチの端子を精度良く形成することができる。
更に具体的には、多端子の、インターポーザとしての半導体パッケージ用の配線基板に利用できる。
By adopting such a configuration, the wiring board of the present invention has two types of terminals having different specifications such as a terminal portion plated with Au for W / B bonding and a solid copper terminal portion for FC bonding. Can be provided on one surface of the semiconductor package with high precision and at a narrow pitch, and the wiring substrate for a semiconductor package can be provided as an interposer formed by flattening the one side. At least partially, a terminal portion plated with Au and a solid Cu terminal portion are connected on one side by connection wiring along the surface on the one side. If
Since the solid Cu terminal portion and the connection wiring in the structure can be formed in the same processing step (see the steps shown in FIGS. 1 and 2 described later),
The number of blind vias can be reduced and the fabrication can be simplified compared to a structure in which a blind via is formed separately for each of a pure Cu terminal portion and a terminal portion plated with Au.
The wiring board of the present invention has two or more wiring layers, the adjacent wiring layers are connected by blind vias, and a terminal portion for connecting to the wiring board is provided on the other side facing the one side. The thing of the form which is mentioned is mentioned.
Specifically, both the terminal portion plated with Au and the terminal portion made of pure Cu are formed by an additive method on the one surface, but in this case, a narrow pitch is used. Can be formed with high accuracy.
More specifically, it can be used for a wiring board for a semiconductor package as a multi-terminal interposer.

本発明は、上記のように、W/B接合のためのAuめっきを施した端子部、FC接合のためのCu無垢の端子部という、仕様の異なる2種類の端子を、その一方の面に、精度良く、狭ピッチで配設し、且つ前記一方側を平坦状にして形成したインターポーザとしての半導体パッケージ用の配線基板と、その製造方法の提供を可能とした。
これにより、複数のチップを搭載するSIPにおいて、半導体チップと配線基板基板の接合の選択肢が広がり、組立て性、接合信頼性が向上する。
また、半導体パッケージの高集積、高性能化、薄型化が可能となり、高集積に適した半導体装置を実現することができる。
また、複数のチップを搭載するSIPにおいて、半導体チップと配線基板の接合の選択肢が広がることで、配線基板設計時の配線デザインの自由度が増し、設計コストが削減される。
また、第1層目のCu導体からなる配線は、絶縁層に完全に埋め込まれた形状となり、Cuと絶縁層との境界に段差も生じないため、Cu導体剥き出しになる部分において、表面の平坦性を実現することができ、半導体チップの実装上有利である。
As described above, the present invention has two types of terminals with different specifications on one side: a terminal portion plated with Au for W / B bonding and a solid Cu terminal portion for FC bonding. Therefore, it is possible to provide a wiring substrate for a semiconductor package as an interposer which is arranged with high accuracy and at a narrow pitch and is formed so that the one side is flat, and a manufacturing method thereof.
Thereby, in the SIP in which a plurality of chips are mounted, options for joining the semiconductor chip and the wiring board substrate are widened, and assembling property and joining reliability are improved.
In addition, high integration, high performance, and thinning of the semiconductor package are possible, and a semiconductor device suitable for high integration can be realized.
In addition, in the SIP in which a plurality of chips are mounted, options for joining the semiconductor chip and the wiring board are widened, so that the degree of freedom in wiring design at the time of designing the wiring board is increased and the design cost is reduced.
In addition, the wiring made of the Cu conductor of the first layer has a shape completely embedded in the insulating layer, and there is no step at the boundary between Cu and the insulating layer, so that the surface is flat in the portion where the Cu conductor is exposed. This is advantageous in terms of mounting a semiconductor chip.

本発明の実施の形態を図に基づいて説明する。
図1は本発明の配線基板の製造方法の実施の形態の1例の一部製造工程図で、図2は図1に続く製造工程図で、図3は従来の配線基板の製造方法の一部製造工程図で、図4は図3に続く製造工程図で、図5は半導体パッケージにおける本発明の配線基板と半導体チップとの接合形態を示したものである。
図1〜図5中、110はCu板(支持基板とも言う)、120はNi層(Niめっき層とも言う)、130はレジスト(第1のレジストとも言う)、131は開口、135はレジスト(第2のレジストとも言う)、136は開口、140は端子部、141はNi層、142はAu層、143はNi層、150は配線(第1の配線層の配線あるいは単にCu層とも言う)、150Aは端子部、155は配線(第2の配線層の配線あるいは単にCu層とも言う)、158はブラインドビア、160は絶縁性樹脂層、170は絶縁性の樹脂層(ソルダーレジスト等)、175は(絶縁性の樹脂層の)開口、180は端子部、181はNi層、182はAu層、510は配線基板、520は絶縁性樹脂層、530は端子、531は配線(第1の配線層の配線とも言う)、531Aは端子、532はNi層、533はAu層、535は配線(第2の配線層の配線とも言う)、536はNi層、537はAu層、538はブラインドビア、550は絶縁性の樹脂層(ソルダーレジスト等)、560、565は半導体チップ、561、562は端子(パッドとも言う)563は半田ボール、564はアンダーフィラー、567はボンディングワイヤ、568は接着剤層、570は半田ボールである。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a partial manufacturing process diagram of an example of an embodiment of a method for manufacturing a wiring board according to the present invention, FIG. 2 is a manufacturing process diagram following FIG. 1, and FIG. FIG. 4 is a manufacturing process diagram subsequent to FIG. 3, and FIG. 5 shows a bonding form of the wiring board of the present invention and the semiconductor chip in the semiconductor package.
1 to 5, 110 is a Cu plate (also called a support substrate), 120 is a Ni layer (also called a Ni plating layer), 130 is a resist (also called a first resist), 131 is an opening, and 135 is a resist ( (Also referred to as a second resist) 136 is an opening, 140 is a terminal portion, 141 is a Ni layer, 142 is an Au layer, 143 is a Ni layer, and 150 is a wiring (also referred to as a wiring of the first wiring layer or simply a Cu layer) , 150A is a terminal portion, 155 is a wiring (also referred to as the wiring of the second wiring layer or simply Cu layer), 158 is a blind via, 160 is an insulating resin layer, 170 is an insulating resin layer (solder resist, etc.), 175 is an opening (of an insulating resin layer), 180 is a terminal portion, 181 is a Ni layer, 182 is an Au layer, 510 is a wiring board, 520 is an insulating resin layer, 530 is a terminal, and 531 is a wiring (first wiring) Wiring layer (Also referred to as wiring) 531A is a terminal, 532 is an Ni layer, 533 is an Au layer, 535 is a wiring (also referred to as wiring of the second wiring layer), 536 is an Ni layer, 537 is an Au layer, 538 is a blind via, 550 Is an insulating resin layer (solder resist, etc.), 560 and 565 are semiconductor chips, 561 and 562 are terminals (also called pads) 563 are solder balls, 564 is an under filler, 567 is a bonding wire, 568 is an adhesive layer, Reference numeral 570 denotes a solder ball.

はじめに、本発明の配線基板の実施の形態例の1例を図1〜図2に基づいて説明する。 本例の配線基板の製造方法は、1方の側に、W/B接合用のAuめっきを施した端子部と、FC接合用のCu無垢の端子部との2種類の、半導体チップとの接続用の端子部を有し、且つ、これらの端子部領域を含み前記1方の側を平面状にして形成し、他方の面に配線基板へ接続するための端子部を備えたインターポーザとしての半導体パッケージ用の配線基板で、配線層を表裏の2層だけとする配線基板を製造するものである。
先ず、支持基材とするCu板110上の一面全面にNiめっきを施しNi層120を形成する。(図1(a))
次いで、形成されたNi層120上に形成しようとする端子部の形状に合わせて、第1のレジスト130を配設し(図1(b))、第1のレジスト130を耐めっきマスクとして電解めっきを行い、順に、Ni層141、Au層142、Ni層143を形成する。(図1(c))
第1のレジストとしては、所望の解像性を有し、行うNiめっき、Auめっきに耐えるもので、処理性の良いものが好ましい。
尚、Ni層141を配設することにより、Au層をレジスト130の開口135内に納めることができ、結果、後にNi層141を除去し、端子の表面にAu層を露出させる際に、その領域を精度良く形成できるものとしている。
Ni層141を配設しないで、Ni層120上に直接Au層を設ける場合にはAu層がレジスト130とNi層120との間にしみ込むことがあり、これにより、端子の表面にAu層を露出させる際に、その領域を精度良く形成できない場合がある。
本例では、Ni層141の厚みは、このような目的を達成することができる厚さであれば良い。
Au層142の厚みは、W/B接合に耐える厚さで、通常、0.5μm〜1.0μmとする。
また、Ni層143は、Cu層を形成するための下地となるもので、通常、5μm〜10μmとする。
First, an example of an embodiment of a wiring board according to the present invention will be described with reference to FIGS. The manufacturing method of the wiring board of this example includes two types of semiconductor chips, a terminal portion that is plated with Au for W / B bonding and a solid Cu terminal portion for FC bonding on one side. As an interposer having a terminal portion for connection and including these terminal portion regions, the one side is formed in a planar shape, and a terminal portion for connecting to the wiring board is provided on the other surface. A wiring board for a semiconductor package, which has only two wiring layers on the front and back, is manufactured.
First, Ni plating is performed on the entire surface of the Cu plate 110 serving as a supporting base to form the Ni layer 120. (Fig. 1 (a))
Next, a first resist 130 is provided in accordance with the shape of the terminal portion to be formed on the formed Ni layer 120 (FIG. 1B), and electrolysis is performed using the first resist 130 as a plating-resistant mask. Plating is performed to sequentially form a Ni layer 141, an Au layer 142, and a Ni layer 143. (Fig. 1 (c))
As the first resist, a resist having a desired resolution and withstanding Ni plating and Au plating to be performed and having good processability is preferable.
By providing the Ni layer 141, the Au layer can be accommodated in the opening 135 of the resist 130. As a result, when the Ni layer 141 is removed later and the Au layer is exposed on the surface of the terminal, The region can be formed with high accuracy.
In the case where the Au layer is provided directly on the Ni layer 120 without providing the Ni layer 141, the Au layer may penetrate between the resist 130 and the Ni layer 120, and thereby the Au layer is formed on the surface of the terminal. When exposed, the region may not be formed with high accuracy.
In this example, the thickness of the Ni layer 141 may be any thickness that can achieve such a purpose.
The thickness of the Au layer 142 is a thickness that can withstand W / B bonding, and is usually 0.5 μm to 1.0 μm.
The Ni layer 143 is a base for forming the Cu layer, and is usually 5 μm to 10 μm.

