JP2005232305A - Fluorescent substance of alkaline earth metal aluminate, and light-emitting device using the same - Google Patents

Fluorescent substance of alkaline earth metal aluminate, and light-emitting device using the same Download PDF

Info

Publication number
JP2005232305A
JP2005232305A JP2004042909A JP2004042909A JP2005232305A JP 2005232305 A JP2005232305 A JP 2005232305A JP 2004042909 A JP2004042909 A JP 2004042909A JP 2004042909 A JP2004042909 A JP 2004042909A JP 2005232305 A JP2005232305 A JP 2005232305A
Authority
JP
Japan
Prior art keywords
light
phosphor
alkaline earth
earth metal
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004042909A
Other languages
Japanese (ja)
Other versions
JP4363215B2 (en
Inventor
Yoshinori Murazaki
嘉典 村崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2004042909A priority Critical patent/JP4363215B2/en
Publication of JP2005232305A publication Critical patent/JP2005232305A/en
Application granted granted Critical
Publication of JP4363215B2 publication Critical patent/JP4363215B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a fluorescent substance of an alkaline earth metal aluminate capable of being efficiently exited by long wave-length ultraviolet rays, emitting green light, and having good light resistance; and to provide a light-emitting device having excellent light-emitting characteristics by using the fluorescent substance. <P>SOLUTION: The fluorescent substance of the alkaline earth metal aluminate contains calcium, aluminum, cerium, terbium and oxygen as basic constituent elements. The ratio of the mols of the aluminum to the mols of the calcium contained in the fluorescent substance is regulated so as to be ≥1.0 and ≤10.0. The fluorescent substance of the alkaline earth metal aluminate is efficiently exited by the long wave-length ultraviolet rays and emits the green light. The fluorescent substance of the alkaline earth metal aluminate has a high light-emitting luminance and the excellent light resistance. The light-emitting device using the fluorescent substance has the high light-emitting efficiency and excellent light-emitting characteristics. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、長波長紫外線により効率よく励起され緑色発光するアルカリ土類金属アルミン酸塩蛍光体及びそれを用いた発光装置に関する。   The present invention relates to an alkaline earth metal aluminate phosphor that is efficiently excited by long-wavelength ultraviolet light and emits green light, and a light-emitting device using the same.

近年、半導体発光素子として種々の発光ダイオードやレーザーダイオードが開発されている。このような半導体発光素子は低電圧駆動、小型、軽量、薄型、長寿命で信頼性が高く低消費電力という長所を生かして、ディスプレイやバックライト、インジケーターなど種々の光源として電球や冷陰極管の一部を置き換えつつある。特に、紫外域から可視域の短波長側で効率よく発光可能な発光素子として窒化物半導体を用いたものが開発され、窒化物半導体(例えば、InGaN混晶)を活性(発光)層とした量子井戸構造で10カンデラ以上の青色、緑色LEDが製品化されつつある。さらに、このような窒化物半導体発光素子と蛍光体を組合せた種々の発光色のLEDが特開平9−153645号などに開示されているが、より広い分野において様々な波長域に発光するLEDが高輝度に求められている現在では、十分ではなく、更なる改良が求められている。   In recent years, various light emitting diodes and laser diodes have been developed as semiconductor light emitting devices. Such a semiconductor light emitting device takes advantage of low voltage drive, small size, light weight, thin shape, long life, high reliability and low power consumption, and as a light source such as a display, backlight, indicator, etc. Some are being replaced. In particular, a light-emitting device that uses a nitride semiconductor as a light-emitting element that can emit light efficiently on the short wavelength side from the ultraviolet region to the visible region has been developed. Blue and green LEDs with a well structure of 10 candela or more are being commercialized. Further, LEDs of various emission colors combining such a nitride semiconductor light emitting element and a phosphor are disclosed in Japanese Patent Laid-Open No. 9-153645, etc., but LEDs that emit light in various wavelength regions in a wider field are disclosed. At present, when high brightness is required, it is not sufficient and further improvement is required.

窒化物半導体発光素子と蛍光体を組合せた白色LEDについては、(1)青色LEDで黄色発光の蛍光体を励起する方式と、(2)紫色、紫外LEDでR・G・B蛍光体を励起する方式があり、いずれも白色光源として適しているが、光束が弱く、改善が必要とされている。例えば、(2)の方式について、照明学会誌85(2001)273に、励起源として紫外LEDを用い、赤色蛍光体にYS:Eu、緑色蛍光体にZnS:Cu,Al、青色蛍光体に(Sr,Ca,Ba,Mg)10(POCl:Euを用いた白色LEDが開示されているが、光束が十分でなかった。また、緑色蛍光体として用いられているZnS:Cu,Al蛍光体は耐光性が悪いため、直射日光などから長時間耐えることが要求されるLED発光装置に使用するには問題があった。 For white LEDs that combine nitride semiconductor light-emitting elements and phosphors, (1) excite yellow phosphors with blue LEDs, and (2) excite R, G, B phosphors with purple and ultraviolet LEDs. All are suitable as a white light source, but the luminous flux is weak and improvement is required. For example, in the method of (2), the Illuminating Society Journal 85 (2001) 273 uses an ultraviolet LED as an excitation source, Y 2 O 2 S: Eu as a red phosphor, ZnS: Cu, Al, blue as a green phosphor. Although a white LED using (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu as a phosphor has been disclosed, the luminous flux was not sufficient. In addition, since the ZnS: Cu, Al phosphor used as the green phosphor has poor light resistance, there is a problem in using it in an LED light emitting device that is required to withstand a long period of time from direct sunlight.

特開平9−153645号公報JP-A-9-153645 照明学会誌85(2001)273Journal of the Illuminating Engineering Society of Japan 85 (2001) 273

本発明は、このような問題点を解決するためになされたものである。本発明の目的は、長波長紫外線により効率よく励起され緑色発光する耐光性の良いアルカリ土類金属アルミン酸塩蛍光体を提供することであり、さらには、その蛍光体を用いて発光特性の優れた発光装置を提供することである。   The present invention has been made to solve such problems. An object of the present invention is to provide a light-resistant alkaline earth metal aluminate phosphor that is efficiently excited by long-wavelength ultraviolet light and emits green light, and further, has excellent emission characteristics using the phosphor. A light emitting device is provided.

上記目的を達成するために本発明者らは鋭意検討を重ねた結果、特定の組成を有するアルカリ土類金属アルミン酸塩蛍光体は長波長紫外線励起による発光輝度が高く、この蛍光体を用いた発光ダイオードなどの発光装置は発光特性が優れていることを新たに見いだし本発明を完成させるに至った。   In order to achieve the above object, the present inventors have conducted intensive studies. As a result, alkaline earth metal aluminate phosphors having a specific composition have high emission luminance due to long-wavelength ultraviolet excitation, and this phosphor was used. The inventors have newly found that light emitting devices such as light emitting diodes have excellent light emitting characteristics, and have completed the present invention.

(1)本発明の蛍光体は、カルシウム、アルミニウム、セリウム、テルビウム及び酸素を基本構成元素とするアルカリ土類金属アルミン酸塩蛍光体であって、蛍光体中に含まれるカルシウムのモル数に対するアルミニウムのモル数の比が1.0以上、10.0以下の範囲であることを特徴とする。このモル数の比は2.0以上、8.4以下の範囲がより好ましく、3.0以上、6.6以下の範囲がさらに好ましい。また、蛍光体中に含まれるカルシウムのモル数に対するセリウムのモル数の比は、0.03以上、0.80以下の範囲が好ましく、0.046以上、0.60以下の範囲がより好ましく、0.076以上、0.40以下の範囲がさらに好ましい。蛍光体中に含まれるカルシウムのモル数に対するテルビウムのモル数の比は、0.030以上、0.84以下の範囲が好ましく、0.046以上、0.62以下の範囲がより好ましく、0.074以上、0.40以下の範囲がさらに好ましい。 (1) The phosphor of the present invention is an alkaline earth metal aluminate phosphor containing calcium, aluminum, cerium, terbium, and oxygen as basic constituent elements, and aluminum relative to the number of moles of calcium contained in the phosphor. The ratio of the number of moles is in the range of 1.0 or more and 10.0 or less. The molar ratio is more preferably in the range of 2.0 or more and 8.4 or less, and further preferably in the range of 3.0 or more and 6.6 or less. The ratio of the number of moles of cerium to the number of moles of calcium contained in the phosphor is preferably in the range of 0.03 or more and 0.80 or less, more preferably in the range of 0.046 or more and 0.60 or less. The range of 0.076 or more and 0.40 or less is more preferable. The ratio of the number of moles of terbium to the number of moles of calcium contained in the phosphor is preferably in the range of 0.030 or more and 0.84 or less, more preferably in the range of 0.046 or more and 0.62 or less. The range of 074 or more and 0.40 or less is more preferable.

(2)本発明の蛍光体は、前記カルシウムの一部をマグネシウム、ストロンチウム、バリウム及び亜鉛から選択される少なくとも1種の元素で置換する(1)に記載のアルカリ土類金属アルミン酸塩蛍光体である。蛍光体中に含まれるカルシウム元素と置換元素の総モル数に対する置換元素のモル数の比が0以上、0.90以下の範囲が好ましく、0以上、0.60以下の範囲がより好ましく、0以上、0.30以下の範囲がさらに好ましい。 (2) The alkaline earth metal aluminate phosphor according to (1), wherein the phosphor of the present invention substitutes a part of the calcium with at least one element selected from magnesium, strontium, barium and zinc. It is. The ratio of the number of moles of the substitution element to the total number of moles of calcium element and substitution element contained in the phosphor is preferably in the range of 0 or more and 0.90 or less, more preferably in the range of 0 or more and 0.60 or less. As described above, the range of 0.30 or less is more preferable.

(3)本発明の蛍光体は、一般式が次式で表されることを特徴とする。
(Ca1−a,M)O・αAl・βCe・γTb
(MはMg、Sr、Ba及びZnから選択される少なくとも1種の元素、0≦a≦0.9、0.5≦α≦5.0、0.015≦β≦0.40、0.015≦γ≦0.42)
(3) The phosphor of the present invention is characterized in that the general formula is represented by the following formula.
(Ca 1-a, M a ) O · αAl 2 O 3 · βCe 2 O 3 · γTb 2 O 3
(M is at least one element selected from Mg, Sr, Ba and Zn, 0 ≦ a ≦ 0.9, 0.5 ≦ α ≦ 5.0, 0.015 ≦ β ≦ 0.40,. 015 ≦ γ ≦ 0.42)

a値は0≦a≦0.60の範囲がより好ましく、0≦a≦0.30の範囲がさらに好ましい。α値は1.0≦α≦4.2の範囲がより好ましく、1.5≦α≦3.3の範囲がさらに好ましい。また、β値は0.023≦β≦0.30の範囲がより好ましく、0.038≦β≦0.20の範囲がさらに好ましい。γの値は、0.023≦γ≦0.31の範囲がより好ましく、0.037≦γ≦0.20の範囲がさらに好ましい。   The a value is more preferably in the range of 0 ≦ a ≦ 0.60, and more preferably in the range of 0 ≦ a ≦ 0.30. The α value is more preferably in the range of 1.0 ≦ α ≦ 4.2, and further preferably in the range of 1.5 ≦ α ≦ 3.3. Further, the β value is more preferably in the range of 0.023 ≦ β ≦ 0.30, and further preferably in the range of 0.038 ≦ β ≦ 0.20. The value of γ is more preferably in the range of 0.023 ≦ γ ≦ 0.31, and further preferably in the range of 0.037 ≦ γ ≦ 0.20.

(4)本発明の蛍光体は、波長が少なくとも310〜390nmの範囲にある長波長紫外線により励起され発光する(1)乃至(3)に記載のアルカリ土類金属アルミン酸塩蛍光体であって、励起源に紫外LEDを用いたLED発光装置や、365nm紫外線が主要励起源である高圧水銀ランプに、また、コンクリートやガラス等に混入して装飾板などの発光スクリーンにも好適に用いることができる。 (4) The phosphor of the present invention is the alkaline earth metal aluminate phosphor according to any one of (1) to (3), which emits light when excited by long-wavelength ultraviolet light having a wavelength in the range of at least 310 to 390 nm. It is suitable for use in LED light-emitting devices using ultraviolet LEDs as excitation sources, high-pressure mercury lamps in which 365-nm ultraviolet rays are the main excitation source, and light-emitting screens such as decorative plates mixed in concrete or glass. it can.

(5)本発明の発光装置は、(1)乃至(4)に記載のアルカリ土類金属アルミン酸塩蛍光体を用いた発光装置であって、LED発光装置や高圧水銀ランプなどの発光装置である。 (5) A light emitting device of the present invention is a light emitting device using the alkaline earth metal aluminate phosphor according to any one of (1) to (4), and is a light emitting device such as an LED light emitting device or a high pressure mercury lamp. is there.

(6)本発明の発光装置は、発光層が半導体である発光素子と、該発光素子によって発光された光の一部を吸収して、吸収した光の波長と異なる波長を有する光を発光するフォトルミネッセンス蛍光体とを備えた発光装置において、
a)前記発光素子は、その発光層がAl及び/又はInを含む窒化ガリウム系半導体で、その発光スペクトルのピーク波長が少なくとも310〜390nmの範囲にある長波長紫外線を放射するLEDチップであり、
b)前記フォトルミネッセンス蛍光体は、発光スペクトルのピーク波長が少なくとも543〜547nmの範囲にあり、且つ励起スペクトルのピーク波長が少なくとも310〜390nmの範囲にある(1)乃至(4)に記載のアルカリ土類金属アルミン酸塩蛍光体を含有することを特徴とする。
(6) The light-emitting device of the present invention absorbs a part of light emitted by the light-emitting element whose light-emitting layer is a semiconductor and emits light having a wavelength different from the wavelength of the absorbed light. In a light emitting device comprising a photoluminescence phosphor,
a) The light-emitting element is an LED chip that emits long-wavelength ultraviolet light whose light-emitting layer is a gallium nitride-based semiconductor containing Al and / or In and whose emission spectrum has a peak wavelength in the range of at least 310 to 390 nm,
b) The photoluminescence phosphor has an alkali spectrum according to (1) to (4), wherein the peak wavelength of the emission spectrum is in the range of at least 543 to 547 nm and the peak wavelength of the excitation spectrum is in the range of at least 310 to 390 nm. It contains an earth metal aluminate phosphor.

このように、長波長紫外線を放射するLEDチップと、これにより励起され緑色発光するアルカリ土類金属アルミン酸塩蛍光体を含有するフォトルミネッセンス蛍光体とを備えたLED発光装置は、種々の発光色を呈し、優れた発光特性を有する。特に、この緑色発光アルカリ土類金属アルミン酸塩蛍光体に加えて、青色発光蛍光体及び赤色発光蛍光体を有する白色LED発光装置は、高い発光効率を有する。   Thus, an LED light emitting device including an LED chip that emits long-wavelength ultraviolet light and a photoluminescent phosphor containing an alkaline earth metal aluminate phosphor that is excited to emit green light and emits green light has various emission colors. And has excellent light emission characteristics. In particular, a white LED light emitting device having a blue light emitting phosphor and a red light emitting phosphor in addition to the green light emitting alkaline earth metal aluminate phosphor has high luminous efficiency.

また、上記アルカリ土類金属アルミン酸塩蛍光体に加えて、(Sr,Ca,Ba,Mg)(PO(Cl,Br):Eu,Mn、(Sr,Ca,Ba,Mg)(POCl:Eu等のハロりん酸塩蛍光体、(Sr,Ca,Ba,Mg)SiO:Eu等の珪酸塩蛍光体、(Ca,Ba,Sr)Cl:Eu,Mn等のホウ酸塩蛍光体、SrAl:Eu、SrAl1425:Eu、CaAl:Eu,Mn、BaMgAl1627:Eu、BaMgAl1627:Eu,Mn、BaMgAl1017:Eu,Mn等のアルカリ土類金属アルミン酸塩蛍光体、YAl12:Ce等の希土類アルミン酸塩蛍光体、LaS:Eu、YS:Eu、GdS:Eu等の希土類酸硫化物蛍光体、ZnS:Cu等の硫化亜鉛蛍光体、ZnGaO:Mn等のガリウム酸塩蛍光体、(Mg,Ca,Sr,Ba)Ga:Eu等の硫化物蛍光体、(Mg,Ca,Sr,Ba)Si:Eu等の窒化物蛍光体から選択される少なくとも1種の蛍光体を有するLED発光装置は、種々の発光色を呈し、優れた発光特性を有する。 In addition to the alkaline earth metal aluminate phosphor, (Sr, Ca, Ba, Mg) 5 (PO 4 ) 3 (Cl, Br): Eu, Mn, (Sr, Ca, Ba, Mg) 5 (PO 4 ) 3 Cl: halophosphate phosphor such as Eu, (Sr, Ca, Ba, Mg) 2 SiO 4 : silicate phosphor such as Eu, (Ca, Ba, Sr) 2 B 5 O 9 Cl: borate phosphor such as Eu, Mn, SrAl 2 O 4 : Eu, Sr 4 Al 14 O 25 : Eu, CaAl 2 O 4 : Eu, Mn, BaMg 2 Al 16 O 27 : Eu, BaMg 2 Al 16 O 27 : Eu, Mn, BaMgAl 10 O 17 : Alkaline earth metal aluminate phosphor such as Eu, Mn, Y 3 Al 5 O 12 : Rare earth aluminate phosphor such as Ce, La 2 O 2 S: Eu, Y 2 O S: Eu, Gd 2 O 2 S: rare earth oxysulfide phosphors such as Eu, ZnS: zinc sulfide phosphor such as Cu, Zn 2 GaO 4: gallium phosphor such as Mn, (Mg, Ca, Sr , Ba) having at least one phosphor selected from sulfide phosphors such as Ga 2 S 4 : Eu and nitride phosphors such as (Mg, Ca, Sr, Ba) 2 Si 5 N 8 : Eu. LED light-emitting devices exhibit various emission colors and have excellent emission characteristics.

カルシウム、アルミニウム、セリウム、テルビウム及び酸素を基本構成元素とするアルカリ土類金属アルミン酸塩蛍光体であって、蛍光体中に含まれるカルシウムのモル数に対するアルミニウムのモル数の比が1.0以上、10.0以下の範囲である本発明のアルカリ土類金属アルミン酸塩蛍光体は、長波長紫外線により効率よく励起され緑色発光する発光輝度の高い蛍光体であって、耐光性にも優れる。また、それを用いた発光装置は発光効率が高く、優れた発光特性を有する。   An alkaline earth metal aluminate phosphor having calcium, aluminum, cerium, terbium and oxygen as basic constituent elements, wherein the ratio of the number of moles of aluminum to the number of moles of calcium contained in the phosphor is 1.0 or more The alkaline earth metal aluminate phosphor of the present invention in a range of 10.0 or less is a phosphor having high emission luminance that is excited efficiently by long-wave ultraviolet light and emits green light, and has excellent light resistance. In addition, a light-emitting device using the same has high light emission efficiency and excellent light emission characteristics.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための発光装置及び発光装置用蛍光体を例示するものであって、本発明は発光装置及び発光装置用蛍光体を以下のものに特定しない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies the light emitting device and the phosphor for the light emitting device for embodying the technical idea of the present invention, and the present invention describes the light emitting device and the phosphor for the light emitting device as follows. Not specific to anything.

また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。   Further, the present specification by no means specifies the members shown in the claims to the members of the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention unless otherwise specified, and are merely explanations. It's just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.

図1は発光装置の概略断面図を示す。図1の発光装置では、パッケージ1中央の凹部に半導体発光素子2を取り付け、発光素子2の電極とパッケージ1の電極はワイヤー4で接続されている。パッケージ1中央の凹部には、蛍光体を分散させたバインダを所定の量だけ封入し、蛍光体層3を形成している。半導体発光素子2の発光は一部は蛍光体層3を透過し、一部は蛍光体層3によってより長波長の光に変換され、透過光と変換光が混色されて半導体発光装置の発光となる。蛍光体層3の調整により、白色を初めとする種々の色度の半導体発光装置が形成される。   FIG. 1 is a schematic sectional view of a light emitting device. In the light emitting device of FIG. 1, a semiconductor light emitting element 2 is attached to a recess in the center of the package 1, and the electrode of the light emitting element 2 and the electrode of the package 1 are connected by a wire 4. A predetermined amount of a binder in which a phosphor is dispersed is sealed in a recess in the center of the package 1 to form a phosphor layer 3. A part of the light emitted from the semiconductor light emitting element 2 is transmitted through the phosphor layer 3, and part of the light is converted into light having a longer wavelength by the phosphor layer 3, and the transmitted light and the converted light are mixed to emit light from the semiconductor light emitting device. Become. By adjusting the phosphor layer 3, semiconductor light emitting devices of various chromaticities including white are formed.

[発光素子]
励起光源としては、発光素子が利用できる。本明細書において発光素子とは、発光ダイオード(LED)やレーザダイオード(LD)等の半導体発光素子の他、真空放電による発光、熱発光からの発光を得るための素子も含む。本発明では半導体発光素子が好ましく、以下に詳述する。
[Light emitting element]
A light emitting element can be used as the excitation light source. In this specification, the light emitting element includes not only a semiconductor light emitting element such as a light emitting diode (LED) or a laser diode (LD) but also an element for obtaining light emission by vacuum discharge or light emission from thermoluminescence. In the present invention, a semiconductor light emitting device is preferable and will be described in detail below.

(半導体発光素子)
本発明において半導体発光素子は、蛍光体を効率よく励起可能な発光波長を発光できる発光層を有する半導体発光素子が好ましい。このような半導体発光素子の材料として、BN、SiC、ZnSeやGaN、InGaN、InAlGaN、AlGaN、BAlGaN、BInAlGaNなど種々の半導体を挙げることができる。同様に、これらの元素に不純物元素としてSiやZnなどを含有させ発光中心とすることもできる。蛍光体を効率良く励起できる紫外領域から可視光の短波長を効率よく発光可能な発光層の材料として、特に、窒化物半導体(例えば、AlやGaを含む窒化物半導体、InやGaを含む窒化物半導体としてInAlGa1−x−yN(0≦x、0≦y、x+y≦1))がより好適に挙げられる。本発明では、主発光ピークが310〜390nmの範囲になるようにAl又はIn量を調製して得られる窒化ガリウム系半導体発光素子が、好ましく用いられる。
(Semiconductor light emitting device)
In the present invention, the semiconductor light emitting element is preferably a semiconductor light emitting element having a light emitting layer capable of emitting a light emission wavelength capable of efficiently exciting the phosphor. Examples of the material of such a semiconductor light emitting device include various semiconductors such as BN, SiC, ZnSe, GaN, InGaN, InAlGaN, AlGaN, BAlGaN, and BInAlGaN. Similarly, these elements may contain Si, Zn, or the like as an impurity element to serve as a light emission center. As a material for a light emitting layer capable of efficiently emitting a short wavelength of visible light from an ultraviolet region capable of efficiently exciting a phosphor, a nitride semiconductor (for example, a nitride semiconductor containing Al or Ga, a nitride containing In or Ga, etc.) As the physical semiconductor, In x Al y Ga 1-xy N (0 ≦ x, 0 ≦ y, x + y ≦ 1)) is more preferably cited. In the present invention, a gallium nitride-based semiconductor light-emitting element obtained by adjusting the amount of Al or In so that the main emission peak is in the range of 310 to 390 nm is preferably used.

また、半導体の構造としては、MIS接合、PIN接合やpn接合などを有するホモ構造、ヘテロ構造あるいはダブルへテロ構成のものが好適に挙げられる。半導体層の材料やその混晶比によって発光波長を種々選択することができる。また、半導体活性層を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることでより出力を向上させることもできる。   As a semiconductor structure, a homostructure having a MIS junction, a PIN junction, a pn junction, or the like, a heterostructure, or a double hetero configuration is preferably exemplified. Various emission wavelengths can be selected depending on the semiconductor layer material and the mixed crystal ratio. Further, the output can be further improved by adopting a single quantum well structure or a multiple quantum well structure in which the semiconductor active layer is formed in a thin film that produces a quantum effect.

窒化物半導体を使用した場合、半導体用基板にはサファイヤ、スピネル、SiC、Si、ZnO、GaAs、GaN等の材料が好適に用いられる。結晶性の良い窒化物半導体を量産性よく形成させるためにはサファイヤ基板を利用することが好ましい。このサファイヤ基板上にHVPE法やMOCVD法などを用いて窒化物半導体を形成させることができる。サファイヤ基板上にGaN、AlN、GaAIN等の低温で成長させ非単結晶となるバッファ層を形成しその上にpn接合を有する窒化物半導体を形成させる。   When a nitride semiconductor is used, a material such as sapphire, spinel, SiC, Si, ZnO, GaAs, or GaN is preferably used for the semiconductor substrate. In order to form a nitride semiconductor with good crystallinity with high productivity, it is preferable to use a sapphire substrate. A nitride semiconductor can be formed on the sapphire substrate using HVPE, MOCVD, or the like. A buffer layer made of GaN, AlN, GaAIN or the like is grown on the sapphire substrate at a low temperature to form a non-single crystal, and a nitride semiconductor having a pn junction is formed thereon.

窒化物半導体を使用したpn接合を有する紫外領域を効率よく発光可能な発光素子例として、バッファ層上に、サファイヤ基板のオリフラ面と略垂直にSiOをストライプ状に形成する。ストライプ上にHVPE法を用いてGaNをELOG(Epitaxial Lateral Over Growth GaN)成長させる。続いて、MOCVD法により、n型窒化ガリウムで形成した第1のコンタクト層、n型窒化アルミニウム・ガリウムで形成させた第1のクラッド層、窒化インジウム・アルミニウム・ガリウムの井戸層と窒化アルミニウム・ガリウムの障壁層を複数積層させた多重量子井戸構造とされる活性層、p型窒化アルミニウム・ガリウムで形成した第2のクラッド層、p型窒化ガリウムで形成した第2のコンタクト層を順に積層させたダブルへテロ構成などの構成が挙げられる。活性層をリッジストライプ形状としガイド層で挟むと共に共振器端面を設け本発明に利用可能な半導体レーザー素子とすることもできる。 As an example of a light emitting device capable of efficiently emitting light in an ultraviolet region having a pn junction using a nitride semiconductor, SiO 2 is formed in a stripe shape on the buffer layer substantially perpendicular to the orientation flat surface of the sapphire substrate. GaN is grown on the stripes using EHV (Epitaxial Lateral Over Growth GaN) using the HVPE method. Subsequently, a first contact layer formed of n-type gallium nitride, a first cladding layer formed of n-type aluminum nitride / gallium, a well layer of indium nitride / aluminum / gallium, and aluminum nitride / gallium are formed by MOCVD. An active layer having a multiple quantum well structure in which a plurality of barrier layers are stacked, a second cladding layer formed of p-type aluminum nitride / gallium, and a second contact layer formed of p-type gallium nitride are sequentially stacked. Examples include a double hetero configuration. The active layer may be formed into a ridge stripe shape and sandwiched between guide layers, and a resonator end face may be provided to provide a semiconductor laser device usable in the present invention.

窒化物半導体は、不純物をドープしない状態でn型導電性を示す。発光効率を向上させるなど所望のn型窒化物半導体を形成させる場合は、n型ドーパントとしてSi、Ge、Se、Te、C等を適宜導入することが好ましい。一方、p型窒化物半導体を形成させる場合は、p型ドーパントであるZn、Mg、Be、Ca、Sr、Ba等をドープさせることが好ましい。窒化物半導体は、p型ドーパントをドープしただけではp型化しにくいためp型ドーパント導入後に、炉による加熱やプラズマ照射等により低抵抗化させることが好ましい。サファイヤ基板をとらない場合は、第1のコンタクト層の表面までp型側からエッチングさせ各コンタクト層を露出させる。各コンタクト層上にそれぞれ電極形成後、半導体ウエハーからチップ状にカットさせることで窒化物半導体からなる発光素子を形成させることができる。   Nitride semiconductors exhibit n-type conductivity without being doped with impurities. When forming a desired n-type nitride semiconductor, for example, to improve luminous efficiency, it is preferable to appropriately introduce Si, Ge, Se, Te, C, etc. as an n-type dopant. On the other hand, when forming a p-type nitride semiconductor, it is preferable to dope p-type dopants such as Zn, Mg, Be, Ca, Sr, and Ba. Since nitride semiconductors are not easily converted to p-type by simply doping with a p-type dopant, it is preferable to reduce resistance by heating in a furnace or plasma irradiation after introducing the p-type dopant. When a sapphire substrate is not used, the contact layer is exposed by etching from the p-type side to the surface of the first contact layer. A light emitting element made of a nitride semiconductor can be formed by cutting the semiconductor wafer into chips after forming electrodes on each contact layer.

また、本発明で用いられる半導体発光素子は、不純物濃度1017〜1020/cmで形成されるn型コンタクト層のシート抵抗と、透光性p電極のシート抵抗とが、Rp≧Rnの関係となるように調節されている。n型コンタクト層は、例えば膜厚3〜10μm、より好ましくは4〜6μmに形成されると好ましく、そのシート抵抗は10〜15Ω/□と見積もられることから、このときのRpは前記シート抵抗値以上のシート抵抗値を有するように薄膜に形成されるとよい。また、透光性p電極は、膜厚が150μm以下の薄膜で形成されていてもよい。 Further, in the semiconductor light emitting device used in the present invention, the sheet resistance of the n-type contact layer formed at an impurity concentration of 10 17 to 10 20 / cm 3 and the sheet resistance of the translucent p electrode satisfy Rp ≧ Rn. It is adjusted to be related. The n-type contact layer is preferably formed to a film thickness of, for example, 3 to 10 μm, more preferably 4 to 6 μm, and the sheet resistance is estimated to be 10 to 15Ω / □, so that Rp at this time is the sheet resistance value. It is good to form in a thin film so that it may have the above sheet resistance values. The translucent p-electrode may be formed of a thin film having a thickness of 150 μm or less.

また、透光性p電極が、金及び白金族元素の群から選択された1種と、少なくとも1種の他の元素とから成る多層膜または合金で形成される場合、透光性p電極のシート抵抗の調節は、含有されている金または白金族元素の含有量によって成されると安定性及び再現性が向上されるという点でよい。また、金または白金族元素は、本発明の半導体発光素子の波長領域における吸収係数が高いので、透光性p電極に含まれる金又は白金族元素の量は少ないほど透過性がよくなる。従来の半導体発光素子はシート抵抗の関係がRp≦Rnであったが、本発明ではRp≧Rnであるので、透光性p電極は従来のものと比較して薄膜に形成されることとなるが、このとき金または白金族元素の含有量を減らすことで薄膜化が良好に行える。   In the case where the translucent p-electrode is formed of a multilayer film or an alloy composed of one kind selected from the group of gold and platinum group elements and at least one other element, the translucent p-electrode The sheet resistance may be adjusted in that the stability and reproducibility are improved when the sheet resistance is adjusted depending on the content of the contained gold or platinum group element. In addition, since gold or platinum group elements have a high absorption coefficient in the wavelength region of the semiconductor light emitting device of the present invention, the smaller the amount of gold or platinum group elements contained in the translucent p-electrode, the better the transparency. In the conventional semiconductor light emitting device, the relationship of sheet resistance is Rp ≦ Rn. However, in the present invention, Rp ≧ Rn, and therefore the translucent p-electrode is formed in a thin film as compared with the conventional one. However, at this time, thinning can be performed satisfactorily by reducing the content of gold or platinum group elements.

本発明で用いられる半導体発光素子は、n型コンタクト層のシート抵抗RnΩ/□と、透光性p電極のシート抵抗RpΩ/□とが、Rp≧Rnの関係を成している。半導体発光素子として形成した後にRnを測定するのは難しく、RpとRnとの関係を知るのは実質上不可能であるが、発光時の光強度分布の状態からどのようなRpとRnとの関係になっているのかを知ることができる。   In the semiconductor light emitting device used in the present invention, the sheet resistance RnΩ / □ of the n-type contact layer and the sheet resistance RpΩ / □ of the translucent p electrode have a relationship of Rp ≧ Rn. It is difficult to measure Rn after it is formed as a semiconductor light emitting device, and it is practically impossible to know the relationship between Rp and Rn, but what is the relationship between Rp and Rn from the state of the light intensity distribution during light emission? You can know if they are in a relationship.

また、p側台座電極とn電極を素子の辺々の中央に配置してもよく、またそれぞれを素子の向かい合う隅部に配置してもよい。   In addition, the p-side pedestal electrode and the n-electrode may be arranged at the center of each side of the element, or each may be arranged at the corners facing the element.

透光性p電極とn型コンタクト層とがRp≧Rnの関係であるとき、前記透光性p電極上に接して延長伝導部を有するp側台座電極を設けると、さらなる外部量子効率の向上が見込まれる。延長伝導部の形状及び方向に制限はなく、延長伝導部が衛線上である場合、光を遮る面積が減るので好ましいが、メッシュ状でもよい。また形状は、直線状以外に、曲線状、格子状、枝状、鉤状でもよい。このときp側台座電極の総面積に比例して遮光効果が増大するため、遮光効果が発光増強効果を上回らないように延長導電部の線幅及び長さを設計するのがよい。   When the translucent p-electrode and the n-type contact layer have a relationship of Rp ≧ Rn, providing a p-side pedestal electrode in contact with the translucent p-electrode and having an extended conductive portion further improves external quantum efficiency. Is expected. There is no limitation on the shape and direction of the extended conductive portion, and when the extended conductive portion is on the satellite, it is preferable because the area for blocking light is reduced, but a mesh shape may be used. Further, the shape may be a curved shape, a lattice shape, a branch shape, or a hook shape in addition to the straight shape. At this time, since the light shielding effect increases in proportion to the total area of the p-side pedestal electrode, it is preferable to design the line width and length of the extended conductive portion so that the light shielding effect does not exceed the light emission enhancing effect.

また、蛍光体は有機材料である樹脂や無機材料であるガラスなど種々のバインダーにて付着させることができる。バインダーとして有機物を使用する場合、具体的材料として、エポキシ樹脂、アクリル樹脂、シリコーンなどの耐候性に優れた透明樹脂が好適に用いられる。特にシリコーンを用いると信頼性に優れ且つ蛍光体の分散性を向上させることができ好ましい。   In addition, the phosphor can be attached with various binders such as a resin which is an organic material and a glass which is an inorganic material. When an organic substance is used as the binder, a transparent resin excellent in weather resistance such as an epoxy resin, an acrylic resin, or silicone is preferably used as a specific material. In particular, silicone is preferable because it is excellent in reliability and can improve the dispersibility of the phosphor.

また、バインダーとして無機物を使用することもできる。具体的方法として、沈降法やゾル−ゲル法等を用いることができる。例えば、蛍光体、シラノール(Si(OEt)OH)、及びエタノールを混合してスラリーを形成し、スラリーをノズルから吐出させた後、300℃にて3時間加熱してシラノールをSiOとし、蛍光体を所望の場所に固着させることができる。特に、窓部に蛍光体を付着させる場合、窓部の熱膨張率と近似である無機物を使用すると、蛍光体を良好に窓部に密着させることができ好ましい。 Moreover, an inorganic substance can also be used as a binder. As a specific method, a precipitation method, a sol-gel method, or the like can be used. For example, a phosphor, silanol (Si (OEt) 3 OH), and ethanol are mixed to form a slurry. After the slurry is discharged from a nozzle, the slurry is heated at 300 ° C. for 3 hours to change the silanol to SiO 2 . The phosphor can be fixed at a desired location. In particular, when the phosphor is attached to the window portion, it is preferable to use an inorganic substance that is close to the thermal expansion coefficient of the window portion because the phosphor can be satisfactorily adhered to the window portion.

また、無機物である結着剤をバインダーとして用いることもできる。結着剤とは、いわゆる低融点ガラスであり、微細な粒子であり且つ紫外から可視領域のふく射線に対して吸収が少なくバインダー中にて極めて安定であることが好ましく、沈殿法により得られた細かい粒子であるアルカリ土類のホウ酸塩が適している。   Further, an inorganic binder can be used as a binder. The binder is a so-called low-melting glass, is a fine particle and is preferably very stable in the binder with little absorption with respect to radiation from the ultraviolet to the visible region, and was obtained by a precipitation method. Alkaline earth borates, which are fine particles, are suitable.

また、大きい粒径を有する蛍光体を付着させる場合、融点が高くても粒子が超微粉体である結着剤、例えば、シリカ、アルミナ、あるいは沈殿法で得られる細かい粒度のアルカリ土類金属のピロりん酸塩、正りん酸塩などを使用することが好ましい。これらの結着剤は、単独、若しくは互いに混合して用いることができる。   In addition, when attaching a phosphor having a large particle size, a binder whose particle is an ultrafine powder even if the melting point is high, such as silica, alumina, or a fine-sized alkaline earth metal obtained by a precipitation method Pyrophosphate, orthophosphate, etc. are preferably used. These binders can be used alone or mixed with each other.

ここで、結着剤の塗布方法について述べる。結着剤は、結着効果を十分に高めるため、ビヒクル中に湿式粉砕してスラリー状にして結着剤スラリーとして用いることが好ましい。ビヒクルとは、有機溶媒あるいは脱イオン水に少量の粘結剤を溶解して得られる高粘度溶液である。例えば、有機溶媒である酢酸ブチルに対して粘結剤であるニトロセルロースを1wt%含有させることにより、有機系ビヒクルが得られる。   Here, a method of applying the binder will be described. In order to sufficiently enhance the binding effect, the binder is preferably used in the form of a slurry by wet pulverization in a vehicle and used as a binder slurry. A vehicle is a high viscosity solution obtained by dissolving a small amount of a binder in an organic solvent or deionized water. For example, an organic vehicle can be obtained by adding 1 wt% of nitrocellulose as a binder to butyl acetate as an organic solvent.

このようにして得られた結着剤スラリーに蛍光体を含有させて塗布液を作製する。塗布液中のスラリーの添加量は、塗布液中の蛍光体量に対してスラリー中の結着剤の総量が1〜3%wt程度とすることができる。光束維持率の低下を抑制するため、結着剤の添加量が少ない方が好ましい。このような塗布液を前記窓部の背面に塗布する。その後、温風あるいは熱風を吹き込み乾燥させる。最後に400℃〜700℃の温度でベーキングを行い、ビヒクルを飛散させることにより所望の場所に蛍光体層が結着剤にて付着される。   A phosphor is contained in the binder slurry thus obtained to prepare a coating solution. The added amount of the slurry in the coating solution can be set such that the total amount of the binder in the slurry is about 1 to 3% by weight with respect to the phosphor amount in the coating solution. In order to suppress a decrease in the luminous flux maintenance factor, it is preferable that the amount of the binder added is small. Such a coating solution is applied to the back surface of the window portion. After that, hot air or hot air is blown to dry. Finally, baking is performed at a temperature of 400 ° C. to 700 ° C., and the vehicle is scattered to adhere the phosphor layer to a desired place with a binder.

(拡散剤)
更に、本発明において、蛍光体に加えて拡散剤を含有させても良い。具体的な拡散剤としては、チタン酸バリウム、酸化チタン、酸化アルミニウム、酸化珪素等が好適に用いられる。これによって良好な指向特性を有する発光装置が得られる。
(Diffusion agent)
Furthermore, in the present invention, a diffusing agent may be contained in addition to the phosphor. As a specific diffusing agent, barium titanate, titanium oxide, aluminum oxide, silicon oxide or the like is preferably used. As a result, a light emitting device having good directivity can be obtained.

ここで本明細書において拡散剤とは、中心粒径が1nm以上5μm未満のものをいう。1μm以上5μm未満の拡散剤は、蛍光体からの光を良好に乱反射させ、大きな粒径の蛍光体を用いることにより生じやすい色ムラを抑制することができ好ましい。一方、1nm以上1μm未満の拡散剤は、発光素子からの光波長に対する干渉効果が低い反面、光度を低下させることなく樹脂粘度を高めることができる。これにより、ポッティング等により蛍光体含有樹脂などを配置させる場合、シリンジ内において樹脂中の蛍光体をほぼ均一に分散させその状態を維持することが可能となり、比較的取り扱いが困難である粒径の大きい蛍光体を用いた場合でも歩留まり良く生産することが可能となる。このように本発明における拡散剤は粒径範囲により作用が異なり、使用方法に合わせて選択択若しくは組み合わせて用いることができる。   Here, in this specification, the diffusing agent refers to those having a center particle diameter of 1 nm or more and less than 5 μm. A diffusing agent having a particle size of 1 μm or more and less than 5 μm is preferable because it can diffuse irregularly the light from the phosphor and suppress color unevenness that tends to occur when a phosphor having a large particle size is used. On the other hand, a diffusing agent of 1 nm or more and less than 1 μm has a low interference effect with respect to the light wavelength from the light emitting element, but can increase the resin viscosity without lowering the luminous intensity. This makes it possible to disperse the phosphor in the resin almost uniformly in the syringe and maintain the state when arranging the phosphor-containing resin by potting or the like, and the particle size is relatively difficult to handle. Even when a large phosphor is used, it is possible to produce with high yield. Thus, the action of the diffusing agent in the present invention varies depending on the particle size range, and can be selected or combined according to the method of use.

(フィラー)
更に、本発明において、色変換部材中に蛍光体に加えてフィラーを含有させても良い。具体的な材料は拡散剤と同様であるが、拡散剤と中心粒径が異なり、本明細書においてフィラーとは中心粒径が5μm以上100μm以下のものをいう。このような粒径のフィラーを透光性樹脂中に含有させると、光散乱作用により発光装置の色度バラツキが改善される他、透光性樹脂の耐熱衝撃性を高めることができる。これにより高温下での使用においても、発光素子と外部電極とを電気的に接続しているワイヤーの断線や前記発光素子底面とパッケージの凹部底面と剥離等を防止することができる信頼性の高い発光装置が得られる。更には樹脂の流動性を長時間一定に調整することが可能となり所望とする場所内に封止部材を形成することができ歩留まり良く量産することが可能となる。
(Filler)
Furthermore, in the present invention, the color conversion member may contain a filler in addition to the phosphor. The specific material is the same as that of the diffusing agent, but the diffusing agent has a central particle size different from that of the diffusing agent. When the filler having such a particle size is contained in the translucent resin, the chromaticity variation of the light emitting device is improved by the light scattering action, and the thermal shock resistance of the translucent resin can be enhanced. As a result, even when used at high temperatures, it is possible to prevent disconnection of the wire that electrically connects the light emitting element and the external electrode, separation from the bottom surface of the light emitting element and the bottom surface of the concave portion of the package, etc. with high reliability. A light emitting device is obtained. Furthermore, the fluidity of the resin can be adjusted to be constant for a long time, and a sealing member can be formed in a desired place, and mass production can be performed with a high yield.

また、フィラーは蛍光体と類似の粒径及び/又は形状を有することが好ましい。ここで本明細書では、類似の粒径とは、各粒子のそれぞれの中心粒径の差が20%未満の場合をいい、類似の形状とは、各粒径の真円との近似程度を表す円形度(円形度=粒子の投影面積に等しい真円の周囲長さ/粒子の投影の周囲長さ)の値の差が20%未満の場合をいう。このようなフィラーを用いることにより、蛍光体とフィラーが互いに作用し合い、樹脂中にて蛍光体を良好に分散させることができ色ムラが抑制される。   The filler preferably has a particle size and / or shape similar to that of the phosphor. Here, in this specification, the similar particle diameter means a case where the difference in the central particle diameter of each particle is less than 20%, and the similar shape means an approximate degree of each particle diameter with a perfect circle. This represents a case where the difference in the value of the degree of circularity (circularity = perimeter length of a perfect circle equal to the projected area of the particle / perimeter length of the projected particle) is less than 20%. By using such a filler, the phosphor and the filler interact with each other, the phosphor can be favorably dispersed in the resin, and color unevenness is suppressed.

[蛍光体]
蛍光体は、発光素子から放出された光を他の発光波長に変換する。吸収光の波長より長波長の光を放出する波長変換材料として蛍光体を使用し、発光素子の発光と蛍光体の変換光の混色により所望の光を外部に放出させることができる。蛍光体は、励起光源として例えばLEDの半導体発光層から発光された光で励起されて発光する。
[Phosphor]
The phosphor converts light emitted from the light emitting element into another emission wavelength. A phosphor is used as a wavelength conversion material that emits light having a wavelength longer than the wavelength of the absorbed light, and desired light can be emitted to the outside by color mixture of light emitted from the light emitting element and converted light of the phosphor. The phosphor is excited by light emitted from a semiconductor light emitting layer of the LED, for example, as an excitation light source and emits light.

本発明の蛍光体は、カルシウム、アルミニウム、セリウム、テルビウム及び酸素を基本構成元素とするアルカリ土類金属アルミン酸塩蛍光体であって、蛍光体中に含まれるカルシウムのモル数に対するアルミニウムのモル数の比が1.0以上、10.0以下の範囲が好ましい。このモル数の比は2.0以上、8.4以下の範囲がより好ましく、3.0以上、6.6以下の範囲がさらに好ましい。1.0未満でも、10.0を越えても長波長紫外線励起による発光輝度は低下してしまう。また、蛍光体中に含まれるカルシウムのモル数に対するセリウムのモル数の比は、0.030以上、0.80以下の範囲が好ましく、0.046以上、0.60以下の範囲がより好ましく、0.076以上、0.40以下の範囲がさらに好ましい。0.030未満でも、0.80を越えても長波長紫外線励起による発光輝度は低下してしまう。蛍光体中に含まれるカルシウムのモル数に対するテルビウムのモル数の比は、0.030以上、0.82以下の範囲が好ましく、0.046以上、0.62以下の範囲がより好ましく、0.074以上、0.40以下の範囲がさらに好ましい。0.030未満でも、0.84を越えても長波長紫外線励起による発光輝度は低下してしまう。   The phosphor of the present invention is an alkaline earth metal aluminate phosphor having calcium, aluminum, cerium, terbium and oxygen as basic constituent elements, and the number of moles of aluminum relative to the number of moles of calcium contained in the phosphor. The ratio is preferably 1.0 or more and 10.0 or less. The molar ratio is more preferably in the range of 2.0 or more and 8.4 or less, and further preferably in the range of 3.0 or more and 6.6 or less. Even if it is less than 1.0 or exceeds 10.0, the light emission luminance due to the long-wavelength ultraviolet excitation is lowered. Further, the ratio of the number of moles of cerium to the number of moles of calcium contained in the phosphor is preferably in the range of 0.030 or more and 0.80 or less, more preferably in the range of 0.046 or more and 0.60 or less. The range of 0.076 or more and 0.40 or less is more preferable. Even if it is less than 0.030 or exceeds 0.80, the light emission luminance due to the excitation of the long wavelength ultraviolet light is lowered. The ratio of the number of moles of terbium to the number of moles of calcium contained in the phosphor is preferably in the range of 0.030 or more and 0.82 or less, more preferably in the range of 0.046 or more and 0.62 or less. The range of 074 or more and 0.40 or less is more preferable. Even if it is less than 0.030 or exceeds 0.84, the light emission luminance due to the excitation of the long wavelength ultraviolet light is lowered.

本発明の蛍光体の発光スペクトルのピーク波長は少なくとも543〜547nmの範囲にあり、且つ励起スペクトルのピーク波長は少なくとも310〜390nmの範囲にある。   The peak wavelength of the emission spectrum of the phosphor of the present invention is at least in the range of 543 to 547 nm, and the peak wavelength of the excitation spectrum is in the range of at least 310 to 390 nm.

本発明の蛍光体として好ましくは、前記蛍光体のカルシウムの一部をマグネシウム、ストロンチウム、バリウム及び亜鉛から選択される少なくとも1種の元素で置換するアルカリ土類金属アルミン酸塩蛍光体である。このような2価金属元素でカルシウムの一部を置換した場合も発光輝度の高いアルカリ土類金属アルミン酸塩蛍光体が得られる。蛍光体中に含まれるカルシウム元素と置換元素の総モル数に対する置換元素のモル数の比が0以上、0.90以下の範囲が好ましく、0以上、0.60以下の範囲がより好ましく、0以上、0.30以下の範囲がさらに好ましい。0.90を越えると長波長紫外線励起による発光輝度は低下してしまう。   The phosphor of the present invention is preferably an alkaline earth metal aluminate phosphor in which a part of calcium of the phosphor is substituted with at least one element selected from magnesium, strontium, barium and zinc. Even when a part of calcium is substituted with such a divalent metal element, an alkaline earth metal aluminate phosphor having high emission luminance can be obtained. The ratio of the number of moles of the substitution element to the total number of moles of calcium element and substitution element contained in the phosphor is preferably in the range of 0 or more and 0.90 or less, more preferably in the range of 0 or more and 0.60 or less. As described above, the range of 0.30 or less is more preferable. If it exceeds 0.90, the luminance of light emitted by the long wavelength ultraviolet light excitation is lowered.

本発明の蛍光体として好ましくは、一般式が次式で表されるアルカリ土類金属アルミン酸塩蛍光体である。
(Ca1−a,M)O・αAl・βCe・γTb
(MはMg、Sr、Ba及びZnから選択される少なくとも1種の元素、0≦a≦0.9、0.5≦α≦5.0、0.015≦β≦0.40、0.015≦γ≦0.42)
The phosphor of the present invention is preferably an alkaline earth metal aluminate phosphor represented by the following formula.
(Ca 1-a, M a ) O · αAl 2 O 3 · βCe 2 O 3 · γTb 2 O 3
(M is at least one element selected from Mg, Sr, Ba and Zn, 0 ≦ a ≦ 0.9, 0.5 ≦ α ≦ 5.0, 0.015 ≦ β ≦ 0.40,. 015 ≦ γ ≦ 0.42)

a値は0≦a≦0.60の範囲がより好ましく、0≦a≦0.30の範囲がさらに好ましい。α値は1.0≦α≦4.2の範囲がより好ましく、1.5≦α≦3.3の範囲がさらに好ましい。また、β値は0.023≦β≦0.30の範囲がより好ましく、0.038≦β≦0.20の範囲がさらに好ましい。γの値は、0.023≦γ≦0.31の範囲がより好ましく、0.037≦γ≦0.20の範囲がさらに好ましい。このような組成範囲において、長波長紫外線励起による発光輝度の高いアルカリ土類金属アルミン酸塩蛍光体を得ることができる。   The a value is more preferably in the range of 0 ≦ a ≦ 0.60, and more preferably in the range of 0 ≦ a ≦ 0.30. The α value is more preferably in the range of 1.0 ≦ α ≦ 4.2, and further preferably in the range of 1.5 ≦ α ≦ 3.3. Further, the β value is more preferably in the range of 0.023 ≦ β ≦ 0.30, and further preferably in the range of 0.038 ≦ β ≦ 0.20. The value of γ is more preferably in the range of 0.023 ≦ γ ≦ 0.31, and further preferably in the range of 0.037 ≦ γ ≦ 0.20. In such a composition range, it is possible to obtain an alkaline earth metal aluminate phosphor having a high emission luminance by excitation with a long wavelength ultraviolet ray.

次に、上記特性について図を用いて説明する。本発明の実施例1の蛍光体の365nm励起による発光スペクトルをそれぞれ図2に、励起スペクトルを図3に示す。図2から、本発明の蛍光体は、発光スペクトルのピーク波長が543〜547nmの範囲にあって、長波長紫外線励起により緑色発光することがわかる。また、図3から、本発明の蛍光体は、励起スペクトルのピーク波長が310〜390nmの範囲にあって、長波長紫外線により効率よく励起されることがわかる。   Next, the characteristics will be described with reference to the drawings. FIG. 2 shows the emission spectrum of the phosphor of Example 1 of the present invention excited by 365 nm, and FIG. 3 shows the excitation spectrum. From FIG. 2, it can be seen that the phosphor of the present invention has a peak wavelength of the emission spectrum in the range of 543 to 547 nm and emits green light by long wavelength ultraviolet excitation. FIG. 3 also shows that the phosphor of the present invention has an excitation spectrum peak wavelength in the range of 310 to 390 nm and is efficiently excited by long-wavelength ultraviolet light.

CaO・αAl・0.07Ce・0.07Tb蛍光体を実施例1と同様に製造し、α値を0<α≦6.0の範囲で変化させたときの365nm励起による蛍光体の相対輝度(%)とα値の関係を図4に示す。ここで、相対輝度(%)は、実施例1の蛍光体の365nm励起による輝度を100%にしたときの相対値を示す。この図から、α値の増加とともに輝度は高くなり、α値が2.2付近で最も輝度が高く、それを越えると低下することがわかる。365nm励起による輝度は70%以上が実用上好ましく、0.5≦α≦5.0の範囲が好ましいことがわかる。また、輝度は1.0≦α≦4.2の範囲で85%以上、1.5≦α≦3.3の範囲で100%以上となっており、さらに好ましいことがわかる。 When a CaO · αAl 2 O 3 · 0.07Ce 2 O 3 · 0.07Tb 2 O 3 phosphor was produced in the same manner as in Example 1, the α value was changed in the range of 0 <α ≦ 6.0. FIG. 4 shows the relationship between the relative luminance (%) of the phosphors excited by 365 nm and the α value. Here, the relative luminance (%) represents a relative value when the luminance of the phosphor of Example 1 by the excitation at 365 nm is 100%. From this figure, it can be seen that the luminance increases as the α value increases, the luminance is highest when the α value is around 2.2, and decreases when the α value is exceeded. It can be seen that the luminance by excitation at 365 nm is preferably 70% or more, and preferably in the range of 0.5 ≦ α ≦ 5.0. The luminance is 85% or more in the range of 1.0 ≦ α ≦ 4.2 and 100% or more in the range of 1.5 ≦ α ≦ 3.3.

図5に、CaO・2.2Al・βCe・0.07Tb蛍光体において、β値を0<β≦0.5の範囲で変化させたときの365nm励起による相対輝度(%)とβ値の関係を示す。この図から、β値の増加とともに輝度は高くなり、β値が0.07付近で最も輝度が高く、それを越えると低下することがわかる。365nm励起による輝度は70%以上が実用上好ましく、0.015≦β≦0.40の範囲が好ましいことがわかる。また、輝度は0.023≦β≦0.30の範囲で85%以上、0.038≦β≦0.20の範囲で100%以上となっており、さらに好ましいことがわかる。 FIG. 5 shows a relative relative to the excitation of 365 nm when the β value is changed in the range of 0 <β ≦ 0.5 in the CaO.2.2Al 2 O 3 · βCe 2 O 3 · 0.07Tb 2 O 3 phosphor. The relationship between luminance (%) and β value is shown. From this figure, it can be seen that the luminance increases as the β value increases, the luminance is highest when the β value is around 0.07, and decreases when the β value is exceeded. It can be seen that the luminance by excitation at 365 nm is preferably 70% or more, and preferably in the range of 0.015 ≦ β ≦ 0.40. The luminance is 85% or more in the range of 0.023 ≦ β ≦ 0.30 and 100% or more in the range of 0.038 ≦ β ≦ 0.20.

図6に、CaO・2.2Al・0.07Ce・γTb蛍光体において、γ値を0<γ≦0.5の範囲で変化させたときの365nm励起による相対輝度(%)とγ値の関係を示す。この図から、γ値の増加とともに輝度は高くなり、γ値が0.07付近で最も輝度が高く、それを越えると低下することがわかる。365nm励起による輝度は70%以上が実用上好ましく、0.015≦γ≦0.42の範囲が好ましいことがわかる。また、輝度は0.023≦γ≦0.31の範囲で85%以上、0.037≦γ≦0.20の範囲で100%以上となっており、さらに好ましいことがわかる。 6, in CaO · 2.2Al 2 O 3 · 0.07Ce 2 O 3 · γTb 2 O 3 phosphor, relative by 365nm excitation when the gamma value is changed in a range of 0 <γ ≦ 0.5 The relationship between luminance (%) and γ value is shown. From this figure, it can be seen that the luminance increases as the γ value increases, the luminance is highest when the γ value is around 0.07, and decreases when the γ value is exceeded. It can be seen that the luminance by excitation at 365 nm is preferably 70% or more, and preferably in the range of 0.015 ≦ γ ≦ 0.42. The luminance is 85% or more in the range of 0.023 ≦ γ ≦ 0.31, and 100% or more in the range of 0.037 ≦ γ ≦ 0.20.

α、β及びγの好ましい範囲は、一般式が次式で表されるアルカリ土類金属アルミン酸塩蛍光体においても同様に、0.5≦α≦5.0、0.015≦β≦0.40及び0.015≦γ≦0.42の範囲であって、この範囲において長波長紫外線励起による発光輝度の高いアルカリ土類金属アルミン酸塩蛍光体が得られる。
(Ca1−a,M)O・αAl・βCe・γTb
(MはMg、Sr、Ba及びZnから選択される少なくとも1種の元素、0≦a≦0.9)
The preferable ranges of α, β, and γ are 0.5 ≦ α ≦ 5.0 and 0.015 ≦ β ≦ 0 in the alkaline earth metal aluminate phosphor whose general formula is represented by the following formula. In the range of .40 and 0.015 ≦ γ ≦ 0.42, an alkaline earth metal aluminate phosphor having high emission luminance by long-wavelength ultraviolet excitation is obtained.
(Ca 1-a, M a ) O · αAl 2 O 3 · βCe 2 O 3 · γTb 2 O 3
(M is at least one element selected from Mg, Sr, Ba and Zn, 0 ≦ a ≦ 0.9)

本発明の蛍光体に加えて他の蛍光体を混合して使用することもできる。例えば、(Sr,Ca,Ba,Mg)(PO(Cl,Br):Eu,Mn、(Sr,Ca,Ba,Mg)(POCl:Eu等のハロりん酸塩蛍光体、(Sr,Ca,Ba,Mg)SiO:Eu等の珪酸塩蛍光体、(Ca,Ba,Sr)Cl:Eu,Mn等のホウ酸塩蛍光体、SrAl:Eu、SrAl1425:Eu、CaAl:Eu,Mn、BaMgAl1627:Eu、BaMgAl1627:Eu,Mn、BaMgAl1017:Eu,Mn等のアルカリ土類金属アルミン酸塩蛍光体、YAl12:Ce等の希土類アルミン酸塩蛍光体、LaS:Eu、YS:Eu、GdS:Eu等の希土類酸硫化物蛍光体、ZnS:Cu等の硫化亜鉛蛍光体、ZnGaO:Mn等のガリウム酸塩蛍光体、(Mg,Ca,Sr,Ba)Ga:Eu等の硫化物蛍光体、(Mg,Ca,Sr,Ba)Si:Eu等の窒化物蛍光体などが好ましい。本発明の蛍光体に加えてこれらの蛍光体のうちの少なくとも1種の蛍光体を有するLED発光装置は、種々の発光色を呈し、優れた発光特性を有する。 In addition to the phosphor of the present invention, other phosphors can be mixed and used. For example, halophosphoric acid such as (Sr, Ca, Ba, Mg) 5 (PO 4 ) 3 (Cl, Br): Eu, Mn, (Sr, Ca, Ba, Mg) 5 (PO 4 ) 3 Cl: Eu Salt phosphors, silicate phosphors such as (Sr, Ca, Ba, Mg) 2 SiO 4 : Eu, borate phosphors such as (Ca, Ba, Sr) 2 B 5 O 9 Cl: Eu, Mn, SrAl 2 O 4 : Eu, Sr 4 Al 14 O 25 : Eu, CaAl 2 O 4 : Eu, Mn, BaMg 2 Al 16 O 27 : Eu, BaMg 2 Al 16 O 27 : Eu, Mn, BaMgAl 10 O 17 : Alkaline earth metal aluminate phosphors such as Eu and Mn, rare earth aluminate phosphors such as Y 3 Al 5 O 12 : Ce, La 2 O 2 S: Eu, Y 2 O 2 S: Eu, Gd 2 Rare earth acid sulfur such as O 2 S: Eu Fluoride phosphor, zinc sulfide phosphor such as ZnS: Cu, gallate phosphor such as Zn 2 GaO 4 : Mn, sulfide phosphor such as (Mg, Ca, Sr, Ba) Ga 2 S 4 : Eu, A nitride phosphor such as (Mg, Ca, Sr, Ba) 2 Si 5 N 8 : Eu is preferable. An LED light-emitting device having at least one of these phosphors in addition to the phosphor of the present invention exhibits various emission colors and has excellent emission characteristics.

蛍光体には、必要に応じて表面にコーティングを施しても良い。これによって、蛍光体が熱、湿度、紫外線等の外的要因によって劣化することがさらに防止される。また、蛍光体表面からイオンが溶出し、半導体発光素子の他の部材に悪影響を及ぼすことも抑止される。   The phosphor may be coated on the surface as necessary. This further prevents the phosphor from being deteriorated by external factors such as heat, humidity, and ultraviolet rays. Moreover, ions are eluted from the phosphor surface, and the other members of the semiconductor light emitting element are also prevented from being adversely affected.

本発明の蛍光体は次のようにして得られる。蛍光体原料として、カルシウム化合物、アルミニウム化合物、セリウム化合物、テルビウム化合物を用い、又はこれらの化合物に加えてマグネシウム化合物、ストロンチウム化合物、バリウム化合物、亜鉛化合物から選択される少なくとも1種の化合物を用い、各化合物について、例えば一般式(Ca1−a,M)O・αAl・βCe・γTb(MはMg、Sr、Ba及びZnから選択される少なくとも1種の元素、0≦a≦0.9、0.5≦α≦5.0、0.015≦β≦0.40、0.015≦γ≦0.42)の割合になるように秤取し、混合するか、又はこれら蛍光体原料にフラックスを加えて混合し、原料混合物を得る。この原料混合物をルツボに充填後、還元性雰囲気中、800〜1500℃で焼成し、冷却後、分散処理することにより、前記一般式で表される本発明の蛍光体を得る。 The phosphor of the present invention is obtained as follows. As a phosphor raw material, calcium compounds, aluminum compounds, cerium compounds, terbium compounds are used, or in addition to these compounds, at least one compound selected from magnesium compounds, strontium compounds, barium compounds, zinc compounds is used, for compounds, for example, at least one element of the general formula (Ca 1-a, M a ) O · αAl 2 O 3 · βCe 2 O 3 · γTb 2 O 3 (M being selected Mg, Sr, Ba and Zn , 0 ≦ a ≦ 0.9, 0.5 ≦ α ≦ 5.0, 0.015 ≦ β ≦ 0.40, 0.015 ≦ γ ≦ 0.42). Or a flux is added to and mixed with these phosphor raw materials to obtain a raw material mixture. After filling this raw material mixture into a crucible, it is fired at 800-1500 ° C. in a reducing atmosphere, and after cooling, the phosphor of the present invention represented by the above general formula is obtained by dispersion treatment.

蛍光体原料として、酸化物又は熱分解により酸化物となる炭酸塩、水酸化物等の化合物が好ましく用いられる。また、蛍光体原料として、蛍光体を構成する各金属元素を全部又は一部含む共沈物を用いることもできる。例えば、これらの元素を含む水溶液にアルカリ、炭酸塩等の水溶液を加えると共沈物が得られるが、これを乾燥又は熱分解して用いることができる。また、フラックスとしてはフッ化物、ホウ酸塩等が好ましく、蛍光体原料100重量部に対し0.01〜1.0重量部の範囲で添加する。焼成雰囲気は還元性雰囲気が好ましく、水素を数%含有する水素・窒素の混合ガス雰囲気がより好ましい。焼成温度は800〜1500℃が好ましく、目的の中心粒径の蛍光体を得ることができる。より好ましくは900〜1400℃である。   As the phosphor raw material, an oxide or a compound such as a carbonate or hydroxide that becomes an oxide by thermal decomposition is preferably used. Moreover, the coprecipitate which contains all or one part of each metal element which comprises a fluorescent substance can also be used as a fluorescent substance raw material. For example, when an aqueous solution such as alkali or carbonate is added to an aqueous solution containing these elements, a coprecipitate can be obtained, which can be used after being dried or thermally decomposed. Moreover, as a flux, a fluoride, a borate, etc. are preferable, and it adds in 0.01-1.0 weight part with respect to 100 weight part of fluorescent substance raw materials. The firing atmosphere is preferably a reducing atmosphere, and more preferably a hydrogen / nitrogen mixed gas atmosphere containing several percent of hydrogen. The firing temperature is preferably 800 to 1500 ° C., and a phosphor having a target center particle diameter can be obtained. More preferably, it is 900-1400 degreeC.

本発明の蛍光体の中心粒径は1〜100μmの範囲が好ましく、より好ましくは5〜50μmの範囲であり、さらに好ましくは5〜15μmの範囲である。1μmより小さい蛍光体は、凝集体を形成しやすい傾向にある。これに対し、5〜50μmの粒径範囲の蛍光体は、光の吸収率及び変換効率が高く、発光層も形成しやすい。このように、光学的に優れた特徴を有する粒径の大きな蛍光体を含有させることにより、発光装置の量産性も向上する。ここで、中心粒径とは、体積基準粒度分布曲線において積算値が50%のときの粒径値であり、体積基準粒度分布曲線は、レーザ回折・散乱法により粒度分布を測定し得られるもので、具体的には、気温25℃、湿度70%の環境下において、濃度が0.05%であるヘキサメタリン酸ナトリウム水溶液に各物質を分散させ、レーザ回折式粒度分布測定装置(SALD−2000A)により、粒径範囲0.03μm〜700μmで測定することにより得られる。また、上記中心粒径値を有する蛍光体が頻度高く含有されていることが好ましく、頻度値は20%〜50%が好ましい。このように粒径のバラツキが小さい蛍光体を用いることにより、より色ムラが抑制され良好な色調を有する発光装置が得られる。   The center particle diameter of the phosphor of the present invention is preferably in the range of 1 to 100 μm, more preferably in the range of 5 to 50 μm, and still more preferably in the range of 5 to 15 μm. Phosphors smaller than 1 μm tend to form aggregates. On the other hand, a phosphor having a particle size range of 5 to 50 μm has a high light absorption rate and conversion efficiency, and easily forms a light emitting layer. As described above, the mass productivity of the light-emitting device is improved by including a phosphor having a large particle diameter and having optically excellent characteristics. Here, the center particle size is a particle size value when the integrated value is 50% in the volume-based particle size distribution curve, and the volume-based particle size distribution curve can be obtained by measuring the particle size distribution by a laser diffraction / scattering method. Specifically, in an environment where the temperature is 25 ° C. and the humidity is 70%, each substance is dispersed in an aqueous solution of sodium hexametaphosphate having a concentration of 0.05%, and a laser diffraction particle size distribution analyzer (SALD-2000A). Is obtained by measuring in a particle size range of 0.03 to 700 μm. Moreover, it is preferable that the fluorescent substance which has the said center particle size value is contained frequently, and 20%-50% of frequency values are preferable. By using a phosphor having a small variation in particle size in this way, a light emitting device having a favorable color tone with more suppressed color unevenness can be obtained.

以下、本発明の実施例について説明するが、本発明は具体的実施例のみに限定されるものではないことは言うまでもない。   Examples of the present invention will be described below, but it goes without saying that the present invention is not limited to specific examples.

[実施例1]
<蛍光体>
蛍光体原料として、
CaCO ・・・・・・・1.00mol(100.0g)
Al・・・・・・・・2.19mol(223.2g)
CeO ・・・・・・・・0.125mol(21.5g)
・Tb・・・・・・・・0.0313mol(23.4g)
を混合し、さらにこれにフラックスとして、HBO0.9gを添加して十分に混合し、アルミナ坩堝に充填し、水素・窒素の混合ガス雰囲気において、室温から1250℃まで300℃/hrで昇温し、1250℃で3時間焼成する。得られる焼成品を水中でボールミルし、水洗、分離、乾燥して、篩を通し、中心粒径が10μmのCaO・2.19Al・0.0625Ce・0.0625Tb蛍光体を得る。蛍光体の組成を表1に示す。この蛍光体は、365nm紫外線励起により、545nmに発光ピークを有し、発光色は緑色で、色度座標値はx=0.340、y=0.553である。また、励起スペクトルのピーク波長は366nmである。これらの測定結果を表2に示す。
[Example 1]
<Phosphor>
As a phosphor material,
CaCO 3 ... 1.00 mol (100.0 g)
Al 2 O 3 ... 2.19 mol (223.2 g)
CeO 2 ... 0.125 mol (21.5 g)
・ Tb 4 O 7 ... 0.0313 mol (23.4 g)
In addition, 0.9 g of H 3 BO 3 was added as a flux to this and mixed well, filled in an alumina crucible, and 300 ° C./hr from room temperature to 1250 ° C. in a mixed gas atmosphere of hydrogen and nitrogen. The temperature is raised at 1,250 ° C. for 3 hours. The obtained fired product is ball-milled in water, washed with water, separated, dried, passed through a sieve, and CaO · 2.19Al 2 O 3 · 0.0625Ce 2 O 3 · 0.0625Tb 2 O 3 having a center particle size of 10 µm. A phosphor is obtained. Table 1 shows the composition of the phosphor. This phosphor has an emission peak at 545 nm by excitation with ultraviolet light at 365 nm, the emission color is green, and the chromaticity coordinate values are x = 0.340 and y = 0.553. The peak wavelength of the excitation spectrum is 366 nm. These measurement results are shown in Table 2.

Figure 2005232305
Figure 2005232305

Figure 2005232305
Figure 2005232305

次に、この蛍光体を用いてLED発光装置を作製する。
<発光装置>
LEDチップは、発光層として発光ピークが紫外域にある365nmのInAlGaN半導体を有する窒化物半導体素子を用いる。より具体的にはLEDチップは、洗浄させたサファイヤ基板上にTMG(トリメチルガリウム)ガス、TMI(トリメチルインジウム)ガス、窒素ガス及びドーパントガスをキャリアガスと共に流し、MOCVD法で窒化物半導体を成膜させることにより形成させることができる。ドーパントガスとしてSiHとCpMgを切り替えることによってn型窒化物半導体やp型窒化物半導体となる層を形成させる。
Next, an LED light-emitting device is manufactured using this phosphor.
<Light emitting device>
The LED chip uses a nitride semiconductor element having a 365 nm InAlGaN semiconductor having an emission peak in the ultraviolet region as a light emitting layer. More specifically, in the LED chip, TMG (trimethylgallium) gas, TMI (trimethylindium) gas, nitrogen gas and dopant gas are flowed together with a carrier gas on a cleaned sapphire substrate, and a nitride semiconductor is formed by MOCVD. Can be formed. A layer to be an n-type nitride semiconductor or a p-type nitride semiconductor is formed by switching between SiH 4 and Cp 2 Mg as the dopant gas.

LEDチップの素子構造としては、サファイア基板上に、アンドープのn型GaN層、アンドープGaNよりなる下地層、組成傾斜AlGaN層、SiをドープしたAlGaNよりなるn型クラッド層層兼n型コンタクト層を形成させ、次に発光層としてSiをドープしたAlGaNよりなる障壁層とアンドープのInGaNよりなる井戸層を1セットとし3セット積層させた多重量子井戸構造としてある。発光層上にはMgをドープしたAlGaNよりなるp型クラッド層とp型コンタクト層を順次積層させた構成としてある(なお、サファイヤ基板上には低温でGaN層を形成させバッファ層とさせてある。また、p型半導体は、成膜後400℃以上でアニールさせてある)。   As an element structure of the LED chip, an undoped n-type GaN layer, an underlayer made of undoped GaN, a composition gradient AlGaN layer, an n-type cladding layer made of Si-doped AlGaN and an n-type contact layer are formed on a sapphire substrate. Next, a multi-quantum well structure is formed, in which three layers of a barrier layer made of AlGaN doped with Si and a well layer made of undoped InGaN are stacked as a light emitting layer. A p-type cladding layer made of AlGaN doped with Mg and a p-type contact layer are sequentially laminated on the light emitting layer (note that a GaN layer is formed on the sapphire substrate at a low temperature to serve as a buffer layer. Also, the p-type semiconductor is annealed at 400 ° C. or higher after film formation).

詳細に記載すると、2インチφ、(0001)C面を主面とするサファイア基板上に、500℃にてGaNよりなるバッファ層を200Åの膜厚にて成長させた後、温度を1050℃にしてアンドープGaN層を5μmの膜厚にて成長させる。尚、この成長させる膜厚は、5μmに限定されるものではなく、バッファ層よりも厚い膜厚で成長させて、10μm以下の膜厚に調整することが望ましい。次に、このアンドープGaN層の成長後、ウェーハを反応容器から取り出し、このGaN層の表面に、ストライプ状のフォトマスクを形成し、CVD装置によりストライプ幅15μm、ストライプ間隔(窓部)5μmのSiOよりなるマスクを0.1μmの膜厚で形成する。マスクを形成後、ウェーハを再度反応容器内にセットし、1050℃で、アンドープGaNを10μmの膜厚に成長させる。アンドープGaN層の結晶欠陥は1010/cm以上であるが、GaN層の結晶欠格は10/cm以上である。 More specifically, a buffer layer made of GaN is grown at 200 ° C. on a sapphire substrate having a 2 inch φ, (0001) C plane as the main surface, and then the temperature is raised to 1050 ° C. An undoped GaN layer is grown to a thickness of 5 μm. Note that the film thickness to be grown is not limited to 5 μm, and it is desirable to grow the film thicker than the buffer layer and adjust the film thickness to 10 μm or less. Next, after the growth of the undoped GaN layer, the wafer is taken out of the reaction vessel, a striped photomask is formed on the surface of the GaN layer, and a SiO 2 having a stripe width of 15 μm and a stripe interval (window) of 5 μm is formed by a CVD apparatus. A mask made of 2 is formed to a thickness of 0.1 μm. After forming the mask, the wafer is set again in the reaction vessel, and undoped GaN is grown to a thickness of 10 μm at 1050 ° C. The crystal defect of the undoped GaN layer is 10 10 / cm 2 or more, but the crystal defect of the GaN layer is 10 6 / cm 2 or more.

(n型窒化ガリウム系化合物半導体層)
次に、以下の下地層及び組成傾斜層を介して、n型クラッド層兼n型コンタクト層を形成する。
(N-type gallium nitride compound semiconductor layer)
Next, an n-type cladding layer and n-type contact layer are formed through the following underlayer and composition gradient layer.

(下地層)
バッファ層:続いて、水素雰囲気中、510℃でアンモニアとTMG(トリメチルガリウム)を用い、基板上にGaNよりなるバッファ層を約200Åの膜厚で成長させる。
高温成長層:バッファ層成長後、TMGのみを止めて、温度を1050℃まで上昇させ、1050℃になったら、原料ガスにTMG、アンモニアを用い、アンドープGaNよりなる高温成長の窒化物半導体を5μmの膜厚で成長させる。
(Underlayer)
Buffer layer: Subsequently, using hydrogen and TMG (trimethylgallium) at 510 ° C. in a hydrogen atmosphere, a buffer layer made of GaN is grown on the substrate to a thickness of about 200 mm.
High-temperature growth layer: After growing the buffer layer, only TMG is stopped, the temperature is raised to 1050 ° C., and when it reaches 1050 ° C., TMG and ammonia are used as source gases, and a high-temperature growth nitride semiconductor made of undoped GaN is 5 μm. Growing with a film thickness of

(組成傾斜層)
組成傾斜層:高温成長層成長後、さらに同様の温度で、原料ガスにTMG、TMA、アンモニアを用い、組成傾斜AlGaN層を0.4μmの膜厚で成長させる。この組成傾斜層は、高温成長層とn型クラッド層との格子不整合を緩和させるためのもので、アンドープのGaNからSiを1×1019/cmドープしたn型Al0.07Ga0.93NまでAlの混晶比とSiのドープ量とを徐々に大きくして形成する。
(Composition gradient layer)
Composition gradient layer: After growing the high temperature growth layer, the composition gradient AlGaN layer is grown to a thickness of 0.4 μm using TMG, TMA, and ammonia as source gases at the same temperature. This composition gradient layer is for relaxing lattice mismatch between the high-temperature growth layer and the n-type cladding layer, and is n-type Al 0.07 Ga 0 doped with 1 × 10 19 / cm 3 of Si from undoped GaN. The Al alloy ratio and Si doping amount are gradually increased up to .93 N.

(n型クラッド層兼n型コンタクト層)
次に、1050℃でTMG、TMA、アンモニア、シランを用い、Siを1×1019/cmドープしたn型Al0.07Ga0.93Nよりなるn型クラッド層層兼n型コンタクト層を2.5μmの膜厚で形成する。
(N-type cladding layer and n-type contact layer)
Next, an n-type clad layer / n-type contact layer made of n-type Al 0.07 Ga 0.93 N doped with Si at 1 × 10 19 / cm 3 using TMG, TMA, ammonia, and silane at 1050 ° C. Is formed with a film thickness of 2.5 μm.

(活性層)
次に、温度を900℃にして、原料ガスにTMI(トリメチルインジウム)、TMG、TMAを用い、Siを1×1019/cmドープしたAl0.09Ga0.91Nよりなる障壁層、その上にアンドープのIn0.01Ga0.99Nよりなる井戸層を、障壁層A/井戸層A/障壁層B/井戸層B/障壁層C/井戸層C/障壁層Dの順に積層する。この時、障壁層AとBとCとDをそれぞれ200Å、井戸層AとBとCをそれぞれ60Åの膜厚で形成する。障壁層Dのみアンドープとする。
(Active layer)
Next, the barrier layer made of Al 0.09 Ga 0.91 N doped with Si at 1 × 10 19 / cm 3 using TMI (trimethylindium), TMG, TMA as a source gas at a temperature of 900 ° C., A well layer made of undoped In 0.01 Ga 0.99 N is stacked thereon in the order of barrier layer A / well layer A / barrier layer B / well layer B / barrier layer C / well layer C / barrier layer D. To do. At this time, the barrier layers A, B, C, and D are formed to a thickness of 200 mm, and the well layers A, B, and C are formed to a thickness of 60 mm. Only the barrier layer D is undoped.

(p型クラッド層)
次に、水素雰囲気中、1050℃でTMG、TMA、アンモニア、CpMg(シクロペンタジエニルマグネシウム)を用い、Mgを1×1020/cmドープしたAl0.38Ga0.62Nよりなるp型クラッド層を270Åの膜厚で成長させる。
(P-type cladding layer)
Next, from Al 0.38 Ga 0.62 N doped with 1 × 10 20 / cm 3 of Mg using TMG, TMA, ammonia, Cp 2 Mg (cyclopentadienyl magnesium) at 1050 ° C. in a hydrogen atmosphere A p-type cladding layer is grown to a thickness of 270 mm.

(p型コンタクト層)
続いて、p型クラッド層上に、TMG、TMA、アンモニア、CpMgを用いて、Mgを4×1018/cmドープしたAl0.07Ga0.93Nよりなる第1のp型コンタクト層を0.1μmの膜厚で成長させ、その後、ガスの流量を調整してMgを1×1020/cmドープしたAl0.07Ga0.93Nよりなる第2のp型コンタクト層を0.02μmの膜厚で成長させた。
(P-type contact layer)
Subsequently, the first p-type made of Al 0.07 Ga 0.93 N doped with 4 × 10 18 / cm 3 of Mg on the p-type cladding layer using TMG, TMA, ammonia, and Cp 2 Mg. A second p-type contact made of Al 0.07 Ga 0.93 N doped with 1 × 10 20 / cm 3 Mg by adjusting the flow rate of the gas after growing the contact layer to a thickness of 0.1 μm The layer was grown to a thickness of 0.02 μm.

成長終了後、窒素雰囲中、ウェーハを反応容器内において、700℃でアニーリングを行い、p型層をさらに低抵抗化する。   After completion of the growth, the wafer is annealed at 700 ° C. in a reaction vessel in a nitrogen atmosphere to further reduce the resistance of the p-type layer.

次に、エッチングによりサファイア基板上の窒化物半導体に同一面側で、pn各コンタクト層表面を露出させる。具体的には、ウェーハを反応容器から取り出し、表面に所定の形状のマスクを形成し、RIE(反応イオンエッチング)装置にてp型窒化ガリウム系化合物半導体層側からエッチングを行い、n型コンタクト層の表面を露出させる。   Next, the surface of each pn contact layer is exposed on the same side as the nitride semiconductor on the sapphire substrate by etching. Specifically, the wafer is taken out from the reaction vessel, a mask having a predetermined shape is formed on the surface, and etching is performed from the p-type gallium nitride compound semiconductor layer side by an RIE (reactive ion etching) apparatus, and the n-type contact layer To expose the surface.

(透光性p電極、台座電極、n電極)
各コンタクト層上に、スパッタリング法を用いて正負各台座電極をそれぞれ形成させる。なお、p型窒化物半導体上の全面には金属薄膜を透光性電極として形成させた後に、透光性電極の一部に台座電極を形成させてある。具体的には、エッチング後、p型層のほぼ全面を覆うように、膜厚110Åの透光性p電極(Ni/Au=60/50)と、そのp電極の上に膜厚0.5μmのAuよりなり、延長導線部を3本有する台座電極を発光素子の角部に辺に沿って形成する。一方、エッチングにより露出させたn側コンタクト層の表面には、前記台座電極と対向するようにWとAlを含むn電極を形成する。出来上がった半導体ウェーハにスクライブラインを引いた後、外力により分割させ半導体発光素子であるLEDチップを形成させる。
(Translucent p electrode, pedestal electrode, n electrode)
Positive and negative pedestal electrodes are formed on each contact layer by sputtering. A metal thin film is formed on the entire surface of the p-type nitride semiconductor as a translucent electrode, and then a pedestal electrode is formed on a part of the translucent electrode. Specifically, after etching, a light-transmitting p-electrode (Ni / Au = 60/50) having a thickness of 110 mm so as to cover almost the entire surface of the p-type layer, and a film thickness of 0.5 μm on the p-electrode. A pedestal electrode made of Au and having three extended conductor portions is formed along the side at the corner of the light emitting element. On the other hand, an n-electrode containing W and Al is formed on the surface of the n-side contact layer exposed by etching so as to face the pedestal electrode. After a scribe line is drawn on the completed semiconductor wafer, it is divided by an external force to form LED chips that are semiconductor light emitting elements.

一方、発光装置の筐体として中央部に凹部有し且つ凹部の両側にコバール製のリード電極が絶縁的に気密絶縁的に挿入固定されたベース部とからなるコバール製パッケージを用いる。前記パッケージ及びリード電極の表面にはNi/Ag層が設けられている。このようにして構成されたパッケージの凹部内に、Ag−Sn合金にてLEDチップをダイボンドする。次に、ダイボンドされたLEDチップの各電極と、パッケージ凹部底面から露出された各リード電極とをそれぞれAgワイヤにて電気的導通を取り、図1に示すようなLED発光装置を作製する。   On the other hand, a Kovar package is used as a housing of the light-emitting device. The Kovar package has a concave portion at the center and a base portion in which Kovar lead electrodes are inserted and fixed in an insulating and airtight manner on both sides of the concave portion. A Ni / Ag layer is provided on the surface of the package and the lead electrode. An LED chip is die-bonded with an Ag—Sn alloy in the recess of the package thus configured. Next, each electrode of the die-bonded LED chip and each lead electrode exposed from the bottom of the recess of the package are electrically connected with an Ag wire, and an LED light emitting device as shown in FIG. 1 is manufactured.

この発光装置に電流を流すと、発光素子2からピーク波長が365nmの紫外線が放射される。この紫外線を励起源として、発光素子2を覆う蛍光体層3が緑色発光し、その結果、色度座標値がx=0.341、y=0.552の緑色LED発光装置が得られる。   When a current is passed through the light emitting device, ultraviolet light having a peak wavelength of 365 nm is emitted from the light emitting element 2. Using this ultraviolet ray as an excitation source, the phosphor layer 3 covering the light emitting element 2 emits green light. As a result, a green LED light emitting device having chromaticity coordinate values of x = 0.341 and y = 0.552 is obtained.

[実施例2〜7]
表1に示した蛍光体組成の割合で原料を混合し、表1に示した焼成温度で焼成する以外は実施例1と同様にして蛍光体を作製する。これらの蛍光体の測定結果を表2に示す。表2に示した相対輝度(%)は、実施例1の蛍光体の365nm励起による輝度を100%にしたときの相対値を示す。
[Examples 2 to 7]
A phosphor is manufactured in the same manner as in Example 1 except that the raw materials are mixed at the ratio of the phosphor composition shown in Table 1 and fired at the firing temperature shown in Table 1. Table 2 shows the measurement results of these phosphors. The relative luminance (%) shown in Table 2 indicates a relative value when the luminance of the phosphor of Example 1 is set to 100% by 365 nm excitation.

[実施例8〜14]
蛍光体原料として、CaCOに加えて、MgCO、SrCO、BaCO、ZnOから選択される少なくとも1種の化合物を用い、表1に示した蛍光体組成の割合で原料を混合する以外は実施例1と同様にして蛍光体を作製する。
[Examples 8 to 14]
In addition to CaCO 3 , at least one compound selected from MgCO 3 , SrCO 3 , BaCO 3 , and ZnO is used as the phosphor raw material, and the raw materials are mixed at the ratio of the phosphor composition shown in Table 1. A phosphor is produced in the same manner as in Example 1.

[実施例15]
緑色蛍光体として実施例1で得られる蛍光体、青色蛍光体として(Sr,Ca,Ba,Mg)(PO(Cl,Br):Eu蛍光体、及び赤色蛍光体として(Mg,Ca,Sr,Ba)Si:Eu蛍光体を用い、励起光源として発光スペクトルのピーク波長が365nmの窒化物半導体発光素子を用いて、実施例1と同様にして、色度座標値がx=0.313、y=0.321の白色LED発光装置を作製する。
[Example 15]
The phosphor obtained in Example 1 as a green phosphor, (Sr, Ca, Ba, Mg) 5 (PO 4 ) 3 (Cl, Br): Eu phosphor as a blue phosphor, and (Mg, In the same manner as in Example 1, using a Ca, Sr, Ba) 2 Si 5 N 8 : Eu phosphor, a nitride semiconductor light emitting device having an emission spectrum peak wavelength of 365 nm as an excitation light source, chromaticity coordinate values Produces a white LED light emitting device with x = 0.313 and y = 0.321.

[実施例16]
緑色蛍光体として実施例1で得られる蛍光体、青色蛍光体として(Sr,Ca,Ba,Mg)(PO(Cl,Br):Eu蛍光体、及び赤色蛍光体としてGdS:Eu蛍光体を用い、励起光源として発光スペクトルのピーク波長が365nmの窒化物半導体発光素子を用いて、実施例1と同様にして、色度座標値がx=0.322、y=0.330の白色LED発光装置を作製する。
[Example 16]
The phosphor obtained in Example 1 as a green phosphor, (Sr, Ca, Ba, Mg) 5 (PO 4 ) 3 (Cl, Br): Eu phosphor as a blue phosphor, and Gd 2 O as a red phosphor Using a nitride semiconductor light emitting device having a 2 S: Eu phosphor and a peak wavelength of an emission spectrum of 365 nm as an excitation light source, the chromaticity coordinate values are x = 0.322, y = A 0.330 white LED light-emitting device is produced.

[実施例17]
緑色蛍光体として実施例1で得られる蛍光体、青色蛍光体として(Sr,Ca,Ba,Mg)(PO(Cl,Br):Eu蛍光体、及び赤色蛍光体として(Mg,Ca,Sr,Ba)Si:Eu蛍光体とGdS:Eu蛍光体を用い、励起光源として発光スペクトルのピーク波長が365nmの窒化物半導体発光素子を用いて、実施例1と同様にして、色度座標値がx=0.320、y=0.327の白色LED発光装置を作製する。
[Example 17]
The phosphor obtained in Example 1 as a green phosphor, (Sr, Ca, Ba, Mg) 5 (PO 4 ) 3 (Cl, Br): Eu phosphor as a blue phosphor, and (Mg, Ca, Sr, Ba) 2 Si 5 N 8 : Eu phosphor and Gd 2 O 2 S: Eu phosphor were used, and a nitride semiconductor light emitting device having an emission spectrum peak wavelength of 365 nm was used as an excitation light source. In the same manner as in Example 1, a white LED light emitting device having chromaticity coordinate values of x = 0.320 and y = 0.327 is manufactured.

表1及び表2から、実施例1〜14で得られる本発明の蛍光体は、一般式が次式で表されるアルカリ土類金属アルミン酸塩蛍光体であり、長波長紫外線励起による発光輝度が高いことがわかる。
(Ca1−a,M)O・αAl・βCe・γTb
(MはMg、Sr、Ba及びZnから選択される少なくとも1種の元素、0≦a≦0.9、0.5≦α≦5.0、0.015≦β≦0.40、0.015≦γ≦0.42)
From Tables 1 and 2, the phosphors of the present invention obtained in Examples 1 to 14 are alkaline earth metal aluminate phosphors whose general formulas are represented by the following formulas, and emission luminance due to long-wavelength ultraviolet excitation. Is high.
(Ca 1-a, M a ) O · αAl 2 O 3 · βCe 2 O 3 · γTb 2 O 3
(M is at least one element selected from Mg, Sr, Ba and Zn, 0 ≦ a ≦ 0.9, 0.5 ≦ α ≦ 5.0, 0.015 ≦ β ≦ 0.40,. 015 ≦ γ ≦ 0.42)

本発明は、照明用光源、LEDディスプレイ、携帯電話機等のバックライト光源、信号機、照明式スイッチ、車載用ストップランプ、各種センサ及び各種インジケータ等に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for illumination light sources, LED displays, backlight light sources such as mobile phones, traffic lights, illumination switches, in-vehicle stop lamps, various sensors, and various indicators.

本発明の実施の形態に係る発光装置を示した模式的断面図の一例である。1 is an example of a schematic cross-sectional view showing a light emitting device according to an embodiment of the present invention. 実施例1の蛍光体の発光スペクトルを示すグラフである。3 is a graph showing an emission spectrum of the phosphor of Example 1. 実施例1の蛍光体の励起スペクトルを示すグラフである。3 is a graph showing an excitation spectrum of the phosphor of Example 1. 本発明の蛍光体の相対輝度(%)とα値の関係を示す図である。It is a figure which shows the relationship between the relative luminance (%) and alpha value of the fluorescent substance of this invention. 本発明の蛍光体の相対輝度(%)とβ値の関係を示す図である。It is a figure which shows the relationship between the relative luminance (%) of the fluorescent substance of this invention, and (beta) value. 本発明の蛍光体の相対輝度(%)とγ値の関係を示す図である。It is a figure which shows the relationship between the relative luminance (%) of the fluorescent substance of this invention, and (gamma) value.

符号の説明Explanation of symbols

1 発光装置パッケージ
2 半導体発光素子
3 蛍光体層ワイヤー
4 ワイヤー
DESCRIPTION OF SYMBOLS 1 Light emitting device package 2 Semiconductor light emitting element 3 Phosphor layer wire 4 Wire

Claims (6)

カルシウム、アルミニウム、セリウム、テルビウム及び酸素を基本構成元素とするアルカリ土類金属アルミン酸塩蛍光体であって、蛍光体中に含まれるカルシウムのモル数に対するアルミニウムのモル数の比が1.0以上、10.0以下の範囲であることを特徴とするアルカリ土類金属アルミン酸塩蛍光体。   An alkaline earth metal aluminate phosphor having calcium, aluminum, cerium, terbium and oxygen as basic constituent elements, wherein the ratio of the number of moles of aluminum to the number of moles of calcium contained in the phosphor is 1.0 or more An alkaline earth metal aluminate phosphor characterized by having a range of 10.0 or less. 前記カルシウムの一部をマグネシウム、ストロンチウム、バリウム及び亜鉛から選択される少なくとも1種の元素で置換する請求項1に記載のアルカリ土類金属アルミン酸塩蛍光体。   The alkaline earth metal aluminate phosphor according to claim 1, wherein a part of the calcium is substituted with at least one element selected from magnesium, strontium, barium and zinc. 一般式が次式で表されることを特徴とするアルカリ土類金属アルミン酸塩蛍光体。
(Ca1−a,M)O・αAl・βCe・γTb
(MはMg、Sr、Ba及びZnから選択される少なくとも1種の元素、0≦a≦0.9、0.5≦α≦5.0、0.015≦β≦0.40、0.015≦γ≦0.42)
An alkaline earth metal aluminate phosphor, wherein the general formula is represented by the following formula:
(Ca 1-a, M a ) O · αAl 2 O 3 · βCe 2 O 3 · γTb 2 O 3
(M is at least one element selected from Mg, Sr, Ba and Zn, 0 ≦ a ≦ 0.9, 0.5 ≦ α ≦ 5.0, 0.015 ≦ β ≦ 0.40,. 015 ≦ γ ≦ 0.42)
波長が少なくとも310〜390nmの範囲にある長波長紫外線により励起され発光する請求項1乃至3に記載のアルカリ土類金属アルミン酸塩蛍光体。   The alkaline earth metal aluminate phosphor according to any one of claims 1 to 3, wherein the alkaline earth metal aluminate phosphor emits light when excited by a long wavelength ultraviolet ray having a wavelength in a range of at least 310 to 390 nm. 請求項1乃至4に記載のアルカリ土類金属アルミン酸塩蛍光体を用いた発光装置。   A light emitting device using the alkaline earth metal aluminate phosphor according to claim 1. 発光層が半導体である発光素子と、該発光素子によって発光された光の一部を吸収して、吸収した光の波長と異なる波長を有する光を発光するフォトルミネッセンス蛍光体とを備えた発光装置において、
a)前記発光素子は、その発光層がAl及び/又はInを含む窒化ガリウム系半導体で、その発光スペクトルのピーク波長が少なくとも310〜390nmの範囲にある長波長紫外線を放射するLEDチップであり、
b)前記フォトルミネッセンス蛍光体は、発光スペクトルのピーク波長が少なくとも543〜547nmの範囲にあり、且つ励起スペクトルのピーク波長が少なくとも310〜390nmの範囲にある請求項1乃至4に記載のアルカリ土類金属アルミン酸塩蛍光体を含有することを特徴とする発光装置。
A light emitting device comprising: a light emitting element whose light emitting layer is a semiconductor; and a photoluminescence phosphor that absorbs part of the light emitted by the light emitting element and emits light having a wavelength different from the wavelength of the absorbed light. In
a) The light-emitting element is an LED chip that emits long-wavelength ultraviolet light whose light-emitting layer is a gallium nitride-based semiconductor containing Al and / or In and whose emission spectrum has a peak wavelength in the range of at least 310 to 390 nm,
The alkaline earth according to any one of claims 1 to 4, wherein the photoluminescence phosphor has an emission spectrum peak wavelength in the range of at least 543 to 547 nm and an excitation spectrum peak wavelength in the range of at least 310 to 390 nm. A light-emitting device comprising a metal aluminate phosphor.
JP2004042909A 2004-02-19 2004-02-19 Alkaline earth metal aluminate phosphor and light emitting device using the same Expired - Lifetime JP4363215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004042909A JP4363215B2 (en) 2004-02-19 2004-02-19 Alkaline earth metal aluminate phosphor and light emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004042909A JP4363215B2 (en) 2004-02-19 2004-02-19 Alkaline earth metal aluminate phosphor and light emitting device using the same

Publications (2)

Publication Number Publication Date
JP2005232305A true JP2005232305A (en) 2005-09-02
JP4363215B2 JP4363215B2 (en) 2009-11-11

Family

ID=35015587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004042909A Expired - Lifetime JP4363215B2 (en) 2004-02-19 2004-02-19 Alkaline earth metal aluminate phosphor and light emitting device using the same

Country Status (1)

Country Link
JP (1) JP4363215B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280471A (en) * 2007-05-14 2008-11-20 Sony Corp Light emitting composition, light source device using the same and display device using the same
US7498736B2 (en) * 2006-07-19 2009-03-03 Kabushiki Kaisha Toshiba Luminescent material
JP2009054995A (en) * 2007-08-24 2009-03-12 Cree Inc Package of light-emitting device using light scattering particles of different sizes
JP2010157608A (en) * 2008-12-26 2010-07-15 Mitsubishi Chemicals Corp Semiconductor light emitting device
US8329482B2 (en) 2010-04-30 2012-12-11 Cree, Inc. White-emitting LED chips and method for making same
US8362512B2 (en) 2006-04-24 2013-01-29 Cree, Inc. Side-view surface mount white LED
US8415692B2 (en) 2009-07-06 2013-04-09 Cree, Inc. LED packages with scattering particle regions
US8617909B2 (en) 2004-07-02 2013-12-31 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
US9287469B2 (en) 2008-05-02 2016-03-15 Cree, Inc. Encapsulation for phosphor-converted white light emitting diode
US9431589B2 (en) 2007-12-14 2016-08-30 Cree, Inc. Textured encapsulant surface in LED packages

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110094641B (en) * 2019-04-29 2020-07-21 佛山市国星光电股份有限公司 White light L ED lamp pearl and lamp strip and lamps and lanterns

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8617909B2 (en) 2004-07-02 2013-12-31 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
US8487337B2 (en) 2006-04-24 2013-07-16 Cree, Inc. Side view surface mount LED
US8362512B2 (en) 2006-04-24 2013-01-29 Cree, Inc. Side-view surface mount white LED
US8390022B2 (en) 2006-04-24 2013-03-05 Cree, Inc. Side view surface mount LED
US7498736B2 (en) * 2006-07-19 2009-03-03 Kabushiki Kaisha Toshiba Luminescent material
JP2008280471A (en) * 2007-05-14 2008-11-20 Sony Corp Light emitting composition, light source device using the same and display device using the same
JP2009054995A (en) * 2007-08-24 2009-03-12 Cree Inc Package of light-emitting device using light scattering particles of different sizes
JP2012129568A (en) * 2007-08-24 2012-07-05 Cree Inc Package of light emitting device using light scattering particles in different sizes
US11114594B2 (en) 2007-08-24 2021-09-07 Creeled, Inc. Light emitting device packages using light scattering particles of different size
US9431589B2 (en) 2007-12-14 2016-08-30 Cree, Inc. Textured encapsulant surface in LED packages
US9287469B2 (en) 2008-05-02 2016-03-15 Cree, Inc. Encapsulation for phosphor-converted white light emitting diode
JP2010157608A (en) * 2008-12-26 2010-07-15 Mitsubishi Chemicals Corp Semiconductor light emitting device
US8415692B2 (en) 2009-07-06 2013-04-09 Cree, Inc. LED packages with scattering particle regions
US8329482B2 (en) 2010-04-30 2012-12-11 Cree, Inc. White-emitting LED chips and method for making same

Also Published As

Publication number Publication date
JP4363215B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP3956972B2 (en) Light emitting device using fluorescent material
JP4048954B2 (en) Light emitting device
JP4991026B2 (en) Light emitting device
JP4244653B2 (en) Silicon nitride phosphor and light emitting device using the same
JP5151002B2 (en) Light emitting device
US7951306B2 (en) Oxynitride phosphor and production process thereof, and light-emitting device using oxynitride phosphor
US7733002B2 (en) Semiconductor light emitting device provided with an alkaline earth metal boric halide phosphor for luminescence conversion
JP4760082B2 (en) Light emitting device, phosphor for light emitting element, and method for manufacturing the same
JP4222059B2 (en) Light emitting device
JP4645089B2 (en) Light emitting device and phosphor
JP4892861B2 (en) Nitride phosphor and light emitting device using the same
JP4843990B2 (en) Phosphor and light emitting device using the same
JP2008227523A (en) Nitride phosphor and method for manufacturing the same, and light emitting device using nitride phosphor
JP2004189997A (en) Light-emitting device using oxynitride fluorescent material
JP4187033B2 (en) Light emitting device
JP5157029B2 (en) Light emitting device using phosphor
JP4363215B2 (en) Alkaline earth metal aluminate phosphor and light emitting device using the same
JP4363217B2 (en) Alkaline earth metal borate phosphor and light emitting device using the same
JP4096977B2 (en) White light emitting device, light emitting device, and fluorescent material
JP2006049553A (en) Light emitting device
JP2006097034A (en) Oxynitride phosphor and light-emitting device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4363215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250