JP2005234781A - Constant current control circuit device - Google Patents

Constant current control circuit device Download PDF

Info

Publication number
JP2005234781A
JP2005234781A JP2004041511A JP2004041511A JP2005234781A JP 2005234781 A JP2005234781 A JP 2005234781A JP 2004041511 A JP2004041511 A JP 2004041511A JP 2004041511 A JP2004041511 A JP 2004041511A JP 2005234781 A JP2005234781 A JP 2005234781A
Authority
JP
Japan
Prior art keywords
resistance
current control
constant current
temperature characteristic
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004041511A
Other languages
Japanese (ja)
Other versions
JP4285266B2 (en
Inventor
Kingo Ota
欣吾 太田
Hiroyuki Ban
伴  博行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004041511A priority Critical patent/JP4285266B2/en
Publication of JP2005234781A publication Critical patent/JP2005234781A/en
Application granted granted Critical
Publication of JP4285266B2 publication Critical patent/JP4285266B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate trimming of a shunt resistance value in a constant current control circuit device composed by using a current mirror circuit and improve a temperature property of the device. <P>SOLUTION: An on-state resistance of a P channel MOSFET 12 is used for a shunt-resistance of a current control circuit 11 and a temperature characteristics correction circuit 15 composed of a series circuit of an emitter resistance 13 and a CrSi resistance 14 is connected to the gate of the MOSFET 12. Then, a temperature characteristics of the on-resistance of the MOSFET 12 is corrected by controlling the gate potential of the MOSFET 12 by means of the correction circuit 15. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、カレントミラー回路を用いて構成される定電流制御回路装置に関する。   The present invention relates to a constant current control circuit device configured using a current mirror circuit.

図5には、カレントミラー回路を用いて構成される定電流制御回路の一構成例を示す。主電源VMAINとグランドとの間には、シャント抵抗であるAl(アルミニュウム)抵抗1と、NチャネルLD(Laterally Diffused)MOSFET(電流制御素子)2と、負荷抵抗3との直列回路が接続されている。シャント抵抗1の両端には、カレントミラー回路4を構成する2つのPNPトランジスタ4a及び4bのエミッタが接続されている。
トランジスタ4a及び4bのコレクタは、夫々定電流源5a及び5bを介してグランドに接続されている。また、トランジスタ4a及び4bのコレクタは、オペアンプ6の反転入力端子及び非反転入力端子に接続されている。そして、オペアンプ6の出力端子は、FET2のゲートに接続されている。
FIG. 5 shows a configuration example of a constant current control circuit configured using a current mirror circuit. A series circuit of an Al (aluminum) resistor 1 which is a shunt resistor, an N-channel LD (Laterally Diffused) MOSFET (current control element) 2 and a load resistor 3 is connected between the main power supply VMAIN and the ground. Yes. Connected to both ends of the shunt resistor 1 are the emitters of the two PNP transistors 4a and 4b constituting the current mirror circuit 4.
The collectors of the transistors 4a and 4b are connected to the ground via the constant current sources 5a and 5b, respectively. The collectors of the transistors 4 a and 4 b are connected to the inverting input terminal and the non-inverting input terminal of the operational amplifier 6. The output terminal of the operational amplifier 6 is connected to the gate of the FET 2.

以上のように構成される定電流回路7は、FET2のオン状態によって負荷抵抗3に定電流を流すように制御している。例えば、負荷抵抗3に流れる電流が増加すると当Al抵抗1における電圧降下が大きくなる。すると、トランジスタ5bのエミッタ電位が低下するので、トランジスタ5a側のエミッタ−ベース間の電位差が大きくなり、トランジスタ5aは電流をより多く流そうとする。しかし、コレクタ側には定電流源5aが接続されているため電流は増加せず、オペアンプ6の反転入力端子の電位が上昇する。その結果FET2のゲート電位が低下するので、FET2はドレイン−ソース間電流を絞るように作用する。
尚、出願人は、本願発明について提示すべき適当な先行技術文献を見つけることはできなかった。
The constant current circuit 7 configured as described above is controlled so that a constant current flows through the load resistor 3 when the FET 2 is on. For example, when the current flowing through the load resistor 3 increases, the voltage drop in the Al resistor 1 increases. Then, since the emitter potential of the transistor 5b is lowered, the potential difference between the emitter and the base on the transistor 5a side is increased, and the transistor 5a tries to flow more current. However, since the constant current source 5a is connected to the collector side, the current does not increase and the potential of the inverting input terminal of the operational amplifier 6 rises. As a result, the gate potential of the FET 2 is lowered, so that the FET 2 acts to reduce the drain-source current.
The applicant could not find a suitable prior art document to be presented for the present invention.

この場合、シャント抵抗1としては、Al(アルミニュウム)抵抗が比較的適していると考えられる。これは、Al抵抗の温度特性がトランジスタ4a及び4bにおけるベース−エミッタ間電圧の温度特性に近いため、その特性をキャンセルするのに適しているからである。ところで、Al抵抗は、製造プロセスのばらつきによって抵抗値がばらつくが、抵抗値のトリミングができないという問題があるため、必ずしも理想的な抵抗素子であるとは言えない。   In this case, it is considered that an Al (aluminum) resistor is relatively suitable as the shunt resistor 1. This is because the temperature characteristic of the Al resistance is close to the temperature characteristic of the base-emitter voltage in the transistors 4a and 4b, and is suitable for canceling the characteristic. By the way, although the resistance value of Al resistance varies due to variations in the manufacturing process, there is a problem that the resistance value cannot be trimmed, so that it is not necessarily an ideal resistance element.

本発明は上記事情に鑑みてなされたものであり、その目的は、カレントミラー回路を用いて構成される定電流制御回路装置について、シャント抵抗値のトリミングを容易とし、且つ、装置の温度特性を良好にすることにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to facilitate the trimming of the shunt resistance value of a constant current control circuit device configured using a current mirror circuit and to improve the temperature characteristics of the device. It is to improve.

請求項1記載の定電流制御回路装置によれば、シャント抵抗に替えて、抵抗値が印加電圧によって制御可能に構成される抵抗制御素子を使用する。そして、抵抗制御素子の温度特性を、温度特性補正回路によって補正する。斯様に構成すれば、抵抗制御素子によりシャント抵抗として付与される抵抗値が適切な値となるように、印加電圧によって調整することができる。また、抵抗制御素子の温度特性が、カレントミラー回路を構成する半導体素子の温度特性に近似するように補正することで、定電流制御回路装置としての温度特性が良好となるように調整を行なうこともできる。   According to the constant current control circuit device of the first aspect, instead of the shunt resistor, a resistance control element configured such that the resistance value can be controlled by the applied voltage is used. Then, the temperature characteristic of the resistance control element is corrected by the temperature characteristic correction circuit. If comprised in this way, it can adjust with an applied voltage so that the resistance value provided as shunt resistance by a resistance control element may turn into an appropriate value. In addition, by adjusting the temperature characteristics of the resistance control element so as to approximate the temperature characteristics of the semiconductor elements constituting the current mirror circuit, adjustment is performed so that the temperature characteristics as a constant current control circuit device are improved. You can also.

請求項2記載の定電流制御回路装置によれば、温度特性補正回路を、電源とグランドとの間に、温度に応じた端子電圧の変化特性が異なる複数の素子を直列に接続して構成するので、それらの温度特性の合成によって抵抗制御素子の温度特性が適切に補正されるように調整することができる。   According to the constant current control circuit device of claim 2, the temperature characteristic correction circuit is configured by connecting a plurality of elements having different terminal voltage change characteristics according to temperature in series between the power source and the ground. Therefore, it is possible to adjust so that the temperature characteristic of the resistance control element is appropriately corrected by combining the temperature characteristics.

請求項3記載の定電流制御回路装置によれば、温度特性補正回路を2つの抵抗素子で構成する。即ち抵抗素子は、その材質に応じて様々な温度特性を示すものがあるので、2つの抵抗素子を適宜選択して組合わせることで、抵抗制御素子の温度特性を適切に補正することができる。   According to the constant current control circuit device of the third aspect, the temperature characteristic correction circuit is constituted by two resistance elements. That is, some resistance elements exhibit various temperature characteristics depending on the material thereof. Therefore, the temperature characteristics of the resistance control element can be appropriately corrected by appropriately selecting and combining the two resistance elements.

請求項4記載の定電流制御回路装置によれば、2つの抵抗素子を、エミッタ抵抗素子と、CrSi(クローム・シリコン)抵抗素子とで構成する。即ち、エミッタ抵抗素子は1100〜1200ppm程度の温度係数を有するのに対し、CrSi抵抗素子は24〜25ppm程度と温度係数が極めて小さい。従って、これらを組合わせれば、抵抗制御素子への印加電圧を変化させることができ、温度特性を補正することができる。   According to the constant current control circuit device of the fourth aspect, the two resistance elements are constituted by an emitter resistance element and a CrSi (chrome silicon) resistance element. That is, the emitter resistance element has a temperature coefficient of about 1100 to 1200 ppm, whereas the CrSi resistance element has an extremely small temperature coefficient of about 24 to 25 ppm. Therefore, when these are combined, the voltage applied to the resistance control element can be changed, and the temperature characteristics can be corrected.

請求項5記載の定電流制御回路装置によれば、温度特性補正回路に、負帰還抵抗が接続されているオペアンプを備える。即ち、前記負帰還抵抗が有する温度特性も加えることで、抵抗制御素子の温度特性をより高精度に補正することができる。   According to the constant current control circuit device of the fifth aspect, the temperature characteristic correction circuit includes the operational amplifier to which the negative feedback resistor is connected. That is, the temperature characteristic of the resistance control element can be corrected with higher accuracy by adding the temperature characteristic of the negative feedback resistor.

請求項6記載の定電流制御回路装置によれば、半導体素子をPNPトランジスタで構成し、抵抗制御素子をMOSFETで構成する。即ち、シャント抵抗にMOSFETのオン抵抗を利用する。MOSFETのオン抵抗は、ゲートソース間電圧を制御すれば比較的容易にトリミングすることができる。しかし、FETのオン抵抗の温度係数は、カレントミラー回路を構成するPNPトランジスタのベース−エミッタ間電圧のそれよりも大きいため、FETのゲートに温度特性補正回路を接続してそのゲート電位を制御し、FETの温度特性を補正すれば、定電流制御回路装置としての温度特性が良好となるように調整することができる。   According to the constant current control circuit device of the sixth aspect, the semiconductor element is constituted by a PNP transistor, and the resistance control element is constituted by a MOSFET. That is, the on-resistance of the MOSFET is used as the shunt resistance. The on-resistance of the MOSFET can be trimmed relatively easily by controlling the gate-source voltage. However, since the temperature coefficient of the on-resistance of the FET is larger than that of the base-emitter voltage of the PNP transistor that constitutes the current mirror circuit, a temperature characteristic correction circuit is connected to the gate of the FET to control its gate potential. If the temperature characteristics of the FET are corrected, the temperature characteristics of the constant current control circuit device can be adjusted to be good.

請求項7記載の定電流制御回路装置によれば、MOSFETをPチャネル型とした場合、ゲートとグランドとの間に温度係数が比較的小さい素子を接続し、電源とゲートとの間に温度係数が比較的大きい素子を接続する。斯様に構成すれば、温度が上昇した場合に、グランド側の素子の定数は比較的変化せず、電源側の素子の定数が大きくなるので、PチャネルFETのゲート電位は低下する。すると、当該FETにはより大きな電流が流れるようになるのでFETのON抵抗は見かけ上低下することになり、結果として、FETの温度係数を低下させる方向に作用する。従って、PチャネルFETの温度特性を良好に補正することができる。   According to the constant current control circuit device of claim 7, when the MOSFET is a P-channel type, an element having a relatively small temperature coefficient is connected between the gate and the ground, and the temperature coefficient is connected between the power source and the gate. An element having a relatively large value is connected. With this configuration, when the temperature rises, the constant of the element on the ground side does not change relatively, and the constant of the element on the power supply side increases, so that the gate potential of the P-channel FET decreases. Then, since a larger current flows through the FET, the ON resistance of the FET is apparently lowered, and as a result, the temperature coefficient of the FET is lowered. Therefore, the temperature characteristics of the P-channel FET can be corrected well.

請求項8記載の定電流制御回路装置によれば、MOSFETをNチャネル型とした場合、ゲートとグランドとの間に温度係数が比較的大きい素子を接続し、電源とゲートとの間に温度係数が比較的小さい素子を接続する。斯様に構成すれば、温度が上昇した場合に、グランド側の素子の定数は大きくなるのに対して、電源側の素子の定数は比較的変化しない。従って、NチャネルFETのゲート電位は上昇する。すると、当該FETにはより大きな電流が流れるようになるのでFETのON抵抗は低下することになり、結果として、FETの温度係数を低下させる方向に作用する。従って、NチャネルFETの温度特性を良好に補正することができる。   According to the constant current control circuit device of claim 8, when the MOSFET is an N-channel type, an element having a relatively large temperature coefficient is connected between the gate and the ground, and the temperature coefficient is connected between the power source and the gate. Is connected to a relatively small element. With this configuration, when the temperature rises, the constant of the element on the ground side increases, whereas the constant of the element on the power supply side does not change relatively. Therefore, the gate potential of the N channel FET rises. Then, since a larger current flows through the FET, the ON resistance of the FET is lowered, and as a result, the temperature coefficient of the FET is lowered. Therefore, the temperature characteristic of the N channel FET can be corrected well.

請求項9記載の定電流制御回路装置によれば、温度特性補正回路を、MOSFETの温度特性が3000ppm〜4000ppmとなるように補正する。即ち、PNPトランジスタにおけるベース−エミッタ間電圧の温度特性は上記数値範囲内にあるので、その数値範囲に合わせて補正を行うことで、定電流制御回路装置の温度特性を良好に設定することができる。   According to the constant current control circuit device of the ninth aspect, the temperature characteristic correction circuit corrects the temperature characteristic of the MOSFET to be 3000 ppm to 4000 ppm. That is, since the temperature characteristic of the base-emitter voltage in the PNP transistor is within the above numerical range, the temperature characteristic of the constant current control circuit device can be satisfactorily set by performing correction according to the numerical range. .

(第1実施例)
以下、本発明の第1実施例について図1を参照して説明する。尚、図5と同一部分には同一符号を付して説明を省略し、以下異なる部分についてのみ説明する。本実施例の定電流制御回路(定電流制御回路装置)11は、図5に示す定電流制御回路に使用されていたAl抵抗1を、PチャネルLDMOSFET(抵抗制御素子)12に置き換えたものである。即ち、シャント抵抗にFET12のON抵抗を用いるためである。FET12のON抵抗値は、ゲート電位を制御することで容易にトリミングを行うことができる。そして、電源VCCとグランドとの間には、エミッタ抵抗13とCrSi抵抗14との直列回路が接続されており、両者の共通接続点は、FET12のゲートに接続されている。これらの抵抗13及び14は、温度特性補正回路15を構成している。
(First embodiment)
A first embodiment of the present invention will be described below with reference to FIG. The same parts as those in FIG. 5 are denoted by the same reference numerals, and the description thereof is omitted. Only different parts will be described below. The constant current control circuit (constant current control circuit device) 11 of this embodiment is obtained by replacing the Al resistor 1 used in the constant current control circuit shown in FIG. 5 with a P-channel LDMOSFET (resistance control element) 12. is there. That is, the ON resistance of the FET 12 is used as the shunt resistance. The ON resistance value of the FET 12 can be easily trimmed by controlling the gate potential. A series circuit of an emitter resistor 13 and a CrSi resistor 14 is connected between the power supply VCC and the ground, and a common connection point between them is connected to the gate of the FET 12. These resistors 13 and 14 constitute a temperature characteristic correction circuit 15.

次に、本実施例の作用について説明する。カレントミラー回路14を構成するPNPトランジスタ(半導体素子)14a,14bにおけるベース−エミッタ間電圧の温度係数は3700ppm程度であるのに対し、例えばAl抵抗1の温度係数は3000〜4000ppm程度であり、両者は近似しているため、その組み合わせによれば、定電流制御回路7の温度特性は平坦に近くなるように設定される。   Next, the operation of this embodiment will be described. While the temperature coefficient of the base-emitter voltage in the PNP transistors (semiconductor elements) 14a and 14b constituting the current mirror circuit 14 is about 3700 ppm, for example, the temperature coefficient of the Al resistance 1 is about 3000 to 4000 ppm. Therefore, according to the combination, the temperature characteristic of the constant current control circuit 7 is set to be nearly flat.

しかし、Al抵抗1に替えて使用するFET12におけるON抵抗の温度係数は5000〜6000ppm程度であり、PNPトランジスタ14a,14bの温度係数とは若干乖離している。そこで、FET12の温度特性を、温度特性補正回路15によって補正する。即ち、エミッタ抵抗13は、半導体基板上に形成されるバイポーラトランジスタのエミッタ領域を抵抗素子として利用するものであり、1100〜1200ppm程度の温度係数(一次温度係数tc)を有している。これに対して、CrSi抵抗素子14の温度係数は、24〜25ppm程度となっている。
このような各素子における温度特性の組み合わせによって、定電流制御回路11は、周囲温度の変化に対して以下のように動作する。FET12のゲート電位は、温度特性補正回路15における抵抗13及び14の分圧電位として与えられており、FET12は、そのゲート電位に応じたON抵抗値をシャント抵抗値として付与している。
However, the temperature coefficient of the ON resistance in the FET 12 used instead of the Al resistance 1 is about 5000 to 6000 ppm, which is slightly different from the temperature coefficient of the PNP transistors 14a and 14b. Therefore, the temperature characteristic of the FET 12 is corrected by the temperature characteristic correction circuit 15. That is, the emitter resistor 13 uses the emitter region of the bipolar transistor formed on the semiconductor substrate as a resistance element, and has a temperature coefficient (primary temperature coefficient tc) of about 1100 to 1200 ppm. On the other hand, the temperature coefficient of the CrSi resistance element 14 is about 24 to 25 ppm.
The constant current control circuit 11 operates in the following manner with respect to changes in the ambient temperature by such a combination of temperature characteristics in each element. The gate potential of the FET 12 is given as a divided potential of the resistors 13 and 14 in the temperature characteristic correction circuit 15, and the FET 12 gives an ON resistance value corresponding to the gate potential as a shunt resistance value.

そして、夫々の素子の温度が上昇すると、FET12のON抵抗値は増加しようとするが、温度特性補正回路15においては、CrSi抵抗14の抵抗値は殆ど変化せず、エミッタ抵抗13の抵抗値は増加する。すると、両者による分圧電位は低下するため、FET12のゲート−ソース間電圧は大きくなり、FET12はソース−ドレイン間電流をより多く流すようになるので、見かけ上の抵抗値が低下するように作用する。従って、FET12のON抵抗値の増加傾向と、ゲート電圧の低下による見かけ上の抵抗値の減少傾向とが相殺されることで、定電流制御回路11の温度特性が平坦化される。   When the temperature of each element rises, the ON resistance value of the FET 12 tends to increase, but in the temperature characteristic correction circuit 15, the resistance value of the CrSi resistor 14 hardly changes and the resistance value of the emitter resistor 13 is To increase. Then, since the divided potential by both decreases, the gate-source voltage of the FET 12 increases, and the FET 12 causes more source-drain current to flow, so that the apparent resistance value decreases. To do. Accordingly, the temperature characteristic of the constant current control circuit 11 is flattened by offsetting the increasing tendency of the ON resistance value of the FET 12 and the apparent decreasing tendency of the resistance value due to the decrease of the gate voltage.

尚、FET12と温度特性補正回路15との組み合わせによる温度係数を3000ppm〜4000ppmとなるように補正すれば、Al抵抗1の温度特性と略等しくなるように補正することができる。また、トランジスタ14a,14bの温度係数は3700ppm程度であるが、その他の回路構成要素の温度特性も考慮すれば3333ppmとなるように設定するのがより好ましい。   If the temperature coefficient by the combination of the FET 12 and the temperature characteristic correction circuit 15 is corrected to be 3000 ppm to 4000 ppm, the temperature characteristic of the Al resistor 1 can be corrected to be substantially equal. The temperature coefficient of the transistors 14a and 14b is about 3700 ppm, but it is more preferable to set the temperature coefficient to 3333 ppm considering the temperature characteristics of other circuit components.

以上のように本実施例によれば、定電流制御回路11のシャント抵抗にPチャネルMOSFET12のオン抵抗を利用し、そのFET12のゲートに温度特性補正回路15を接続して、温度特性補正回路15によりFET12のゲート電位を制御することで、ON抵抗の温度特性を補正するようにした。従って、シャント抵抗値を容易にトリミングすることができると共に、FET12の温度特性を補正して定電流制御回路11全体の温度特性が平坦となるように調整することができる。   As described above, according to the present embodiment, the on-resistance of the P-channel MOSFET 12 is used as the shunt resistance of the constant current control circuit 11 and the temperature characteristic correction circuit 15 is connected to the gate of the FET 12. By controlling the gate potential of the FET 12, the temperature characteristic of the ON resistance is corrected. Therefore, the shunt resistance value can be easily trimmed, and the temperature characteristic of the FET 12 can be corrected and adjusted so that the temperature characteristic of the constant current control circuit 11 as a whole becomes flat.

また、温度特性補正回路15を、電源VCCとグランドとの間に、温度特性が異なるエミッタ抵抗13とCrSi抵抗14との直列回路を接続して構成したので、それらの温度特性の合成によって所望の特性が得られるように調整することができる。そして、PチャネルMOSFET12に応じて、ゲートとグランドとの間に温度係数が比較的小さいCrSi抵抗14を接続し、電源VCCとゲートとの間に温度係数が比較的大きいエミッタ抵抗13を接続したので、温度が上昇した場合にFET12のゲート電位を低下させ、ON抵抗の温度係数を低下させる方向に作用させて、FET12の温度特性を良好に補正することができる。   Further, since the temperature characteristic correction circuit 15 is configured by connecting a series circuit of an emitter resistor 13 and a CrSi resistor 14 having different temperature characteristics between the power source VCC and the ground, a desired circuit can be obtained by combining these temperature characteristics. It can be adjusted to obtain characteristics. Then, according to the P-channel MOSFET 12, a CrSi resistor 14 having a relatively small temperature coefficient is connected between the gate and the ground, and an emitter resistor 13 having a relatively large temperature coefficient is connected between the power source VCC and the gate. When the temperature rises, the gate potential of the FET 12 is lowered, and the temperature characteristic of the FET 12 can be favorably corrected by acting in the direction of lowering the temperature coefficient of the ON resistance.

加えて、温度特性補正回路15により、FET12の温度特性が3000ppm〜4000ppmとなるように補正することで、PNPトランジスタ14a,14bにおけるベース−エミッタ間電圧の温度特性に対して、定電流制御回路11の温度特性がAl抵抗1と同程度になるように補正することができる。   In addition, the temperature characteristic correction circuit 15 corrects the temperature characteristic of the FET 12 to be 3000 ppm to 4000 ppm, whereby the temperature characteristic of the base-emitter voltage in the PNP transistors 14a and 14b is controlled. Can be corrected so that the temperature characteristics thereof are comparable to those of the Al resistance 1.

(第2実施例)
図2は本発明の第2実施例を示すものであり、第1実施例と同一部分には同一符号を付して説明を省略し、以下異なる部分についてのみ説明する。第2実施例の定電流制御回路(定電流制御回路装置)16は、エミッタ抵抗13とCrSi抵抗14との共通接続点に、オペアンプ17の非反転入力端子が接続されており、そのオペアンプ17の出力端子は、FET12のゲートに接続されている。
(Second embodiment)
FIG. 2 shows a second embodiment of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted. Only the different parts will be described below. In the constant current control circuit (constant current control circuit device) 16 of the second embodiment, a non-inverting input terminal of an operational amplifier 17 is connected to a common connection point between an emitter resistor 13 and a CrSi resistor 14. The output terminal is connected to the gate of the FET 12.

また、オペアンプ17の出力端子と反転入力端子との間には、負帰還抵抗18が接続されている。そして、第1実施例の温度特性補正回路15にオペアンプ17及び負帰還抵抗18を接続したものが、温度特性補正回路19を構成している。その他の構成は第1実施例と同様である。
以上のように構成された第2実施例によれば、オペアンプ17の出力電圧は、エミッタ抵抗13とCrSi抵抗14との分圧電位に等しくなるが、負帰還抵抗18自体も温度特性を有しているので、その温度特性も加えることによって、FET12のON抵抗の温度特性をより高精度に補正することができる。
A negative feedback resistor 18 is connected between the output terminal and the inverting input terminal of the operational amplifier 17. The temperature characteristic correction circuit 19 is configured by connecting the operational amplifier 17 and the negative feedback resistor 18 to the temperature characteristic correction circuit 15 of the first embodiment. Other configurations are the same as those of the first embodiment.
According to the second embodiment configured as described above, the output voltage of the operational amplifier 17 is equal to the divided potential of the emitter resistor 13 and the CrSi resistor 14, but the negative feedback resistor 18 itself has temperature characteristics. Therefore, by adding the temperature characteristic, the temperature characteristic of the ON resistance of the FET 12 can be corrected with higher accuracy.

(第3実施例)
図3は本発明の第3実施例であり、第1実施例と異なる部分についてのみ説明する。第3実施例の定電流制御回路(定電流制御回路装置)20は、第1実施例のPチャネルMOSFET12に替えて、NチャネルLDMOSFET(抵抗制御素子)21を用いたものである。そして、温度特性補正回路22は、第1実施例の温度特性補正回路15におけるエミッタ抵抗13とCrSi抵抗14との接続を逆にしたものとなっている。即ち、電源側にCrSi抵抗14が配置され、グランド側にエミッタ抵抗13が配置されており、両者の共通接続点がFET21のゲートに接続されている。
(Third embodiment)
FIG. 3 shows a third embodiment of the present invention, and only parts different from the first embodiment will be described. The constant current control circuit (constant current control circuit device) 20 of the third embodiment uses an N channel LDMOSFET (resistance control element) 21 instead of the P channel MOSFET 12 of the first embodiment. The temperature characteristic correction circuit 22 is obtained by reversing the connection between the emitter resistor 13 and the CrSi resistor 14 in the temperature characteristic correction circuit 15 of the first embodiment. That is, the CrSi resistor 14 is arranged on the power supply side, the emitter resistor 13 is arranged on the ground side, and the common connection point between them is connected to the gate of the FET 21.

次に、第3実施例の作用について説明する。シャント抵抗にNチャネルMOSFET21のON抵抗を利用する場合は、PチャネルMOSFET12の場合とゲート電位の制御関係が逆になる。即ち、夫々の素子の温度が上昇するとFET21のON抵抗値はやはり増加しようとするが、温度特性補正回路22においては、グランド側のエミッタ抵抗13の抵抗値が増加するので分圧電位は上昇する。すると、FET21のゲートソース間電圧が大きくなり、FET21はソース−ドレイン間電流をより多く流すようになるので、見かけ上の抵抗値が低下するように作用する。従って、第1実施例と同様に、定電流制御回路20の温度特性を平坦化することができる。   Next, the operation of the third embodiment will be described. When the ON resistance of the N-channel MOSFET 21 is used as the shunt resistance, the control relationship of the gate potential is reversed from that of the P-channel MOSFET 12. That is, when the temperature of each element rises, the ON resistance value of the FET 21 still tries to increase. However, in the temperature characteristic correction circuit 22, the resistance value of the emitter resistor 13 on the ground side increases, so the divided potential increases. . As a result, the gate-source voltage of the FET 21 increases, and the FET 21 causes more source-drain current to flow, so that the apparent resistance value decreases. Therefore, as in the first embodiment, the temperature characteristics of the constant current control circuit 20 can be flattened.

(第4実施例)
図4は本発明の第4実施例を示すものであり、第3実施例と異なる部分についてのみ説明する。第4実施例の定電流制御回路(定電流制御回路装置)23は、温度特性補正回路24を、複数のダイオード25とCrSi抵抗14との直列回路で構成したものである。そして、最下段に配置されるダイオード25のカソードとCrSi抵抗14との共通接続点がFET21のゲートに接続されている。
(Fourth embodiment)
FIG. 4 shows a fourth embodiment of the present invention, and only parts different from the third embodiment will be described. In the constant current control circuit (constant current control circuit device) 23 of the fourth embodiment, the temperature characteristic correction circuit 24 is configured by a series circuit of a plurality of diodes 25 and a CrSi resistor 14. A common connection point between the cathode of the diode 25 arranged at the lowest stage and the CrSi resistor 14 is connected to the gate of the FET 21.

次に、第4実施例の作用について説明する。ダイオード25は負の温度特性を有しており、温度が上昇すると端子電圧が低下する。従って、温度特性補正回路24の分圧電位は温度が上昇した場合に上昇することになるので、FET21のゲート電位を上昇させるため、第3実施例と同様の作用効果が得られる。   Next, the operation of the fourth embodiment will be described. The diode 25 has negative temperature characteristics, and the terminal voltage decreases as the temperature increases. Accordingly, since the divided potential of the temperature characteristic correction circuit 24 increases when the temperature increases, the gate potential of the FET 21 is increased, so that the same effect as the third embodiment can be obtained.

本発明は上記し且つ図面に記載した実施例にのみ限定されるものではなく、次のような変形または拡張が可能である。
温度特性補正回路を構成する抵抗素子は、エミッタ抵抗13やCrSi抵抗14に限ることなく、適当な温度特性を有するものを適宜選択して使用すれば良い。
また、素子を3つ以上直列に接続して温度特性補正回路を構成しても良い。
抵抗やダイオードに限ることなく、所定の温度特性を有する素子を適宜選択して使用すれば良い。
The present invention is not limited to the embodiments described above and illustrated in the drawings, and the following modifications or expansions are possible.
The resistance element constituting the temperature characteristic correction circuit is not limited to the emitter resistor 13 or the CrSi resistor 14 and may be appropriately selected from those having appropriate temperature characteristics.
Further, a temperature characteristic correction circuit may be configured by connecting three or more elements in series.
An element having a predetermined temperature characteristic may be appropriately selected and used without being limited to a resistor or a diode.

第4実施例において、抵抗14を電源側に、複数のダイオード25をグランド側に接続して、FET21をPチャンネルFET12に置き換えても良い。
半導体素子,抵抗制御素子は、夫々PNPトランジスタ、MOSFETに限ることなく、カレントミラー回路を構成する半導体素子の温度特性に対して、温度特性補正回路により補正を行うことで、温度特性を近似させることができる抵抗制御素子を適宜選択して実施すれば良い。
In the fourth embodiment, the resistor 14 may be connected to the power supply side, the plurality of diodes 25 may be connected to the ground side, and the FET 21 may be replaced with the P-channel FET 12.
The semiconductor element and the resistance control element are not limited to the PNP transistor and the MOSFET, respectively, and the temperature characteristic is approximated by correcting the temperature characteristic of the semiconductor element constituting the current mirror circuit by the temperature characteristic correction circuit. It is only necessary to select a resistance control element that can be used as appropriate.

本発明の第1実施例であり、定電流制御回路の構成を示す図The figure which is 1st Example of this invention and shows the structure of a constant current control circuit 本発明の第2実施例を示す図1相当図FIG. 1 equivalent view showing a second embodiment of the present invention. 本発明の第3実施例を示す図1相当図FIG. 1 equivalent view showing a third embodiment of the present invention. 本発明の第4実施例を示す図1相当図FIG. 1 equivalent view showing a fourth embodiment of the present invention. 従来技術を示す図1相当図1 equivalent diagram showing the prior art

符号の説明Explanation of symbols

図面中、2はNチャネルLDMOSFET(電流制御素子)、4はカレントミラー回路、4a及び4bはPNPトランジスタ(半導体素子)、5a,5bは定電流源、6はオペアンプ、11は定電流制御回路(定電流制御回路装置)、12はPチャネルLDMOSFET(抵抗制御素子)、13はエミッタ抵抗(素子)、14はCrSi抵抗(素子)、15は温度特性補正回路、16は定電流制御回路(定電流制御回路装置)、17はオペアンプ、18は負帰還抵抗(素子)、19は温度特性補正回路、20は定電流制御回路(定電流制御回路装置)、21はNチャネルLDMOSFET(抵抗制御素子)、23は定電流制御回路(定電流制御回路装置)、24は温度特性補正回路、25はダイオード(素子)を示す。   In the drawing, 2 is an N-channel LDMOSFET (current control element), 4 is a current mirror circuit, 4a and 4b are PNP transistors (semiconductor elements), 5a and 5b are constant current sources, 6 is an operational amplifier, 11 is a constant current control circuit ( Constant current control circuit device), 12 is a P-channel LDMOSFET (resistance control element), 13 is an emitter resistance (element), 14 is a CrSi resistance (element), 15 is a temperature characteristic correction circuit, 16 is a constant current control circuit (constant current) Control circuit device), 17 an operational amplifier, 18 a negative feedback resistor (element), 19 a temperature characteristic correction circuit, 20 a constant current control circuit (constant current control circuit device), 21 an N-channel LDMOSFET (resistance control element), Reference numeral 23 denotes a constant current control circuit (constant current control circuit device), 24 denotes a temperature characteristic correction circuit, and 25 denotes a diode (element).

Claims (9)

電源より負荷に対して供給する電流量を制御するための電流制御素子と、
前記電源と前記電流制御素子との間に直列に接続され、その直列回路に付与する抵抗値を印加電圧によって制御可能に構成される抵抗制御素子と、
この抵抗制御素子の両端に、電源側端子が夫々接続される1対の半導体素子で構成されるカレントミラー回路と、
前記1対の半導体素子のグランド側端子とグランドとの間に接続される1対の定電流源と、
2つの入力端子が前記グランド側端子に夫々接続され、出力端子が前記電流制御素子の制御端子に接続されるオペアンプと、
前記抵抗制御素子の温度特性を補正する温度特性補正回路とで構成されることを特徴とする定電流制御回路装置。
A current control element for controlling the amount of current supplied from the power source to the load;
A resistance control element connected in series between the power source and the current control element, and configured to be able to control a resistance value applied to the series circuit by an applied voltage;
A current mirror circuit composed of a pair of semiconductor elements each having a power supply side terminal connected to both ends of the resistance control element;
A pair of constant current sources connected between the ground-side terminals of the pair of semiconductor elements and the ground;
Two operational amplifiers each connected to the ground side terminal and an output terminal connected to the control terminal of the current control element;
A constant current control circuit device comprising: a temperature characteristic correction circuit that corrects a temperature characteristic of the resistance control element.
前記温度特性補正回路は、電源とグランドとの間に、温度に応じた端子電圧の変化特性が異なる複数の素子を直列に接続して構成されていることを特徴とする請求項1記載の定電流制御回路装置。   2. The constant temperature characteristic correction circuit according to claim 1, wherein the temperature characteristic correction circuit is configured by connecting a plurality of elements having different terminal voltage change characteristics according to temperature in series between a power source and a ground. Current control circuit device. 前記温度特性補正回路を、2つの抵抗素子で構成したことを特徴とする請求項2記載の定電流制御回路装置。   3. The constant current control circuit device according to claim 2, wherein the temperature characteristic correction circuit includes two resistance elements. 前記2つの抵抗素子を、エミッタ抵抗素子と、CrSi抵抗とで構成したことを特徴とする請求項3記載の定電流制御回路装置。   4. The constant current control circuit device according to claim 3, wherein the two resistance elements are constituted by an emitter resistance element and a CrSi resistance. 前記温度特性補正回路は、入力端子が前記複数の素子の何れかの共通接続点に接続され、出力端子が前記抵抗制御素子の制御端子に接続されると共に、負帰還抵抗が接続されているオペアンプを備えていることを特徴とする請求項2乃至4の何れかに記載の定電流制御回路装置。   The temperature characteristic correction circuit includes an operational amplifier in which an input terminal is connected to a common connection point of the plurality of elements, an output terminal is connected to a control terminal of the resistance control element, and a negative feedback resistor is connected The constant current control circuit device according to claim 2, comprising: 前記半導体素子は、PNPトランジスタで構成され、
前記抵抗制御素子は、MOSFETで構成されることを特徴とする請求項1乃至5の何れか記載の定電流制御回路装置。
The semiconductor element is composed of a PNP transistor,
6. The constant current control circuit device according to claim 1, wherein the resistance control element is configured by a MOSFET.
前記MOSFETがPチャネル型である場合、
前記温度特性補正回路は、
当該MOSFETのゲートとグランドとの間に接続される、温度係数が比較的小さい素子と、
電源と前記MOSFETのゲートとの間に接続される、温度係数が比較的大きい素子とで構成されることを特徴とする請求項6記載の定電流制御回路装置。
When the MOSFET is a P-channel type,
The temperature characteristic correction circuit includes:
An element connected between the gate of the MOSFET and the ground and having a relatively small temperature coefficient;
7. The constant current control circuit device according to claim 6, comprising a device having a relatively large temperature coefficient connected between a power source and the gate of the MOSFET.
前記MOSFETがNチャネル型である場合、
前記温度特性補正回路は、
当該MOSFETのゲートとグランドとの間に接続される、温度係数が比較的大きい素子と、
電源と前記MOSFETのゲートとの間に接続される、温度係数が比較的小さい素子とで構成されることを特徴とする請求項6記載の定電流制御回路装置。
When the MOSFET is an N-channel type,
The temperature characteristic correction circuit includes:
An element having a relatively large temperature coefficient connected between the gate of the MOSFET and the ground;
7. The constant current control circuit device according to claim 6, comprising a device having a relatively small temperature coefficient connected between a power source and the gate of the MOSFET.
前記温度特性補正回路は、前記MOSFETの温度特性が3000ppm〜4000ppmとなるように補正することを特徴とする請求項6乃至8の何れかに記載の定電流制御回路装置。   The constant current control circuit device according to claim 6, wherein the temperature characteristic correction circuit corrects the temperature characteristic of the MOSFET to be 3000 ppm to 4000 ppm.
JP2004041511A 2004-02-18 2004-02-18 Constant current control circuit device Expired - Fee Related JP4285266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004041511A JP4285266B2 (en) 2004-02-18 2004-02-18 Constant current control circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004041511A JP4285266B2 (en) 2004-02-18 2004-02-18 Constant current control circuit device

Publications (2)

Publication Number Publication Date
JP2005234781A true JP2005234781A (en) 2005-09-02
JP4285266B2 JP4285266B2 (en) 2009-06-24

Family

ID=35017693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004041511A Expired - Fee Related JP4285266B2 (en) 2004-02-18 2004-02-18 Constant current control circuit device

Country Status (1)

Country Link
JP (1) JP4285266B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099926A (en) * 2014-02-20 2014-05-29 Seiko Epson Corp Constant current generating circuit, resistance circuit, integrated circuit device, and electronic apparatus
JP2015194460A (en) * 2014-03-17 2015-11-05 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
US9660592B2 (en) 2013-04-02 2017-05-23 Murata Manufacturing Co., Ltd. Psuedo resistor circuit and charge amplifier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9660592B2 (en) 2013-04-02 2017-05-23 Murata Manufacturing Co., Ltd. Psuedo resistor circuit and charge amplifier
JP2014099926A (en) * 2014-02-20 2014-05-29 Seiko Epson Corp Constant current generating circuit, resistance circuit, integrated circuit device, and electronic apparatus
JP2015194460A (en) * 2014-03-17 2015-11-05 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method
US9880203B2 (en) 2014-03-17 2018-01-30 Fuji Electric Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device

Also Published As

Publication number Publication date
JP4285266B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
US7301322B2 (en) CMOS constant voltage generator
KR102229236B1 (en) Voltage regulator
US11181937B2 (en) Correction current output circuit and reference voltage circuit with correction function
JP5301147B2 (en) Electronic circuit
JP2005134145A (en) Temperature sensor circuit
US8829885B2 (en) Voltage reference circuit
JP7265140B2 (en) Semiconductor device for power supply control, output voltage variable power supply device, and design method
US20070200546A1 (en) Reference voltage generating circuit for generating low reference voltages
KR102227586B1 (en) Voltage regulator
JPS631766B2 (en)
JP4285266B2 (en) Constant current control circuit device
JP2009230421A (en) Circuit for providing load current
US7358713B2 (en) Constant voltage source with output current limitation
JP5712624B2 (en) Reference voltage circuit
US20060267568A1 (en) Voltage regulating circuit and method thereof
JP2006260209A (en) Voltage controlling voltage source
JP2009118059A (en) Current mirror circuit, and current characteristics correction method of current mirror circuit
JP6393674B2 (en) Semiconductor integrated circuit and constant current drive system
JP2006191527A (en) Clamping circuit and transistor driving circuit
JP2001175343A (en) Current mirror circuit and its current regulating method
US6873202B1 (en) Adaptive MOSFET resistor
TWI713409B (en) A led driving circuit
JP2018061115A (en) Enable signal generation circuit
JP2017211941A (en) Low-voltage-driven current source circuit
CN111258366A (en) Driving circuit for LED

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees