JP2005230675A - Sterilization device of legionella bacterium - Google Patents

Sterilization device of legionella bacterium Download PDF

Info

Publication number
JP2005230675A
JP2005230675A JP2004042508A JP2004042508A JP2005230675A JP 2005230675 A JP2005230675 A JP 2005230675A JP 2004042508 A JP2004042508 A JP 2004042508A JP 2004042508 A JP2004042508 A JP 2004042508A JP 2005230675 A JP2005230675 A JP 2005230675A
Authority
JP
Japan
Prior art keywords
tank
container
fluid
wall surface
legionella
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004042508A
Other languages
Japanese (ja)
Other versions
JP4131708B2 (en
Inventor
Teruyoshi Kato
輝義 加藤
Mitsuo Watanabe
光男 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004042508A priority Critical patent/JP4131708B2/en
Publication of JP2005230675A publication Critical patent/JP2005230675A/en
Application granted granted Critical
Publication of JP4131708B2 publication Critical patent/JP4131708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sterilization device of Legionella bacteria which can be used jointly with a chlorine sterilization method and permits perfect sterilization of Legionella bacteria. <P>SOLUTION: In this sterilization device of Legionella bacteria, an intake part of fluid is connected with one side of a lower part and an upper part of a tank side wall surface of a closed structure and an exhaust port of the fluid is connected with the other side, respectively, a first vessel is arranged near the intake part in a tank, a first vessel has such a structure that at least its side surface and the wall surface opposite to a second vessel later described allow the fluid to penetrate therethrough, and a plurality of ceramic balls made of a rare earth mineral containing a natural radiation element are movably incorporated in the first vessel. Further, the second vessel is arranged near the exhaust port in the tank, the second vessel has such a structure that at least the side surface and the wall surface opposite to the first vessel allow the fluid to penetrate therethrough, ceramic balls made of tourmaline mineral are incorporated in the second vessel, an ultraviolet ray lamp is arranged between the first vessel and the second vessel and a photocatalyst body is arranged around the ultraviolet ray lamp. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はレジオネラ属菌の殺菌装置に関し、例えば循環式浴場の塩素殺菌方式の循環システムにおいて塩素殺菌法の補助手段として併用することができ、レジオネラ属菌を完全に殺菌できるようにした装置に関する。   The present invention relates to an apparatus for sterilizing Legionella, for example, an apparatus that can be used together as an auxiliary means for a chlorination method in a circulation system of a chlorination system in a circulating bath, and can completely sterilize Legionella.

平成6年に全国主要温泉の調査においてレジオネラ属菌の発見が報告され、24時間風呂の普及に対して平成9年にレジオネラ属菌の危険性が指摘されて以来、従来の菌類対策に加えてレジオネラ属菌に対する対策が求められている。   In 1994, the discovery of Legionella was reported in a survey of major hot springs nationwide, and since the danger of Legionella was pointed out in 1997 against the spread of 24-hour baths, in addition to conventional measures against fungi Countermeasures against Legionella are required.

そこで、紫外線の照射によってレジオネラ属菌を殺菌する方法(特許文献1、特許文献2、特許文献3)、塩素と紫外線によってレジオネラ属菌を殺菌する方法(特許文献4)、光触媒によってレジオネラ属菌を殺菌する方法(特許文献5)、等が提案されているが、厚生労働省が2001年12月に定めた「循環式の場合に主として塩素で殺菌し、その濃度は1リットル当たり0.2〜.04mgを2時間以上保つことが望ましい」という要領(公衆浴場の衛生管理に関する要領)に従っているのが実情である。
特開平11−104406号公報 特開2000−210217号公報 特開2001−232395号公報 特開2003−71463号公報 特開2003−190989号公報
Therefore, a method of disinfecting Legionella by ultraviolet irradiation (Patent Document 1, Patent Document 2, Patent Document 3), a method of disinfecting Legionella by chlorine and ultraviolet light (Patent Document 4), and a method of disinfecting Legionella by a photocatalyst. A method of sterilization (Patent Document 5), etc. has been proposed, but the Ministry of Health, Labor and Welfare established in December 2001 “in the case of the circulation type, sterilization is mainly performed with chlorine, and its concentration is 0.2 to. The reality is that it is desirable to keep 04 mg for 2 hours or longer (the guidelines for hygiene management of public baths).
JP-A-11-104406 JP 2000-210217 A JP 2001-232395 A JP 2003-71463 A JP 2003-190989 A

レジオネラ属菌は中性域のpHで、30°C〜42°Cの温度範囲でよく生育し、60°Cを越えると死滅する菌で、温泉や浴場はレジオネラ属菌の生育に適した環境であることがよく知られている。   Legionella is a fungus that is well cultivated in a neutral pH range of 30 ° C to 42 ° C and dies when it exceeds 60 ° C. Hot springs and baths are suitable for the growth of Legionella. It is well known that

厚生労働省によって指導されている塩素の注入法は一定濃度の次亜鉛素酸ナトリウムの溶液を自動的に注入するか、自動注入装置が設置されていない施設ではフロルイソシアヌル酸ナトリウム錠剤(一錠10g含有する濃度55%)を湯10t当り1個の割合で投入するという方法をとっていることが多い。そして、温泉や入浴施設でレジオネラ属菌の事故が起こると、塩素投入の行政指導をこれまで以上に強化する傾向にある。   The chlorine injection method, which is instructed by the Ministry of Health, Labor and Welfare, automatically injects a solution of sodium hypozincate at a certain concentration, or in a facility where an automatic injection device is not installed, sodium fluoroisocyanurate tablets (containing 10 g of one tablet) In most cases, a method is used in which a concentration of 55% is added at a rate of 1 per 10 t of hot water. And when Legionella accidents occur in hot springs and bathing facilities, there is a tendency to strengthen administrative guidance on chlorine input more than ever.

しかし、人間が塩素を感ずる濃度は0.35mg/lであり、塩素濃度がこの上限に近づけば塩素くさいとの苦情が頻発する一方、下限程度にすれば温泉での塩素濃度は0.065mg/l程度の低い値となり、レジオネラ属菌の増加がみられることがある。   However, the concentration at which humans perceive chlorine is 0.35 mg / l. If the chlorine concentration is close to this upper limit, complaints about chlorine are frequent, whereas if it is set to the lower limit, the chlorine concentration in hot springs is 0.065 mg / l. The value may be as low as 1 and an increase in Legionella may be observed.

また、温泉の塩素濃度もその日の入浴者の多少、同じ人数でも平均して入浴される場合と一度に多くの入浴者がある場合とでは湯の撹伴される程度、湯の汚れ具合が変化し、塩素の濃度も変わるなどの事情で塩素の調節に苦労しているのが現状である。   In addition, the chlorine concentration of the hot springs varies somewhat depending on the number of bathers of the day, even if the same number of people take a bath on average and when there are many bathers at once, the degree of hot water agitation is changed. However, the current situation is that it is struggling to adjust chlorine due to the fact that the concentration of chlorine also changes.

また、配管の曲り角に“ぬめり”が生成していることがよく見られる。この“ぬめり”はレジオネラ属菌等の菌類の繁殖場所になっている。湯中の大きい浮遊物は塩素を注入した後に、濾過機のフィルタ−で除かれるが、生物の分泌物、蛋白質、脂肪、無機微粒子等の極微細コロイドは濾過機のフィルタ−で濾過されず、時間をかけてゲル状物質化し、沈積しやすい。この沈積したものが“ぬめり”であり、菌類の栄養源となり、塩素も“ぬめり”の中へは届き難く、レジオネラ属菌の培養場所になっている。この“ぬめり”の除去は浴槽設備の運転を停止し、清掃の頻度を上げることによって行う必要があった。   In addition, it is often seen that “slimming” is generated at the corner of the pipe. This “slim” is a breeding place for fungi such as Legionella spp. Large suspended solids in the hot water are removed by the filter of the filter after injecting chlorine, but ultrafine colloids such as biological secretions, proteins, fats and inorganic fine particles are not filtered by the filter of the filter, Over time, it becomes a gel-like material and easily deposits. This deposit is "slime", which is a nutrient source for fungi, and chlorine is difficult to reach into "slime", and is a culture site for Legionella spp. This “slimming” removal had to be done by stopping the operation of the bathtub and increasing the frequency of cleaning.

本発明はかかる問題点に鑑み、塩素殺菌法と併用し、レジオネラ属菌を完全に殺菌できるようにしたレジオネラ属菌の殺菌装置を提供することを課題とする。   This invention makes it a subject to provide the sterilization apparatus of Legionella genus microbe which used together with the chlorine sterilization method and enabled it to sterilize Legionella genus completely in view of this problem.

そこで、本発明に係るレジオネラ属菌の殺菌装置は、密閉構造のタンク側壁面の下部及び上部の一方には処理すべき流体を配管から取り込む取込み口部が、他方には処理後の流体を配管に排出する排出口部が各々接続され、上記タンク内には第1容器が上記取込み口部に接近して配置され、該第1容器は少なくとも側面及び後述の第2容器に対向する壁面が流体を通過し得る構造を有し、上記第1容器内には天然放射性元素を含む希土類鉱物製の複数のセラミックスボ−ルが遊動可能に内蔵されている一方、上記タンク内には第2容器が上記排出口部に接近して配置され、該第2容器は少なくとも側面及び上記第1容器に対向する壁面が流体を通過し得る構造を有し、上記第2容器内にはトルマリン鉱物製のセラミックスボ−ルが内蔵され、上記タンク内には上記第1容器と上記第2容器との間に紫外線ランプが配置され、該紫外線ランプの周囲に光触媒体が配置されていることを特徴とする。   Therefore, in the Legionella sterilization apparatus according to the present invention, one of the lower side and the upper side of the tank side wall surface of the sealed structure has an intake port for taking the fluid to be processed from the pipe, and the other is the pipe for the processed fluid. And a first container is disposed in the tank close to the intake port, and the first container has at least a side surface and a wall surface facing a second container described later as a fluid. A plurality of ceramic balls made of rare earth minerals containing natural radioactive elements are movably incorporated in the first container, while a second container is contained in the tank. The second container has a structure in which at least a side surface and a wall surface facing the first container can pass a fluid, the ceramic container made of tourmaline mineral is disposed in the second container. With a built-in ball The serial tank is disposed ultraviolet lamp between the first container and the second container, wherein the photocatalyst around the ultraviolet lamp is disposed.

本発明の特徴の1つはタンク内に第1容器を取込み口部に接近して配置し、この第1容器に天然放射性元素を含む希土類鉱物のセラミックスボ−ルを内蔵した点にある。   One of the features of the present invention is that the first container is placed in the tank close to the inlet and a rare earth mineral ceramic ball containing a natural radioactive element is built in the first container.

このセラミックスボ−ルはタンク側壁面の取込み口部からの流体圧によって第1容器内を遊動し、取込み口部から排出口部に向かう流体の流れに乱流を与え、タンク内の流体を均一化する。他方、このセラミックスボ−ルからの放射線は殆どが流体に吸収されて水イオンや水酸ラジカルを生じ、これが流体中に分布している微細な有機物、例えば人間の垢を分解し、それに寄り集まっている菌類を流体中に放り出すので、菌類を確実に殺菌し得る状況にすることができる。   This ceramic ball floats in the first container due to the fluid pressure from the intake port on the side wall of the tank, giving a turbulent flow to the fluid flow from the intake port to the discharge port, making the fluid in the tank uniform Turn into. On the other hand, most of the radiation from this ceramic ball is absorbed by the fluid to produce water ions and hydroxyl radicals, which decompose and concentrate fine organic substances distributed in the fluid, such as human plaque. Since the fungi are released into the fluid, the fungi can be reliably sterilized.

また、本発明の他の特徴はタンク内の第1容器の流体下流側に、主としてUV−B波(波長200μm〜300μm)及びUV−A波(波長300μm〜400μm)を放射する紫外線ランプを設け、その周囲に光触媒体を配置するようにした点にある。   Another feature of the present invention is that an ultraviolet lamp that mainly emits UV-B waves (wavelengths 200 μm to 300 μm) and UV-A waves (wavelengths 300 μm to 400 μm) is provided on the fluid downstream side of the first container in the tank. The photocatalyst is arranged around it.

紫外線ランプからの紫外光のうち、波長253μmのUV−B光は流体中の菌類を光により直接死滅させることができる。他方、紫外線ランプからの紫外光のうち、UV−A光は光触媒体の二酸化チタン表面で流体中の菌を殺菌することができる。そこで、表面に二酸化チタン薄膜を生成させた光触媒体を紫外線ランプ軸と平行に、好ましくは筒状に配置し、紫外光と流体を効率よく光触媒体に接触させるのがよい。この露光によってレジオネラ属菌等の菌類を殺菌することができる。   Of the ultraviolet light from the ultraviolet lamp, UV-B light with a wavelength of 253 μm can directly kill fungi in the fluid by light. On the other hand, of the ultraviolet light from the ultraviolet lamp, UV-A light can sterilize bacteria in the fluid on the titanium dioxide surface of the photocatalyst. Therefore, the photocatalyst having a titanium dioxide thin film formed on the surface thereof is preferably arranged in parallel with the ultraviolet lamp axis, preferably in a cylindrical shape, so that the ultraviolet light and the fluid are efficiently brought into contact with the photocatalyst. By this exposure, fungi such as Legionella can be sterilized.

即ち、紫外線ランプを円筒状のタンクの中心線上に配置し、光触媒体を表面に二酸化チタンをコーティングした金網で円筒状に製作し、紫外線ランプの周囲には光触媒体を異なる半径の同心円上に配置するのが好ましい。   In other words, the ultraviolet lamp is placed on the center line of the cylindrical tank, the photocatalyst is made cylindrical with a metal mesh coated with titanium dioxide on the surface, and the photocatalyst is placed on concentric circles with different radii around the ultraviolet lamp. It is preferable to do this.

紫外線ランプによるレジオネラ菌類の殺菌効果と滞留時間との関係を試験した。内容積6リットルタンクを用い、タンク内の滞流時間を、0、30,60,120、180,300秒になるようポンプ流量を変化させ、菌類の生死を計数した。その試験結果を表1に示す。   The relationship between the bactericidal effect of Legionella fungi with a UV lamp and the residence time was tested. Using a 6-liter internal volume tank, the pump flow rate was changed so that the stagnation time in the tank was 0, 30, 60, 120, 180, 300 seconds, and the survival of the fungi was counted. The test results are shown in Table 1.

Figure 2005230675
Figure 2005230675

試験結果から、殺菌には最低2分の滞流時間が必要であることが分かり、以後の装置設計の基準とした。なお、レジオネラ属菌を殺菌できれば、他の菌も同時に殺菌できることも分かった。   From the test results, it was found that a stagnation time of at least 2 minutes was required for sterilization, which was used as a standard for the subsequent device design. It was also found that if Legionella spp. Can be sterilized, other fungi can be sterilized simultaneously.

本発明の更に他の特徴はタンク内に第2容器を排出口部に接近して配置し、この上方容器にトルマリン鉱物製のセラミックスボ−ルを内蔵した点にある。   Still another feature of the present invention is that a second container is disposed in the tank close to the discharge port, and a ceramic ball made of tourmaline mineral is incorporated in the upper container.

トルマリン鉱物は自発電極を有する鉱物で、その微細粒子は10eVの電圧を持ち、その表面には0.003mA(人体を流れる電流と同じ程度)の微弱電流が流れる。この微弱電流を流体に与えると、紫外線の露光や光触媒との接触によって流体中に生成するイオンや電子もこれに加わって“ぬめり”の原因物質の段階でイオンに変化させ、“ぬめり”の生成を阻止することができるものと考えられる。   Tourmaline mineral is a mineral having a spontaneous electrode, its fine particles have a voltage of 10 eV, and a weak current of 0.003 mA (same as the current flowing through the human body) flows on its surface. When this weak current is applied to the fluid, the ions and electrons generated in the fluid due to exposure to ultraviolet light and contact with the photocatalyst are also added to the ions, causing them to change into ions at the stage of the “cause of slimming”, and generating “slimming”. It is thought that this can be prevented.

なお、トルマリン鉱物製のセラミックスボ−ルの“ぬめり”に対する実際の効果は短時間に、また計数的に示せるものでなく、家庭用水(台所、風呂、トイレ等)の下水排出口を清掃時に観察し、通常の水道水を使用している場合と、家の入口でトルマリン鉱物製のセラミックスボ−ルの充填管を通した水を使用している場合を比較し、前者ではぬめり状物質がみられるが、後者ではさらさらした粘りの少ない土質状の沈積があるだけである、という経験的な観察を根拠にしている。   The actual effect of tourmaline mineral ceramic balls on “slimming” is not shown in a short time and in a numerical manner. Observe the sewage outlet of household water (kitchen, bath, toilet, etc.) during cleaning. Compared to the case where normal tap water is used and the case where water passed through a ceramic ball filling tube made of tourmaline minerals is used at the entrance of a house, the former shows slimy substances. However, the latter is based on empirical observations that there is only a dry and less sticky soil deposit.

タンクは密閉構造であればよいが、タンクを円筒状とし、タンク内で流体に渦流を与えて流体をセラミックスボール、紫外線ランプ及び光触媒体と効率よく接触させるのがよい。また、取込み口部及び排出口部はタンク側壁面の上部と下部に設けるが、流体をタンク内で円滑に流動させる上で、タンク側壁面の下部に取込み口部を、上部に排出口部を設け、流体を上昇させるのがよい。   The tank may have a sealed structure, but it is preferable that the tank be cylindrical and that the fluid be vortexed in the tank to efficiently contact the fluid with the ceramic balls, the ultraviolet lamp, and the photocatalyst. In addition, the intake port and the discharge port are provided at the upper and lower portions of the tank side wall surface, but in order to make the fluid flow smoothly in the tank, the intake port portion is provided at the lower portion of the tank side wall surface and the discharge port portion is provided at the upper portion. It may be provided to raise the fluid.

即ち、タンクを密閉構造の円筒状となし、取込み口部をタンク側壁面の下部に、排出口部がタンク側壁面の上部に各々接続するのがよい。   That is, it is preferable that the tank has a sealed cylindrical shape, the intake port portion is connected to the lower portion of the tank side wall surface, and the discharge port portion is connected to the upper portion of the tank side wall surface.

タンク内の流体に上昇渦流を確実に与えるとともに、流体をタンク内に所定時間だけ滞留させ、殺菌処理を確実に行う上で、取込み口部及び排出口部の口径を配管の口径よりも1/3〜2/3、好ましくは1/2程度に絞るのがよい。取込み口部及び排出口部の口径を配管よりも絞ると、タンク内に取り込まれる流体の時間当りの量は少なくなるが、流速は加速され、タンク内壁面に沿って上昇渦流となりやすい。このようにすると、タンク内での流体の滞留時間を長くできるとともに、タンク内で流体を均一に分布させることができる。   In order to reliably give an upward vortex to the fluid in the tank and to keep the fluid in the tank for a predetermined time to ensure sterilization, the diameter of the intake port and the discharge port is set to 1 / It is good to narrow down to 3 to 2/3, preferably about 1/2. If the intake port portion and the discharge port portion are narrower than the pipe, the amount of fluid taken into the tank per hour is reduced, but the flow velocity is accelerated, and an upward vortex tends to occur along the inner wall surface of the tank. In this way, the residence time of the fluid in the tank can be increased, and the fluid can be evenly distributed in the tank.

また、タンク内で流体の渦流を確実に発生させる上で、取込み口部及び排出口部を平面から見てタンク側壁面の相互に対向する位置においてタンク側壁面の接線方向に接続するのがよい。   Further, in order to reliably generate a fluid vortex in the tank, it is preferable that the intake port and the discharge port are connected in a tangential direction of the tank side wall surface at a position opposite to each other on the tank side wall surface when viewed from above. .

第1容器及び第2容器は少なくとも側面及び他方の容器に対向する壁面が流体を通過し得る構造を有していればよく、例えば金網又はパンチングプレートで構成されることができる。   The first container and the second container only need to have a structure in which at least the side surface and the wall surface facing the other container can pass the fluid, and can be formed of, for example, a wire mesh or a punching plate.

本発明に係るレジオネラ属菌の殺菌装置は単独で用いることができるが、塩素殺菌システムと併用すると、たとえ塩素処理の殺菌効果にバラツキが生じる環境下でも“ぬめり”の発生を抑えることによってレジオネラ属菌を確実に、具体的には規定値10個/100cc以下まで殺菌することができる。   The Legionella sterilization apparatus according to the present invention can be used alone, but when used in combination with a chlorination system, it suppresses the occurrence of "slimming" even in an environment in which the sterilization effect of chlorination varies. Bacteria can be sterilized with certainty, specifically up to a specified value of 10/100 cc or less.

さらに、下記の実施形態では循環式浴槽設備におけるレジオネラ属菌の殺菌装置を例に説明するが、本発明はこれに限定されず、水道施設、飲料水設備、その他の流体の施設や設備に適用できる。   Further, in the following embodiment, a Legionella sterilization device in a circulating bath facility will be described as an example, but the present invention is not limited to this, and is applied to water facilities, drinking water facilities, and other fluid facilities and equipment. it can.

以下、本発明を図面に基づいてさらに詳細に説明する。図1ないし図5は本発明に係るレジオネラ属菌の殺菌装置を好ましい実施形態を示す。一般に使用されている循環方式の浴槽設備では図1に示されるように、浴槽1の底部に排水口10Aが設けられ、排水口10Aには循環配管11の取込み管部分11Aが接続され、循環配管11の取込み管部分11Aの下流側にはフィルターを内蔵した集毛器(ヘアキャッチャ)12及び循環ポンプ13が接続され、循環ポンプ13の下流側には公知の塩素注入装置14、濾過機15及び加熱器16が接続され、浴槽10の湯はこれらの集毛器12、循環ポンプ13、塩素注入装置14、濾過機15及び加熱器16を経て循環配管11の送込み管部分11Bによって元の浴槽10に戻されるようになっている。   Hereinafter, the present invention will be described in more detail with reference to the drawings. 1 to 5 show a preferred embodiment of a Legionella sterilizer according to the present invention. As shown in FIG. 1, in a generally used circulation-type bathtub facility, a drain port 10A is provided at the bottom of the bathtub 1, and an intake pipe portion 11A of the circulation pipe 11 is connected to the drain port 10A. 11 is connected to a downstream side of the intake pipe portion 11A with a filter 12 and a circulation pump 13, and a downstream side of the circulation pump 13 is a known chlorine injector 14, filter 15 and A heater 16 is connected, and the hot water in the bathtub 10 passes through the hair collector 12, the circulation pump 13, the chlorine injector 14, the filter 15, and the heater 16, and is returned to the original bathtub by the feed pipe portion 11 </ b> B of the circulation pipe 11. 10 is returned.

本例のレジオネラ属菌の殺菌装置20は循環ポンプ13と塩素注入装置14との間の循環配管11に接続され、塩素剤の少ない注入量でレジオネラ属菌の殺菌効果を得るために相補って作用するようになっている。なお、本例のレジオネラ属菌の殺菌装置20を塩素注入装置14の下流側に設けると、直接塩素分解を引き起こす。   The Legionella sterilizer 20 of this example is connected to the circulation pipe 11 between the circulation pump 13 and the chlorine injector 14 and is complemented to obtain a Legionella sterilizer with a small amount of chlorine agent. It comes to work. In addition, if the Legionella sterilization apparatus 20 of this example is provided on the downstream side of the chlorine injecting apparatus 14, chlorination is directly caused.

本例のレジオネラ属菌の殺菌装置20では図2及び図3に示されるように、円筒状のタンク本体21の上端開口に蓋22を着脱自在に取付けて密閉構造の円筒状タンクが構成され、タンク本体21及び蓋22は塩分を溶在する温湯に加圧状態で接触するので、これに対応できる種類及び厚さのステンレス鋼で製作されるのがよい。   In the Legionella sterilizer 20 of this example, as shown in FIGS. 2 and 3, a cylindrical tank with a sealed structure is configured by detachably attaching a lid 22 to the upper end opening of the cylindrical tank body 21, Since the tank body 21 and the lid 22 are in contact with hot water in which salt is dissolved in a pressurized state, it is preferable that the tank body 21 and the lid 22 be made of stainless steel having a type and thickness that can cope with this.

タンク本体21の側壁面の下端部には循環配管11が接続され、循環配管11の先端には管路面積を1/2程度に絞った取込み口部23が接続され、取込み口部23はタンク本体21の側壁面のほぼ接線方向に指向されている。   The circulation pipe 11 is connected to the lower end portion of the side wall surface of the tank main body 21, and an intake port portion 23 with a pipe area reduced to about ½ is connected to the tip of the circulation pipe 11. The main body 21 is oriented substantially in the tangential direction of the side wall surface.

また、タンク本体21の側壁面の上端部には取込み口部23の取付け部位に対して180°の位置に口径を循環配管11の1/2程度に絞った排出口部24が取付けられ、排出口部24には循環配管11が接続され、又排出口部24はタンク本体21の側壁面のほぼ接線方向に指向されている。   In addition, a discharge port portion 24 whose diameter is reduced to about ½ of the circulation pipe 11 is attached to the upper end portion of the side wall surface of the tank body 21 at a position of 180 ° with respect to the attachment portion of the intake port portion 23. The circulation pipe 11 is connected to the outlet portion 24, and the discharge port portion 24 is oriented substantially in the tangential direction of the side wall surface of the tank body 21.

ここで、取込み口部23及び排出口部24は循環配管11の口径に比して大きく絞り込むとともに、タンク20の側壁面の接線方向に接続している。その理由は次の通りである。温泉施設における湯の循環が1時間に1回以上と規定されており、これに対応するためには循環湯の流速を考慮してタンク20の内容積を設計する必要がある。例えば、タンク20の内容積が10tの場合、これを1時間で湯を循環させるとすると、その流速は160リットル/分であるので、タンク20の内容積をこれに合わせると、滞流時間は1分となる。しかし、前述したようにレジオネラ菌類の殺菌に要する滞流時間は最低2分であるので、これを満足するタンク20の内容積は320リットル(10t)、640リットル(20t)と大きくなって実用的でない。   Here, the intake port portion 23 and the discharge port portion 24 are narrowed down compared to the diameter of the circulation pipe 11 and are connected in the tangential direction of the side wall surface of the tank 20. The reason is as follows. The hot water circulation in the hot spring facility is defined as one or more times per hour, and in order to cope with this, it is necessary to design the internal volume of the tank 20 in consideration of the flow rate of the circulating hot water. For example, if the internal volume of the tank 20 is 10 t and the hot water is circulated in 1 hour, the flow rate is 160 liters / minute. Therefore, if the internal volume of the tank 20 is adjusted to this, the stagnation time is 1 minute. However, since the stagnation time required for sterilization of Legionella fungi is at least 2 minutes as described above, the internal volume of the tank 20 satisfying this is increased to 320 liters (10 t) and 640 liters (20 t), which is practical. Not.

そこで、取込み口部23及び排出口部24の口径を1/2に絞り込むと、その面積比は1/4になり、計算では内容積160リットルのタンク20でも4分間の滞流時間になり、20tまでの浴槽に使用できる。それ以上になれば、タンク20の内容積を大きくすればよい。取込み口部を絞れば、それに応じて流速も増大し、上昇渦流が確実に得られる。   Therefore, if the diameters of the intake port 23 and the discharge port 24 are reduced to ½, the area ratio becomes ¼, and the calculation results in a stagnation time of 4 minutes even in the tank 20 with an internal volume of 160 liters. Can be used for bathtubs up to 20t. If it exceeds that, the internal volume of the tank 20 may be increased. If the intake port is narrowed, the flow velocity is increased accordingly, and an ascending vortex is reliably obtained.

タンク20内の構造を詳細に説明すると、図4及び図5に示されるように、タンク10内の下部にはステンレス鋼製の底方かご(第1容器)30が配置され、底方かご30内には天然放射性元素を含む希土類鉱物製のセラミックスボ−ル31が遊動可能に内蔵され、底方かご30の中央には紫外線ランプ40が縦方向に取付けられるとともに、紫外線ランプ40の周囲には円筒状の光触媒金網41が多重に配置され、光触媒金網41は金網の表面に二酸化チタンの薄膜をコーティングして構成されている。   The structure inside the tank 20 will be described in detail. As shown in FIGS. 4 and 5, a bottom cage (first container) 30 made of stainless steel is disposed at the bottom of the tank 10. A ceramic ball 31 made of a rare earth mineral containing a natural radioactive element is movably incorporated therein, and an ultraviolet lamp 40 is vertically installed at the center of the bottom cage 30, and around the ultraviolet lamp 40. Cylindrical photocatalyst metal meshes 41 are arranged in multiple layers, and the photocatalyst metal mesh 41 is configured by coating the surface of the metal mesh with a thin film of titanium dioxide.

紫外線ランプ40及び光触媒金網41の上方にはステンレス鋼製の上方かご(第2容器)50が設けられ、上方かご50内にはトルマリン鉱物製のセラミックスボ−ル51が遊動可能に内蔵されており、タンク20下部の取込み口部23から流入した循環湯が渦流となって上昇し、タンク20の最上部の排出口部24から排出されるようになっている。   A stainless steel upper cage (second container) 50 is provided above the ultraviolet lamp 40 and the photocatalyst metal mesh 41, and a ceramic ball 51 made of tourmaline mineral is movably incorporated in the upper cage 50. The circulating hot water flowing from the intake port 23 at the lower part of the tank 20 rises as a vortex and is discharged from the uppermost discharge port 24 of the tank 20.

底方かご30はタンク20内の底部に嵌め込まれる大きさの円筒形状をなし、網目径は例えば5mm程度に設定され、又底方かご30の中央には穴32が上下に貫通して形成され、又底方かご30の側面には取込み口部23を嵌め込む穴(図示せす)が形成されている。他方、紫外線ランプ40の底部には脚部42が設けられ、この脚部42は底方かご30の中央の穴32を貫通してタンク20の底壁面で受けられるようになっている。   The bottom car 30 has a cylindrical shape that fits into the bottom of the tank 20 and has a mesh diameter of, for example, about 5 mm. A hole 32 is formed in the center of the bottom car 30 so as to penetrate vertically. Further, a hole (not shown) for fitting the intake port 23 is formed on the side surface of the bottom car 30. On the other hand, a leg 42 is provided at the bottom of the ultraviolet lamp 40, and the leg 42 passes through the central hole 32 of the bottom car 30 and is received by the bottom wall surface of the tank 20.

この底方かご30の高さは内蔵するセラミックスボ−ル31の必要数量に応じて決定されている。天然放射性元素を含む希土類鉱物製のセラミックスボール31は例えばモナザイト(ThO22、7%、RE2360%、P2530%)の30%を粘土で固結した7〜9mm径のボ−ルで、タンク内の循環湯の上昇渦巻に乱流を与える役目の外に、それから出る放射線が循環湯と反応して10-8秒内にH3+、OH-、水和電子(e-)のイオンの他、O2の2倍の酸化力を持つ水酸ラジカル(・OH)を作り、主にこれが循環湯中に溶存する垢(タンパク質や脂肪)を分解する作用を連続的に強力に行い、それに寄生しているレジオネラ属菌を湯中に放り出し、次の紫外線殺菌の予備的役目を果たすようになっている。 The height of the bottom car 30 is determined according to the required quantity of the built-in ceramic balls 31. A ceramic ball 31 made of rare earth mineral containing a natural radioactive element is, for example, 7-9 mm diameter in which 30% of monazite (ThO 2 2, 7%, RE 2 O 3 60%, P 2 O 5 30%) is consolidated with clay. In addition to providing a turbulent flow to the rising vortex of the circulating hot water in the tank, the radiation emitted from it reacts with the circulating hot water within 10 -8 seconds to hydrate the H 3 O + , OH , electronic (e -) other ions, making the hydroxyl radical (· OH) having twice the oxidizing power of O 2, mainly act degrade this dross (proteins and fats) dissolved in the circulation water It acts continuously and powerfully, and the parasitic Legionella spp. Are thrown into the hot water and serve as a preliminary role for the next UV sterilization.

紫外線ランプ40はタンク20内部の中央に組み込まれ、紫外線ランプ40の底面はセラミックスボ−ル31を内蔵した底方かご30の上面の高さに位置され、底面から延びる4本の脚部42でタンク20の底面上に設置されている。上方かご40の中央にも穴が上下に貫通して形成され、紫外線ランプ40の上端は上方に配置される上方かご50の中央穴の内周金網壁の下端部に喰い込ませるようにして固定されている。   The ultraviolet lamp 40 is incorporated in the center of the tank 20, and the bottom surface of the ultraviolet lamp 40 is positioned at the height of the top surface of the bottom cage 30 containing the ceramic ball 31, and is composed of four legs 42 extending from the bottom surface. It is installed on the bottom surface of the tank 20. A hole is also formed in the center of the upper car 40 so as to penetrate vertically, and the upper end of the ultraviolet lamp 40 is fixed so as to bite into the lower end portion of the inner peripheral metal mesh wall of the central hole of the upper car 50 disposed above. Has been.

ここで、紫外線ランプ40は、UV−B波(波長200μm〜300μm)を80%程度、UV−A波(波長300μm〜400μm)を20%程度から成る紫外線分布をもつ低電圧紫外線ランプが選定され、波長253μmの紫外光は直接湯中のレジオネラ属菌に作用し、レジオネラ属菌のDNAを破壊して死滅させる作用を持ち、UV−A波の波長360μm付近の紫外光は二酸化チタン(TiO2)薄膜上に照射されると、その二酸化チタン薄膜中にe-(電子)とh+(正孔)を作り、そのh+(正孔)に湯が反応して湯をOH(ピドロキシルルラジカル)に変え、その酸化力(酸素の2倍)でレジオネラ属菌の生命酵素の蛋白質を分解して死滅させることができる。その為、本例では紫外光→TiO2触媒→湯の接触が十分に行われる構造にしている。 Here, as the ultraviolet lamp 40, a low-voltage ultraviolet lamp having an ultraviolet distribution composed of about 80% of a UV-B wave (wavelength 200 μm to 300 μm) and about 20% of a UV-A wave (wavelength 300 μm to 400 μm) is selected. In addition, ultraviolet light having a wavelength of 253 μm directly acts on Legionella genus bacteria in hot water, and has an action of destroying and killing Legionella DNA, and UV light having a wavelength of about 360 μm in the UV-A wave is titanium dioxide (TiO 2). ) when irradiated on the thin film, e in the titanium dioxide thin film - (electrons) and h + (making a hole), the h + (hot water and hot water react in the hole) OH (Pidorokishiruru It can be converted into radicals), and its oxidative power (twice as much as oxygen) can be used to decompose and kill Legionella life enzyme proteins. Therefore, in this example, the structure is such that the contact of ultraviolet light → TiO 2 catalyst → hot water is sufficiently performed.

また、本例では紫外線ランプ40に例えば東芝社製の無電極高出力低圧ランプ(型名、GL1500MS/21)を使用しているが、波長と出力が満足されれば、これに限定されるものではない。   In this example, an electrodeless high-power low-pressure lamp (model name: GL1500MS / 21) manufactured by Toshiba, for example, is used as the ultraviolet lamp 40, but the wavelength and output are limited to this if the wavelength and output are satisfied. is not.

光触媒金網41は円筒状をなし、紫外線ランプ40の縦軸を中心に等間隔に配置され、光触媒金網41の上端は上方かご50の底部に取付けられ、下端は底方かご30の上部に受けられている。光触媒金網41には太さ0.5mmや1.0mmのチタン線材が用いられ、例えばPIP法でチタン網表面に溶融チタンを吹付け、二酸化チタン薄膜を成膜しているが、金網表面に有機チタン化合物を塗布し、焼成により二酸化チタン被膜を得る方法等、他の方法によって製造することもできる。   The photocatalyst wire mesh 41 has a cylindrical shape and is arranged at equal intervals around the longitudinal axis of the ultraviolet lamp 40, the upper end of the photocatalyst wire mesh 41 is attached to the bottom of the upper car 50, and the lower end is received by the upper part of the bottom car 30. ing. For the photocatalyst wire mesh 41, a titanium wire having a thickness of 0.5 mm or 1.0 mm is used. For example, molten titanium is sprayed on the surface of the titanium mesh by the PIP method to form a titanium dioxide thin film. It can also be produced by other methods such as a method of applying a titanium compound and obtaining a titanium dioxide film by firing.

上方かご50はステンレス鋼製の金網で製作され、外径はタンク20の上方内部に嵌まり込む寸法に設定され、上方かご50の中央には上下方向に貫通する穴52が形成され、全体として見たときにド−ナツ状をなし、この穴52には紫外線ランプ40の上端部が嵌め込まれ、又上方かご50の高さは内蔵するトルマリン鉱物製のセラミックスボール51の数量に応じて決定されている。また、上方かご50はセラミックスボール51の偏在を回避するため、金網で4室に分割され、上方かご50の全体が上昇渦流に浸積されるようになっている。   The upper car 50 is made of a stainless steel wire mesh, the outer diameter is set to a size that fits inside the tank 20, and a hole 52 penetrating in the vertical direction is formed in the center of the upper car 50 as a whole. When viewed, it has a donut shape, and the upper end of the ultraviolet lamp 40 is fitted into the hole 52, and the height of the upper cage 50 is determined according to the number of built-in tourmaline mineral ceramic balls 51. ing. Further, in order to avoid the uneven distribution of the ceramic balls 51, the upper cage 50 is divided into four chambers by a wire mesh, and the entire upper cage 50 is immersed in the rising vortex.

トルマリン鉱物製のセラミックスボール51は、NaFe3Al3(BO36Si618 (OH)4の組成を有するトルマリン鉱物を、ZnO・B23のバインダ−で径7〜9mmの球状に成形して焼成し、自発電極を持ち、微弱電流を流すように調製されている。これが、タンク40内の上昇渦流に微弱電流を与え、又希土類鉱物製のセラミックスボール31及び紫外線ランプ40の照射によって生成される電子(e-)も加わって、循環湯中に存在する人体の分泌物、垢等から蛋白質や脂肪、本来水の中にあるミネラルの微細コロイドなどをイオンの形に変え、”ぬめり”にならないように働く。 The ceramic ball 51 made of tourmaline mineral is a spherical ball having a diameter of 7 to 9 mm made of a tourmaline mineral having a composition of NaFe 3 Al 3 (BO 3 ) 6 Si 6 O 18 (OH) 4 with a binder of ZnO · B 2 O 3. It is molded and fired, has a spontaneous electrode, and is prepared to pass a weak current. This gives a weak current to the rising eddy current in the tank 40, and also includes the rare earth mineral ceramic balls 31 and the electrons (e ) generated by the irradiation of the ultraviolet lamp 40, thereby secreting the human body existing in the circulating hot water. It works to prevent "slimming" by changing protein, fat, mineral fine colloids, etc., originally in water, into ionic forms.

本例の殺菌装置では清掃、セラミックスボール31,51や光触媒金網42の補充や交換を容易に行えるように、底方かご30、紫外線ランプ40、光触媒金網42及び上方かご50はタンク20の内部に固定されていない。その為、高い圧力の上昇渦流によって押し上げられるおそれがある。そこで、上方かご50の上面にかごの直径に相当する長さで、例えば幅3cmの板材53をクロスして十状に取付け、その4ヶ所から金属棒54を立て、その先端がタンク20の蓋21の裏面で支持されるようにしているが、これ以外の方式で支持するようにしてもよい。   In the sterilization apparatus of this example, the bottom cage 30, the ultraviolet lamp 40, the photocatalyst mesh 42 and the upper cage 50 are placed inside the tank 20 so that cleaning, refilling and replacement of the ceramic balls 31, 51 and the photocatalyst mesh 42 can be easily performed. It is not fixed. Therefore, it may be pushed up by the rising vortex of high pressure. Therefore, a plate 53 having a length corresponding to the diameter of the car, for example, a width of 3 cm, is mounted on the upper surface of the upper car 50 in a cross shape, and a metal bar 54 is erected from the four places, and the tip of the metal bar 54 is the lid of the tank 20 Although it is supported by the back surface of 21, it may be supported by other methods.

本件発明者らはタンク容積70リットルの装置を試作し、レジオネラ属菌の殺菌効果を測定したところ、2.5分の滞流時間で、90%のレジオネラ属菌を死滅できることが確認された。   The inventors of the present invention prototyped a device having a tank volume of 70 liters and measured the bactericidal effect of Legionella sp. It was confirmed that 90% of Legionella sp. Could be killed in a stagnation time of 2.5 minutes.

本発明に係るレジオネラ属菌の殺菌装置の好ましい実施形態が適用される循環浴場の塩素処理システムの例を示す図である。It is a figure which shows the example of the chlorination system of the circulating bathing place where preferable embodiment of the disinfection apparatus of Legionella genus bacteria which concerns on this invention is applied. 上記実施形態を示す全体斜視図である。It is a whole perspective view which shows the said embodiment. 上記実施形態における取込み口部及び排出口部の関係を示す図である。It is a figure which shows the relationship between the intake port part and discharge port part in the said embodiment. 上記実施形態における断面構成図である。It is a section lineblock diagram in the above-mentioned embodiment. 上記実施形態における底方かご、紫外線ランプ、光触媒金網及び上方かごの関係を示す図である。It is a figure which shows the relationship between the bottom basket in the said embodiment, an ultraviolet lamp, a photocatalyst metal mesh, and an upper cage.

符号の説明Explanation of symbols

11 循環配管(配管)
20 タンク
23 取込み口部
24 排出口部
30 上方かご(第1容器)
31 セラミックスボール
40 紫外線ランプ
41 光触媒金網(光触媒体)
50 上方かご
51 セラミックスボール
11 Circulation piping (piping)
20 Tank 23 Intake port 24 Discharge port 30 Upper cage (first container)
31 Ceramic ball 40 UV lamp 41 Photocatalyst wire mesh (photocatalyst body)
50 Upper cage 51 Ceramic balls

Claims (6)

密閉構造のタンク側壁面の下部及び上部の一方には処理すべき流体を配管から取り込む取込み口部が、他方には処理後の流体を配管に排出する排出口部が各々接続され、上記タンク内には第1容器が上記取込み口部に接近して配置され、該第1容器は少なくとも側面及び後述の第2容器に対向する壁面が流体を通過させ得る構造を有し、上記第1容器内には天然放射性元素を含む希土類鉱物製の複数のセラミックスボ−ルが遊動可能に内蔵されている一方、
上記タンク内には第2容器が上記排出口部に接近して配置され、該第2容器は少なくとも側面及び上記第1容器に対向する壁面が流体を通過させ得る構造を有し、上記第2容器内にはトルマリン鉱物製のセラミックスボ−ルが内蔵され、上記タンク内には上記第1容器と上記第2容器との間に紫外線ランプが配置され、該紫外線ランプの周囲に光触媒体が配置されていることを特徴とするレジオネラ属菌の殺菌装置。
An intake port for taking the fluid to be processed from the pipe is connected to one of the lower and upper sides of the tank side wall surface of the sealed structure, and a discharge port for discharging the processed fluid to the pipe is connected to the other. The first container is disposed close to the intake port, and the first container has a structure in which a fluid can pass through at least a side surface and a wall surface facing a second container described later, Contains a plurality of ceramic balls made of rare earth minerals containing natural radioactive elements in a freely movable manner,
A second container is disposed in the tank close to the discharge port, and the second container has a structure in which a fluid can pass through at least a side surface and a wall surface facing the first container. A ceramic ball made of tourmaline mineral is built in the container, an ultraviolet lamp is disposed between the first container and the second container in the tank, and a photocatalyst is disposed around the ultraviolet lamp. A sterilizing apparatus for Legionella spp.
上記タンクが密閉構造の円筒状をなし、上記取込み口部が上記タンク側壁面の下部に、上記排出口部が上記タンク側壁面の上部に各々接続されている請求項1記載のレジオネラ属菌の殺菌装置。   2. The Legionella spp. According to claim 1, wherein the tank has a sealed cylindrical shape, the intake port is connected to a lower portion of the tank side wall surface, and the discharge port portion is connected to an upper portion of the tank side wall surface. Sterilizer. 上記取込み口部及び排出口部の口径が流体を流通させる上記配管の口径の1/3〜2/3である請求項1又は2記載のレジオネラ属菌の殺菌装置。   The Legionella sterilizer according to claim 1 or 2, wherein the diameter of the intake port and the discharge port is 1/3 to 2/3 of the diameter of the pipe through which fluid flows. 上記取込み口部及び排出口部が平面から見て上記タンク側壁面の相互に対向する位置において上記タンク側壁面の接線方向に接続されている請求項1ないし3のいずれかに記載のレジオネラ属菌の殺菌装置。   The Legionella spp. According to any one of claims 1 to 3, wherein the intake port portion and the discharge port portion are connected in a tangential direction of the tank side wall surface at a position opposite to each other on the tank side wall surface as viewed from above. Sterilization equipment. 上記第1容器及び第2容器が金網又はパンチングプレートで構成されている請求項1記載のレジオネラ属菌の殺菌装置。   The sterilizer for Legionella spp. According to claim 1, wherein the first container and the second container are constituted by a wire mesh or a punching plate. 上記紫外線ランプが円筒状の上記タンクの中心線上に配置され、上記光触媒体が表面に二酸化チタンをコーティングした金網で円筒状に製作され、上記紫外線ランプの周囲には光触媒体が異なる半径の同心円上に配置されている請求項1記載のレジオネラ属菌の殺菌装置。
The ultraviolet lamp is disposed on the center line of the cylindrical tank, the photocatalyst is manufactured in a cylindrical shape with a wire mesh coated with titanium dioxide on the surface, and the photocatalyst is formed on a concentric circle having different radii around the ultraviolet lamp. The sterilizer of Legionella genus bacteria of Claim 1 arrange | positioned.
JP2004042508A 2004-02-19 2004-02-19 Legionella sterilizer Expired - Fee Related JP4131708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004042508A JP4131708B2 (en) 2004-02-19 2004-02-19 Legionella sterilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004042508A JP4131708B2 (en) 2004-02-19 2004-02-19 Legionella sterilizer

Publications (2)

Publication Number Publication Date
JP2005230675A true JP2005230675A (en) 2005-09-02
JP4131708B2 JP4131708B2 (en) 2008-08-13

Family

ID=35014176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004042508A Expired - Fee Related JP4131708B2 (en) 2004-02-19 2004-02-19 Legionella sterilizer

Country Status (1)

Country Link
JP (1) JP4131708B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209912A (en) * 2006-02-10 2007-08-23 Sage Corporation Manufacturing method of ceramics particles for improving quality of chlorine treated water and quality improving method of chlorine treated water
JP2008062203A (en) * 2006-09-08 2008-03-21 Toshiba Corp Water treatment system
JP2009101259A (en) * 2007-10-21 2009-05-14 Mk Kaihatsu Kk Circulating water, and antifouling method and antifouling apparatus for equipment using the same
JP2013501613A (en) * 2009-08-13 2013-01-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Device having a source for emitting ultraviolet light
JP2013169505A (en) * 2012-02-20 2013-09-02 J Morita Tokyo Mfg Corp Device and method for producing sterile water
JP2016153116A (en) * 2015-02-20 2016-08-25 パナソニックIpマネジメント株式会社 Water feeder and lid
JP6357712B1 (en) * 2017-06-05 2018-07-18 株式会社ネイチャー Water purification device using photocatalytic reaction
CN108298637A (en) * 2018-02-07 2018-07-20 大连理工大学 A kind of easily photocatalytic water treatment device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209912A (en) * 2006-02-10 2007-08-23 Sage Corporation Manufacturing method of ceramics particles for improving quality of chlorine treated water and quality improving method of chlorine treated water
JP2008062203A (en) * 2006-09-08 2008-03-21 Toshiba Corp Water treatment system
JP2009101259A (en) * 2007-10-21 2009-05-14 Mk Kaihatsu Kk Circulating water, and antifouling method and antifouling apparatus for equipment using the same
JP2013501613A (en) * 2009-08-13 2013-01-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Device having a source for emitting ultraviolet light
JP2013169505A (en) * 2012-02-20 2013-09-02 J Morita Tokyo Mfg Corp Device and method for producing sterile water
JP2016153116A (en) * 2015-02-20 2016-08-25 パナソニックIpマネジメント株式会社 Water feeder and lid
JP6357712B1 (en) * 2017-06-05 2018-07-18 株式会社ネイチャー Water purification device using photocatalytic reaction
WO2018225339A1 (en) * 2017-06-05 2018-12-13 株式会社ネイチャー Water purification device utilizing photocatalytic reaction
JP2018202322A (en) * 2017-06-05 2018-12-27 株式会社ネイチャー Water purification device utilizing photocatalytic reaction
CN108298637A (en) * 2018-02-07 2018-07-20 大连理工大学 A kind of easily photocatalytic water treatment device

Also Published As

Publication number Publication date
JP4131708B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
US6405387B1 (en) Sanitized jetted bathing facility
US7393323B2 (en) Method and device for subaqueous ultrasonic irradiation of living tissue
WO2011032543A2 (en) Self-disinfecting trap
JP4131708B2 (en) Legionella sterilizer
JP2008183502A (en) Water treatment apparatus with nano-bubble and water treating method by nano-bubble
US9956374B2 (en) Isolation floatation chamber
WO2009046561A2 (en) Method for the disinfection of poultry barns and livestock sheds using ozone, electrolytically oxidative radicals, uv-c radiation, electrostatic spray technology, excess pressure ventilation and air-humidification technology
JP2005006668A (en) Carbonated spring generation method and device
KR101229740B1 (en) Apparatus for sterilizing and disinfecting water on-time and method using same
JP2011019857A (en) Air sterilizer
JP2004337846A (en) Aerated water preparation method and apparatus
CN105753116A (en) Medical counter basin water disinfection box
KR20120138265A (en) Sterilzation treatment apparatus for water of aquarium for living fish
KR20110004001A (en) Circulation type sanitary water purification system using physical and chemical characteristics of nano bubbles and method thereof
JP2008006333A (en) Ultraviolet irradiation device
JP3758927B2 (en) Water sterilization method
KR200227807Y1 (en) Sterilizing Device for Water
JP2002138526A (en) Macromolecular mineral magneto-electrically ionized water supply equipment
CN208055105U (en) A kind of ozonization plant for swimming pool
CN105084625A (en) Liquid disinfecting device
CN205773552U (en) A kind of medical platform basin water sterilization case
CN110204121A (en) A kind of swimming pool ultraviolet light catalyzing copper silver ion disinfection and purification system
KR100390354B1 (en) Sterilizing Device for Water
KR101305433B1 (en) Sterilization washing device using ultra micro-bubble of dental implements
JPH1085731A (en) Water treatment ceramic spherical body and water treatment device using ceramic spherical body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080527

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees