JP4157055B2 - Gel polymer electrolyte and lithium secondary battery - Google Patents

Gel polymer electrolyte and lithium secondary battery Download PDF

Info

Publication number
JP4157055B2
JP4157055B2 JP2004046294A JP2004046294A JP4157055B2 JP 4157055 B2 JP4157055 B2 JP 4157055B2 JP 2004046294 A JP2004046294 A JP 2004046294A JP 2004046294 A JP2004046294 A JP 2004046294A JP 4157055 B2 JP4157055 B2 JP 4157055B2
Authority
JP
Japan
Prior art keywords
monomer
polymer electrolyte
gel polymer
electrolyte
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004046294A
Other languages
Japanese (ja)
Other versions
JP2005235683A (en
Inventor
忠義 赤尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2004046294A priority Critical patent/JP4157055B2/en
Priority to KR1020040040865A priority patent/KR100599599B1/en
Publication of JP2005235683A publication Critical patent/JP2005235683A/en
Application granted granted Critical
Publication of JP4157055B2 publication Critical patent/JP4157055B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、ゲルポリマー電解質およびリチウム二次電池に関するものであり、特に、非水電解液の保液性並びに充放電特性等の電池特性を向上することが可能なゲルポリマー電解質に関するものである。   The present invention relates to a gel polymer electrolyte and a lithium secondary battery, and particularly to a gel polymer electrolyte capable of improving battery characteristics such as liquid retention and charge / discharge characteristics of a non-aqueous electrolyte.

所謂ポリマーリチウム二次電池に用いられるポリマー電解質には、大きく分けて物理ポリマー型と化学ポリマー型の2種類のものが知られている。物理ポリマー型は、あらかじめ重合されたポリマーを出発原料とするのに対し、化学ポリマー型は未重合のモノマーまたはオリゴマーを出発原料とし、これらを非水電化液とともに重合させる点で相違する。すなわち、物理ポリマー型のポリマー電解質は、原料となるポリマーを溶媒に溶解させて溶液とし、この溶液を正極電極や負極電極に塗布してから溶媒を除去することによりポリマー・電極複合体を形成し、このポリマー・電極複合体に非水電解液を含浸させて形成される。一方、化学ポリマー型のポリマー電解質は、正極および負極をあらかじめ構成しておき、これら正負極に対して、原料となるモノマーまたはオリゴマーと非水電解液とからなる混合溶液を添加し、その後、熱重合等によりモノマーまたはオリゴマーを重合させることにより形成される。   2. Description of the Related Art Polymer electrolytes used for so-called polymer lithium secondary batteries are roughly classified into two types: physical polymer type and chemical polymer type. The physical polymer type is different in that a polymer that has been polymerized in advance is used as a starting material, whereas the chemical polymer type is that an unpolymerized monomer or oligomer is used as a starting material, and these are polymerized together with a non-aqueous liquid. That is, a physical polymer type polymer electrolyte forms a polymer / electrode composite by dissolving a raw material polymer in a solvent to form a solution, and applying the solution to the positive electrode and the negative electrode and then removing the solvent. The polymer electrode assembly is impregnated with a non-aqueous electrolyte. On the other hand, a chemical polymer type polymer electrolyte has a positive electrode and a negative electrode configured beforehand, and a mixed solution consisting of a monomer or oligomer as a raw material and a non-aqueous electrolyte is added to these positive and negative electrodes, It is formed by polymerizing monomers or oligomers by polymerization or the like.

物理ポリマー型の例としては例えば下記特許文献1および特許文献2に記載されているように、フッ素系のシート状ポリマーを形成し、このシート状ポリマーに非水電解液を含浸させるタイプが数多く提案されている。また、化学ポリマー型の例としては例えば下記特許文献3に記載されているように、ポリエチレンオキサイド(PEO)またはポリプロピレンオキサイド(PPO)からなるポリマー電解質が知られている。
特開平9−97618号公報 特開2000−17124号公報 特開2001−155773号公報
As examples of physical polymer types, for example, as described in Patent Document 1 and Patent Document 2 below, a number of types in which a fluorine-based sheet polymer is formed and this sheet polymer is impregnated with a non-aqueous electrolyte are proposed. Has been. Moreover, as an example of the chemical polymer type, as described in Patent Document 3 below, for example, a polymer electrolyte made of polyethylene oxide (PEO) or polypropylene oxide (PPO) is known.
Japanese Patent Laid-Open No. 9-97618 JP 2000-17124 A JP 2001-155773 A

しかし、従来のフッ素系の物理ポリマー型のポリマー電解質では、フッ素系ポリマー特有の低い界面抵抗によって、ポリマー中に非水電解液を完全に保持させることが困難であり、非水電解液がポリマーから滲み出てしまうという問題があった。   However, in the conventional fluorinated physical polymer type polymer electrolyte, it is difficult to completely hold the nonaqueous electrolyte in the polymer due to the low interface resistance unique to the fluorinated polymer. There was a problem of bleeding.

一方、フッ素系のポリマーは、低い界面抵抗によってリチウムイオンの輸送に対する抵抗が小さく、また絶縁性、対薬品性にも優れることからポリマー電解質の材料として有望であり、このため、従来のPEOまたはPPO系の化学ポリマー型のポリマー電解質に、フッ素系ポリマーを導入する試みがなされている。しかし、この場合には次の4つの問題点があった。すなわち、第1に、フッ素系ポリマー特有の低い界面抵抗によって、非水電解液と十分に混ざり合わない。第2に、フッ素の高い電気陰性度によってPEO等と重合できない。第3に、フッ素系ポリマーの導入に伴ってPEO等の基質モノマーが本来有している機械的強度が低下してしまう。第4に、重合後の非水電解液の保液性が大幅に低下する。   On the other hand, fluoropolymers are promising as materials for polymer electrolytes because they have low resistance to lithium ion transport due to low interface resistance, and are also excellent in insulation and chemical resistance. For this reason, conventional PEO or PPO Attempts have been made to introduce a fluorine-based polymer into a polymer electrolyte of a chemical polymer type. However, this case has the following four problems. That is, first, due to the low interfacial resistance unique to the fluoropolymer, it does not mix well with the non-aqueous electrolyte. Second, it cannot be polymerized with PEO or the like due to the high electronegativity of fluorine. Thirdly, the mechanical strength inherent to substrate monomers such as PEO decreases with the introduction of the fluoropolymer. Fourth, the liquid retention of the non-aqueous electrolyte after polymerization is greatly reduced.

本発明は、上記事情に鑑みてなされたものであって、非水電解液の保液性に優れるとともに機械的強度に優れ、かつリチウムイオンの伝導性に優れて充放電特性等の電池特性を向上することが可能なゲルポリマー電解質およびこのゲルポリマー電解質を備えたリチウム二次電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is excellent in liquid retention of a nonaqueous electrolytic solution, excellent in mechanical strength, and excellent in lithium ion conductivity and battery characteristics such as charge / discharge characteristics. An object of the present invention is to provide a gel polymer electrolyte that can be improved, and a lithium secondary battery including the gel polymer electrolyte.

上記の目的を達成するために、本発明は以下の構成を採用した。
本発明のゲルポリマー電解質は、リチウムイオンを伝導可能なゲルポリマー電解質であって、2-プロペノイック酸α,ω-ポリ(オキシ-2,1-エタンジイル)エステル、2-プロペノイック酸α,ω−ポリ(オキシ−1/2-メチル-2,1−エタンジイル)エステルまたは1,1,1-トリス〔プロペノイルオキシポリ(エチレンオキシ)メチル〕プロパンの中から選択される基質モノマーと下記[化1]に示す構造のフッ素系モノマーとが重合されてなるマトリックスポリマーと、非水電解液とが混合されてなることを特徴とする。ただし、上記[化1]において、RはHまたはCHであり、RはHまたはFであり、nは1以上10以下の範囲である。
In order to achieve the above object, the present invention employs the following configuration.
The gel polymer electrolyte of the present invention is a gel polymer electrolyte capable of conducting lithium ions, and comprises 2-propenoic acid α, ω-poly (oxy-2,1-ethanediyl) ester, 2-propenoic acid α, ω-poly. A substrate monomer selected from (oxy-1 / 2-methyl-2,1-ethanediyl) ester or 1,1,1-tris [propenoyloxypoly (ethyleneoxy) methyl] propane and the following [Chemical Formula 1] A matrix polymer obtained by polymerizing a fluorine-based monomer having the structure shown in FIG. 6 and a nonaqueous electrolytic solution are mixed. However, in the above [Chemical Formula 1], R 1 is H or CH 3 , R 2 is H or F, and n is in the range of 1 or more and 10 or less.

Figure 0004157055
Figure 0004157055

また本発明のゲルポリマー電解質は、先に記載のゲルポリマー電解質であり、前記基質モノマーと前記フッ素系モノマーとの合計に対する前記フッ素系モノマーの含有率が0.1質量%以上30質量%以下の範囲であることを特徴とする。   Moreover, the gel polymer electrolyte of the present invention is the gel polymer electrolyte described above, and the content of the fluorinated monomer with respect to the total of the substrate monomer and the fluorinated monomer is from 0.1% by mass to 30% by mass. It is a range.

また本発明のゲルポリマー電解質は、先に記載のゲルポリマー電解質であり、前記基質モノマーと前記非水電解液との合計に対する前記基質モノマーの含有率が0.01質量%以上20質量%以下の範囲であることを特徴とする。   The gel polymer electrolyte of the present invention is the gel polymer electrolyte described above, and the content of the substrate monomer with respect to the total of the substrate monomer and the nonaqueous electrolytic solution is 0.01% by mass or more and 20% by mass or less. It is a range.

次に本発明のリチウム二次電池は、先に記載のゲルポリマー電解質であり、正極と、負極と、先のいずれかに記載されたゲルポリマー電解質とを具備してなることを特徴とする。   Next, the lithium secondary battery of the present invention is the gel polymer electrolyte described above, and includes the positive electrode, the negative electrode, and the gel polymer electrolyte described in any one of the above.

本発明のゲルポリマー電解質によれば、非水電解液の保液性を従来と同様に保持できるとともに機械的強度が低下することがなく、しかもリチウムイオンの伝導性を高めることができる。また本発明のリチウム二次電池によれば、機械的強度および非水電解液の保液性に優れたゲルポリマー電解質を有し、高いリチウムイオンの伝導性を示すので、優れた充放電特性を発揮することができる。   According to the gel polymer electrolyte of the present invention, the liquid retainability of the nonaqueous electrolytic solution can be maintained as in the conventional case, the mechanical strength is not lowered, and the lithium ion conductivity can be increased. In addition, according to the lithium secondary battery of the present invention, it has a gel polymer electrolyte excellent in mechanical strength and liquid retention of a non-aqueous electrolyte, and exhibits high lithium ion conductivity. It can be demonstrated.

以下、本発明の実施の形態を詳細に説明する。
本実施形態のリチウム二次電池は、本発明に係るゲルポリマー電解質と、リチウムを吸蔵・放出することが可能な正極及び負極とで概略構成されている。ゲルポリマー電解質は、マトリックスポリマーおよび非水電解液を少なくとも含有して構成されている。また、ゲルポリマー電解質は、正極および負極にも一部含有される場合がある。
Hereinafter, embodiments of the present invention will be described in detail.
The lithium secondary battery of the present embodiment is roughly composed of the gel polymer electrolyte according to the present invention, and a positive electrode and a negative electrode capable of inserting and extracting lithium. The gel polymer electrolyte includes at least a matrix polymer and a nonaqueous electrolytic solution. Further, the gel polymer electrolyte may be partially contained in the positive electrode and the negative electrode.

本発明に係るゲルポリマー電解質は、正極と負極の間に配置されており、リチウムイオンを伝導する機能を有している。また、このゲルポリマー電解質は、セパレータとしての機能をも有している。すなわち、本発明に係るゲルポリマー電解質は、従来のポリオレフィン系のセパレータに代えて、正極および負極を隔離する機能を有している。なお、本発明に係るゲルポリマー電解質と従来のセパレータを併用してもよいのは勿論である。この場合のセパレータとしては、多孔質のポリプロピレンフィルム、多孔質のポリエチレンフィルム等を適宜使用できる。   The gel polymer electrolyte according to the present invention is disposed between the positive electrode and the negative electrode and has a function of conducting lithium ions. The gel polymer electrolyte also has a function as a separator. That is, the gel polymer electrolyte according to the present invention has a function of isolating the positive electrode and the negative electrode in place of the conventional polyolefin separator. Of course, the gel polymer electrolyte according to the present invention and the conventional separator may be used in combination. As a separator in this case, a porous polypropylene film, a porous polyethylene film, etc. can be used suitably.

本発明に係るゲルポリマー電解質は、アクリレート基およびメタクリレート基のうちのいずれか一方または両方を有する基質モノマーおよび上記[化1]に示す構造のフッ素系モノマーとが重合されてなるマトリックスポリマーと、非水電解液とが混合されて形成されている。このゲルポリマー電解質においては、マトリックスポリマーに非水電解液を含浸させることでマトリックスポリマーがゲル化され、非水電解液がマトリックスポリマーに保持される。また、本発明に係るポリマー電解質は、マトリックスポリマーの原料モノマーと非水電解液との混合物をポリマー化させることで、ゲル化されたマトリックスポリマーが形成され、非水電解液がマトリックスポリマーに保持されている。   The gel polymer electrolyte according to the present invention includes a matrix polymer obtained by polymerizing a substrate monomer having one or both of an acrylate group and a methacrylate group and a fluorine-based monomer having a structure represented by the above [Chemical Formula 1]; It is formed by mixing with a water electrolyte. In this gel polymer electrolyte, the matrix polymer is gelled by impregnating the matrix polymer with the nonaqueous electrolytic solution, and the nonaqueous electrolytic solution is held in the matrix polymer. In addition, the polymer electrolyte according to the present invention forms a gelled matrix polymer by polymerizing a mixture of the matrix polymer raw material monomer and the non-aqueous electrolyte, and the non-aqueous electrolyte is held in the matrix polymer. ing.

マトリックスポリマーを構成する基質モノマーは、メタアクリレート基を有するものであればどのようなものでもよいが、好ましくは2-プロペノイック酸α,ω-ポリ(オキシ-2,1-エタンジイル)エステル)(2-Propenoic acid α,ω-poly(oxy-2,1-ethandiyl)ester)を用いることが好ましい。また、基質ポリマーとして2-プロペノイック酸α,ω−ポリ(オキシ−1/2-メチル-2,1−エタンジイル)エステルや、1,1,1-トリス〔プロペノイルオキシポリ(エチレンオキシ)メチル〕プロパンなどを用いてもよい。非水電解液の保持は主にこの基質ポリマーによってなされる。   The matrix monomer constituting the matrix polymer may be any monomer as long as it has a methacrylate group, but preferably 2-propenoic acid α, ω-poly (oxy-2,1-ethanediyl) ester) (2 -Propenoic acid α, ω-poly (oxy-2,1-ethandiyl) ester) is preferably used. In addition, 2-propenoic acid α, ω-poly (oxy-1 / 2-methyl-2,1-ethanediyl) ester or 1,1,1-tris [propenoyloxypoly (ethyleneoxy) methyl] as a substrate polymer Propane or the like may be used. The nonaqueous electrolyte is retained mainly by the substrate polymer.

次に、マトリックスポリマーを構成するフッ素系モノマーは、上記[化1]に示す構造のモノマーが好ましい。ただし、上記[化1]において、RはHまたはCHであり、RはHまたはFであり、nは1以上10以下の範囲である。 Next, the fluorine monomer constituting the matrix polymer is preferably a monomer having the structure shown in the above [Chemical Formula 1]. However, in the above [Chemical Formula 1], R 1 is H or CH 3 , R 2 is H or F, and n is in the range of 1 or more and 10 or less.

[化1]に示すフッ素系モノマーは、R基に結合する二重結合を有しており、この二重結合によって基質モノマーとラジカル重合して、マトリックスポリマーを形成することができる。これにより、フッ素系ポリマーをマトリックスポリマー中に均一に分散させて含ませることができる。
また、本発明に係るフッ素系モノマーは、分子内にフッ素原子を有するフッ化メチレン基(CF)を有しており、このフッ化メチレン基自体は界面抵抗が小さいという特性を有している。このため、リチウムイオンの輸送に対するフッ素系モノマー自体の抵抗が小さくなり、ゲルポリマー電解質のリチウムイオンの伝導性を高めることができる。これにより、リチウム二次電池の電池特性を向上させることができる。ただし、フッ化メチレン基が長すぎると、微視的な均一配置が困難となり、添加の効果が薄れてしまう。従って[化1]におけるnは1〜10の範囲が好ましい。
更に、本発明に係るフッ素系モノマーは、ゲルポリマー電解質の機械的強度を損なうことがない。また、本発明に係るフッ素系モノマーは、基質モノマーと一体になってゲル状の電解質を形成し、非水電解液を保液することができる。なお、フッ素系モノマー単独で電解質を形成した場合は、フッ素系モノマーが球状ポリマーを形成してしまうため、非水電解液を保液することが困難になる。
The fluorine-based monomer represented by [Chemical Formula 1] has a double bond bonded to the R 1 group, and can be radically polymerized with the substrate monomer by this double bond to form a matrix polymer. Thereby, a fluorine-type polymer can be uniformly disperse | distributed and contained in a matrix polymer.
The fluorine-based monomer according to the present invention has a methylene fluoride group (CF 2 ) having a fluorine atom in the molecule, and the methylene fluoride group itself has a characteristic of low interface resistance. . For this reason, the resistance of the fluorine-based monomer itself to the transport of lithium ions is reduced, and the lithium ion conductivity of the gel polymer electrolyte can be increased. Thereby, the battery characteristic of a lithium secondary battery can be improved. However, if the methylene fluoride group is too long, microscopic uniform arrangement becomes difficult, and the effect of addition is diminished. Therefore, n in [Chemical Formula 1] is preferably in the range of 1 to 10.
Furthermore, the fluorine monomer according to the present invention does not impair the mechanical strength of the gel polymer electrolyte. Moreover, the fluorine-type monomer which concerns on this invention can unite with a substrate monomer, can form a gel-like electrolyte, and can hold | maintain a non-aqueous electrolyte. In addition, when an electrolyte is formed with a fluorinated monomer alone, the fluorinated monomer forms a spherical polymer, making it difficult to retain the nonaqueous electrolytic solution.

