JP2005232510A - Ferritic stainless steel having excellent antibacterial property and hot workability - Google Patents

Ferritic stainless steel having excellent antibacterial property and hot workability Download PDF

Info

Publication number
JP2005232510A
JP2005232510A JP2004041441A JP2004041441A JP2005232510A JP 2005232510 A JP2005232510 A JP 2005232510A JP 2004041441 A JP2004041441 A JP 2004041441A JP 2004041441 A JP2004041441 A JP 2004041441A JP 2005232510 A JP2005232510 A JP 2005232510A
Authority
JP
Japan
Prior art keywords
less
stainless steel
ferritic stainless
hot workability
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004041441A
Other languages
Japanese (ja)
Inventor
Mika Kibashi
美夏 起橋
Takumi Ugi
工 宇城
Osamu Furukimi
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004041441A priority Critical patent/JP2005232510A/en
Publication of JP2005232510A publication Critical patent/JP2005232510A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide ferritic stainless steel having excellent hot workability and corrosion resistance, and having excellent antibacterial properties. <P>SOLUTION: The ferritic stainless steel has a composition comprising, by mass, ≤0.1% C, ≤1.0% Si, ≤1.0% Mn, ≤0.08% P, ≤0.02% S, 10 to 35% Cr and ≤0.10% N, and further comprising 0.001 to 0.09% Ag and 0.05 to 2.0% Cu so as to satisfy Ag/(Ag+Cu)<0.07 (wherein, Ag and Cu are the content (mass%) of each element). Thus, the ferritic stainless steel having excellent hot workability and antibacterial properties is obtained. Further, one or more kinds of metals selected from Ti and Nb, and Al may be incorporated therein. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、厨房等生活関連用品、医療機器、電気機器、化学機器および建材等に好適な、抗菌性に優れたフェライト系ステンレス鋼に係り、とくに抗菌性と熱間加工性の更なる改善に関する。   The present invention relates to ferritic stainless steel excellent in antibacterial properties, suitable for daily life-related products such as kitchens, medical equipment, electrical equipment, chemical equipment, and building materials, and more particularly to further improvement of antibacterial properties and hot workability. .

銀と銅は、大腸菌やサルモネラ菌に代表される病原性細菌の繁殖を抑制し、病原性細菌に起因する食中毒を防止する効果があることが従来から知られている。近年、銀および/または銅を利用して細菌繁殖抑制効果(以下、抗菌性という)を持たせた材料が提案されている。   It has been conventionally known that silver and copper are effective in suppressing the growth of pathogenic bacteria represented by E. coli and Salmonella and preventing food poisoning caused by the pathogenic bacteria. In recent years, materials having a bacterial growth suppression effect (hereinafter referred to as antibacterial properties) using silver and / or copper have been proposed.

例えば、特許文献1には、Cuを1.1〜3.5重量%含有し、かつCu%/(C%+Si%+Mn%+P%+S%+Cr%+Cu%)が0.05〜0.15の範囲にある抗菌性を有するオーステナイト系ステンレス鋼が提案されている。特許文献1に記載された技術では、抗菌性を発現させるために、鋼板表面からCuがイオンとして溶け出す必要があり、そのためにはCuを粗大な析出物として鋼板表面に存在させておく必要がある。Cuを析出物として存在させるためには、熱間圧延後、時効処理を施す方法や、さらには、Cu含有量を増加して時効の際にCuを析出しやすくしておく方法が必要となる。しかし、時効処理を施すことは、生産性の低下や生産コストの高騰を招き、また、Cu含有量の増加は熱間加工性を低下させるという問題がある。さらに、鋼板表面に粗大なCu析出物を存在させ、鋼板表面からCuがイオンとして溶け出すことで抗菌性を向上させることは、不動態皮膜を大きく破壊することになり、耐食性の低下を伴うという問題がある。   For example, Patent Document 1 contains 1.1 to 3.5% by weight of Cu and has antibacterial properties in which Cu% / (C% + Si% + Mn% + P% + S% + Cr% + Cu%) is in the range of 0.05 to 0.15. Austenitic stainless steel has been proposed. In the technique described in Patent Document 1, in order to develop antibacterial properties, Cu needs to be dissolved out from the steel sheet surface as ions, and for that purpose, Cu needs to be present on the steel sheet surface as coarse precipitates. is there. In order for Cu to be present as a precipitate, a method of applying an aging treatment after hot rolling, and a method of increasing the Cu content to facilitate precipitation of Cu during aging are required. . However, performing an aging treatment causes a decrease in productivity and an increase in production cost, and an increase in Cu content has a problem of reducing hot workability. Furthermore, the presence of coarse Cu precipitates on the surface of the steel sheet, and the antibacterial property being improved by dissolving Cu from the steel sheet surface as ions, greatly destroys the passive film and is associated with a decrease in corrosion resistance. There's a problem.

また、特許文献2には、C、N、Si、Mn、P、S、Al、Vを適切な範囲に調整し、Crを12〜35%含有し、さらにVを0.01〜0.30%とAgを0.0005〜0.30%添加することにより、加工性や耐食性が十分でしかも、抗菌性が改善されたフェライト系ステンレス鋼が提案されている。AgはFe中への固溶量がCuより少なくCuよりも少ない添加量でも鋼中に析出し、抗菌性を発現するため、Cuに比べ少ない添加量で優れた抗菌性が確保できる。特許文献2に記載された技術によれば、AgとVの複合添加により、抗菌性とともに耐孔食性が著しく改善されるとしている。しかし、特許文献2に記載された技術では、抗菌性の更なる向上のためには、多量のAg含有を必要とし、材料コストの高騰に繋がるとともに、Agの鋼中への固溶量が少ないため、多量のAgを均一分散することが難しくなるという問題があった。   In Patent Document 2, C, N, Si, Mn, P, S, Al, and V are adjusted to an appropriate range, Cr is contained in an amount of 12 to 35%, and further, V is 0.01 to 0.30% and Ag is contained. By adding 0.0005 to 0.30%, a ferritic stainless steel having sufficient workability and corrosion resistance and improved antibacterial properties has been proposed. Ag has a solid solution amount in Fe less than Cu, and even if added in an amount less than Cu, it precipitates in the steel and exhibits antibacterial properties. Therefore, excellent antibacterial properties can be ensured with a smaller added amount than Cu. According to the technique described in Patent Document 2, pitting corrosion resistance is markedly improved by the combined addition of Ag and V, together with antibacterial properties. However, the technique described in Patent Document 2 requires a large amount of Ag to be further improved in antibacterial properties, leading to an increase in material costs and a small amount of solid solution of Ag in steel. Therefore, there is a problem that it is difficult to uniformly disperse a large amount of Ag.

また、特許文献3には、Cu:0.5〜3.0%と、Ag:0.10〜1.0%を複合添加した抗菌性に優れたフェライト系ステンレス鋼が提案されている。特許文献3に記載された技術によれば、AgとCuを同時に含有することにより、Agの歩留りが向上し、Cu析出のための長時間の時効処理を必要とすることなく、固溶限以下のCu含有量であっても、フェライト系ステンレス鋼の抗菌性を向上させることができるとしている。しかし、特許文献3に記載された技術では、粒界に低融点のAg−Cu相が析出するため、熱間加工性が依然として低く、鋼材表面のヘゲの発生が顕著となるという問題があった。   Patent Document 3 proposes a ferritic stainless steel excellent in antibacterial properties in which Cu: 0.5 to 3.0% and Ag: 0.10 to 1.0% are added in combination. According to the technique described in Patent Document 3, by containing Ag and Cu at the same time, the yield of Ag is improved, and a long-term aging treatment for Cu precipitation is not required, and the solid solution limit or less is required. Even if it is Cu content of, it is said that the antibacterial property of ferritic stainless steel can be improved. However, the technique described in Patent Document 3 has a problem in that the low melting point Ag—Cu phase is precipitated at the grain boundary, so that the hot workability is still low and the occurrence of shave on the steel surface becomes significant. It was.

また、特許文献4には、Agを0.0001〜1%含み、銀粒子、銀酸化物および銀硫化物粒子の1種または2種以上を合計で面積率0.001%以上含有する抗菌性に優れたステンレス鋼材が提案されている。特許文献4に記載された技術により製造されたステンレス鋼材は、優れた加工性および耐食性を有し、研磨を含む汎用の表面加工を施されてもなお優れた抗菌性を保持できるとしている。しかし、特許文献4に記載された技術では、更なる抗菌性の向上のためには、多量のAg含有を必要とし、材料コストの高騰を招くとともに、安定したAgの均一分散が難しくなるという問題があった。さらに、多量のAg含有は熱間加工性を低下させ、鋼板の耳割れが多発するという問題もあった。
特開平8−104953号公報 特開平11−12692号公報 特開平11−256284号公報 特開平11−264057号公報
Patent Document 4 discloses a stainless steel excellent in antibacterial property containing 0.0001 to 1% of Ag and containing one or more kinds of silver particles, silver oxide and silver sulfide particles in a total area ratio of 0.001% or more. Steel has been proposed. The stainless steel material manufactured by the technique described in Patent Document 4 has excellent workability and corrosion resistance, and can retain excellent antibacterial properties even when subjected to general-purpose surface processing including polishing. However, the technique described in Patent Document 4 requires a large amount of Ag to be further improved in antibacterial properties, resulting in an increase in material cost and difficulty in stable and uniform dispersion of Ag. was there. Furthermore, when a large amount of Ag is contained, there is a problem that hot workability is lowered and the steel sheet is frequently cracked.
JP-A-8-104953 JP 11-12692 A Japanese Patent Laid-Open No. 11-256284 Japanese Patent Laid-Open No. 11-264057

本発明は、上記した従来技術の問題を有利に解決し、熱間加工時の耳割れ、へゲ等の表面欠陥の発生を抑制できる優れた熱間加工性を有し、さらに耐食性の低下を伴うことなく優れた抗菌性を有する、フェライト系ステンレス鋼を提案することを目的とする。   The present invention advantageously solves the above-mentioned problems of the prior art, has excellent hot workability capable of suppressing the occurrence of surface defects such as ear cracks and dents during hot working, and further reduces the corrosion resistance. The object is to propose a ferritic stainless steel having excellent antibacterial properties without accompanying it.

本発明者らは、上記した課題を達成するために、フェライト系ステンレス鋼の熱間加工性、抗菌性、耐食性に及ぼす各種要因について鋭意研究を重ねた。その結果、AgとCuとを適正な割合で複合添加することにより、耐食性を低下させることなく抗菌性を向上でき、しかも低融点のCu−Ag相の粒界への偏析が抑制されて熱間加工性が向上し熱間加工時の耳割れ、へゲ等の表面欠陥の発生を防止できることを見出した。   In order to achieve the above-described problems, the present inventors have intensively studied various factors affecting the hot workability, antibacterial properties, and corrosion resistance of ferritic stainless steel. As a result, by adding Ag and Cu in an appropriate ratio, antibacterial properties can be improved without reducing corrosion resistance, and segregation of the low melting point Cu-Ag phase to the grain boundary is suppressed, resulting in hot It has been found that processability is improved and generation of surface defects such as ear cracks and whiskers during hot working can be prevented.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)mass%で、C:0.1%以下、Si:1.0%以下、Mn:1.0%以下、P:0.08%以下、S:0.02%以下、Cr:10〜35%、N:0.10%以下を含み、さらにAg:0.001〜0.09%、Cu:0.05〜2.0%を、次(1)式
Ag/(Ag+Cu)<0.07 ………(1)
(ここで、Ag、Cu:各元素の含有量(mass%))
を満足するように含み、残部Feおよび不可避的不純物からなる組成を有することを特徴とする熱間加工性および抗菌性に優れたフェライト系ステンレス鋼。
(2)(1)において、前記組成に加えてさらに、mass%で、Nb:1%以下、Ti:1%以下のうちから選ばれた1種または2種を含有する組成とすることを特徴とするフェライト系ステンレス鋼。
(3)(1)または(2)において、前記組成に加えてさらに、mass%で、Al:0.30%以下を含有することを特徴とするフェライト系ステンレス鋼。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) In mass%, C: 0.1% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.08% or less, S: 0.02% or less, Cr: 10 to 35%, N: 0.10% or less In addition, Ag: 0.001-0.09%, Cu: 0.05-2.0%, the following formula (1)
Ag / (Ag + Cu) <0.07 (1)
(Where Ag, Cu: content of each element (mass%))
And ferritic stainless steel excellent in hot workability and antibacterial properties, characterized by having a composition comprising the balance Fe and inevitable impurities.
(2) In (1), in addition to the above-mentioned composition, the composition further comprises mass%, Nb: 1% or less, Ti: 1% or less selected from 1% or less. Ferritic stainless steel.
(3) The ferritic stainless steel according to (1) or (2), further containing, in addition to the above composition, mass: Al: 0.30% or less.

本発明によれば、フェライト系ステンレス鋼の耐食性を低下させることなく、抗菌性が改善され、さらに熱間加工性が顕著に改善されて耳割れ、へゲ等の表面欠陥の発生が抑制され、表面手入れ等の工程を省略でき生産性が向上するとともに製造コストの低減が可能となり、産業上格段の効果を奏する。   According to the present invention, without reducing the corrosion resistance of the ferritic stainless steel, antibacterial properties are improved, and further, hot workability is remarkably improved and the occurrence of surface defects such as ear cracks and scabs is suppressed, Processes such as surface care can be omitted, productivity can be improved, and manufacturing costs can be reduced, resulting in a remarkable industrial effect.

まず、本発明鋼の化学組成の限定理由について説明する。なお、以下、組成におけるmass%は単に%で記す。   First, the reasons for limiting the chemical composition of the steel of the present invention will be described. Hereinafter, mass% in the composition is simply expressed as%.

Ag:0.001〜0.09%
Agは、細菌の繁殖を抑制する効果を有し、フェライト系ステンレス鋼の抗菌性を向上させる元素であり、本発明では0.001%以上の含有を必要とする。一方、0.09%を超える多量の含有は、抗菌性の一層の改善が可能となるが、熱間加工性を低下させ、表面欠陥の増加を招くとともに、高価なAgの添加量増加により製造コストの増加を招く。このため、Agは0.001〜0.09%の範囲に限定した。なお、抗菌性、熱間加工性の観点から0.03〜0.09%とすることが好ましい。より好ましくは0.04〜0.08%である。
Ag: 0.001 to 0.09%
Ag is an element that has the effect of suppressing the growth of bacteria and improves the antibacterial properties of ferritic stainless steel. In the present invention, it is necessary to contain 0.001% or more. On the other hand, a large content exceeding 0.09% can further improve the antibacterial properties, but decreases the hot workability, causes an increase in surface defects, and increases the amount of expensive Ag added. Incurs an increase. For this reason, Ag was limited to the range of 0.001 to 0.09%. In addition, it is preferable to set it as 0.03-0.09% from a viewpoint of antibacterial property and hot workability. More preferably, it is 0.04 to 0.08%.

Cu:0.05〜2.0%
Cuは、Agと同様に抗菌性を向上させる元素であるが、単独添加では多量の含有を必要とする。本発明ではAgとCuを複合添加する。AgとCuを複合添加することにより、Cu単独添加の場合に認められた耐食性の低下もなく、熱間加工性の低下も少なく、しかも単独添加の場合に比べて少量の含有で抗菌性が顕著に向上する。このような効果は、0.05%以上の含有で認められる。一方、2.0%を超える含有は、熱間加工性の劣化が顕著となる。このため、Cuは0.05〜2.0%の範囲に限定した。なお、熱間加工性の観点から0.4〜2.0%とすることが好ましい。
Cu: 0.05-2.0%
Cu, like Ag, is an element that improves antibacterial properties, but a large amount is required when added alone. In the present invention, Ag and Cu are added in combination. By adding Ag and Cu in combination, there is no decrease in corrosion resistance observed when Cu alone is added, there is little decrease in hot workability, and the antibacterial properties are remarkable with a small amount of content compared to the case where it is added alone. To improve. Such an effect is recognized when the content is 0.05% or more. On the other hand, when the content exceeds 2.0%, the hot workability deteriorates significantly. For this reason, Cu was limited to the range of 0.05 to 2.0%. In addition, it is preferable to set it as 0.4 to 2.0% from a viewpoint of hot workability.

Ag/(Ag+Cu)<0.07 ………(1)
本発明では、Ag、Cuをそれぞれ、上記した範囲内でかつ(1)式を満足するように含有する。なお、(1)式中のAg、Cuは、各元素の含有量(mass%)である。Ag含有量とAg含有量とCu含有量の合計量との比、Ag/(Ag+Cu)を0.07未満に調整することにより、高融点のCu相にAgが固溶し、Cu(Ag)固溶体が形成され、熱間加工時の粒界への低融点Cu−Ag相(融点779℃)の偏析が抑制される。Ag/(Ag+Cu)が0.07以上では、熱間加工性が低下し、熱間加工時に鋼材表面に耳割れ、ヘゲ等の表面欠陥が増加する。このため、Ag/(Ag+Cu)を0.07未満に限定した。なお、表面欠陥防止の観点から、Ag/(Ag+Cu)は好ましくは0.020〜0.060である。
Ag / (Ag + Cu) <0.07 (1)
In the present invention, Ag and Cu are each contained within the above-described range and satisfying the expression (1). In addition, Ag and Cu in (1) Formula are content (mass%) of each element. By adjusting the ratio of Ag content, Ag content and Cu content, Ag / (Ag + Cu) to less than 0.07, Ag is dissolved in the high melting point Cu phase, and the Cu (Ag) solid solution becomes The segregation of the low melting point Cu—Ag phase (melting point 779 ° C.) to the grain boundary during hot working is suppressed. When Ag / (Ag + Cu) is 0.07 or more, the hot workability decreases, and surface defects such as ear cracks and scabs increase on the steel surface during hot working. For this reason, Ag / (Ag + Cu) was limited to less than 0.07. From the viewpoint of preventing surface defects, Ag / (Ag + Cu) is preferably 0.020 to 0.060.

C:0.1%以下、N:0.10%以下
C、Nは、加工性を劣化させる元素であり、また、Crと結合して炭窒化物を形成し、脱Cr層を形成し耐食性を低下させるため、できるだけ低減することが望ましい。このような悪影響はCは0.1%、Nは0.10%までは許容できるため、それぞれ上限とした。なお、実操業における製造性を考慮して、Cは0.0010%以上、Nは0.0060%以上とすることが好ましい。
C: 0.1% or less, N: 0.10% or less C and N are elements that deteriorate workability, and also combine with Cr to form carbonitrides, thereby forming a Cr-free layer and reducing corrosion resistance. It is desirable to reduce as much as possible. Since such adverse effects are allowable up to 0.1% for C and up to 0.10% for N, the upper limit was set for each. In consideration of manufacturability in actual operation, C is preferably 0.0010% or more and N is preferably 0.0060% or more.

Si:1.0%以下
Siは、脱酸剤として作用する元素であり、0.10%以上含有することが好ましいが、過剰な含有は冷間加工性、延性の低下を招く。このため、Siは1.0%以下に限定した。なお、好ましくは0.20〜0.35%である。
Si: 1.0% or less
Si is an element that acts as a deoxidizer and is preferably contained in an amount of 0.10% or more. However, excessive inclusion causes a decrease in cold workability and ductility. For this reason, Si was limited to 1.0% or less. In addition, Preferably it is 0.20 to 0.35%.

Mn:1.0%以下
Mnは、Sと結合してMnSを形成して、熱間加工性を改善する有効な元素であり、本発明では0.1%以上含有することが好ましい。一方、1.0%を超える含有は、冷間加工性、耐食性を低下させる。このため、Mnは1.0%以下に限定した。なお、好ましくは0.1〜0.8%である。
Mn: 1.0% or less
Mn is an effective element that combines with S to form MnS to improve hot workability. In the present invention, Mn is preferably contained in an amount of 0.1% or more. On the other hand, if the content exceeds 1.0%, cold workability and corrosion resistance are lowered. For this reason, Mn was limited to 1.0% or less. In addition, Preferably it is 0.1 to 0.8%.

P:0.08%以下
Pは、熱間加工性を劣化させ、また孔食の発生を促進させる元素であり、本発明ではできるだけ低減することが望ましい。0.08%を超えるとその悪影響が顕著となる。このため、Pは0.08%以下に限定した。なお、好ましくは0.035%以下である。
P: 0.08% or less P is an element that deteriorates hot workability and promotes the occurrence of pitting corrosion, and is desirably reduced as much as possible in the present invention. If it exceeds 0.08%, the adverse effect becomes remarkable. For this reason, P was limited to 0.08% or less. In addition, Preferably it is 0.035% or less.

S:0.02%以下
Sは、結晶粒界に偏析し、粒界脆化を促進するとともに、Mnと結合してMnSを形成して初期の発錆起点となるため、できるだけ低減することが好ましい。0.02%を超えると、その悪影響が顕著となる。このため、Sは0.02%以下に限定した。なお、好ましくは0.005%以下である。
S: 0.02% or less S is segregated at the grain boundary to promote embrittlement of the grain boundary, and combines with Mn to form MnS to be an initial rusting start point. Therefore, S is preferably reduced as much as possible. If it exceeds 0.02%, the adverse effect becomes significant. For this reason, S was limited to 0.02% or less. In addition, Preferably it is 0.005% or less.

Cr:10〜35%
Crは、耐食性向上に寄与する元素であり、10%未満では十分な耐食性を確保できない。一方、35%を超える多量の含有は、冷間加工性が低下し冷延板の加工が困難となる。このため、Crは10〜35%の範囲に限定した。なお、耐食性、冷間加工性の観点から好ましくは15.0〜19.0%である。
Cr: 10-35%
Cr is an element that contributes to improving corrosion resistance. If it is less than 10%, sufficient corrosion resistance cannot be ensured. On the other hand, if it contains a large amount exceeding 35%, the cold workability deteriorates and it becomes difficult to process cold rolled sheets. For this reason, Cr was limited to the range of 10 to 35%. From the viewpoint of corrosion resistance and cold workability, it is preferably 15.0 to 19.0%.

本発明では、上記した基本組成に加えてさらに、Nb:1%以下、Ti:1%以下のうちから選ばれた1種または2種、Al:0.3%以下のうちから必要に応じ選択して含有することができる。   In the present invention, in addition to the basic composition described above, Nb: 1% or less, Ti: 1% or less selected from 1% or less, Al: 0.3% or less, if necessary. Can be contained.

Nb:1%以下、Ti:1%以下のうちから選ばれた1種または2種
Ti、Nbはいずれも、炭窒化物形成元素であり、溶接時や熱処理時にCr炭窒化物の粒界析出を抑制し、耐食性を向上させる効果を有する。また、鋼中のC、Nを固定し炭窒化物として析出し、結晶粒を微細化させる。このような効果はTi:0.05%以上、Nb:0.05%以上、の含有で顕著となる。一方、過剰の含有はこれらの特性を劣化させる。このため、Ti:1%以下、Ti:1%以下にそれぞれ限定することが好ましい。
Nb: 1% or less, Ti: 1% or less selected from 1% or less
Ti and Nb are both carbonitride-forming elements, and have the effect of suppressing the grain boundary precipitation of Cr carbonitride during welding and heat treatment and improving the corrosion resistance. In addition, C and N in the steel are fixed and precipitated as carbonitride to refine the crystal grains. Such an effect becomes remarkable when Ti: 0.05% or more and Nb: 0.05% or more are contained. On the other hand, excessive inclusion deteriorates these characteristics. For this reason, it is preferable to limit to Ti: 1% or less and Ti: 1% or less, respectively.

Al:0.30%以下
Alは、脱酸剤として有効な元素であり必要に応じ添加できる。添加する場合には、0.30%以下とすることが好ましい。0.30%を超えると、非金属介在物量を増加させ、表面疵を多発させるとともに、加工性を低下させる。このため、Alを添加する場合には0.30%以下とすることが好ましい。なお、より好ましくは、0.050%以下である。なお、添加しない場合には不可避的不純物として、0.005%以下が許容できる。
Al: 0.30% or less
Al is an element effective as a deoxidizer and can be added as necessary. When added, the content is preferably 0.30% or less. If it exceeds 0.30%, the amount of non-metallic inclusions increases, surface flaws occur frequently, and workability decreases. For this reason, when adding Al, it is preferable to set it as 0.30% or less. More preferably, it is 0.050% or less. If not added, 0.005% or less is acceptable as an inevitable impurity.

上記した成分以外の残部は、Feおよび不可避的不純物からなる。   The balance other than the components described above consists of Fe and inevitable impurities.

つぎに、本発明鋼組成を有するフェライト系ステンレス鋼板の製造方法について説明する。なお、鋼板は、鋼帯をも含むものとする。   Below, the manufacturing method of the ferritic stainless steel plate which has this invention steel composition is demonstrated. In addition, a steel plate shall also contain a steel strip.

上記した組成の溶鋼を、まず溶製する。本発明鋼の溶製は、通常公知の溶製法がすべて適用でき、溶製方法を限定する必要はない。溶製方法は、例えば、転炉、電気炉、真空溶解炉等を用いることが好ましく、さらにはSS−VOD等により二次精錬を行ってもよい。また、得られた溶鋼は、品質上から連続鋳造法を用いてスラブ等の圧延用素材とすることが好ましい。連続鋳造条件は、ステンレス鋼の通常の鋳造条件でよく、とくに限定する必要はない。   First, molten steel having the above composition is melted. For the melting of the steel of the present invention, all known melting methods can be applied, and there is no need to limit the melting method. As the melting method, for example, a converter, an electric furnace, a vacuum melting furnace or the like is preferably used, and further, secondary refining may be performed by SS-VOD or the like. Moreover, it is preferable to make the obtained molten steel into raw materials for rolling, such as a slab, using a continuous casting method from quality. The continuous casting condition may be a normal casting condition for stainless steel, and is not particularly limited.

鋳造された圧延用素材は、さらに熱間圧延を施されて所定板厚の熱延板(熱延鋼板)とされる。本発明鋼は熱間加工性に優れていることから、熱間圧延条件はとくに限定する必要はない。さらに、熱延板に、例えば、900〜1150℃の熱延板焼鈍、酸洗を施し、ついで冷間圧延により所定板厚の冷延板(冷延鋼板)とすることが好ましい。冷延板にさらに900〜1150℃の焼鈍、酸洗を施し製品板とすることが好ましい。   The cast rolling material is further hot-rolled to obtain a hot-rolled sheet (hot-rolled steel sheet) having a predetermined thickness. Since the steel of the present invention is excellent in hot workability, the hot rolling conditions need not be particularly limited. Further, it is preferable to subject the hot-rolled sheet to, for example, hot-rolled sheet annealing at 900 to 1150 ° C. and pickling, and then to cold-rolled sheet (cold-rolled steel sheet) having a predetermined thickness by cold rolling. It is preferable that the cold-rolled plate is further annealed and pickled at 900 to 1150 ° C. to obtain a product plate.

表1に示す組成の鋼を、転炉−二次精錬(SS-VOD)により溶製し、連続鋳造法により200mm厚のスラブとした。   Steel having the composition shown in Table 1 was melted by a converter-secondary refining (SS-VOD), and a 200 mm thick slab was formed by a continuous casting method.

これらスラブを1150℃に加熱したのち、熱間圧延により板厚4mmの熱延板とした。   These slabs were heated to 1150 ° C. and then hot rolled into hot rolled sheets with a thickness of 4 mm.

まず、これらスラブ、熱延板を用いて、つぎのような試験を実施し、熱間加工性を評価した。なお、時効処理等の特殊な熱処理は行っていない。
(1)熱間加工性
得られたスラブの表面下約10mmの位置からグリーブル試験片(10φ×120mm)を採取し、グリーブル試験(熱間引張試験)を実施した。グリーブル試験は、スラブ加熱温度相当の1100℃まで30sで加熱し、その温度に60s間保持したのち、50℃/minで熱延温度域の1050℃まで冷却し、その温度に10s間保持してから、100mm/sの速度で引張変形し、変形後の断面減少率(RA)を測定し、熱延温度域の熱間加工性を評価した。なお、RAが80%以上の場合を十分な熱間加工性を有していると判断した。
First, the following tests were conducted using these slabs and hot-rolled sheets to evaluate hot workability. Special heat treatment such as aging treatment is not performed.
(1) Hot workability A greeble test piece (10φ × 120 mm) was taken from a position about 10 mm below the surface of the obtained slab, and a greeble test (hot tensile test) was performed. In the greeble test, heat up to 1100 ° C corresponding to the slab heating temperature in 30s, hold at that temperature for 60s, cool to 1050 ° C in the hot rolling temperature range at 50 ° C / min, and hold at that temperature for 10s. From this, tensile deformation was performed at a speed of 100 mm / s, and the cross-sectional area reduction rate (RA) after deformation was measured to evaluate the hot workability in the hot rolling temperature range. In addition, the case where RA was 80% or more was judged to have sufficient hot workability.

また、得られた熱延板の表面を目視で観察し、へゲの有無を観察した。へゲが全く観察されない場合を○、それ以外を×とした。   Moreover, the surface of the obtained hot-rolled sheet was observed visually, and the presence or absence of scabs was observed. The case where no whisker was observed was marked with ◯, and the others were marked with x.

得られた結果を表2に示す。   The obtained results are shown in Table 2.

ついで、得られた熱延板に、850〜1020℃の熱延板焼鈍と酸洗処理を施したのち、冷間圧延を施し板厚1.0mmの冷延板とした。さらに、これら冷延板に800〜950℃の冷延板焼鈍と酸洗処理を施して、冷延焼鈍板とした。   Next, the obtained hot-rolled sheet was subjected to hot-rolled sheet annealing at 850 to 120 ° C. and pickling treatment, and then cold-rolled to obtain a cold-rolled sheet having a thickness of 1.0 mm. Furthermore, these cold-rolled sheets were subjected to cold-rolled sheet annealing at 800 to 950 ° C. and pickling treatment to obtain cold-rolled annealed sheets.

これら冷延焼鈍板について、抗菌性と耐食性を評価した。試験方法はつぎの通りとした。
(2)抗菌性試験
抗菌性は、JIS Z 2801の規定に準拠した抗菌製品技術協会が制定したフィルム密着法を用いて評価した。その手順はつぎの通りである。
These cold-rolled annealed plates were evaluated for antibacterial properties and corrosion resistance. The test method was as follows.
(2) Antibacterial test Antibacterial property was evaluated using the film adhesion method established by the Antibacterial Product Technology Association in accordance with the provisions of JIS Z 2801. The procedure is as follows.

(イ)25cm2 の試験片を99.5%エタノール含有脱脂綿等で洗浄・脱脂する。 (B) Wash and degrease a 25 cm 2 specimen with 99.5% ethanol-containing absorbent cotton.

(ロ)大腸菌を1/500 NB溶液に分散する。(菌の個数は2×106 〜6×106 cfu/mlに調整した。1/500 NB溶液とは、普通ブイオン培地(NB)を減菌精製水で500倍に希釈したものである。普通ブイオン培地とは、肉エキス5.0g、塩化ナトリウム5.0g、ペプトン10.0g、精製水1000ml、pH:7.0±0.2のものをいう。)
(ハ)菌液を0.5ml/25cm2 の割合で試験片(各3枚)に接種する。
(B) Disperse E. coli in 1/500 NB solution. (The number of bacteria was adjusted to 2 × 10 6 to 6 × 10 6 cfu / ml. The 1/500 NB solution is obtained by diluting a normal buion medium (NB) 500 times with sterilized purified water. (Normal Buion medium means meat extract 5.0 g, sodium chloride 5.0 g, peptone 10.0 g, purified water 1000 ml, pH: 7.0 ± 0.2.)
(C) inoculating the bacterial suspension to the test piece at a rate of 0.5 ml / 25 cm 2 (each 3 pictures).

(ニ)試験片表面に被覆フィルムを被せる。   (D) Cover the surface of the test piece with a coating film.

(ホ)試験片を、温度:35±1.0℃、RH(相対湿度):90%以上 の条件下で24時間保存する。   (E) The test piece is stored for 24 hours under conditions of temperature: 35 ± 1.0 ° C. and RH (relative humidity): 90% or more.

(へ)寒天培養法(35±1.0℃、40〜48h)により生菌数を測定する。   (F) The viable cell count is measured by an agar culture method (35 ± 1.0 ° C., 40 to 48 h).

抗菌性は、次式
減菌率(%)=(対照の菌数−試験後の菌数)/(対照の菌数)×100
で定義される減菌率で評価した。なお、対照の菌数とは、減菌シャーレーにて抗菌試験を行った試験後の生菌数であり6×106 cfu/mlであった。また、試験後の菌数とは、測定した生菌数である。
(3)耐食性試験
耐食性は、塩乾湿潤複合サイクル試験により評価した。試験片(大きさ:50×80mm)に、次(イ)と(ロ)の処理
(イ)5.0%NaCl水溶液(温度:35℃)を0.5h噴霧したのち、湿度:40%以下、温度:60℃の乾燥雰囲気で1.0h保持する。
Antibacterial activity is expressed by the following formula: Bacterial eradication rate (%) = (number of bacteria in control-number of bacteria after test) / (number of bacteria in control) x 100
The sterilization rate defined in (1) was evaluated. In addition, the number of control bacteria was the number of viable bacteria after the test in which an antibacterial test was performed in a sterilized petri dish, and was 6 × 10 6 cfu / ml. Moreover, the number of bacteria after a test is the number of live bacteria measured.
(3) Corrosion resistance test Corrosion resistance was evaluated by a salt dry and wet combined cycle test. (B) After spraying a 5.0% NaCl aqueous solution (temperature: 35 ° C) for 0.5 h on a test piece (size: 50 x 80 mm), humidity: 40% or less, temperature: Hold for 1.0 h in a dry atmosphere at 60 ° C.

(ロ)湿度:95%以上、温度:40℃の湿潤雰囲気で1.0h保持する。
を複合して1サイクルとし、100サイクル繰り返した後、試験片表面の発錆面積率(%)を測定した。
(B) Hold for 1.0 h in a humid atmosphere of humidity: 95% or more, temperature: 40 ° C.
After combining 100 times to repeat 100 cycles, the rusting area ratio (%) on the surface of the test piece was measured.

得られた試験結果を表2に示す。   The test results obtained are shown in Table 2.

Figure 2005232510
Figure 2005232510

Figure 2005232510
Figure 2005232510

本発明例はいずれも、熱間加工性が著しく改善されてへゲの発生が抑制されている。また、本発明例はいずれも、耐食性が低下することなく、抗菌性が著しく改善されている。
一方、本発明の範囲を外れる比較例、従来例は、耐食性、抗菌性、熱間加工性のいずれか、あるいは二以上の特性が劣化している。
In all of the examples of the present invention, hot workability is remarkably improved and generation of lashes is suppressed. Further, in all of the examples of the present invention, the antibacterial properties are remarkably improved without lowering the corrosion resistance.
On the other hand, in the comparative example and the conventional example which are out of the scope of the present invention, any one of corrosion resistance, antibacterial property and hot workability, or two or more characteristics are deteriorated.

Claims (3)

mass%で、
C:0.1%以下、 Si:1.0%以下、
Mn:1.0%以下、 P:0.08%以下、
S:0.02%以下、 Cr:10〜35%、
N:0.10%以下
を含み、さらにAg:0.001〜0.09%、Cu:0.05〜2.0%を、下記(1)式を満足するように含み、残部Feおよび不可避的不純物からなる組成を有することを特徴とする熱間加工性および抗菌性に優れたフェライト系ステンレス鋼。

Ag/(Ag+Cu)<0.07 ………(1)
(ここで、Ag、Cu:各元素の含有量(mass%))
mass%
C: 0.1% or less, Si: 1.0% or less,
Mn: 1.0% or less, P: 0.08% or less,
S: 0.02% or less, Cr: 10 to 35%,
N: 0.10% or less, Ag: 0.001 to 0.09%, Cu: 0.05 to 2.0% are included so as to satisfy the following formula (1), and the composition is composed of the remaining Fe and inevitable impurities. Ferritic stainless steel with excellent hot workability and antibacterial properties.
Record
Ag / (Ag + Cu) <0.07 (1)
(Where Ag, Cu: content of each element (mass%))
前記組成に加えてさらに、mass%で、Nb:1%以下、Ti:1%以下のうちから選ばれた1種または2種を含有する組成とすることを特徴とする請求項1に記載のフェライト系ステンレス鋼。   2. The composition according to claim 1, wherein in addition to the composition, the composition further includes one or two kinds selected from mass%, Nb: 1% or less, and Ti: 1% or less. Ferritic stainless steel. 前記組成に加えてさらに、mass%で、Al:0.30%以下を含有することを特徴とする請求項1または2に記載のフェライト系ステンレス鋼。   The ferritic stainless steel according to claim 1 or 2, further comprising, in addition to the composition, mass% and Al: 0.30% or less.
JP2004041441A 2004-02-18 2004-02-18 Ferritic stainless steel having excellent antibacterial property and hot workability Pending JP2005232510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004041441A JP2005232510A (en) 2004-02-18 2004-02-18 Ferritic stainless steel having excellent antibacterial property and hot workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004041441A JP2005232510A (en) 2004-02-18 2004-02-18 Ferritic stainless steel having excellent antibacterial property and hot workability

Publications (1)

Publication Number Publication Date
JP2005232510A true JP2005232510A (en) 2005-09-02

Family

ID=35015766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004041441A Pending JP2005232510A (en) 2004-02-18 2004-02-18 Ferritic stainless steel having excellent antibacterial property and hot workability

Country Status (1)

Country Link
JP (1) JP2005232510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102260832A (en) * 2010-05-25 2011-11-30 宝山钢铁股份有限公司 Antibacterial stainless steel composite steel plate and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102260832A (en) * 2010-05-25 2011-11-30 宝山钢铁股份有限公司 Antibacterial stainless steel composite steel plate and its manufacturing method

Similar Documents

Publication Publication Date Title
EP2952602B1 (en) Ferritic stainless steel sheet which is excellent in workability and method of production of same
KR101705135B1 (en) Ferritic stainless steel sheet
JP7339255B2 (en) Ferritic stainless steel with excellent high-temperature oxidation resistance and method for producing the same
JP6411881B2 (en) Ferritic stainless steel and manufacturing method thereof
JP7190607B1 (en) Ni alloy with excellent antibacterial properties
JP3322157B2 (en) Method for producing ferritic stainless steel strip containing Cu
JP2005232511A (en) Austenitic stainless steel having excellent antibacterial property and hot workability
JP3227405B2 (en) Ferritic stainless steel with excellent antibacterial properties
JP2005232510A (en) Ferritic stainless steel having excellent antibacterial property and hot workability
JPH1088285A (en) Molybdenum-containing ferritic stainless steel excellent in oxide scale peeling resistance
JP2017190522A (en) Steel material
JPH07126812A (en) Ferritic stainless steel sheet excellent in secondary working brittleness and its production
CN108728734B (en) Antibacterial stainless steel for electrical equipment
JPH10306352A (en) Ferritic stainless steel sheet excellent in antibacterial characteristic and surface characteristic and having high workability, and its production
JP3229577B2 (en) Austenitic stainless steel with excellent antibacterial properties
JPH07126758A (en) Manufacture of ferritic stainless steel sheet excellent in bendability
JP3227418B2 (en) Ferritic stainless steel with excellent antibacterial and ridging resistance
JP4167166B2 (en) High Al content ferritic stainless steel hot rolled steel strip with excellent toughness and method for producing the same
JP4193227B2 (en) Fe-Cr-Si steel sheet and method for producing the same
JPS6153411B2 (en)
TW202242161A (en) Stainless steel material and method for manufacturing same, and antibacterial/antiviral member
WO2023181895A1 (en) Microorganism-corrosion-resistant low-alloy steel material and method for producing same
JPH10140289A (en) Ferritic stainless steel sheet excellent in antibacterial characteristic and surface characteristic and having high workability, and its production
JP2002194513A (en) Silicon-chromium steel sheet superior in working deformation characteristics and manufacturing method
JP2022151130A (en) Austenitic stainless steel, manufacturing method thereof, and antibacterial and antivirus member