次いで、第1のレジスト130を剥離した後、Cu板110側に形成しようとするCu無垢の端子部を含む配線部の形状に合わせて、第2のレジスト135を配設し、第2のレジスト135を耐めっきマスクとして電解めっき法によりCuを析出させ、Cu無垢の端子部を含むCu層からなる配線150を形成する。(図1(d))
端子部を含め、配線(Cu層)150が形成されている配線部を合わせて、ここでは、第1層目の配線層と言う。
配線150は、導電性の面(Ni層120の表面)からは、厚さ5μm〜30μm程度が好ましい。
第1層目の配線層のNi層120側は、いずれも、支持基材であるCu板110上に全面めっき形成されたNi層120上にフォトリソグラフィー法により形成された第2のレジスト135の開口から露出した領域に、選択的にめっき形成されるもので、精度良く、微細に形成することができる。
第2のレジスト135としては、所望の解像性を有し、行うCuめっきに耐えるもので、処理性の良いものが好ましい。
Next, after the first resist 130 is peeled off, a second resist 135 is provided in accordance with the shape of the wiring portion including the solid Cu terminal portion to be formed on the Cu plate 110 side. Cu is deposited by an electroplating method using 135 as an anti-plating mask to form a wiring 150 made of a Cu layer including a pure Cu terminal portion. (Fig. 1 (d))
The wiring portion including the terminal portion and the wiring (Cu layer) 150 is collectively referred to as a first wiring layer here.
The wiring 150 preferably has a thickness of about 5 μm to 30 μm from the conductive surface (the surface of the Ni layer 120).
On the Ni layer 120 side of the first wiring layer, both of the second resist 135 formed by photolithography on the Ni layer 120 that is formed by plating on the entire surface of the Cu plate 110 that is the supporting substrate. It is selectively plated on the region exposed from the opening, and can be finely formed with high accuracy.
As the second resist 135, a resist having a desired resolution, having resistance to Cu plating to be performed, and having good processability is preferable.

次いで、第2のレジスト135を剥離した後、本例ではセミアディティブ工法により、第1層目の配線層上に、絶縁性樹脂層160を介して第2層目の配線層の配線155および第1層目の配線層の配線と第2層目の配線層の配線とを接続するためのブラインドビア158を形成する。(図2(h))
第2層目の配線層の配線155の形成およびブラインドビア158の形成は、簡単には、第2のレジスト135を剥離した後、絶縁性樹脂層160をラミネートし、レーザによりブラインドビア形成用の孔を開け、必要に応じてデスミア処理を施し、Cu無電解めっきを全面に行い、形成する配線やブラインドビアの形状に合わせてレジスト製版を行い、Cu無電解めっき層を通電層としてCu電解めっきを行い、レジスト剥離、露出している不要のCu無電解めっきによる無電解Cuめっき層をフラッシュエッチングにて除去するエッチング工程を経て、ブラインドビア158形成とともに第2層目の配線155を形成する。
ここでのフラッシュエッチングするためのエッチング液としては、過酸化水素、硫酸、過硫酸アンモニウム、過硫酸ナトリウム、塩酸、硝酸、塩化第2鉄、塩化銅、シアン系、有機系エッチング液やこれらの混合物等が用いられる。
配線部155は、導電性の面等からは、厚さ5μm〜30μm程度が好ましいが、その作製においてブラインドビア形成を確実に行うため、例えば、絶縁性樹脂層160の厚さ85μmでレーザ照射側の孔径100μm、反対側の孔径70μmの場合、通常は、厚さ10μm〜30μm程度となる。
無電解Cuめっき層は、公知の方法により形成されるもので、配線155、ブラインドビアの導通部を形成するための電解Cuめっきを施す際の、通電層となる厚さがあり、フラッシュエッチングにて不要の無電解CuめっきによるCu層が、他を損傷せずに容易に除去できる厚さであれば良い。
絶縁性樹脂層160としては、シアネート系樹脂、BTレジン(ビスマレイミドとトリアジンからなる樹脂)、エポキシ樹脂、PPE(ポリフェニレンエーテル)等が挙げられる。
レーザ光としては、CO2 レーザあるいはUVレーザが絶縁性樹脂層160の材質に合せて用いられる。
Next, after removing the second resist 135, in this example, the wiring 155 and the second wiring layer 155 and the second wiring layer are formed on the first wiring layer via the insulating resin layer 160 by a semi-additive method. A blind via 158 for connecting the wiring of the first wiring layer and the wiring of the second wiring layer is formed. (Fig. 2 (h))
The formation of the wiring 155 of the second wiring layer and the formation of the blind via 158 are simply performed by removing the second resist 135, laminating the insulating resin layer 160, and forming a blind via by laser. Open holes, perform desmear treatment as necessary, perform Cu electroless plating over the entire surface, perform resist platemaking according to the shape of the wiring and blind via to be formed, and use Cu electroless plating layer as a current-carrying layer for Cu electroplating Then, the second layer wiring 155 is formed along with the formation of the blind via 158 through an etching process for removing the resist and removing the exposed electroless Cu plating layer by unnecessary flash electroless plating by flash etching.
Etching solutions for flash etching here include hydrogen peroxide, sulfuric acid, ammonium persulfate, sodium persulfate, hydrochloric acid, nitric acid, ferric chloride, copper chloride, cyanide, organic etchants, and mixtures thereof. Is used.
The wiring portion 155 preferably has a thickness of about 5 μm to 30 μm from the viewpoint of conductivity, etc. However, in order to reliably form blind vias in its production, for example, the insulating resin layer 160 has a thickness of 85 μm and the laser irradiation side When the hole diameter is 100 μm and the opposite hole diameter is 70 μm, the thickness is usually about 10 μm to 30 μm.
The electroless Cu plating layer is formed by a known method, and has a thickness that becomes an energization layer when performing electrolytic Cu plating for forming the conductive portion of the wiring 155 and the blind via. It is sufficient that the Cu layer by unnecessary electroless Cu plating has a thickness that can be easily removed without damaging others.
Examples of the insulating resin layer 160 include cyanate resins, BT resins (resins composed of bismaleimide and triazine), epoxy resins, PPE (polyphenylene ether), and the like.
As the laser light, a CO 2 laser or a UV laser is used according to the material of the insulating resin layer 160.

