JP2005235684A - Gel polymer electrolyte and lithium secondary battery - Google Patents

Gel polymer electrolyte and lithium secondary battery Download PDF

Info

Publication number
JP2005235684A
JP2005235684A JP2004046295A JP2004046295A JP2005235684A JP 2005235684 A JP2005235684 A JP 2005235684A JP 2004046295 A JP2004046295 A JP 2004046295A JP 2004046295 A JP2004046295 A JP 2004046295A JP 2005235684 A JP2005235684 A JP 2005235684A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
gel polymer
monomer
mass
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004046295A
Other languages
Japanese (ja)
Other versions
JP4157056B2 (en
Inventor
Tadayoshi Akao
忠義 赤尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2004046295A priority Critical patent/JP4157056B2/en
Priority to KR1020040040866A priority patent/KR100560520B1/en
Publication of JP2005235684A publication Critical patent/JP2005235684A/en
Application granted granted Critical
Publication of JP4157056B2 publication Critical patent/JP4157056B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gel polymer electrolyte in which deterioration of battery performance due to hydrogen fluoride can be prevented surely, and provide a lithium secondary battery in which this gel polymer electrolyte is equipped. <P>SOLUTION: This is the gel polymer electrolyte in which lithium ions can be conducted, and this is adopted while a matrix polymer formed by polymerizing substrate monomers having either one or both of an acrylate group and a methacrylate group and a reactive monomer having a dioxolane ring and a non-aqueous electrolytic solution are mixed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ゲルポリマー電解質およびリチウム二次電池に関するものであり、特に、電池特性を向上させるとともに機械的強度の経時変化の少ないゲルポリマー電解質に関するものである。   The present invention relates to a gel polymer electrolyte and a lithium secondary battery, and more particularly to a gel polymer electrolyte that improves battery characteristics and has little change in mechanical strength with time.

リチウム二次電池の電解液には、リチウム塩としてLiPFなどのフッ素を含む塩が一般的に用いられているが、このLiPFは、下記式に示すように、水分と反応してフッ化水素のようなハロゲン酸を生じさせるという性質が有る。 In the electrolyte solution of a lithium secondary battery, a salt containing fluorine such as LiPF 6 is generally used as a lithium salt. This LiPF 6 reacts with moisture as shown in the following formula, and is fluorinated. It has the property of producing halogen acids such as hydrogen.

2LiPF+12HO→12HF+2LiP(OH)…(1) 2LiPF 6 + 12H 2 O → 12HF + 2LiP (OH) 6 (1)

上記の反応は、例えば、リチウム二次電池の電解液に微量の水分が混入し、さらにこのリチウム二次電池が高温下で使用または放置された場合に進行しやすい。従来、発生したフッ化水素HFによって、集電体や正極活物質等の電池構成材料が劣化されてしまうという問題があった。電池構成材料の劣化は、電池の内部抵抗が上昇する等の電池性能に悪影響を及ぼす場合が多い。また、ポリエチレンオキサイド(PEO)系のポリマー電解質を用いたリチウム二次電池においては、発生したHFによりポリマーマトリックスが切断され、ポリマー電解質が液状化するという問題があった。   The above reaction is likely to proceed when, for example, a trace amount of water is mixed in the electrolyte solution of the lithium secondary battery, and the lithium secondary battery is used or left at a high temperature. Conventionally, the generated hydrogen fluoride HF has a problem that battery constituent materials such as a current collector and a positive electrode active material are deteriorated. Deterioration of battery constituent materials often adversely affects battery performance such as an increase in internal resistance of the battery. Further, in a lithium secondary battery using a polyethylene oxide (PEO) -based polymer electrolyte, there is a problem that the polymer matrix is cut by the generated HF and the polymer electrolyte is liquefied.

以上のフッ化水素による問題に対しては、従来から、下記特許文献1、2、3にそれぞれ記載されているように、フッ化水素の発生を抑制したり、発生したフッ化水素を捕捉(中和)することにより、フッ化水素による悪影響をできるだけ軽減する対処がなされてきた。
特開平11−354153号公報 特開2002−343364号公報 特開平09−245832号公報
Conventionally, with respect to the above problems caused by hydrogen fluoride, as described in the following Patent Documents 1, 2, and 3, respectively, the generation of hydrogen fluoride is suppressed or the generated hydrogen fluoride is captured ( (Neutralization) has been taken to reduce the adverse effects of hydrogen fluoride as much as possible.
JP 11-354153 A JP 2002-343364 A JP 09-245832 A

特許文献1では、リチウム塩としてLiPFの代わりにリチウムイミド塩を用いるか、あるいはLiPF等のフッ素を含む塩とリチウムイミド塩との混合物を用いることによって、フッ化水素の発生の抑制を目指している。しかし、リチウムイミド塩は熱分解温度がLiPFに比べて高いためHF発生抑制の効果は得られるであろうが、電池特性ではLiPF塩を用いた電池に及ばないという問題がある。
また、特許文献2では、発生したHFをSiOと反応させることによりフッ化水素HFの反応性を押さえ込んでいる。さらに特許文献3では、1,4,8,11−テトラアザシクロテトラデカンを添加することによりHFを中和させ、フッ化水素HFの反応性を押さえ込んでいる。これら特許文献2および3についても、HF抑制効果は見られるように思われるが、添加物の反応性、反応生成物の安定性など電池性能に及ぼす不安がある。
In Patent Document 1, a lithium imide salt is used instead of LiPF 6 as a lithium salt, or a mixture of a fluorine-containing salt such as LiPF 6 and a lithium imide salt is used to suppress generation of hydrogen fluoride. ing. However, since lithium imide salt has a higher thermal decomposition temperature than LiPF 6 , the effect of suppressing the generation of HF may be obtained, but the battery characteristics have a problem that it does not reach that of a battery using LiPF 6 salt.
Further, in Patent Document 2, the reactivity of hydrogen fluoride HF is suppressed by reacting the generated HF with SiO 2 . Further, in Patent Document 3, HF is neutralized by adding 1,4,8,11-tetraazacyclotetradecane, and the reactivity of hydrogen fluoride HF is suppressed. These Patent Documents 2 and 3 also seem to have an HF suppressing effect, but there is anxiety on the battery performance such as the reactivity of the additive and the stability of the reaction product.

本発明は、上記事情に鑑みてなされたものであって、フッ化水素による電池性能劣化を確実に防止できるとともに、液状化による機械的強度の低下が小さいゲルポリマー電解質およびこのゲルポリマー電解質を備えたリチウム二次電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and includes a gel polymer electrolyte that can reliably prevent deterioration of battery performance due to hydrogen fluoride, and has a small decrease in mechanical strength due to liquefaction, and the gel polymer electrolyte. An object of the present invention is to provide a lithium secondary battery.

上記の目的を達成するために、本発明は以下の構成を採用した。
本発明のゲルポリマー電解質は、リチウムイオンを伝導可能なゲルポリマー電解質であって、アクリレート基またはメタクリレート基のいずれか一方または両方を有する基質モノマーと下記[化1]に示す構造のジオキソラン環を有する反応性モノマーとが重合されてなるマトリックスポリマーと、非水電解液とが混合されてなることを特徴とする。
ただし、[化1]において、RはCHまたはRとつながるシクロヘキサン環であり、RはCH、C、CH(CH、またはRとつながるシクロヘキサン環のうちのいずれかであり、RはHもしくはCHである。
In order to achieve the above object, the present invention employs the following configuration.
The gel polymer electrolyte of the present invention is a gel polymer electrolyte capable of conducting lithium ions, and has a substrate monomer having one or both of an acrylate group and a methacrylate group and a dioxolane ring having a structure shown in the following [Chemical Formula 1]. A matrix polymer obtained by polymerizing a reactive monomer and a non-aqueous electrolyte are mixed.
However, in Chemical Formula 1], R 1 is a cyclohexane ring leads CH 3 or R 2, R 2 is CH 3, C 2 H 5, CH (CH 3) 2 or R 1 and of the cyclohexane ring leads, And R 3 is H or CH 3 .

Figure 2005235684
Figure 2005235684

また本発明のゲルポリマー電解質は、先に記載のゲルポリマー電解質であり、前記基質モノマーと前記反応性モノマーとの合計に対する前記反応性モノマーの含有率が3質量%以上30質量%以下の範囲であることを特徴とする。   The gel polymer electrolyte of the present invention is the gel polymer electrolyte described above, and the content of the reactive monomer with respect to the total of the substrate monomer and the reactive monomer is in the range of 3% by mass to 30% by mass. It is characterized by being.

また本発明のゲルポリマー電解質は、先に記載のゲルポリマー電解質であり、前記基質モノマーと前記非水電解液との合計に対する前記基質モノマーの含有率が0.1質量%以上20質量%以下の範囲であることを特徴とする。   The gel polymer electrolyte of the present invention is the gel polymer electrolyte described above, and the content of the substrate monomer with respect to the total of the substrate monomer and the nonaqueous electrolytic solution is 0.1% by mass or more and 20% by mass or less. It is a range.

次に本発明のリチウム二次電池は、先に記載のゲルポリマー電解質であり、正極と、負極と、請求項1ないし請求項3のいずれかに記載されたゲルポリマー電解質とを具備してなることを特徴とする。   Next, the lithium secondary battery of the present invention is the gel polymer electrolyte described above, and includes a positive electrode, a negative electrode, and the gel polymer electrolyte according to any one of claims 1 to 3. It is characterized by that.

本発明のゲルポリマー電解質によれば、フッ化水素による電池性能劣化を確実に防止することができる。   According to the gel polymer electrolyte of the present invention, battery performance deterioration due to hydrogen fluoride can be reliably prevented.

以下、本発明の実施の形態を詳細に説明する。
本実施形態のリチウム二次電池は、本発明に係るゲルポリマー電解質と、リチウムを吸蔵・放出することが可能な正極及び負極とで概略構成されている。ゲルポリマー電解質は、マトリックスポリマーおよび非水電解液を少なくとも含有して構成されている。また、非水電解液は、ゲルポリマー電解質のみならず、正極および負極にも含浸されている。
Hereinafter, embodiments of the present invention will be described in detail.
The lithium secondary battery of the present embodiment is roughly composed of the gel polymer electrolyte according to the present invention, and a positive electrode and a negative electrode capable of inserting and extracting lithium. The gel polymer electrolyte includes at least a matrix polymer and a nonaqueous electrolytic solution. Further, the nonaqueous electrolytic solution is impregnated not only in the gel polymer electrolyte but also in the positive electrode and the negative electrode.

本発明に係るゲルポリマー電解質は、正極と負極の間に配置されており、リチウムイオンを伝導する機能を有している。また、ゲルポリマー電解質は、セパレータとしての機能をも有している。すなわち、本発明に係るゲルポリマー電解質は、従来のポリオレフィン系のセパレータに代えて、正極および負極を隔離する機能を有している。なお、本発明に係るゲルポリマー電解質と従来のセパレータを併用してもよいのは勿論である。この場合のセパレータとしては、多孔質のポリプロピレンフィルム、多孔質のポリエチレンフィルム等を適宜使用できる。   The gel polymer electrolyte according to the present invention is disposed between the positive electrode and the negative electrode and has a function of conducting lithium ions. The gel polymer electrolyte also has a function as a separator. That is, the gel polymer electrolyte according to the present invention has a function of isolating the positive electrode and the negative electrode in place of the conventional polyolefin separator. Of course, the gel polymer electrolyte according to the present invention and the conventional separator may be used in combination. As a separator in this case, a porous polypropylene film, a porous polyethylene film, etc. can be used suitably.

本発明に係るゲルポリマー電解質は、アクリレート基またはメタクリレート基のいずれか一方または両方を有する基質モノマーおよび上記[化1]に示す構造のジオキソラン環を有する反応性モノマーとが重合されてなるマトリックスポリマーと、非水電解液とが混合されて形成されている。このゲルポリマー電解質においては、マトリックスポリマーに非水電解液を含浸させることでマトリックスポリマーがゲル化され、非水電解液がマトリックスポリマーに保持される。また、本発明に係るポリマー電解質は、マトリックスポリマーの原料モノマーと非水電解液との混合物をポリマー化させることで、ゲル化されたマトリックスポリマーが形成され、非水電解液がマトリックスポリマーに保持されている。   The gel polymer electrolyte according to the present invention comprises a matrix polymer obtained by polymerizing a substrate monomer having one or both of an acrylate group and a methacrylate group and a reactive monomer having a dioxolane ring having the structure shown in the above [Chemical Formula 1]. It is formed by mixing with a non-aqueous electrolyte. In this gel polymer electrolyte, the matrix polymer is gelled by impregnating the matrix polymer with the nonaqueous electrolytic solution, and the nonaqueous electrolytic solution is held in the matrix polymer. In addition, the polymer electrolyte according to the present invention forms a gelled matrix polymer by polymerizing a mixture of the matrix polymer raw material monomer and the non-aqueous electrolyte, and the non-aqueous electrolyte is held in the matrix polymer. ing.

マトリックスポリマーを構成する基質モノマーは、アクリレート基またはメタクリレート基のいずれか一方または両方を有するものであればどのようなものでもよいが、好ましくは2−プロペメノイック酸α,ω−ポリ(オキシ−2,1−エタンジイル)エステルを用いることが好ましい。また、基質ポリマーとして、2-プロペメノイック酸α,ω−ポリ(オキシ−1/2-メチル-2,1−エタンジイル)エステルや、1,1,1-トリス〔プロペノイルオキシポリ(エチレンオキシ)メチル〕プロパンなどを用いてもよい。非水電解液の保持は主にこの基質ポリマーによってなされる。   The matrix monomer constituting the matrix polymer may be any monomer having either one or both of an acrylate group and a methacrylate group, but preferably 2-propemenoic acid α, ω-poly (oxy-2, It is preferred to use 1-ethanediyl) ester. In addition, 2-propemenoic acid α, ω-poly (oxy-1 / 2-methyl-2,1-ethanediyl) ester and 1,1,1-tris [propenoyloxypoly (ethyleneoxy) methyl Propane or the like may be used. The non-aqueous electrolyte is retained mainly by this matrix polymer.

次に、マトリックスポリマーを構成する反応性モノマーは、ジオキソラン環を有する上記[化1]に示す構造のモノマーが好ましい。ただし、上記[化1]において、RはCHまたはRとつながるシクロヘキサン環であり、RはCH、C、CH(CH、またはRとつながるシクロヘキサン環のうちのいずれかであり、RはHもしくはCHである。 Next, the reactive monomer constituting the matrix polymer is preferably a monomer having the structure shown in the above [Chemical Formula 1] having a dioxolane ring. However, in the above Chemical Formula 1], R 1 is a cyclohexane ring leads CH 3 or R 2, R 2 is CH 3, C 2 H 5, CH (CH 3) 2 or R 1 and lead the cyclohexane ring, R 3 is H or CH 3 .

[化1]に示す反応性モノマーは、R基に結合する二重結合を有しており、この二重結合によって基質モノマーとラジカル重合して、マトリックスポリマーを形成することができる。このようにして、反応性ポリマーをマトリックスポリマー中に均一に分散させて含ませることができる。
また、本発明に係る反応性モノマーは、分子内にジオキソラン環構造を有しており、このジオキソラン環はカチオン重合する性質を有しており、LIPF等の分解により生成したフッ化水素等の遊離酸によって容易に開環し、遊離酸を捕捉(中和)することができる。これにより、HF等による電池構成材料の劣化を防止して電池特性を向上させることができる。
更に、上記のジオキソラン環構造は、遊離酸の存在下でカチオン重合を起こして他のジオキソラン環と重合するので、HFを捕捉するとともにマトリックスポリマーの機械的強度をより高めることができる。これにより、ゲルポリマー電解質の液状化を防止できる。
The reactive monomer shown in [Chemical Formula 1] has a double bond bonded to the R 3 group, and can be radically polymerized with the substrate monomer by this double bond to form a matrix polymer. In this way, the reactive polymer can be uniformly dispersed in the matrix polymer.
In addition, the reactive monomer according to the present invention has a dioxolane ring structure in the molecule, and this dioxolane ring has a property of cationic polymerization, such as hydrogen fluoride produced by decomposition of LIPF 6 or the like. The ring can be easily opened by the free acid, and the free acid can be captured (neutralized). Thereby, deterioration of the battery constituent material due to HF or the like can be prevented and battery characteristics can be improved.
Furthermore, since the above dioxolane ring structure undergoes cationic polymerization in the presence of a free acid and polymerizes with other dioxolane rings, it can capture HF and further increase the mechanical strength of the matrix polymer. Thereby, liquefaction of gel polymer electrolyte can be prevented.

なお、ジオキソラン環は、フッ化水素と反応することによりはじめて開裂するものであり、反応性モノマーと基質モノマーの重合の際には何ら重合反応に寄与するものではない。
また、ジオキソラン環と同様の効果が期待されるものとしてエポキシ環があるが、ジオキソラン環はエポキシ環に比べて開環に要するエネルギー準位が高いという性質がある。これにより、ゲルポリマー電解質の形成の際にジオキソラン環が開裂するおそれがなく、フッ化水素発生時にジオキソラン環の開裂反応を起こさせることができる。
The dioxolane ring is cleaved only by reacting with hydrogen fluoride, and does not contribute to the polymerization reaction at the time of polymerization of the reactive monomer and the substrate monomer.
An epoxy ring is expected to have the same effect as a dioxolane ring. The dioxolane ring has a property that the energy level required for ring opening is higher than that of an epoxy ring. Thereby, there is no possibility that the dioxolane ring is cleaved during the formation of the gel polymer electrolyte, and the cleavage reaction of the dioxolane ring can be caused when hydrogen fluoride is generated.

基質モノマーと反応性モノマーとの合計に対する反応性モノマーの含有率は、3質量%以上30質量%以下の範囲が好ましい。反応性モノマーの含有率が3質量%未満では、HF等の遊離酸を完全に捕捉することができなくなるので好ましくなく、含有率が30質量%を超えると基質モノマーの含有率が相対的に減少し、非水電解液を十分に含有することができなくなるので好ましくない。   The content of the reactive monomer with respect to the total of the substrate monomer and the reactive monomer is preferably in the range of 3% by mass to 30% by mass. If the content of the reactive monomer is less than 3% by mass, it is not preferable because the free acid such as HF cannot be completely captured. If the content exceeds 30% by mass, the content of the substrate monomer is relatively reduced. However, it is not preferable because the non-aqueous electrolyte cannot be sufficiently contained.

また、基質モノマーと非水電解液との合計に対する基質モノマーの含有率は、0.1質量%以上20質量%以下の範囲であることが好ましい。基質モノマーの含有率が0.1質量%未満であると、非水電解液を十分に含有することができなくなるとともに電池特性へのポリマー添加の影響が見られなくなるので好ましくなく、含有率が20質量%を超えると、非水電解液の含有率が相対的に低下してリチウムイオンのイオン伝導度が低下するので好ましくない。   Moreover, it is preferable that the content rate of the substrate monomer with respect to the sum total of a substrate monomer and a non-aqueous electrolyte is the range of 0.1 mass% or more and 20 mass% or less. If the content of the substrate monomer is less than 0.1% by mass, the non-aqueous electrolyte cannot be sufficiently contained, and the influence of the addition of the polymer on the battery characteristics is not seen. Exceeding% by mass is not preferable because the content of the nonaqueous electrolytic solution is relatively lowered and the ionic conductivity of lithium ions is lowered.

次に、ゲルポリマー電解質を構成する非水電解液としては、例えば、非プロトン性溶媒にリチウム塩が溶解されてなる有機電解液を例示できる。
非プロトン性溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ベンゾニトリル、アセトニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、ジオキソラン、4−メチルジオキソラン、N、N−ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ジオキサン、1,2−ジメトキシエタン、スルホラン、ジクロロエタン、クロロベンゼン、ニトロベンゼン、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルブチルカーボネート、ジプロピルカーボネート、ジイソプロピルカーボネート、ジブチルカーボネート、ジエチレングリコール、ジメチルエーテル等の非プロトン性溶媒、あるいはこれらの溶媒のうちの二種以上を混合した混合溶媒、さらにリチウム二次電池用の溶媒として従来から知られているものを例示でき、特にプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネートのいずれか1つを含むとともにジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートのいずれか1つを含むものが好ましい。
Next, examples of the nonaqueous electrolytic solution constituting the gel polymer electrolyte include an organic electrolytic solution in which a lithium salt is dissolved in an aprotic solvent.
As aprotic solvents, propylene carbonate, ethylene carbonate, butylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, dioxolane, 4-methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethyl Sulfoxide, dioxane, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene, nitrobenzene, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl butyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate , Diethylene glycol, dimethyl Examples include aprotic solvents such as ethers, mixed solvents in which two or more of these solvents are mixed, and those conventionally known as solvents for lithium secondary batteries, particularly propylene carbonate, ethylene carbonate And any one of butylene carbonate and one of dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate are preferred.

リチウム塩としては、LiPF、LiBF、LiSbF、LiAsF、LiClO、LiCFSO、Li(CFSON、LiCSO、LiSbF、LiAlO、LiAlCl、LiN(C2x+1SO)(C2y十1SO)(ただしx、yは自然数)、LiCl、LiI等のうちの1種または2種以上のリチウム塩を混合させてなるものや、リチウム二次電池用のリチウム塩として従来から知られているものを例示でき、特にLiPF、LiBFのいずれか1つを含むものが好ましい。 The lithium salt, LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiClO 4, LiCF 3 SO 3, Li (CF 3 SO 2) 2 N, LiC 4 F 9 SO 3, LiSbF 6, LiAlO 4, LiAlCl 4 , LiN (C x F 2x + 1 SO 2) (C y F 2y tens 1 SO 2) (provided that x, y are natural numbers), LiCl, made by mixing one or more lithium salts of such LiI And those conventionally known as lithium salts for lithium secondary batteries, and those containing any one of LiPF 6 and LiBF 4 are particularly preferred.

次に、正極としては、正極活物質と、結着材と、更に必要に応じて導電助材とを混合し、これらを金属箔若しくは金属網からなる集電体に塗布してシート状に成形したものを例示できる。また、正極活物質と、結着材と、更に必要に応じて導電助材とを混合し、これらをペレット状に成形したものも例示できる。
正極活物質としては、LiMn、LiCoO、LiNiO、LiFeO、V、TiS、MoS等、及び有機ジスルフィド化合物や有機ポリスルフィド化合物等のリチウムを吸蔵、放出が可能な材料を例示できる。
Next, as the positive electrode, a positive electrode active material, a binder, and further a conductive additive as necessary are mixed and applied to a current collector made of a metal foil or a metal net to form a sheet. Can be illustrated. Moreover, what mixed the positive electrode active material, the binder, and also the conductive support material as needed, and shape | molded these to the pellet form can also be illustrated.
Examples of the positive electrode active material include LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiFeO 2 , V 2 O 5 , TiS, MoS, and the like, and materials that can occlude and release lithium, such as organic disulfide compounds and organic polysulfide compounds. It can be illustrated.

また負極としては、負極活物質と、結着材と、更に必要に応じて導電助材とを混合し、これらを金属箔若しくは金属網からなる集電体に塗布してシート状に成形したものを例示できる。また、負極活物質と、結着材と、更に必要に応じて導電助材とを混合し、これらをペレット状に成形したものも例示できる。
負極活物質としては、可逆的にリチウムイオンを吸蔵・放出できるものが好ましく、例えば、人造黒鉛、天然黒鉛、黒鉛化炭素繊維、非晶質炭素等を含むものを例示できる。また金属リチウムも負極として使用できる。
In addition, as the negative electrode, a negative electrode active material, a binder, and, if necessary, a conductive additive are mixed and applied to a current collector made of a metal foil or a metal net and formed into a sheet shape. Can be illustrated. Moreover, what mixed the negative electrode active material, the binder, and the conductive support material as needed, and shape | molded these in the pellet form can also be illustrated.
As the negative electrode active material, those capable of reversibly occluding and releasing lithium ions are preferable, and examples thereof include artificial graphite, natural graphite, graphitized carbon fiber, amorphous carbon and the like. Metallic lithium can also be used as the negative electrode.

本実施形態のリチウム二次電池は第1に、あらかじめシート状に成形したゲルポリマー電解質と、正極および負極を積層し、更に場合によって非水電解液を添加することにより製造することができる。
この第1の製造方法において、ゲルポリマー電解質を得るには、基質モノマーと反応性モノマーと非水電解液とを所定量混合し、この混合物にラジカル重合開始剤として公知の過酸化物を添加し、光照射または加熱を行って基質モノマーと反応性モノマーとをラジカル重合させ、マトリックスポリマーを形成すると同時にこのマトリックスポリマーを非水電解液でゲル化させることにより形成することができる。
First, the lithium secondary battery of this embodiment can be manufactured by laminating a gel polymer electrolyte previously formed into a sheet shape, a positive electrode and a negative electrode, and optionally adding a non-aqueous electrolyte.
In this first production method, in order to obtain a gel polymer electrolyte, a predetermined amount of a substrate monomer, a reactive monomer, and a nonaqueous electrolytic solution are mixed, and a known peroxide as a radical polymerization initiator is added to this mixture. The substrate monomer and the reactive monomer are radically polymerized by light irradiation or heating to form a matrix polymer, and at the same time, the matrix polymer is gelled with a non-aqueous electrolyte.

また、本実施形態のリチウム二次電池は第2に、セパレータと正極と負極を積層して積層体とし、この積層体に対して非水電解液および基質モノマーおよび反応性モノマーからなる混合物を含浸させ、基質モノマーと反応性モノマーを重合させてゲルポリマー電解質を形成することにより製造することができる。先に述べた第一の製造方法ではセパレータは用いても用いなくてもよいが、この第二の方法では正極と負極を隔離するためにセパレータが必須である。
上記第2の方法において具体的には、例えば、正極と負極とセパレータとからなる積層体を電池容器に収納し、ゲルポリマー電解質の構成材料を含む上記の混合物を電池容器に更に注液してから、電池容器内部でラジカル重合させてゲルポリマー電解質を形成すればよい。このように、非水電解液を含む電解質構成材料を電池容器にあらかじめ注液しておくことにより、負極や正極の内部にまで電解質構成材料が浸透し、この状態でラジカル重合させることで、正極および負極内部に非水電解液を常に保持させることができ、充放電反応を円滑に進めることができる。
Secondly, the lithium secondary battery of the present embodiment secondly, a separator, a positive electrode, and a negative electrode are laminated to form a laminate, and the laminate is impregnated with a mixture composed of a non-aqueous electrolyte, a substrate monomer, and a reactive monomer. And the substrate monomer and the reactive monomer are polymerized to form a gel polymer electrolyte. In the first manufacturing method described above, a separator may or may not be used, but in the second method, a separator is essential to separate the positive electrode and the negative electrode.
Specifically, in the second method, for example, a laminate composed of a positive electrode, a negative electrode, and a separator is housed in a battery container, and the mixture containing the constituent material of the gel polymer electrolyte is further injected into the battery container. Thus, the gel polymer electrolyte may be formed by radical polymerization inside the battery container. In this way, by pre-injecting the electrolyte constituent material including the non-aqueous electrolyte into the battery container, the electrolyte constituent material penetrates to the inside of the negative electrode and the positive electrode, and radical polymerization is performed in this state. In addition, the non-aqueous electrolyte can always be held inside the negative electrode, and the charge / discharge reaction can proceed smoothly.

以下、本発明をアルミパウチ封入型のポリマー電池に適用した具体的な実施例と比較例を挙げて更に詳細に説明する。なお、本発明は以下に示した実施例に限定されるものではないことは言うまでもない。
(正極および負極の作製)
LiCoOを91質量%、導電剤としてグラファイトを6質量%、結着剤としてPVdFを3質量%の割合で混合して正極合剤を作製し、これをN−メチル−2−ピロリドン(NMP)に分散させてスラリーとした。そして、このスラリーを正極集電体であるアルミニウム箔の片面に塗布し、乾燥後ローラープレス機で圧縮形成して正極シート(正極)を製造した。
また、グラファイトを90質量%、結着剤としてPVdFを10質量%の割合で混合して負極合剤を作製し、これをNMPに分散させてスラリーとした。そして、このスラリーを負極集電体である銅箔の片面に塗布し、塗布後ローラープレス機で圧縮形成して負極シート(負極)を製造した。
Hereinafter, the present invention will be described in more detail with reference to specific examples and comparative examples in which the present invention is applied to an aluminum pouch enclosed polymer battery. Needless to say, the present invention is not limited to the examples shown below.
(Preparation of positive and negative electrodes)
A positive electrode mixture was prepared by mixing 91% by mass of LiCoO 2 , 6% by mass of graphite as a conductive agent, and 3% by mass of PVdF as a binder, and this was prepared as N-methyl-2-pyrrolidone (NMP). To give a slurry. And this slurry was apply | coated to the single side | surface of the aluminum foil which is a positive electrode electrical power collector, and after drying, it compression-formed with the roller press machine, and manufactured the positive electrode sheet (positive electrode).
Further, 90% by mass of graphite and PVdF as a binder at a ratio of 10% by mass were mixed to prepare a negative electrode mixture, which was dispersed in NMP to obtain a slurry. And this slurry was apply | coated to the single side | surface of copper foil which is a negative electrode collector, and after application | coating, it compression-formed with the roller press machine, and manufactured the negative electrode sheet (negative electrode).

(ゲルポリマー電解質の構成材料の調製)
溶媒としてエチレンカーボネート(EC)とジエチルカーボネート(DEC)を体積比でEC:DEC=2:8の割合で混合し、更にリチウム塩としてLiPFを1モル/Lの比率で混合してなる非水電解液を調製した。これをEL−0とした。
次に、基質モノマーとして2−プロペノイック酸α,ω−ポリ(オキシ−2,1−エタンジイル)エステルを、上記のEL−0との質量比でEL−0:基質モノマー=95:5となるようにEL−0に配合し、十分撹拌して均一溶液とし、これをEL−1とした(比較例)。
(Preparation of constituent material of gel polymer electrolyte)
Non-aqueous solution prepared by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) as a solvent in a volume ratio of EC: DEC = 2: 8, and further mixing LiPF 6 as a lithium salt at a ratio of 1 mol / L. An electrolyte solution was prepared. This was designated as EL-0.
Next, 2-propenoic acid α, ω-poly (oxy-2,1-ethanediyl) ester is used as a substrate monomer such that EL-0: substrate monomer = 95: 5 in terms of mass ratio with EL-0. Into EL-0, the mixture was sufficiently stirred to obtain a uniform solution, which was designated as EL-1 (Comparative Example).

また、基質モノマーとして2−プロペノイック酸α,ω−ポリ(オキシ−2,1−エタンジイル)エステルと、反応性モノマーとして(2−メチル−2エチル−1,3−ジオキソラン−4−イル)メチルアクリレート(大阪有機株式会社製MEDOL10)とを混合し、これら混合モノマーを上記のEL−0との質量比でEL−0:混合モノマー=95:5となるようにEL−0に配合し、十分撹拌して均一溶液とし、これをEL−2とした(実施例)。なお、上記基質モノマーと上記反応性モノマーの混合割合は質量比で、基質モノマー:反応性モノマー=9:1とした。   Further, 2-propenoic acid α, ω-poly (oxy-2,1-ethanediyl) ester as a substrate monomer and (2-methyl-2ethyl-1,3-dioxolan-4-yl) methyl acrylate as a reactive monomer (Medol 10 manufactured by Osaka Organic Chemical Co., Ltd.) was mixed, and these mixed monomers were blended into EL-0 such that EL-0: mixed monomer = 95: 5 in a mass ratio with EL-0, and stirred sufficiently. This was used as a homogeneous solution, which was designated as EL-2 (Example). The mixing ratio of the substrate monomer and the reactive monomer was mass ratio, and the substrate monomer: reactive monomer = 9: 1.

また、基質モノマーとして2−プロペノイック酸α,ω−ポリ(オキシ−2,1−エタンジイル)エステルと、反応性モノマーとして(2−メチル−2エチル−1,3−ジオキソラン−4−イル)メチルメタクリレート(大阪有機株式会杜製MEDOL30)とを混合し、これら混合モノマーを上記のEL−0との質量比でEL−0:混合モノマー=95:5となるようにEL−0に配合し、十分撹拌して均一溶液とし、これをEL−3とした(実施例)。なお、上記基質モノマーと上記反応性モノマーの混合割合は質量比で、基質モノマー:反応性モノマー=9:1とした。   Further, 2-propenoic acid α, ω-poly (oxy-2,1-ethanediyl) ester as a substrate monomer and (2-methyl-2ethyl-1,3-dioxolan-4-yl) methyl methacrylate as a reactive monomer (Medol 30 manufactured by Osaka Organic Co., Ltd.), and these mixed monomers are blended into EL-0 so that EL-0: mixed monomer = 95: 5 in terms of mass ratio with EL-0 described above. The mixture was stirred to obtain a homogeneous solution, which was designated as EL-3 (Example). The mixing ratio of the substrate monomer and the reactive monomer was mass ratio, and the substrate monomer: reactive monomer = 9: 1.

(リチウム二次電池の製造)
正極と負極とポリプロピレン製セパレータを積層した状態でアルミラミネート材に収納し、更に、上記のEL−1(比較例)、EL−2(実施例)、EL−3(実施例)の溶液をそれぞれ注液し、更に重合開始剤として過酸化物であるビス-(4-t-ブチルシクロヘキシル)パーオキシジカーボネートを添加し、70℃で4時間加熱することにより、ゲルポリマー電解質を形成させてポリマーリチウム二次電池PL−1(比較例)、PL−2(実施例)、PL−3(実施例)を作製した。なお、PL−1、PL−2、PL−3はそれぞれ、EL−1、EL−2、EL−3から製造したものである。
(Manufacture of lithium secondary batteries)
A positive electrode, a negative electrode, and a polypropylene separator are stacked in an aluminum laminate, and the solutions of EL-1 (Comparative Example), EL-2 (Example), and EL-3 (Example) are respectively added. The mixture was poured, and peroxide bis- (4-t-butylcyclohexyl) peroxydicarbonate was added as a polymerization initiator and heated at 70 ° C. for 4 hours to form a gel polymer electrolyte. Lithium secondary batteries PL-1 (comparative examples), PL-2 (examples), and PL-3 (examples) were produced. PL-1, PL-2, and PL-3 are manufactured from EL-1, EL-2, and EL-3, respectively.

また、上記のEL−1、EL−2、EL−3の溶液を別のアルミラミネート材にそれぞれ注液し、重合開始剤として過酸化物としてビス-(4-t-ブチルシクロヘキシル)パーオキシジカーボネートを添加し、70℃で4時間加熱することにより、機械強度測定用のゲルポリマー電解質を製造した。   Further, the solutions of EL-1, EL-2, and EL-3 are respectively poured into different aluminum laminate materials, and bis- (4-t-butylcyclohexyl) peroxydi as a peroxide as a polymerization initiator. A gel polymer electrolyte for measuring mechanical strength was prepared by adding carbonate and heating at 70 ° C. for 4 hours.

上記のポリマーリチウム二次電池PL−1、PL−2、PL−3について、放電レート特性および低温放電特性を測定した。放電レート特性は、1サイクル目は充電電流0.5C、放電電流0.2Cにて0.2C放電容量を測定し、2サイクル目においては、充電電流0.5C、放電電流2Cにて2C放電容量を測定し、0.2C放電容量に対する2C放電容量の割合を放電レート値とした。
また、低温放電特性は、1サイクル目は20℃において充電電流0.5C、放電電流1Cにて20℃での1C放電容量を測定し、1サイクル目は20℃において充電電流0.5Cで充電を行い、−20℃にて放電電流1Cにて−20℃での1C放電容量を測定し、20℃での1C放電容量に対する−20℃での1C放電容量の割合を低温放電特性値とした。
結果を表1に示す。
更に、上記の機械強度測定用のゲルポリマー電解質の機械的強度を、高分子計器株式会社製F型デュロメータを用いて測定した。このゲル強度は、重合(ゲル化)直後の強度と、重合(ゲル化)から20日間経過した後の強度との割合(重合直後/20日後)で示す。結果を表1に併せて示す。
With respect to the above polymer lithium secondary batteries PL-1, PL-2, and PL-3, the discharge rate characteristics and the low temperature discharge characteristics were measured. As for the discharge rate characteristics, 0.2C discharge capacity was measured at charge current 0.5C and discharge current 0.2C in the first cycle, and 2C discharge was performed at charge current 0.5C and discharge current 2C in the second cycle. The capacity was measured, and the ratio of the 2C discharge capacity to the 0.2C discharge capacity was defined as the discharge rate value.
The low-temperature discharge characteristics are as follows: charge current 0.5C at 20 ° C at the first cycle, 1C discharge capacity at 20 ° C at the discharge current 1C, charge at 0.5C charge current at 20 ° C in the first cycle 1C discharge capacity at −20 ° C. was measured at −20 ° C. with discharge current 1C, and the ratio of 1C discharge capacity at −20 ° C. to 1C discharge capacity at 20 ° C. was defined as a low temperature discharge characteristic value. .
The results are shown in Table 1.
Furthermore, the mechanical strength of the gel polymer electrolyte for measuring the mechanical strength was measured using an F-type durometer manufactured by Kobunshi Keiki Co., Ltd. This gel strength is shown by the ratio (immediately after polymerization / after 20 days) between the strength immediately after polymerization (gelation) and the strength after 20 days have passed since polymerization (gelation). The results are also shown in Table 1.

Figure 2005235684
Figure 2005235684

表1に示すように、反応性モノマーを有するPL−2およびPL−3(いずれも実施例)の電池は、反応性モノマーが添加されていないPL−1の電池(比較例)に比べて、放電レートおよび低温放電特性のどちらも良好な値を示していることがわかる。さらに、ゲル強度についてもPL−2およびPL−3はPL−1と比べて、強度の耐久性に優れていることがわかる。
PL−2およびPL−3の電池のゲルポリマー電解質には、電池特性に悪影響を及ぼすフッ化水素を捕捉するためのジオキソラン環が均一に導入されている。このため、PL−2およびPL−3の電池では、LiPFの分解により生じたHFがこのジオキソラン環により捕捉され、これにより電池構成材料の劣化が防止されて電池特性の劣化が防止されたものと考えられる。さらにHFの捕捉時にジオキソラン環自体が開裂してマトリックスポリマーが更に重合したため、機械的強度が向上してゲルの耐久性が改善されたものと考えられる。
As shown in Table 1, the batteries of PL-2 and PL-3 (both examples) having reactive monomers are compared to the battery of PL-1 (comparative example) to which no reactive monomers are added, It can be seen that both the discharge rate and the low temperature discharge characteristics show good values. Furthermore, regarding gel strength, it can be seen that PL-2 and PL-3 are superior to PL-1 in strength durability.
In the gel polymer electrolyte of PL-2 and PL-3 batteries, a dioxolane ring for capturing hydrogen fluoride that adversely affects battery characteristics is uniformly introduced. For this reason, in the batteries of PL-2 and PL-3, HF generated by the decomposition of LiPF 6 is captured by the dioxolane ring, thereby preventing the deterioration of the battery constituent material and the deterioration of the battery characteristics. it is conceivable that. Furthermore, since the dioxolane ring itself was cleaved during the capture of HF and the matrix polymer was further polymerized, it is considered that the mechanical strength was improved and the durability of the gel was improved.

以上説明したように、本発明に係るゲルポリマー電解質によれば、電池性能を低下させることなく、フッ化水素のような遊離酸の影響を排除することができる。また反応性モノマーを、基質モノマーと反応性モノマーの合計に対して3質量%以上30質量%以下の範囲にすることにより、基質モノマー単独の場合と同等の初期ゲル強度が得られるとともに、十分なゲル強度低下抑制効果が得られることがわかる。
As described above, according to the gel polymer electrolyte according to the present invention, it is possible to eliminate the influence of a free acid such as hydrogen fluoride without deteriorating battery performance. In addition, by setting the reactive monomer in the range of 3% by mass or more and 30% by mass or less with respect to the total of the substrate monomer and the reactive monomer, an initial gel strength equivalent to that of the substrate monomer alone can be obtained, and sufficient It can be seen that the effect of suppressing gel strength reduction can be obtained.

Claims (4)

リチウムイオンを伝導可能なゲルポリマー電解質であって、アクリレート基またはメタクリレート基のいずれか一方または両方を有する基質モノマーと下記[化1]に示す構造のジオキソラン環を有する反応性モノマーとが重合されてなるマトリックスポリマーと、非水電解液とが混合されてなることを特徴とするゲルポリマー電解質。
Figure 2005235684
ただし、上記[化1]において、RはCHまたはRとつながるシクロヘキサン環であり、RはCH、C、CH(CH、またはRとつながるシクロヘキサン環のうちのいずれかであり、RはHもしくはCHである。
A gel polymer electrolyte capable of conducting lithium ions, wherein a substrate monomer having one or both of an acrylate group and a methacrylate group and a reactive monomer having a dioxolane ring having a structure shown in the following [Chemical Formula 1] are polymerized A gel polymer electrolyte obtained by mixing a matrix polymer and a nonaqueous electrolytic solution.
Figure 2005235684
However, in the above Chemical Formula 1], R 1 is a cyclohexane ring leads CH 3 or R 2, R 2 is CH 3, C 2 H 5, CH (CH 3) 2 or R 1 and lead the cyclohexane ring, R 3 is H or CH 3 .
前記基質モノマーと前記反応性モノマーとの合計に対する前記反応性モノマーの含有率が3質量%以上30質量%以下の範囲であることを特徴とする請求項1に記載のゲルポリマー電解質。   2. The gel polymer electrolyte according to claim 1, wherein a content of the reactive monomer with respect to a total of the substrate monomer and the reactive monomer is in a range of 3% by mass to 30% by mass. 前記基質モノマーと前記非水電解液との合計に対する前記基質モノマーの含有率が0.1質量%以上20質量%以下の範囲であることを特徴とする請求項1または請求項2に記載のゲルポリマー電解質。   The gel according to claim 1 or 2, wherein a content of the substrate monomer with respect to a total of the substrate monomer and the non-aqueous electrolyte is in a range of 0.1% by mass or more and 20% by mass or less. Polymer electrolyte. 正極と、負極と、請求項1ないし請求項3のいずれかに記載されたゲルポリマー電解質とを具備してなることを特徴とするリチウム二次電池。
A lithium secondary battery comprising a positive electrode, a negative electrode, and the gel polymer electrolyte according to any one of claims 1 to 3.
JP2004046295A 2004-02-23 2004-02-23 Gel polymer electrolyte and lithium secondary battery Expired - Fee Related JP4157056B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004046295A JP4157056B2 (en) 2004-02-23 2004-02-23 Gel polymer electrolyte and lithium secondary battery
KR1020040040866A KR100560520B1 (en) 2004-02-23 2004-06-04 Gel polymer electrolyte and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004046295A JP4157056B2 (en) 2004-02-23 2004-02-23 Gel polymer electrolyte and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2005235684A true JP2005235684A (en) 2005-09-02
JP4157056B2 JP4157056B2 (en) 2008-09-24

Family

ID=35018402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004046295A Expired - Fee Related JP4157056B2 (en) 2004-02-23 2004-02-23 Gel polymer electrolyte and lithium secondary battery

Country Status (2)

Country Link
JP (1) JP4157056B2 (en)
KR (1) KR100560520B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100588685C (en) * 2006-09-06 2010-02-10 北京理工大学 Polymer electrolyte material based on room temperature fused salt
JP2012174537A (en) * 2011-02-22 2012-09-10 Denso Corp Nonaqueous electrolyte secondary battery
CN105529497A (en) * 2015-12-11 2016-04-27 中国电子科技集团公司第十八研究所 Preparation method for in-situ generation of gel polymer electrolyte
JP2018521483A (en) * 2015-10-07 2018-08-02 エルジー・ケム・リミテッド Battery cell containing gelled electrolyte component in pores of separation membrane constituting electrode assembly
WO2018214973A1 (en) * 2017-05-26 2018-11-29 北京师范大学 Gelatinized system and applications in lithium air battery, super capacitor or capacitor battery in organic system
WO2018214971A1 (en) * 2017-05-26 2018-11-29 北京师范大学 Gelatinized system containing ether compounds, and preparation method therefor and applications thereof
CN110336072A (en) * 2019-06-04 2019-10-15 天津力神电池股份有限公司 Bifunctional polymerizable object composite solid electrolyte, dielectric film and its in-situ preparation method
CN110380111A (en) * 2019-06-04 2019-10-25 天津力神电池股份有限公司 Double home position polymerization reaction preparation methods of solid state battery comprising solid electrolyte
CN113851707A (en) * 2021-09-30 2021-12-28 蜂巢能源科技有限公司 Gel electrolyte, preparation method thereof and battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220067043A (en) 2020-11-17 2022-05-24 현대자동차주식회사 Polymer electrolyte, and method for producing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3439084B2 (en) * 1997-08-05 2003-08-25 三洋電機株式会社 Non-aqueous electrolyte battery
GB9929698D0 (en) 1999-12-15 2000-02-09 Danionics As Non-aqueous electrochemical cell
KR100326468B1 (en) * 2000-07-25 2002-02-28 김순택 An Electrolyte for Lithium Sulfur batteries

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100588685C (en) * 2006-09-06 2010-02-10 北京理工大学 Polymer electrolyte material based on room temperature fused salt
JP2012174537A (en) * 2011-02-22 2012-09-10 Denso Corp Nonaqueous electrolyte secondary battery
JP2018521483A (en) * 2015-10-07 2018-08-02 エルジー・ケム・リミテッド Battery cell containing gelled electrolyte component in pores of separation membrane constituting electrode assembly
US10490849B2 (en) 2015-10-07 2019-11-26 Lg Chem, Ltd. Battery cell in which gelation electrolyte solution component is included in pore of separator configuring electrode assembly
CN105529497A (en) * 2015-12-11 2016-04-27 中国电子科技集团公司第十八研究所 Preparation method for in-situ generation of gel polymer electrolyte
US11545696B2 (en) 2017-05-26 2023-01-03 Beijing Normal University Gelable system and uses thereof in lithium-air batteries, organic supercapacitors or capacitor batteries
WO2018214973A1 (en) * 2017-05-26 2018-11-29 北京师范大学 Gelatinized system and applications in lithium air battery, super capacitor or capacitor battery in organic system
WO2018214971A1 (en) * 2017-05-26 2018-11-29 北京师范大学 Gelatinized system containing ether compounds, and preparation method therefor and applications thereof
US11777142B2 (en) 2017-05-26 2023-10-03 Beijing Normal University Gelable system containing ether compounds, preparation method therefor and use thereof
CN110336072A (en) * 2019-06-04 2019-10-15 天津力神电池股份有限公司 Bifunctional polymerizable object composite solid electrolyte, dielectric film and its in-situ preparation method
CN110336072B (en) * 2019-06-04 2022-10-04 天津力神电池股份有限公司 Double-polymer composite solid electrolyte, electrolyte membrane and in-situ preparation method thereof
CN110380111A (en) * 2019-06-04 2019-10-25 天津力神电池股份有限公司 Double home position polymerization reaction preparation methods of solid state battery comprising solid electrolyte
CN113851707A (en) * 2021-09-30 2021-12-28 蜂巢能源科技有限公司 Gel electrolyte, preparation method thereof and battery

Also Published As

Publication number Publication date
KR100560520B1 (en) 2006-03-17
KR20050083533A (en) 2005-08-26
JP4157056B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
US7005211B2 (en) Electrode, lithium battery having the electrode, and method of manufacturing the same
JP4780833B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP4093699B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
CN111527636A (en) Electrolyte for nonaqueous electrolyte battery and nonaqueous electrolyte battery using same
JP5134770B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery including the same
CN104380518A (en) Electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using same
US11757130B2 (en) Additive for non-aqueous electrolyte solution, non-aqueous electrolyte solution, and non-aqueous electrolyte solution battery
JP4711639B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP6204647B2 (en) Laminated alkaline metal battery
JP7055479B2 (en) A lithium secondary battery containing a composition for a gel polymer electrolyte and a gel polymer electrolyte formed from the composition.
JP2004525495A (en) Nonionic surfactant containing electrolyte and lithium ion battery using the same
CN111095657A (en) Additive for nonaqueous electrolyte solution, electrolyte solution for nonaqueous electrolyte solution battery, and nonaqueous electrolyte solution battery
JP4157056B2 (en) Gel polymer electrolyte and lithium secondary battery
CN113906530A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte battery
KR102096068B1 (en) Non-aqueous electrolyte for lithium ion battery containing silyl ether and lithium ion battery including the same
JP4417649B2 (en) Nonaqueous electrolyte secondary battery
CN113228373A (en) Composition for electrolyte, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
JPH1140193A (en) Nonaqueous electrolyte battery
JP4157055B2 (en) Gel polymer electrolyte and lithium secondary battery
KR101023374B1 (en) Additive for non-aqueous electrolyte and secondary battery using the same
US20220278371A1 (en) Nonaqueous electrolyte solution and nonaqueous electrolyte battery using the same
JP2011096520A (en) Negative electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using this negative electrode plate
JP3886263B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
KR20200029373A (en) Thermosetting electrolyte composition for lithium secondary battery, gel polymer electrolyte prepared therefrom, and lithium secondary battery comprising the same
JP2006059682A (en) Additive for electrolyte of nonaqueous electrolyte battery, nonaqueous electrolyte for battery, and nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4157056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees