JPH11121037A - Gel electrolyte - Google Patents
Gel electrolyteInfo
- Publication number
- JPH11121037A JPH11121037A JP9285134A JP28513497A JPH11121037A JP H11121037 A JPH11121037 A JP H11121037A JP 9285134 A JP9285134 A JP 9285134A JP 28513497 A JP28513497 A JP 28513497A JP H11121037 A JPH11121037 A JP H11121037A
- Authority
- JP
- Japan
- Prior art keywords
- gel
- monomer
- functional group
- polymer
- gel electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Primary Cells (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、蓄電技術に用いら
れる電解質の改良に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an electrolyte used in a power storage technology.
【0002】[0002]
【従来の技術】近年、エレクトロニクス分野の発展に伴
い電子機器の小型化がめざましい。特に携帯電話やPHS
などの携帯機器類や小型パーソナルコンピュータの需要
拡大は著しく、これらの機器類の軽薄短小化に伴い電源
となる電池においても高機能化に加えて小型化・薄形化
が求められている。このような背景において小型で高容
量が期待できるリチウム電池が注目されている。最近で
は携帯電話などにリチウムイオン二次電池が使用されて
おり、情報時代の注目技術として研究が盛んに行われて
いる。2. Description of the Related Art In recent years, with the development of the electronics field, miniaturization of electronic equipment has been remarkable. Especially mobile phones and PHS
The demand for portable devices such as portable computers and small personal computers has been remarkably increasing, and as these devices have become lighter, thinner and smaller, batteries that serve as power sources have been required to have not only higher functions but also smaller and thinner devices. Under such a background, a lithium battery that is small and can be expected to have a high capacity has attracted attention. Recently, lithium ion secondary batteries have been used in mobile phones and the like, and research has been actively conducted as a technology of interest in the information age.
【0003】リチウム電池に関しては安全性が重要とさ
れており、安全弁やPTC 素子をはじめ、セパレータに関
しても高温で電流を遮断するような設計がとられてい
る。また、他方では溶媒の不燃化などが最近の研究対象
となっている。高分子固体電解質においては引火性の低
いポリマーを電解質に用いることから、次世代の技術と
して注目されている。[0003] Safety is considered important for lithium batteries, and separators, such as safety valves and PTC elements, are designed to cut off current at high temperatures. On the other hand, non-combustibility of solvents has been the subject of recent research. The use of a polymer having low flammability in the polymer solid electrolyte has attracted attention as a next-generation technology.
【0004】[0004]
【発明が解決しようとする課題】小型電子機器に関して
は常温作動が必須とされることから、現状においてはそ
の特性より形状が固体であるゲル電解質が有望とされて
いる。現状においてポリエチレンオキサイドを用いたゲ
ルは、常温で 1.5×10-3Scm -1のイオン伝導性を示すこ
とが、Aiharaらによって J. Power Sources 65 (1997)
143-147 に報告されている。これまでの研究で平衡膨潤
度以下のポリエチレンオキサイドのゲル電解質は液体の
電解質とは全く挙動が異なり、伝導度はアレニウスの式
に従わずVTF などの関係式で説明される。よってゲルの
構造的な相互作用に加えてポリマーとイオンとのアフィ
ニティーを考慮する必要がある。バルクのイオン伝導を
向上させようとした場合、ゲルポリマーの分子骨格構造
としてはドナー性のエーテル酸素はむしろ必要なく、溶
媒分子や溶質分子との相互作用の少ない骨格が好ましい
と言える。その観点からも現在フルオロポリマーが見直
されている。ポリフッ化ビニリデンにおいてはTsuchida
らによってElectrochem.Acta,28(1983) にその検討が報
告されている。しかしながら、熱可逆性であるという問
題があり、高温では溶液状態になってしまうことから、
それ自体単独での使用は困難である。Since small-sized electronic equipment must be operated at room temperature, a gel electrolyte having a solid shape is considered promising at present because of its characteristics. At present, gels using polyethylene oxide show an ionic conductivity of 1.5 × 10 −3 Scm −1 at room temperature, according to Aihara et al., J. Power Sources 65 (1997).
143-147. In previous studies, the behavior of gel electrolytes of polyethylene oxide below the equilibrium swelling degree was completely different from that of liquid electrolytes, and the conductivity was not described by the Arrhenius equation, but was explained by a relational expression such as VTF. Therefore, it is necessary to consider the affinity between the polymer and the ion in addition to the structural interaction of the gel. When it is intended to improve bulk ion conduction, it can be said that the ether skeleton of the gel polymer does not require ether oxygen as a molecular skeleton structure, and a skeleton having little interaction with solvent molecules or solute molecules is preferable. From that viewpoint, fluoropolymers are currently being reviewed. Tsuchida for polyvinylidene fluoride
The authors reported the study in Electrochem. Acta, 28 (1983). However, there is a problem that it is thermoreversible, and since it becomes a solution state at high temperatures,
As such, it is difficult to use it alone.
【0005】本発明は上記従来技術の問題点に鑑みなさ
れたものであり、イオン伝導に優れ、且つ熱安定性のよ
いゲル電解質を提供することを目的とする。[0005] The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to provide a gel electrolyte having excellent ionic conductivity and good thermal stability.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するた
め、本発明においてはラジカル重合が容易に可能な重合
性官能基を分子構造内に持つモノマー(化1)を用いる
ことで重合過程とゲル化過程を同時に進行させることが
可能となる。In order to solve the above problems, the present invention uses a monomer having a polymerizable functional group capable of easily undergoing radical polymerization in its molecular structure (Chemical Formula 1) to carry out the polymerization process and gelation. It is possible to simultaneously proceed with the conversion process.
【0007】[0007]
【化1】 Embedded image
【0008】ここで言う重合性官能基とはビニルケトン
系又はビニル系であり、例えば、アクリロイル基、メタ
クリロイル基、アリル基を示すがこれらに限定されるも
のではない。また、1官能のフッ素を含むアルキルモノ
アクリレートモノマーを用いる場合においても、多官能
アクリル酸エステルを架橋剤として使用することでポリ
マー骨格を3次元化することが可能となり、ひいては熱
安定性が向上する。ここで言う架橋剤とは、2官能以上
のアクリレートモノマーを指す。例えば、1 、4-ブタン
ジオールジアクリレート、テトラエチレングリコールジ
アクリレート、ポリプロピレングリコールジアクリレー
ト、ビスフェノールA-エチレンオキサイド付加物ジアク
リレート、トリメチロールプロパントリアクリレート、
トリスアクリロイルエチルフォスフェート、ペンタエリ
スリトールテトラアクリレートなどが挙げられるが、こ
れらに限定されるものではない。これらの化学架橋によ
り熱によるゲルの流動化を防ぐことが可能となる。フッ
素を含むモノマーを重合してなる重合生成体は骨格にフ
ッ素を含むアルカンを有することから溶媒分子や溶質分
子との相互作用が小さく、また、化学的・電気化学的に
安定である。また、主骨格に酸エステル構造が残るが、
適度な極性基の存在によって溶媒のシネリシスを防ぐこ
とが可能と考えられる。The term "polymerizable functional group" as used herein means a vinyl ketone or vinyl group, for example, an acryloyl group, a methacryloyl group, or an allyl group, but is not limited thereto. In addition, even when an alkyl monoacrylate monomer containing monofunctional fluorine is used, it is possible to make the polymer skeleton three-dimensional by using a polyfunctional acrylate as a cross-linking agent, thereby improving thermal stability. . The term “crosslinking agent” as used herein refers to an acrylate monomer having two or more functions. For example, 1,4-butanediol diacrylate, tetraethylene glycol diacrylate, polypropylene glycol diacrylate, bisphenol A-ethylene oxide adduct diacrylate, trimethylolpropane triacrylate,
Examples include, but are not limited to, trisacryloylethyl phosphate, pentaerythritol tetraacrylate, and the like. These chemical crosslinks make it possible to prevent the fluidization of the gel due to heat. Since a polymerization product obtained by polymerizing a monomer containing fluorine has an alkane containing fluorine in its skeleton, it has a small interaction with a solvent molecule or a solute molecule and is chemically and electrochemically stable. Also, an acid ester structure remains in the main skeleton,
It is thought that the presence of an appropriate polar group can prevent solvent syneresis.
【0009】[0009]
【発明の実施の形態】本発明ではフッ素を含むアルキル
骨格を有し、官能基として重合性官能基を分子構造内に
持つモノマーから重合して生成する重合体をゲル骨格マ
トリクスとして固体状に形成したゲル電解質を特徴と
し、前記モノマーと、分子構造内に重合性官能基を有す
る、該モノマーとは異なる構造のモノマーとの混合物を
重合して生成する重合体をゲル骨格マトリクスとするこ
とで、1官能のフッ素を含むアルキルモノマーを用いる
場合においてもポリマー骨格を3次元化することが可能
となり、ひいては熱安定性が向上する。また、前記重合
体の重合時に、有機溶媒とそれに可溶な電解質が混合さ
れた状態にあるものを、ラジカル重合によって重合して
ゲル電解質を生成することで製造方法の簡易化を図るこ
とが可能となる。BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a polymer formed by polymerizing from a monomer having a fluorine-containing alkyl skeleton and having a polymerizable functional group in a molecular structure as a functional group is formed in a solid state as a gel skeleton matrix. Characterized by a gel electrolyte, the monomer, having a polymerizable functional group in the molecular structure, a polymer formed by polymerizing a mixture of a monomer having a different structure from the monomer, as a gel skeleton matrix, Even when a monofunctional fluorine-containing alkyl monomer is used, the polymer skeleton can be made three-dimensional, and the thermal stability is improved. In addition, at the time of polymerization of the polymer, it is possible to simplify the production method by producing a gel electrolyte by polymerizing an organic solvent and a soluble electrolyte in a mixed state by radical polymerization. Becomes
【0010】[0010]
【実施例】以下、本発明の詳細について実施例により説
明するが、本発明はこれに限定されるものではない。EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.
【0011】(本発明1)ガラス管に5,5,5-トリフルオ
ロエチルアクリレート1.0gとトリメチロールプロパント
リアクリレート0.2gをγブチロラクトン4.0gに溶解し、
リチウムテトラフルオロボレートを溶液に対し1Mとなる
よう溶解させ、さらに熱反応開始剤としてアゾイソブチ
ロニトリル0.02g を加え撹拌した。その後、凍結脱気を
行いガラス管を真空封管した。反応は60℃の湯浴中で24
時間行った。生成したゲルを本発明1とし、所定厚みに
切り出した。(Invention 1) In a glass tube, 1.0 g of 5,5,5-trifluoroethyl acrylate and 0.2 g of trimethylolpropane triacrylate are dissolved in 4.0 g of γ-butyrolactone.
Lithium tetrafluoroborate was dissolved to 1 M in the solution, and 0.02 g of azoisobutyronitrile as a thermal reaction initiator was added and stirred. Thereafter, the glass tube was subjected to freeze degassing and vacuum sealed. The reaction was performed in a 60 ° C water bath for 24 hours.
Time went. The resulting gel was designated as Invention 1 and was cut into a predetermined thickness.
【0012】(本発明2)ガラス管に5,5,6,6-テトラフ
ルオロプロピルアクリレート1.0gとトリメチロールプロ
パントリアクリレート0.2gをγブチロラクトン4.0gに溶
解し、リチウムテトラフルオロボレートを溶液に対し1M
となるよう溶解させ、さらに熱反応開始剤としてアゾイ
ソブチロニトリル0.02g を加え撹拌した。その後、凍結
脱気を行いガラス管を真空封管した。反応は60℃の湯浴
中で24時間行った。生成したゲルを本発明2とし、所定
厚みに切り出した。(Invention 2) In a glass tube, 1.0 g of 5,5,6,6-tetrafluoropropyl acrylate and 0.2 g of trimethylolpropane triacrylate are dissolved in 4.0 g of γ-butyrolactone, and lithium tetrafluoroborate is added to the solution. 1M
, And 0.02 g of azoisobutyronitrile was added as a thermal reaction initiator and stirred. Thereafter, the glass tube was subjected to freeze degassing and vacuum sealed. The reaction was performed in a 60 ° C. water bath for 24 hours. The resulting gel was designated as Invention 2 and was cut into a predetermined thickness.
【0013】(本発明3)ガラス管に5,5,5-トリフルオ
ロエチルメタクリレート1.0gとテトラエチレングリコー
ルジメタクリレート0.2gをγブチロラクトン4.0gに溶解
し、リチウムテトラフルオロボレートを溶液に対し1Mと
なるよう溶解させ、さらに熱反応開始剤としてアゾイソ
ブチロニトリル0.02g を加え撹拌した。その後、凍結脱
気を行いガラス管を真空封管した。反応は80℃の湯浴中
で24時間行った。生成したゲルを本発明3とし、所定厚
みに切り出した。(Invention 3) In a glass tube, 1.0 g of 5,5,5-trifluoroethyl methacrylate and 0.2 g of tetraethylene glycol dimethacrylate are dissolved in 4.0 g of γ-butyrolactone, and lithium tetrafluoroborate is added to the solution at a concentration of 1M. Then, 0.02 g of azoisobutyronitrile was added as a thermal reaction initiator and stirred. Thereafter, the glass tube was subjected to freeze degassing and vacuum sealed. The reaction was performed in a water bath at 80 ° C. for 24 hours. The resulting gel was designated as invention 3 and cut into a predetermined thickness.
【0014】(比較例1)ガラス管に分子量約11000 の
ポリエチレングリコールジアクリレート1.0gをγブチロ
ラクトン4.0gに溶解し、リチウムテトラフルオロボレー
トを溶液に対し1Mとなるよう溶解させ、さらに熱反応開
始剤としてアゾイソブチロニトリル0.02g を加え撹拌し
た。その後、凍結脱気を行いガラス管を真空封管した。
反応は60℃の湯浴中で24時間行った。生成したゲルを比
較例1とし、所定厚みに切り出した。Comparative Example 1 In a glass tube, 1.0 g of polyethylene glycol diacrylate having a molecular weight of about 11,000 was dissolved in 4.0 g of γ-butyrolactone, and lithium tetrafluoroborate was dissolved to 1 M with respect to the solution. Of azoisobutyronitrile was added and stirred. Thereafter, the glass tube was subjected to freeze degassing and vacuum sealed.
The reaction was performed in a 60 ° C. water bath for 24 hours. The resulting gel was used as Comparative Example 1 and cut into a predetermined thickness.
【0015】(比較例2)熱形状安定性の比較としてポ
リフッ化ビニリデンのゲルを作製した。作製方法はポリ
フッ化ビニリデン1.0gを1Mのリチウムテトラフルオロボ
レートのγブチロラクトン溶液4.0gに分散させた後、オ
イルバスで90℃に加熱・溶解させた。混合溶液を金属箔
上に流して、徐冷しポリフッ化ビニリデンのゲルを形成
した。Comparative Example 2 As a comparison of thermal shape stability, a gel of polyvinylidene fluoride was prepared. The production method was such that 1.0 g of polyvinylidene fluoride was dispersed in 4.0 g of a 1 M solution of lithium tetrafluoroborate in γ-butyrolactone, and then heated and dissolved at 90 ° C. in an oil bath. The mixed solution was flowed on a metal foil and cooled slowly to form a polyvinylidene fluoride gel.
【0016】各々の電解質をイオン伝導度を測定する所
定のセルに固定し、室温〜−40℃までイオン伝導度を測
定した。測定はソーラートロン社のインピーダンスアナ
ライザーとしてモデル1286のインターフェースとモデル
1255を使用し、交流測定で1000000Hz 〜10Hzを測定し
た。Each electrolyte was fixed in a predetermined cell for measuring ionic conductivity, and the ionic conductivity was measured from room temperature to -40 ° C. Measurements were made using Solartron's impedance analyzer model 1286 interface and model
Using 1255, 10000 Hz to 10 Hz was measured by AC measurement.
【0017】イオン伝導度測定の結果を図1に示す。本
発明1〜3においては比較例1よりも高いイオン伝導を
示すことが分かった。また、本発明においても低温域で
の湾曲が若干認められるが、その傾きは小さいことから
も広温度領域でイオン伝導度が高いことが認められる。
更に、本発明および比較例の電解質をホットプレート上
で110 ℃に加熱した結果を表1に示す。FIG. 1 shows the results of the ion conductivity measurement. It was found that the present inventions 1 to 3 exhibited higher ionic conduction than Comparative Example 1. Also in the present invention, a slight curvature is observed in a low temperature range, but the inclination is small, which indicates that the ionic conductivity is high in a wide temperature range.
Table 1 shows the results of heating the electrolytes of the present invention and the comparative examples to 110 ° C. on a hot plate.
【0018】[0018]
【表1】 [Table 1]
【0019】熱安定性を比較した表1において明らかな
ように、従来のフルオロアルキルポリマーであるポリフ
ッ化ビニリデンは加熱により融解してしまった。本発明
および比較例1においては形状変化は認められなかっ
た。As is clear from Table 1 comparing the thermal stability, the conventional fluoroalkyl polymer polyvinylidene fluoride was melted by heating. In the present invention and Comparative Example 1, no shape change was observed.
【0020】[0020]
【発明の効果】本発明ではフッ素を含むアルキル骨格を
有し、官能基として放射線重合性官能基を分子構造内に
持つモノマーから重合して生成する重合体をゲル骨格マ
トリクスとして固体状に形成したゲル電解質を特徴と
し、前記モノマーと、分子構造内に重合性官能基を有す
る、該モノマーとは異なる構造のモノマーとの混合物を
重合して生成する重合体をゲル骨格マトリクスとするこ
とで、1官能のフッ素を含むアルキルモノモノマーを用
いる場合においても重合性官能基を有するモノマーを使
用してポリマー骨格を3次元化することが可能となり、
ひいては熱安定性が向上する。また、前記重合体の重合
時に、有機溶媒とそれに可溶な電解質が混合された状態
にあるものを、ラジカル重合によって重合してゲル電解
質を生成することで製造方法の簡易化を図ることが可能
となる。According to the present invention, a polymer formed by polymerizing from a monomer having a fluorine-containing alkyl skeleton and having a radiation-polymerizable functional group in the molecular structure as a functional group is formed in a solid state as a gel skeleton matrix. Characterized by a gel electrolyte, a polymer formed by polymerizing a mixture of the monomer and a monomer having a polymerizable functional group in the molecular structure and having a different structure from the monomer is used as a gel skeleton matrix to form a polymer. Even when using an alkyl monomonomer containing functional fluorine, it is possible to make the polymer skeleton three-dimensional using a monomer having a polymerizable functional group,
As a result, the thermal stability is improved. In addition, at the time of polymerization of the polymer, it is possible to simplify the production method by producing a gel electrolyte by polymerizing an organic solvent and a soluble electrolyte in a mixed state by radical polymerization. Becomes
【図1】本発明および比較例のゲル電解質のイオン伝導
度を測定した結果をアレニウスプロットした図である。FIG. 1 is a diagram obtained by measuring the ionic conductivity of gel electrolytes of the present invention and a comparative example by Arrhenius plot.
フロントページの続き (72)発明者 中川 裕江 大阪府高槻市城西町6番6号 株式会社ユ アサコーポレーション内Continuation of the front page (72) Inventor Hiroe Nakagawa 6-6 Josaicho, Takatsuki-shi, Osaka Inside Yu Asa Corporation
Claims (3)
基として重合性官能基を分子構造内に持つモノマー(化
1)から重合して生成する重合体をゲル骨格マトリクス
として固体状に形成したことを特徴とするゲル電解質。 【化1】 1. A polymer formed by polymerizing from a monomer (chemical formula 1) having a fluorine-containing alkyl skeleton and having a polymerizable functional group in the molecular structure as a functional group, is formed in a solid state as a gel skeleton matrix. A gel electrolyte, characterized in that: Embedded image
能基を有する、該モノマーとは異なる構造のモノマーと
の混合物を重合して生成する重合体をゲル骨格マトリク
スとして固体状に形成したことを特徴とする請求項1記
載のゲル電解質。2. A polymer formed by polymerizing a mixture of the monomer and a monomer having a polymerizable functional group in a molecular structure and having a different structure from the monomer, to form a polymer as a gel skeleton matrix in a solid state. The gel electrolyte according to claim 1, wherein:
に可溶な電解質が混合された状態にあることを特徴とす
る請求項1又は2記載のゲル電解質。3. The gel electrolyte according to claim 1, wherein an organic solvent and an electrolyte soluble in the organic solvent are mixed during the polymerization of the polymer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9285134A JPH11121037A (en) | 1997-10-17 | 1997-10-17 | Gel electrolyte |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9285134A JPH11121037A (en) | 1997-10-17 | 1997-10-17 | Gel electrolyte |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11121037A true JPH11121037A (en) | 1999-04-30 |
Family
ID=17687552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9285134A Pending JPH11121037A (en) | 1997-10-17 | 1997-10-17 | Gel electrolyte |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11121037A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100413800B1 (en) * | 2001-10-17 | 2004-01-03 | 삼성에스디아이 주식회사 | Fluoride copolymer, polymer electrolyte comprising the same and lithium battery employing the polymer electrolyte |
KR100599599B1 (en) * | 2004-02-23 | 2006-07-13 | 삼성에스디아이 주식회사 | Gel polymer electrolyte and lithium secondary battery |
WO2008127021A1 (en) * | 2007-04-11 | 2008-10-23 | Lg Chem, Ltd. | Secondary battery comprising ternary eutectic mixtures and preparation method thereof |
-
1997
- 1997-10-17 JP JP9285134A patent/JPH11121037A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100413800B1 (en) * | 2001-10-17 | 2004-01-03 | 삼성에스디아이 주식회사 | Fluoride copolymer, polymer electrolyte comprising the same and lithium battery employing the polymer electrolyte |
KR100599599B1 (en) * | 2004-02-23 | 2006-07-13 | 삼성에스디아이 주식회사 | Gel polymer electrolyte and lithium secondary battery |
WO2008127021A1 (en) * | 2007-04-11 | 2008-10-23 | Lg Chem, Ltd. | Secondary battery comprising ternary eutectic mixtures and preparation method thereof |
US8546023B2 (en) | 2007-04-11 | 2013-10-01 | Lg Chem, Ltd. | Secondary battery comprising ternary eutectic mixtures and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3841127B2 (en) | Gel electrolyte | |
CN107492680B (en) | Vinylene carbonate and polyethylene glycol (methyl) acrylate based polymer electrolyte and preparation method thereof | |
CN109608592B (en) | Cross-linking polymerization preparation method of polyion liquid solid electrolyte | |
CN106374139A (en) | Monomer and polymer for gel electrolyte material, and preparation methods and applications of monomer and polymer | |
CN106432608A (en) | Boron-containing gel polymer electrolyte and preparation method and application thereof | |
CN113328135A (en) | Solid-state lithium ion battery with low interface resistance and preparation method thereof | |
WO2020107858A1 (en) | Preparation method for cross-linked polymer electrolyte, and semisolid polymer battery and preparation method therefor | |
CN111430807B (en) | Solid polymer electrolyte and preparation method thereof | |
CN111435758A (en) | Solid electrolyte membrane, manufacturing method thereof, solid battery and electric automobile | |
CN104966848A (en) | Polymer for lithium ion battery, preparation method of polymer, lithium ion battery gel electrolyte and preparation method thereof | |
JP2003123791A (en) | Proton conductor and fuel cell using the same | |
CN111533864A (en) | Block copolymer and preparation method thereof, and all-solid-state copolymer electrolyte membrane and preparation method thereof | |
JP4867126B2 (en) | Proton exchanger, proton exchange membrane, and fuel cell using the same | |
Sun et al. | Highly conductive and reusable electrolyte based on sodium polyacrylate composite for flexible Al-air batteries | |
CN112979897A (en) | Preparation method of healable ionic gel polymer electrolyte | |
US20020138972A1 (en) | Process for preparing lithium polymer secondary battery | |
WO2022011980A1 (en) | Non-flammable gel electrolyte precursor, modified solid-state electrolyte, lithium battery, and preparation method therefor | |
JPH11121037A (en) | Gel electrolyte | |
JPH05314965A (en) | Battery positive electrode sheet, manufacture thereof and totally solid secondary battery | |
CN117154204A (en) | Preparation and application of high-sodium ion-selectivity flame-retardant composite gel electrolyte | |
CN113964380B (en) | Self-repairing polymer electrolyte capable of in-situ thermal polymerization and preparation method thereof | |
CN115986205A (en) | Functional quasi-solid polymer electrolyte and preparation method and application thereof | |
CN115312851A (en) | Method for in-situ synthesis of high-performance quasi-solid electrolyte | |
JP2000215917A (en) | Composition for polymer electrolyte formation | |
CN109888382B (en) | Preparation method of clay-reinforced polymer solid electrolyte film |