次いで、本例は第2層目の配線層の配線155にカバーレイヤーが必要な場合で、第2層目の配線層の端子部を形成する領域を開口して露出させて、第2層目配線層の配線を覆うように絶縁性の樹脂層(ソルダーレジスト層等)170を形成し(図2(i))、Cu板110を給電層として電解めっきを行い、第2層目の配線層の端子部を形成する領域に、選択的に、順にNi層181、Au層182を形成する。(図2(j))
通常、感光性の絶縁性の樹脂層(ソルダーレジスト層等)を所定のフォトマスク等を用いてマスクマスキング露光し、更に、現像して形成するフォトリソグラフィー法にて、絶縁性の樹脂層(ソルダーレジスト層等)170を形成する。
絶縁性の樹脂層(ソルダーレジスト層等)170の厚さは、通常、25μm程度とする。
Au層182の厚さは、半田ボール接続するには、通常、0.1μm〜0.3μm程度とする。
また、Ni層181の厚さは、2μm程度とする。
次いで、Cu板110をエッチング除去し(図2(k))、更に、Cu板110をエッチング除去により露出したNi層141をエッチング除去して、Au層142を露出させた状態とする。(図2(l))
Cu板110のエッチングは、通常、Cuキレート剤を含むアルカリエッチング液にて行う。
また、Ni層141のエッチングは、Cuのインヒビター(禁止材)と硫酸、過酸化水素等を含む酸性エッチング液にて行う。
このようにして、1方の側に、Auめっきを施した端子部と、Cu無垢の端子部との2種類の、半導体チップとの接続用の端子部を有し、且つ、これらの端子部領域を含み前記1方の側を平面状にして形成し、他方の面に配線基板へ接続するための端子部を備えたインターポーザとしての半導体パッケージ用の配線基板で、配線層を表裏の2層だけとする配線基板が製造できる。
Next, this example is a case where a cover layer is required for the wiring 155 of the second wiring layer, and the region for forming the terminal portion of the second wiring layer is opened and exposed to form a second layer. An insulating resin layer (solder resist layer or the like) 170 is formed so as to cover the wiring of the wiring layer (FIG. 2 (i)), electrolytic plating is performed using the Cu plate 110 as a power feeding layer, and a second wiring layer The Ni layer 181 and the Au layer 182 are selectively formed in this order in the region where the terminal portion is formed. (Fig. 2 (j))
Usually, a photosensitive insulating resin layer (solder resist layer, etc.) is subjected to mask masking exposure using a predetermined photomask, etc., and further developed to form an insulating resin layer (solder). Resist layer etc.) 170 is formed.
The thickness of the insulating resin layer (solder resist layer, etc.) 170 is normally about 25 μm.
The thickness of the Au layer 182 is usually about 0.1 μm to 0.3 μm for solder ball connection.
The thickness of the Ni layer 181 is about 2 μm.
Next, the Cu plate 110 is removed by etching (FIG. 2 (k)), and the Ni layer 141 exposed by removing the Cu plate 110 is removed by etching, so that the Au layer 142 is exposed. (Fig. 2 (l))
Etching of the Cu plate 110 is usually performed with an alkaline etching solution containing a Cu chelating agent.
Etching of the Ni layer 141 is performed with an acidic etching solution containing a Cu inhibitor (forbidden material), sulfuric acid, hydrogen peroxide, and the like.
Thus, on one side, there are two types of terminal portions for connection to the semiconductor chip, that is, a terminal portion plated with Au and a terminal portion made of pure Cu, and these terminal portions A wiring board for a semiconductor package as an interposer having a terminal portion for connecting to a wiring board on the other side, wherein the wiring layer is composed of two layers on the front and back sides. Only a wiring board can be manufactured.

尚、本例では、第1層目の配線層上に、第2層目の配線層をセミアディティブ工法にて形成し、2層の配線層を有する配線基板としたが、第2のレジスト135を剥離した後、第1層目の配線層の配線150上にアディティブ工法、セミアディティブ工法、サブトラクティブ工法等により配線層を1層以上、前記第1の配線を含めて、各配線層間を接続した状態で形成し、所望の配線層数N(但しNは2以上の整数)の多層配線としても、本例と同等、一方の側に、Auめっきを施した端子部と、Cu無垢の端子部との2種類の、半導体チップとの接続用の端子部を有し、且つ、これらの端子部領域を含み前記1方の側を平面状にして形成し、他方の面に配線基板へ接続するための端子部を備えた、配線層が2層以上の配線基板が製造できる。   In this example, the second wiring layer is formed on the first wiring layer by a semi-additive method to form a wiring board having two wiring layers. After peeling off, connect one or more wiring layers on the wiring 150 of the first wiring layer by an additive method, a semi-additive method, a subtractive method, etc., and connect each wiring layer including the first wiring. The multi-layered wiring having the desired number of wiring layers N (where N is an integer of 2 or more) is equivalent to this example, and a terminal portion with Au plating on one side and a solid Cu terminal Two terminal parts for connecting to the semiconductor chip, and including these terminal part regions, the one side is formed in a planar shape and connected to the wiring board on the other surface A wiring board having two or more wiring layers can be manufactured with a terminal portion for

次に、本発明の配線基板の実施の形態例の1例を図2(l)に基づいて説明する。
本例は、図1〜図2に示す製造方法にて形成されたもので、図2(l)に示すように、 1方の側に、Auめっきを施した端子部140と、Cu無垢の端子部150Aとの2種類の、半導体チップとの接続用の端子部を有し、他方側にAuめっきを施した端子部180を有するもので、且つ、端子部140、150Aの領域を含み前記1方の側を平面状にして形成している。
そして、端子部140、150A側の端子部を含み配線150をアディティブ工法により形成している半導体パッケージ用のインターポーザとしての配線基板である。
各部については、上記の図1〜図2に示す製造方法における説明にて代え、省略する。 このような構成にしていることにより、端子部狭ピッチ化に精度良く対応でき、且つ、端子部140、150A形成側で、半導体チップとのFC接合とW/B接合とを問題なくできるものとしている。
本例では、Auめっきを施した端子部140とCu無垢の端子部150Aとが、1方の側にて、該1方の側の表面に沿う接続用配線(配線150)にて接続されている。
本例の配線基板の変形例としては、配線層が3層以上のものも挙げられる。
このような配線基板は、図1〜図2に示す配線基板の製造方法において、第1層目の配線層上に、第2層目の配線層をセミアディティブ工法にて形成し、2層の配線層を有する配線基板としたが、第2のレジスト135を剥離した後、第1層目の配線層の配線150上にアディティブ工法、セミアディティブ工法、サブトラクティブ工法等により配線層を1層以上、前記第1の配線を含めて、各配線層間を接続した状態で形成し、所望の配線層数N(但しNは2以上の整数)の多層配線とした場合のものである。
Next, an example of the embodiment of the wiring board according to the present invention will be described with reference to FIG.
This example is formed by the manufacturing method shown in FIG. 1 to FIG. 2, and as shown in FIG. 2 (l), on one side, a terminal part 140 with Au plating and a pure Cu The terminal portion 150A has two types of terminal portions for connection to the semiconductor chip, the other side has a terminal portion 180 plated with Au, and includes the regions of the terminal portions 140 and 150A. One side is formed flat.
And it is a wiring board as an interposer for a semiconductor package in which the wiring 150 is formed by an additive method including the terminal portions on the terminal portions 140 and 150A side.
About each part, it replaces with description in the manufacturing method shown in said FIGS. 1-2, and abbreviate | omits. By adopting such a configuration, it is possible to cope with the narrowing of the pitch of the terminal portion with high accuracy and to perform the FC junction and the W / B junction with the semiconductor chip without problems on the side where the terminal portions 140 and 150A are formed. Yes.
In this example, the Au-plated terminal portion 140 and the solid Cu terminal portion 150A are connected on one side by connection wiring (wiring 150) along the surface of the one side. Yes.
As a modification of the wiring board of this example, a wiring board having three or more wiring layers can be cited.
Such a wiring board is formed by forming a second wiring layer on the first wiring layer by a semi-additive method in the manufacturing method of the wiring board shown in FIGS. Although the wiring substrate having the wiring layer is formed, one or more wiring layers are formed on the wiring 150 of the first wiring layer after the second resist 135 is removed by an additive method, a semi-additive method, a subtractive method, or the like. In this case, the wiring layers including the first wiring are formed in a connected state to form a multilayer wiring having a desired number of wiring layers N (where N is an integer of 2 or more).

本例の配線基板あるいは上記変形例の少なくともその一部において、Auめっきを施した端子部140と、Cu無垢の端子部150Aとを接続している接続用配線(配線150)を設けずに、Cu無垢の端子部150A形成側では、Auめっきを施した端子部140と、Cu無垢の端子部150Aとを分離し、Cu無垢の端子部形成側と対向する側の配線155とCu無垢の端子部150Aとの接続を、Auめっきを施した端子部140とは別のブラインドビアにて行う形態のものも挙げられる。   In the wiring board of this example or at least a part of the above-described modification, without providing the connecting wiring (wiring 150) for connecting the terminal portion 140 plated with Au and the terminal portion 150A made of pure Cu, On the side where the solid Cu terminal portion 150A is formed, the Au-plated terminal portion 140 and the solid Cu terminal portion 150A are separated, and the wiring 155 and the solid Cu terminal facing the solid Cu terminal portion forming side are separated. The thing of the form which performs the connection with 150A with a blind via different from the terminal part 140 which gave Au plating is also mentioned.

本例の配線基板(図5では510がこれに相当する)は、例えば、図5に示す半導体パッケージとして供せられる。
図5に示す半導体パッケージは、配線基板510上に、Auめっきを施した端子部と、Cu無垢の端子部との2種類の、半導体チップとの接続用の端子部を有する一方の側に、半導体チップ560をアンダーフィラー564により保持して搭載し、半導体チップ560上に接着剤層により半導体チップ565を搭載して、それぞれ、半導体チップ560を配線基板510とFC接合により電気的に接続し、半導体チップ565を配線基板510とW/B接合により電気的に接続し、更に、前記一方の側に対向する配線基板510の他方の側の、Au被膜のある端子に半田ボール570を搭載して、半導体パッケージとして用いられる。
The wiring board of this example (510 corresponds to this in FIG. 5) is provided as, for example, a semiconductor package shown in FIG.
The semiconductor package shown in FIG. 5 has, on the wiring substrate 510, on one side having two terminal parts for connection with a semiconductor chip, a terminal part plated with Au and a terminal part made of Cu. The semiconductor chip 560 is mounted while being held by the underfiller 564, the semiconductor chip 565 is mounted on the semiconductor chip 560 with an adhesive layer, and the semiconductor chip 560 is electrically connected to the wiring substrate 510 by FC bonding, The semiconductor chip 565 is electrically connected to the wiring substrate 510 by W / B bonding, and solder balls 570 are mounted on the terminals having the Au coating on the other side of the wiring substrate 510 facing the one side. Used as a semiconductor package.

本発明の配線基板の製造方法の実施の形態の1例の一部製造工程図である。It is a partial manufacturing process figure of one example of embodiment of the manufacturing method of the wiring board of this invention. 図1に続く製造工程図である。FIG. 2 is a manufacturing process diagram following FIG. 1. 従来の配線基板の製造方法の一部製造工程図である。It is a partial manufacturing process figure of the manufacturing method of the conventional wiring board. 図3に続く製造工程図である。FIG. 4 is a manufacturing process diagram following FIG. 3. 半導体パッケージにおける本発明の配線基板と半導体チップとの接合形態を示したものである。1 shows a bonding form of a wiring board of the present invention and a semiconductor chip in a semiconductor package.

符号の説明Explanation of symbols

110 Cu板(支持基板とも言う)
120 Ni層(Niめっき層とも言う)
130 レジスト(第1のレジストとも言う)
131 (レジストの)開口
135 レジスト(第2のレジストとも言う)
136 (レジストの)開口
140 端子部
141 Ni層
142 Au層
143 Ni層
150 配線(第1の配線層の配線あるいは単にCu層とも言う)
150A 端子部
155 配線(第2の配線層の配線あるいは単にCu層とも言う)
158 ブラインドビア
160 絶縁性樹脂層
170 絶縁性の樹脂(ソルダーレジスト等)
175 (絶縁性の樹脂の)開口
180 端子部
181 Ni層
182 Au層
310 Cu板(支持基板とも言う)
320 レジスト
325 レジスト開口
330 端子部
331 Ni層
332 Au層
333 Ni層
340 絶縁性の樹脂層
345 ブラインドビア孔
318 ブラインドビア
315 Cu配線
360 絶縁性の樹脂層(ソルダーレジスト)
365 絶縁性の樹脂層の開口(ソルダーレジスト開口)
380 端子部
381 Ni層
382 Au層
510 配線基板
520 絶縁性の樹脂層
530 端子
531 配線(第1の配線層の配線とも言う)
531A 端子
532 Ni層
533 Au層
535 配線(第2の配線層の配線とも言う)
536 Ni層
537 Au層
538、539 ブラインドビア
550 絶縁性の樹脂層(ソルダーレジスト層等)
560、565 半導体チップ
561、562 端子(パッドとも言う)
563 半田ボール
564 アンダーフィラー
567 ボンディングワイヤ
568 接着剤層
570 半田ボール
610 配線基板
611、612 端子部
620、625 半導体チップ
621、626 端子部(パッドあるいはバンプとも言う)
630 ボンディングワイヤ
635 半田ボール
637 アンダーフィラー
640 半田ボール


110 Cu plate (also called support substrate)
120 Ni layer (also called Ni plating layer)
130 resist (also referred to as first resist)
131 (resist) opening 135 resist (also referred to as second resist)
136 (Resist) opening 140 Terminal portion 141 Ni layer 142 Au layer 143 Ni layer 150 Wiring (also referred to as wiring of the first wiring layer or simply Cu layer)
150A terminal portion 155 wiring (also referred to as wiring of the second wiring layer or simply Cu layer)
158 Blind via 160 Insulating resin layer 170 Insulating resin (solder resist, etc.)
175 Opening 180 (of insulating resin) Terminal portion 181 Ni layer 182 Au layer 310 Cu plate (also called support substrate)
320 Resist 325 Resist opening 330 Terminal portion 331 Ni layer 332 Au layer 333 Ni layer 340 Insulating resin layer 345 Blind via hole 318 Blind via 315 Cu wiring 360 Insulating resin layer (solder resist)
365 Opening of insulating resin layer (solder resist opening)
380 Terminal portion 381 Ni layer 382 Au layer 510 Wiring substrate 520 Insulating resin layer 530 Terminal 531 Wiring (also referred to as wiring of the first wiring layer)
531A Terminal 532 Ni layer 533 Au layer 535 Wiring (also referred to as wiring of the second wiring layer)
536 Ni layer 537 Au layer 538, 539 Blind via 550 Insulating resin layer (solder resist layer, etc.)
560, 565 Semiconductor chips 561, 562 Terminals (also referred to as pads)
563 Solder ball 564 Under filler 567 Bonding wire 568 Adhesive layer 570 Solder ball 610 Wiring board 611, 612 Terminal portion 620, 625 Semiconductor chip 621, 626 Terminal portion (also referred to as pad or bump)
630 Bonding wire 635 Solder ball 637 Under filler 640 Solder ball


Claims (10)

1方の側に、その表面にAuめっきを施した第1の端子部と、Cu無垢の第2の端子部との2種類の、半導体チップとの接続用の端子部を有し、且つ、これらの端子部領域を含み前記1方の側を平面状にして形成し、他方の面に配線基板へ接続するための端子部を備えた配線基板の製造方法であって、順に、(a)支持基材とするCu板上の一面全面にNiめっきを施しNiめっき層を形成する全面Niめっき工程と、(b)形成されたNiめっき層上に形成しようとする第1の端子部の形状に合わせて、第1のレジストを配設し、第1のレジストを耐めっきマスクとして電解めっきを行い、順に、Ni層、Au層、Ni層を形成し、第1の端子部用のめっき層の形成を行う第1の端子めっき工程と、(c)第1のレジストを剥離した後、Cu板側に形成しようとするCu無垢の端子部を含む配線の形状に合わせて、第2のレジストを配設し、第2のレジストを耐めっきマスクとして電解めっき法によりCuを析出させ、Cu無垢の第2の端子部を含む第1の配線を形成する第1の配線形成工程と、(d)第2のレジストを剥離した後、アディティブ工法、セミアディティブ工法、サブトラクティブ工法等により配線層を1層以上、前記第1の配線を含めて、各配線層間を接続した状態で形成し、所望の配線層数N(但しNは2以上の整数)の多層配線とする配線層形成工程と、(e)Cu板を給電層として電解めっきを行い、N層目の配線層の(Auめっき層を被膜した)端子部を形成する領域に、選択的に、順にNi層、Au層を形成する第2の端子めっき工程と、(f)Cu板をエッチング除去し、更に、Cu板のエッチング除去により露出したNi層をエッチングして、第1の端子めっき工程で形成したAu層と、第1の配線形成工程で形成され且つ全面Niめっき上に形成されたCu層とを露出させた状態とするNiエッチング工程を行うことを特徴とする配線基板の製造方法。   On one side, there are two types of terminal portions for connection to a semiconductor chip, a first terminal portion whose surface is plated with Au and a second terminal portion made of pure Cu, and A method of manufacturing a wiring board including these terminal part regions, wherein one side is formed in a planar shape, and a terminal part for connecting to the wiring board is provided on the other side. A Ni plating step for forming a Ni plating layer by performing Ni plating on the entire surface of a Cu plate as a supporting substrate; and (b) the shape of the first terminal portion to be formed on the formed Ni plating layer. In accordance with the above, a first resist is disposed, electrolytic plating is performed using the first resist as a plating-resistant mask, a Ni layer, an Au layer, and a Ni layer are formed in this order, and a plating layer for the first terminal portion A first terminal plating step for forming the substrate, and (c) after removing the first resist, C A second resist is disposed in accordance with the shape of the wiring including the solid Cu terminal portion to be formed on the plate side, Cu is deposited by electrolytic plating using the second resist as a plating-resistant mask, and the pure Cu is formed. A first wiring forming step for forming the first wiring including the second terminal portion; and (d) after the second resist is removed, the wiring layer is formed by an additive method, a semi-additive method, a subtractive method, or the like. A wiring layer forming step in which one or more layers including the first wiring are formed in a state where the wiring layers are connected to each other to form a multilayer wiring having a desired number of wiring layers N (where N is an integer of 2 or more); (E) Electroplating is performed using a Cu plate as a power feeding layer, and a Ni layer and an Au layer are selectively formed in order in a region where a terminal portion (coated with an Au plating layer) of the Nth wiring layer is formed. A second terminal plating step; and (f) Cu. And etching the Ni layer exposed by etching away the Cu plate to form an Au layer formed in the first terminal plating process, and on the entire surface of the Ni plating formed in the first wiring formation process. A method of manufacturing a wiring board, comprising performing an Ni etching step in which a formed Cu layer is exposed. 請求項1に記載の配線基板の製造方法であって、配線層形成工程後、N層目の配線層のAuめっき層を被膜した端子部を形成する領域を開口して露出させて、N層目配線層を覆うように絶縁性の樹脂層(ソルダーレジスト層等)を形成し、更に、Cu板を給電層として電解めっきを行い、N層目の配線層のAuめっき層を被膜した端子部を形成する領域に、選択的に、順にNi層、Au層を形成する第2の端子めっき工程を行うことを特徴とする配線基板の製造方法。   2. The method for manufacturing a wiring board according to claim 1, wherein after the wiring layer forming step, an area for forming a terminal portion coated with an Au plating layer of the Nth wiring layer is opened and exposed to form an N layer. An insulating resin layer (solder resist layer, etc.) is formed so as to cover the wiring layer, and further, electrolytic plating is performed using a Cu plate as a power feeding layer, and the Au plating layer of the Nth wiring layer is coated. A method of manufacturing a wiring board, comprising performing a second terminal plating step of selectively forming a Ni layer and an Au layer in order in a region where the film is formed. 請求項1ないし2のいずれか1に記載の配線基板の製造方法であって、N=2であり、2層目の配線層の形成およびブラインドビアの形成は、第2のレジストを剥離した後、絶縁性の樹脂をラミネートし、レーザによりブラインドビア形成用の孔を開け、Cu無電解めっきを全面に行い、形成する配線やブラインドビアの形状に合わせてレジスト製版を行い、Cu無電解めっき層を通電層としてCu電解めっきを行い、レジスト剥離、不要のCu無電解めっき層のエッチングを経て、ブラインドビア形成とともに第2層目の配線を形成する、セミアディティブ工法によるものであることを特徴とする配線基板の製造方法。   3. The method of manufacturing a wiring board according to claim 1, wherein N = 2, and the second wiring layer and the blind via are formed after the second resist is removed. , Laminating insulating resin, opening holes for forming blind vias by laser, performing Cu electroless plating over the entire surface, performing resist engraving according to the shape of the wiring and blind vias to be formed, Cu electroless plating layer It is based on a semi-additive method in which Cu electroplating is used as a current-carrying layer, resist stripping, unnecessary Cu electroless plating layer etching, and blind via formation and second-layer wiring are formed. A method of manufacturing a wiring board. 請求項1ないし3のいずれか1に記載の配線基板の製造方法であって、インターポーザとしての半導体パッケージ用の配線基板の製造方法であることを特徴とする配線基板の製造方法。   4. The method for manufacturing a wiring board according to claim 1, wherein the wiring board is a manufacturing method for a semiconductor package as an interposer. 1方の側に、Auめっきを施した端子部と、Cu無垢の端子部との2種類の、半導体チップとの接続用の端子部を有し、且つ、これらの端子部領域を含み前記1方の側の表面を平面状にして形成していることを特徴とする配線基板。   On one side, there are two types of terminal parts for connection to a semiconductor chip, a terminal part plated with Au and a terminal part made of pure Cu, and includes these terminal part regions. A wiring board characterized in that the surface on one side is formed in a planar shape. 請求項5に記載の配線基板であって、少なくとも一部の、Auめっきを施した端子部とCu無垢の端子部とが、前記1方の側にて、 前記1方の側の表面に沿う接続用配線にて接続されていることを特徴とする配線基板。   The wiring board according to claim 5, wherein at least a part of the Au plated terminal portion and the pure Cu terminal portion are along the surface of the one side on the one side. A wiring board characterized by being connected by connection wiring. 請求項5ないし7のいずれか1に記載の配線基板であって、配線層が2層以上で、隣接する配線層間はブラインドビアで接続されており、前記1方の側に対向する他方側に配線基板へ接続するための端子部を備えていることを特徴とする配線基板。   The wiring board according to any one of claims 5 to 7, wherein there are two or more wiring layers, adjacent wiring layers are connected by a blind via, and the other side facing the one side is disposed on the other side. A wiring board comprising a terminal portion for connection to the wiring board. 請求項5ないし8のいずれか1に記載の配線基板であって、前記1方側の、Auめっきを施した端子部とCu無垢の端子部とは、あるいは、Auめっきを施した端子部とCu無垢の端子部と前記接続用配線とは、いずれも、アディティブ工法により形成されたものであることを特徴とする配線基板。   The wiring board according to any one of claims 5 to 8, wherein the one-sided Au-plated terminal portion and the pure Cu terminal portion, or the Au-plated terminal portion; Both of the solid copper terminal portion and the connection wiring are formed by an additive method. 請求項5ないし8のいずれか1に記載の配線基板であって、インターポーザとしての半導体パッケージ用の配線基板であることを特徴とする配線基板。   9. The wiring board according to claim 5, wherein the wiring board is a semiconductor package wiring board as an interposer. 請求項9に記載の配線基板を用いていることを特徴とする半導体パッケージ。

A semiconductor package comprising the wiring board according to claim 9.

JP2004042471A 2004-02-19 2004-02-19 Wiring substrate and its manufacturing method, and semiconductor package Withdrawn JP2005235980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004042471A JP2005235980A (en) 2004-02-19 2004-02-19 Wiring substrate and its manufacturing method, and semiconductor package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004042471A JP2005235980A (en) 2004-02-19 2004-02-19 Wiring substrate and its manufacturing method, and semiconductor package

Publications (1)

Publication Number Publication Date
JP2005235980A true JP2005235980A (en) 2005-09-02

Family

ID=35018624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004042471A Withdrawn JP2005235980A (en) 2004-02-19 2004-02-19 Wiring substrate and its manufacturing method, and semiconductor package

Country Status (1)

Country Link
JP (1) JP2005235980A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116149A (en) * 2005-10-21 2007-05-10 General Electric Co <Ge> Electronic interconnection and method of fabricating the same
JP2007318098A (en) * 2006-04-27 2007-12-06 Sanyo Electric Co Ltd Circuit arrangement and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116149A (en) * 2005-10-21 2007-05-10 General Electric Co <Ge> Electronic interconnection and method of fabricating the same
JP2007318098A (en) * 2006-04-27 2007-12-06 Sanyo Electric Co Ltd Circuit arrangement and manufacturing method thereof
JP4503039B2 (en) * 2006-04-27 2010-07-14 三洋電機株式会社 Circuit equipment

Similar Documents

Publication Publication Date Title
US7115818B2 (en) Flexible multilayer wiring board and manufacture method thereof
US7317245B1 (en) Method for manufacturing a semiconductor device substrate
US8528200B2 (en) Printed wiring board and method for manufacturing printed wiring board
US20090301766A1 (en) Printed circuit board including electronic component embedded therein and method of manufacturing the same
KR101077380B1 (en) A printed circuit board and a fabricating method the same
US7226807B2 (en) Method of production of circuit board utilizing electroplating
KR20040076164A (en) A package substrate for electrolytic leadless plating, and its manufacturing method
JP2008300507A (en) Wiring substrate and manufacturing process of the same
JP2004193549A (en) Package substrate plated without plated lead-in wire and its manufacturing method
US8785789B2 (en) Printed circuit board and method for manufacturing the same
JP3934104B2 (en) Method for producing ball grid array substrate
US8487192B2 (en) Printed wiring board and method for manufacturing the same
JP2010135860A (en) Method of manufacturing printed circuit board
JP4470499B2 (en) Multilayer wiring board manufacturing method and multilayer wiring board
KR100908986B1 (en) Coreless Package Substrate and Manufacturing Method
JP2007324568A (en) Manufacturing method of package substrate
JP2010034430A (en) Wiring board and method for manufacturing the same
JP3770895B2 (en) Manufacturing method of wiring board using electrolytic plating
JP2005235982A (en) Wiring substrate and its manufacturing method, and semiconductor package
JP4219266B2 (en) Wiring board manufacturing method
JP2005235980A (en) Wiring substrate and its manufacturing method, and semiconductor package
JP7412735B2 (en) Manufacturing method for semiconductor packages
JP2004349414A (en) Circuit board and its manufacturing method
JP4591098B2 (en) Manufacturing method of semiconductor device mounting substrate
JP2005142267A (en) Substrate loaded with semiconductor-chip and semiconductor package and manufacturing method for these substrate and package

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501