基質モノマーとフッ素系モノマーとの合計に対するフッ素系モノマーの含有率は、0.3質量%以上30質量%以下の範囲が好ましい。フッ素系モノマーの含有率が0.3質量%未満では、フッ素系ポリマーの添加効果が十分に現れなくなるので好ましくなく、含有率が30質量%を超えると非水電解液の保液性が低下するので好ましくない。   The content of the fluorinated monomer with respect to the total of the substrate monomer and the fluorinated monomer is preferably in the range of 0.3% by mass to 30% by mass. If the fluorine monomer content is less than 0.3% by mass, the effect of adding the fluorine polymer will not be sufficiently exhibited, which is not preferable. If the content exceeds 30% by mass, the liquid retainability of the non-aqueous electrolyte decreases. Therefore, it is not preferable.

また、基質モノマーと非水電解液との合計に対する基質モノマーの含有率は、0.01質量%以上20質量%以下の範囲であることが好ましい。基質モノマーの含有率が0.01質量%未満であると非水電解液を十分に含有することができなくなるとともに電池特性へのポリマー添加の影響が見られなくなるので好ましくなく、含有率が20質量%を超えると、非水電解液の含有率が相対的に低下してリチウムイオンのイオン伝導度が低下するので好ましくない。   Moreover, it is preferable that the content rate of the substrate monomer with respect to the sum total of a substrate monomer and a non-aqueous electrolyte is the range of 0.01 mass% or more and 20 mass% or less. If the content of the substrate monomer is less than 0.01% by mass, the non-aqueous electrolyte cannot be sufficiently contained, and the influence of the addition of the polymer on the battery characteristics is not seen. If it exceeds 50%, the content of the non-aqueous electrolyte is relatively lowered, and the ionic conductivity of lithium ions is lowered.

次に、ゲルポリマー電解質を構成する非水電解液としては、例えば、非プロトン性溶媒にリチウム塩が溶解されてなる有機電解液を例示できる。
非プロトン性溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ベンゾニトリル、アセトニトリル、テトラヒドロフラン、2-メチルテトラヒドロフラン、γ-ブチロラクトン、ジオキソラン、4-メチルジオキソラン、N、N-ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ジオキサン、1,2-ジメトキシエタン、スルホラン、ジクロロエタン、クロロベンゼン、ニトロベンゼン、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルブチルカーボネート、ジプロピルカーボネート、ジイソプロピルカーボネート、ジブチルカーボネート、ジエチレングリコール、ジメチルエーテル等の非プロトン性溶媒、あるいはこれらの溶媒のうちの二種以上を混合した混合溶媒、さらにリチウム二次電池用の溶媒として従来から知られているものを例示でき、特にプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネートのいずれか1つを含むとともにジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートのいずれか1つを含むものが好ましい。
Next, examples of the nonaqueous electrolytic solution constituting the gel polymer electrolyte include an organic electrolytic solution in which a lithium salt is dissolved in an aprotic solvent.
Examples of aprotic solvents include propylene carbonate, ethylene carbonate, butylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, dioxolane, 4-methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethyl Sulfoxide, dioxane, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene, nitrobenzene, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl butyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate , Diethylene glycol, dimethyl ether Aprotic solvents such as, or a mixed solvent obtained by mixing two or more of these solvents, and further known as a solvent for a lithium secondary battery, and in particular, propylene carbonate, ethylene carbonate, What contains any one of butylene carbonate and any one of dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate is preferable.

リチウム塩としては、LiPF、LiBF、LiSbF、LiAsF、LiClO、LiCFSO、Li(CFSON、LiCSO、LiSbF、LiAlO、LiAlCl、LiN(C2x+1SO)(C2y十1SO)(ただしx、yは自然数)、LiCl、LiI等のうちの1種または2種以上のリチウム塩を混合させてなるものや、リチウム二次電池用のリチウム塩として従来から知られているものを例示でき、特にLiPF、LiBFのいずれか1つを含むものが好ましい。 The lithium salt, LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiClO 4, LiCF 3 SO 3, Li (CF 3 SO 2) 2 N, LiC 4 F 9 SO 3, LiSbF 6, LiAlO 4, LiAlCl 4 , LiN (C x F 2x + 1 SO 2) (C y F 2y tens 1 SO 2) (provided that x, y are natural numbers), LiCl, made by mixing one or more lithium salts of such LiI And those conventionally known as lithium salts for lithium secondary batteries, and those containing any one of LiPF 6 and LiBF 4 are particularly preferred.

次に、正極としては、正極活物質と、結着材と、更に必要に応じて導電助材とを混合し、これらを金属箔若しくは金属網からなる集電体に塗布してシート状に成形したものを例示できる。また、正極活物質と、結着材と、更に必要に応じて導電助材とを混合し、これらをペレット状に成形したものも例示できる。
正極活物質としては、LiMn、LiCoO、LiNiO、LiFeO、V、TiS、MoS等、及び有機ジスルフィド化合物や有機ポリスルフィド化合物等のリチウムを吸蔵、放出が可能な材料を例示できる。
Next, as the positive electrode, a positive electrode active material, a binder, and further a conductive additive as necessary are mixed and applied to a current collector made of a metal foil or a metal net to form a sheet. Can be illustrated. Moreover, what mixed the positive electrode active material, the binder, and also the conductive support material as needed, and shape | molded these to the pellet form can also be illustrated.
Examples of the positive electrode active material include LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiFeO 2 , V 2 O 5 , TiS, MoS, and the like, and materials that can occlude and release lithium, such as organic disulfide compounds and organic polysulfide compounds. It can be illustrated.

また負極としては、負極活物質と、結着材と、更に必要に応じて導電助材とを混合し、これらを金属箔若しくは金属網からなる集電体に塗布してシート状に成形したものを例示できる。また、負極活物質と、結着材と、更に必要に応じて導電助材とを混合し、これらをペレット状に成形したものも例示できる。
負極活物質としては、可逆的にリチウムイオンを吸蔵・放出できるものが好ましく、例えば、人造黒鉛、天然黒鉛、黒鉛化炭素繊維、非晶質炭素等を含むものを例示できる。また金属リチウムも負極として使用できる。
In addition, as the negative electrode, a negative electrode active material, a binder, and, if necessary, a conductive additive are mixed and applied to a current collector made of a metal foil or a metal net and formed into a sheet shape. Can be illustrated. Moreover, what mixed the negative electrode active material, the binder, and the conductive support material as needed, and shape | molded these in the pellet form can also be illustrated.
As the negative electrode active material, those capable of reversibly occluding and releasing lithium ions are preferable, and examples thereof include artificial graphite, natural graphite, graphitized carbon fiber, amorphous carbon and the like. Metallic lithium can also be used as the negative electrode.

本実施形態のリチウム二次電池は第1に、あらかじめシート状に成形したゲルポリマー電解質と、正極および負極を積層し、更に場合によって非水電解液を添加することにより製造することができる。
この第1の製造方法において、ゲルポリマー電解質を得るには、基質モノマーとフッ素系モノマーと非水電解液とを所定量混合し、この混合物にラジカル重合開始剤として公知の過酸化物を添加し、光照射または加熱を行って基質モノマーとフッ素系モノマーとをラジカル重合させ、マトリックスポリマーを形成すると同時にこのマトリックスポリマーを非水電解液でゲル化させることにより形成することができる。
First, the lithium secondary battery of this embodiment can be manufactured by laminating a gel polymer electrolyte previously formed into a sheet shape, a positive electrode and a negative electrode, and optionally adding a non-aqueous electrolyte.
In this first production method, in order to obtain a gel polymer electrolyte, a predetermined amount of a substrate monomer, a fluorine-based monomer, and a nonaqueous electrolytic solution are mixed, and a known peroxide as a radical polymerization initiator is added to this mixture. The substrate monomer and the fluorine monomer are radically polymerized by light irradiation or heating to form a matrix polymer, and at the same time, the matrix polymer is gelled with a non-aqueous electrolyte.

また本実施形態のリチウム二次電池は第2に、セパレータと正極と負極を積層して積層体とし、この積層体に対して非水電解液および基質モノマーおよびフッ素系モノマーからなる混合物を含浸させ、基質モノマーとフッ素系モノマーを重合させてゲルポリマー電解質を形成することにより製造することができる。先に述べた第一の製造方法ではセパレータは用いても用いなくてもよいが、この第二の方法では正極と負極を隔離するためにセパレータが必須である。
上記第2の方法において具体的には、例えば、正極と負極とセパレータとからなる積層体を電池容器に収納し、ゲルポリマー電解質の構成材料を含む上記の混合物を電池容器に更に注液してから、電池容器内部でラジカル重合させてゲルポリマー電解質を形成すればよい。このように、非水電解液を含む電解質構成材料を電池容器にあらかじめ注液しておくことにより、負極や正極の内部にまで電解質構成材料が浸透し、この状態でラジカル重合させることで、正極および負極内部に非水電解液を常に保持させることができ、充放電反応を円滑に進めることができる。
Secondly, the lithium secondary battery of this embodiment is formed by laminating a separator, a positive electrode, and a negative electrode to form a laminate, and the laminate is impregnated with a mixture of a non-aqueous electrolyte, a substrate monomer, and a fluorine monomer. It can be produced by polymerizing a substrate monomer and a fluorine monomer to form a gel polymer electrolyte. In the first manufacturing method described above, a separator may or may not be used, but in the second method, a separator is essential to separate the positive electrode and the negative electrode.
Specifically, in the second method, for example, a laminate composed of a positive electrode, a negative electrode, and a separator is housed in a battery container, and the mixture containing the constituent material of the gel polymer electrolyte is further injected into the battery container. Thus, the gel polymer electrolyte may be formed by radical polymerization inside the battery container. In this way, by pre-injecting the electrolyte constituent material including the non-aqueous electrolyte into the battery container, the electrolyte constituent material penetrates to the inside of the negative electrode and the positive electrode, and radical polymerization is performed in this state. In addition, the non-aqueous electrolyte can always be held inside the negative electrode, and the charge / discharge reaction can proceed smoothly.

更に、本実施形態のリチウム二次電池は第3に、非水電解液および基質モノマーおよびフッ素系モノマーからなる混合物を、正極および負極の表面にそれぞれ塗布し、次に基質モノマーとフッ素系モノマーを重合させることにより正負極の表面にゲルポリマー電解質を形成させ、その後、ゲルポリマー電解質同士を貼り合わせることによっても製造するりすることができる。この第3の製造方法では、セパレータは用いても用いなくてもよい。   Furthermore, the lithium secondary battery of the present embodiment thirdly, a non-aqueous electrolyte, a mixture of a substrate monomer and a fluorine monomer is applied to the surfaces of the positive electrode and the negative electrode, respectively, and then the substrate monomer and the fluorine monomer are applied. It can also be produced by forming a gel polymer electrolyte on the surface of the positive and negative electrodes by polymerization and then bonding the gel polymer electrolytes together. In the third manufacturing method, the separator may or may not be used.

以下、本発明をアルミパウチ封入型のポリマー電池に適用した具体的な実施例と比較例を挙げて更に詳細に説明する。なお、本発明は以下に示した実施例に限定されるものではないことは言うまでもない。
(正極および負極の作製)
LiCoOを91質量%、導電剤としてグラファイトを6質量%、結着剤としてPVdFを3質量%の割合で混合して正極合剤を作製し、これをN-メチル-2-ピロリドン(NMP)に分散させてスラリーとした。そして、このスラリーを正極集電体であるアルミニウム箔の片面に塗布し、乾燥後ローラープレス機で圧縮形成して正極シート(正極)を製造した。
また、グラファイトを90質量%、結着剤としてPVdFを10質量%の割合で混合して負極合剤を作製し、これをNMPに分散させてスラリーとした。そして、このスラリーを負極集電体である銅箔の片面に塗布し、塗布後ローラープレス機で圧縮形成して負極シート(負極)を製造した。
Hereinafter, the present invention will be described in more detail with reference to specific examples and comparative examples in which the present invention is applied to an aluminum pouch enclosed polymer battery. Needless to say, the present invention is not limited to the examples shown below.
(Preparation of positive and negative electrodes)
A positive electrode mixture was prepared by mixing 91% by mass of LiCoO 2 , 6% by mass of graphite as a conductive agent, and 3% by mass of PVdF as a binder, and this was prepared as N-methyl-2-pyrrolidone (NMP). To make a slurry. And this slurry was apply | coated to the single side | surface of the aluminum foil which is a positive electrode electrical power collector, and after drying, it compression-formed with the roller press machine, and manufactured the positive electrode sheet (positive electrode).
Further, 90% by mass of graphite and PVdF as a binder at a ratio of 10% by mass were mixed to prepare a negative electrode mixture, which was dispersed in NMP to obtain a slurry. And this slurry was apply | coated to the single side | surface of copper foil which is a negative electrode collector, and after application | coating, it compression-formed with the roller press machine, and manufactured the negative electrode sheet (negative electrode).

(ゲルポリマー電解質の構成材料の調製)
溶媒としてエチレンカーボネート(EC)とジエチルカーボネート(DEC)を体積比でEC:DEC=2:8の割合で混合し、更にリチウム塩としてLiPFを1モル/Lの比率で混合してなる非水電解液を調製した。これをEL−0とした。
次に、基質モノマーとして2-プロペノイック酸α,ω-ポリ(オキシ-2,1-エタンジイル)エステルを、上記のEL−0との質量比でEL−0:基質モノマー=95:5となるようにEL−0に配合し、十分撹拌して均一溶液とし、これをEL−1とした(比較例)。
(Preparation of constituent material of gel polymer electrolyte)
Non-aqueous solution prepared by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) as a solvent in a volume ratio of EC: DEC = 2: 8, and further mixing LiPF 6 as a lithium salt at a ratio of 1 mol / L. An electrolyte solution was prepared. This was designated as EL-0.
Next, 2-propenoic acid α, ω-poly (oxy-2,1-ethanediyl) ester is used as a substrate monomer such that EL-0: substrate monomer = 95: 5 in terms of mass ratio with EL-0. Into EL-0, the mixture was sufficiently stirred to obtain a uniform solution, which was designated as EL-1 (Comparative Example).

また、基質モノマーとして2-プロペノイック酸α,ω-ポリ(オキシ-2,1-エタンジイル)エステルと、フッ素系モノマーとして2,2,2-トリフルオロエチルメタクリレート(上記[化1]でRをHとし、RをFとし、nを2としたもの)とを混合し、これら混合モノマーを上記のEL−0との質量比でEL−0:混合
モノマー=95:5となるようにEL−0に配合し、十分撹拌して均一溶液とし、これをEL−2とした(実施例)。なお、上記基質モノマーと上記フッ素系モノマーの混合割合は質量比で、基質モノマー:フッ素系モノマー=9:1とした。
Further, 2-propenoic acid α, ω-poly (oxy-2,1-ethanediyl) ester as a substrate monomer and 2,2,2-trifluoroethyl methacrylate (the above [Chemical Formula 1] above as R 1 ) as a fluorine monomer. H, R 2 is F and n is 2), and these mixed monomers are EL so that EL-0: mixed monomer = 95: 5 in terms of mass ratio with EL-0. It was blended with -0 and sufficiently stirred to obtain a homogeneous solution, which was designated as EL-2 (Example). In addition, the mixing ratio of the substrate monomer and the fluorine monomer was mass ratio, and the substrate monomer: fluorine monomer = 9: 1.

また、基質モノマーとして2−プロペノイック酸α,ω−ポリ(オキシ−2,1−エタンジイル)エステルと、フッ素系モノマーとしてCH=CHCOOCH(CFCF(上記[化1]でRをHとし、RをFとし、nを8としたもの。:大阪有機株式会杜製ビスコート17F)とを混合し、これら混合モノマーを上記のEL−0との質量比でEL−0:混合モノマー=95:5となるようにEL−0に配合し、十分撹拌して均一溶液とし、これをEL−3とした(実施例)。なお、上記基質モノマーと上記フッ素系モノマーの混合割合は質量比で、基質モノマー:フッ素系モノマー=9:1とした。 In addition, 2-propenoic acid α, ω-poly (oxy-2,1-ethanediyl) ester as a substrate monomer and CH 2 ═CHCOOCH 2 (CF 2 ) 7 CF 3 (in the above [Chemical Formula 1] R as a fluorine-based monomer) 1 is H, R 2 is F, and n is 8. The mixture is mixed with Osaka Organic Stock Co., Ltd. Biscoat 17F), and these mixed monomers are mixed with EL-0 in a mass ratio of EL-0. : Mixed monomer = 95: 5 was blended in EL-0 and stirred well to obtain a homogeneous solution, which was designated as EL-3 (Example). In addition, the mixing ratio of the substrate monomer and the fluorine monomer was mass ratio, and the substrate monomer: fluorine monomer = 9: 1.

(リチウム二次電池の製造)
正極と負極とポリプロピレン製セパレータを積層した状態でアルミラミネート材に収納し、更に、上記のEL−1(比較例)、EL−2(実施例)、EL−3(実施例)の溶液をそれぞれ注液し、更に重合開始剤として過酸化物であるビス-(4-t-ブチルシクロヘキシル)パーオキシジカーボネートを添加し、70℃で4時間加熱することにより、ゲルポリマー電解質を形成させてポリマーリチウム二次電池PL−1(比較例)、PL−2(実施例)、PL−3(実施例)を作製した。なお、PL−1、PL−2、PL−3はそれぞれ、EL−1、EL−2、EL−3から製造したものである。
(Manufacture of lithium secondary batteries)
A positive electrode, a negative electrode, and a polypropylene separator are stacked in an aluminum laminate, and the solutions of EL-1 (Comparative Example), EL-2 (Example), and EL-3 (Example) are respectively added. The solution was poured, and a peroxide bis- (4-t-butylcyclohexyl) peroxydicarbonate was added as a polymerization initiator and heated at 70 ° C. for 4 hours to form a gel polymer electrolyte. Lithium secondary batteries PL-1 (comparative examples), PL-2 (examples), and PL-3 (examples) were produced. PL-1, PL-2, and PL-3 are manufactured from EL-1, EL-2, and EL-3, respectively.

また、上記のEL−1、EL−2、EL−3の溶液を別のアルミラミネート材にそれぞれ注液し、重合開始剤として過酸化物としてビス-(4-t-ブチルシクロヘキシル)パーオキシジカーボネートを添加し、70℃で4時間加熱することにより、機械強度測定用のゲルポリマー電解質を製造した。   Further, the solutions of EL-1, EL-2, and EL-3 are respectively poured into different aluminum laminate materials, and bis- (4-t-butylcyclohexyl) peroxydi as a peroxide as a polymerization initiator. A gel polymer electrolyte for measuring mechanical strength was prepared by adding carbonate and heating at 70 ° C. for 4 hours.

上記のポリマーリチウム二次電池PL−1、PL−2、PL−3について、放電レート特性およびサイクル特性を測定した。放電レート特性は、1サイクル目は充電電流0.5C、放電電流0.2Cにて0.2C放電容量を測定し、2サイクル目においては、充電電流0.5C、放電電流2Cにて2C放電容量を測定し、0.2C放電容量に対する2C放電容量の割合を放電レート値とした。また、サイクル特性は、充電電流1C、充電電流1Cの条件で充放電を繰り返し行い、1サイクル目の放電容量に対する400サイクル目の放電容量の割合をサイクル特性として求めた。結果を表1に示す。
更に、上記の機械強度測定用のゲルポリマー電解質の機械的強度を、高分子計器株式会社製F型デュロメータを用いて測定した。結果を表1に併せて示す。
With respect to the above polymer lithium secondary batteries PL-1, PL-2, and PL-3, discharge rate characteristics and cycle characteristics were measured. The discharge rate characteristics were as follows: 0.2C discharge capacity was measured at charge current 0.5C and discharge current 0.2C in the first cycle, and 2C discharge was performed at charge current 0.5C and discharge current 2C in the second cycle. The capacity was measured, and the ratio of the 2C discharge capacity to the 0.2C discharge capacity was defined as the discharge rate value. The cycle characteristics were determined by repeatedly charging and discharging under the conditions of charge current 1C and charge current 1C, and determining the ratio of the discharge capacity at the 400th cycle to the discharge capacity at the first cycle as the cycle characteristics. The results are shown in Table 1.
Furthermore, the mechanical strength of the gel polymer electrolyte for measuring the mechanical strength was measured using an F-type durometer manufactured by Kobunshi Keiki Co., Ltd. The results are also shown in Table 1.

Figure 0004157055
Figure 0004157055

表1に示すように、フッ素系モノマーを有するPL−2およびPL−3(いずれも実施例)の電池は、フッ素系モノマーが添加されていないPL−1の電池(比較例)に比べて、放電レートおよびサイクル特性のどちらも良好な値を示していることがわかる。これは、フッ素系ポリマーが分子内にフッ化メチレン基を有しているために界面抵抗が低く、リチウムイオンの輸送に対する抵抗が少なくなってリチウムイオンの伝導度が向上したためと考えられる。   As shown in Table 1, the batteries of PL-2 and PL-3 (both examples) having a fluorinated monomer are compared to the PL-1 battery (comparative example) to which no fluorinated monomer is added, It can be seen that both the discharge rate and the cycle characteristics show good values. This is presumably because the fluorine-based polymer has a methylene fluoride group in the molecule, so the interface resistance is low, the resistance to lithium ion transport is reduced, and the lithium ion conductivity is improved.

また、ゲル強度について、PL−2およびPL−3はPL−1と比べて優れた強度を示すことがわかる。このゲル強度の違いも,フッ素系ポリマーの添加効果によるものと考えられる。   Moreover, about gel strength, it turns out that PL-2 and PL-3 show the intensity | strength excellent compared with PL-1. This difference in gel strength is also thought to be due to the addition effect of the fluoropolymer.

以上説明したように、本発明に係るゲルポリマー電解質によれば、機械的強度に優れ,リチウムイオンの伝導性も良好であるので,リチウム二次電池の電池性能を向上することができる。特に,フッ素系モノマーを、基質モノマーとフッ素系モノマーの合計に対して0.1質量%以上30質量%以下の範囲にすることにより、優れたゲル強度が得られるとともに、リチウムイオンの伝導性を向上できることがわかる。
As described above, according to the gel polymer electrolyte according to the present invention, the battery performance of the lithium secondary battery can be improved because of excellent mechanical strength and good lithium ion conductivity. In particular, by setting the fluorine-based monomer in the range of 0.1% by mass to 30% by mass with respect to the total of the substrate monomer and the fluorine-based monomer, excellent gel strength can be obtained, and lithium ion conductivity can be improved. It can be seen that it can be improved.

Claims (4)

リチウムイオンを伝導可能なゲルポリマー電解質であって、2-プロペノイック酸α,ω-ポリ(オキシ-2,1-エタンジイル)エステル、2-プロペノイック酸α,ω−ポリ(オキシ−1/2-メチル-2,1−エタンジイル)エステルまたは1,1,1-トリス〔プロペノイルオキシポリ(エチレンオキシ)メチル〕プロパンの中から選択される基質モノマーと下記[化1]に示す構造のフッ素系モノマーとが重合されてなるマトリックスポリマーと、非水電解液とが混合されてなることを特徴とするゲルポリマー電解質。
Figure 0004157055
ただし、上記[化1]において、RはHまたはCHであり、RはHまたはFであり、nは1以上10以下の範囲である。
A gel polymer electrolyte capable of conducting lithium ions, comprising 2-propenoic acid α, ω-poly (oxy-2,1-ethanediyl) ester, 2-propenoic acid α, ω-poly (oxy-1 / 2-methyl) A substrate monomer selected from -2,1-ethanediyl) ester or 1,1,1-tris [propenoyloxypoly (ethyleneoxy) methyl] propane, and a fluorine monomer having the structure shown in the following [Chemical Formula 1] A gel polymer electrolyte, wherein a matrix polymer obtained by polymerizing and a non-aqueous electrolyte is mixed.
Figure 0004157055
However, in the above [Chemical Formula 1], R 1 is H or CH 3 , R 2 is H or F, and n is in the range of 1 or more and 10 or less.
前記基質モノマーと前記フッ素系モノマーとの合計に対する前記フッ素系モノマーの含有率が0.1質量%以上30質量%以下の範囲であることを特徴とする請求項1に記載のゲルポリマー電解質。   2. The gel polymer electrolyte according to claim 1, wherein a content of the fluorine monomer with respect to a total of the substrate monomer and the fluorine monomer is in a range of 0.1% by mass to 30% by mass. 前記基質モノマーと前記非水電解液との合計に対する前記基質モノマーの含有率が0.01質量%以上20質量%以下の範囲であることを特徴とする請求項1または請求項2に記載のゲルポリマー電解質。   The gel according to claim 1 or 2, wherein the content of the substrate monomer with respect to the total of the substrate monomer and the non-aqueous electrolyte is in the range of 0.01% by mass to 20% by mass. Polymer electrolyte. 正極と、負極と、請求項1ないし請求項3のいずれかに記載されたゲルポリマー電解質とを具備してなることを特徴とするリチウム二次電池。   A lithium secondary battery comprising a positive electrode, a negative electrode, and the gel polymer electrolyte according to any one of claims 1 to 3.
JP2004046294A 2004-02-23 2004-02-23 Gel polymer electrolyte and lithium secondary battery Expired - Lifetime JP4157055B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004046294A JP4157055B2 (en) 2004-02-23 2004-02-23 Gel polymer electrolyte and lithium secondary battery
KR1020040040865A KR100599599B1 (en) 2004-02-23 2004-06-04 Gel polymer electrolyte and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004046294A JP4157055B2 (en) 2004-02-23 2004-02-23 Gel polymer electrolyte and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2005235683A JP2005235683A (en) 2005-09-02
JP4157055B2 true JP4157055B2 (en) 2008-09-24

Family

ID=35018401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004046294A Expired - Lifetime JP4157055B2 (en) 2004-02-23 2004-02-23 Gel polymer electrolyte and lithium secondary battery

Country Status (2)

Country Link
JP (1) JP4157055B2 (en)
KR (1) KR100599599B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101733738B1 (en) 2013-01-16 2017-05-10 삼성에스디아이 주식회사 Electrolytes for rechargeable lithium batteries and rechargeable lithium battery comprising the same
PL3467927T3 (en) * 2017-01-12 2021-11-02 Lg Chem, Ltd. Composition for gel polymer electrolyte and lithium secondary battery comprising same
PL3457485T3 (en) 2017-01-12 2020-11-02 Lg Chem, Ltd. Non-aqueous electrolyte solution and lithium secondary battery comprising same
WO2018131952A1 (en) * 2017-01-12 2018-07-19 주식회사 엘지화학 Non-aqueous electrolyte solution and lithium secondary battery comprising same
WO2018131953A1 (en) * 2017-01-12 2018-07-19 주식회사 엘지화학 Composition for gel polymer electrolyte and lithium secondary battery comprising same
CN109888385B (en) * 2019-01-25 2020-11-06 厦门大学 Electrolyte for lithium metal secondary battery and lithium metal secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121037A (en) * 1997-10-17 1999-04-30 Yuasa Corp Gel electrolyte

Also Published As

Publication number Publication date
JP2005235683A (en) 2005-09-02
KR100599599B1 (en) 2006-07-13
KR20050083532A (en) 2005-08-26

Similar Documents

Publication Publication Date Title
US7824808B2 (en) Polyimide-based lithium metal battery
KR102024889B1 (en) Semi-Interpenetrating Polymer Networks Polymer Electrolyte and All-Solid-State Battery comprising The Same
US11444272B2 (en) Positive electrode including room temperature solid state plasticizer, and solid electrolyte battery including the same
CN107078343A (en) Lithium-sulfur cell
US11374262B2 (en) Solid electrolyte battery and battery module and battery pack comprising same
KR20190033448A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR100573109B1 (en) Organic electrolytic solution and lithium battery employing the same
KR20190050709A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
US11404697B2 (en) Solid electrolyte interphase forming composition, battery comprising the solid electrolyte interphase and anode-free battery comprising the solid electrolyte interphase
JPH09147913A (en) Nonaqueous electrolyte battery
KR20200116897A (en) Mixtures of potassium and lithium salts, and their use in batteries
KR102255539B1 (en) Method for preparing pouch type secondary battery
JP4157056B2 (en) Gel polymer electrolyte and lithium secondary battery
JP4157055B2 (en) Gel polymer electrolyte and lithium secondary battery
KR20030023290A (en) Organic liquid electrolytes containing carbonates having carbon-carbon double bond and polymer electrolytes and lithium secondary batteries manufactured by employing the same
KR20190088333A (en) Electrode for solid electrolyte battery and solid electrolyte battery including the same
US20050100788A1 (en) Lithium secondary cell
JP2023512820A (en) Method for producing gel polymer electrolyte secondary battery, and gel polymer electrolyte secondary battery produced thereby
KR20220142496A (en) In situ Polymerized Hybrid Polymer Electrolyte for High Voltage Lithium Batteries
JP2003263984A (en) Nonaqueous electrolyte cell and manufacturing method thereof
JP2003007303A (en) Nonaqueous electrolyte secondary battery
US20240128503A1 (en) Polysulfide-polyoxide electrolyte membrane for energy storage device
JP7065013B2 (en) Lithium ion secondary battery
EP4233118A1 (en) Electrolyte for lithium secondary batteries
CN116491007A (en) Electrolyte for lithium secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4157055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250