JP2005228888A - Curing composition for solid-state imaging device, and the solid-state imaging device using the same - Google Patents

Curing composition for solid-state imaging device, and the solid-state imaging device using the same Download PDF

Info

Publication number
JP2005228888A
JP2005228888A JP2004035524A JP2004035524A JP2005228888A JP 2005228888 A JP2005228888 A JP 2005228888A JP 2004035524 A JP2004035524 A JP 2004035524A JP 2004035524 A JP2004035524 A JP 2004035524A JP 2005228888 A JP2005228888 A JP 2005228888A
Authority
JP
Japan
Prior art keywords
weight
curable composition
parts
solid
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004035524A
Other languages
Japanese (ja)
Inventor
Takao Yashiro
隆郎 八代
Yoshikazu Honda
美和 本田
Hiromi Shimomura
宏臣 下村
Tetsuya Yamamura
哲也 山村
Takayoshi Tanabe
隆喜 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2004035524A priority Critical patent/JP2005228888A/en
Publication of JP2005228888A publication Critical patent/JP2005228888A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a curing composition for a solid-state imaging device which obtains a curing film at a high refractive index and superior light resistance, and to provide the curing film for the solid-state imaging device having superior antireflection properties. <P>SOLUTION: The curing composition contains (1) titanium oxide particles of 100 parts by weight coated with oxide of one or more metal elements, selected from among a group consisting of silicon, aluminium, titanium, zirconium, tin, antimony and zinc; (2) a curing compound of 1 to 150 parts by weight; and (3) a curing catalyst of 0.1 to 100 parts by weight. The solid-state imaging device 10 has a laminate, containing the curing film formed by curing this curing composition under a microlens, and can effectively be used for a use field of an optical system mechanism of a camera and the like, by using various microlens arrays. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体撮像素子用硬化性組成物及びそれを用いた固体撮像素子用硬化膜に関する。より詳細には、屈折率が1.60以上で、耐光性に優れた硬化膜が得られる固体撮像素子用硬化性組成物及びそれを用いた反射防止性に優れた固体撮像素子用硬化膜に関する。   The present invention relates to a curable composition for a solid-state imaging device and a cured film for a solid-state imaging device using the same. More specifically, the present invention relates to a curable composition for a solid-state imaging device having a refractive index of 1.60 or more and a cured film excellent in light resistance and a cured film for a solid-state imaging device excellent in antireflection using the same. .

図1は従来の固体撮像装置の断面図を示す。図1に示すように、N型半導体基板1上に、受光部2及び転送部3、シリコン酸化膜4、ポリシリコン電極5、タングステンシリサイド6、BPSG膜7、遮光メタル8が順次設けられ、その上にアクリル樹脂等により平坦化膜9が設けられている。この平坦化膜9の上にマイクロレンズ10が形成されている。
特許文献1には、平坦化膜9をマイクロレンズ10より大きな屈折率のポリイミド樹脂で形成することが記載されている。しかし、この固体撮像素子は、ポリイミド樹脂の屈折率が十分大きくないため、固体撮像素子の受光部への集光効率が十分でなく、また、硬化温度が高いため、工作精度の点で問題があった。
従って、マイクロレンズの下方にある層であって、より高い屈折率を備える層が求められていた。
FIG. 1 is a sectional view of a conventional solid-state imaging device. As shown in FIG. 1, a light receiving unit 2 and a transfer unit 3, a silicon oxide film 4, a polysilicon electrode 5, a tungsten silicide 6, a BPSG film 7, and a light shielding metal 8 are sequentially provided on an N-type semiconductor substrate 1. A planarizing film 9 is provided on the top with an acrylic resin or the like. A microlens 10 is formed on the planarizing film 9.
Patent Document 1 describes that the planarizing film 9 is formed of a polyimide resin having a refractive index larger than that of the microlens 10. However, since the refractive index of the polyimide resin is not sufficiently large in this solid-state image sensor, the light collection efficiency of the solid-state image sensor on the light receiving portion is not sufficient, and the curing temperature is high, so there is a problem in terms of work accuracy. there were.
Therefore, a layer below the microlens and having a higher refractive index has been demanded.

一方、金属酸化物粒子として、酸化ジルコニウムを用いて、1.7程度の屈折率を有し、保存安定性を改良した高屈折率材料が開示されている(例えば、特許文献2参照。)。   On the other hand, as a metal oxide particle, a high refractive index material using zirconium oxide and having a refractive index of about 1.7 and improved storage stability is disclosed (for example, see Patent Document 2).

上記の高屈折率材料には、さらに屈折率を増大させるため、屈折率の高い金属酸化物粒子である酸化チタン粒子を用いることが示唆されている。
しかし、酸化チタン粒子は、一般に光触媒能を有するため、このような金属酸化物粒子を含有する膜は、その耐光性が低下するという欠点があった。
このように、反射防止性を有する高屈折率膜が知られているが、屈折率が十分に高くない、あるいは耐光性が十分でない等の問題を有していた。
It has been suggested that titanium oxide particles, which are metal oxide particles having a high refractive index, are used for the high refractive index material in order to further increase the refractive index.
However, since titanium oxide particles generally have a photocatalytic activity, a film containing such metal oxide particles has a drawback in that its light resistance decreases.
As described above, a high refractive index film having antireflection properties is known, but has a problem that the refractive index is not sufficiently high or light resistance is not sufficient.

特開平5−134111号公報Japanese Patent Laid-Open No. 5-134111 特開2000−186216号公報JP 2000-186216 A

本発明は、屈折率が高く、耐光性に優れた硬化膜が得られる固体撮像素子用硬化性組成物、及びそれを用いた優れた反射防止性を有する固体撮像素子用硬化膜を提供することを目的とする。
本発明の発明者らは鋭意検討した結果、(1)ケイ素、アルミニウム、チタン、ジルコニウム、スズ、アンチモン及び亜鉛からなる群から選択される一以上の金属元素の酸化物で被覆された酸化チタン粒子(以下、「被覆酸化チタン粒子」という。)と、(2)硬化性化合物と、(3)硬化触媒とを、所定の範囲内の添加量で混合した硬化性組成物を、又は、さらに(4)水酸基含有化合物を所定の範囲内の添加量で混合した硬化性組成物を、高屈折率材料として用いることにより、上述した問題を解決できることを見出した。
The present invention provides a curable composition for a solid-state imaging device having a high refractive index and a cured film excellent in light resistance, and a cured film for a solid-state imaging device having excellent antireflection properties using the same. With the goal.
As a result of intensive studies by the inventors of the present invention, (1) titanium oxide particles coated with an oxide of one or more metal elements selected from the group consisting of silicon, aluminum, titanium, zirconium, tin, antimony and zinc (Hereinafter referred to as “coated titanium oxide particles”), (2) a curable compound, and (3) a curing catalyst mixed in an addition amount within a predetermined range, or ( 4) It has been found that the above-mentioned problems can be solved by using, as a high refractive index material, a curable composition in which a hydroxyl group-containing compound is mixed in an addition amount within a predetermined range.

本発明の固体撮像素子は、マイクロレンズと、その下方にある、本発明の硬化性組成物の硬化膜を含む積層体との組み合わせからなる。マイクロレンズの下方にある積層体は、集光効率向上層、平坦化層等として機能することができる。
本発明の第1の態様によれば、(1)被覆酸化チタン粒子100重量部と、(2)硬化性化合物1〜300重量部と、(3)硬化触媒0.1〜30重量部とを含有する固体撮像素子用硬化性組成物が提供される。この硬化性組成物は、好ましくは、(4)水酸基含有化合物1〜150重量部を含有する。
The solid-state imaging device of the present invention is composed of a combination of a microlens and a laminate including a cured film of the curable composition of the present invention below the microlens. The laminated body below the microlens can function as a light collection efficiency improving layer, a flattening layer, or the like.
According to the first aspect of the present invention, (1) 100 parts by weight of coated titanium oxide particles, (2) 1 to 300 parts by weight of a curable compound, and (3) 0.1 to 30 parts by weight of a curing catalyst. A curable composition for a solid-state imaging device is provided. This curable composition preferably contains 1 to 150 parts by weight of (4) a hydroxyl group-containing compound.

(1)被覆酸化チタン粒子を用いることにより、比較的少量の添加で硬化膜の屈折率を1.60以上に調節することができる。この被覆酸化チタン粒子は、透明性が高い(着色性が少ない)という利点がある。
また、このように硬化性組成物を構成することにより、屈折率が1.60以上で、耐光性に優れた硬化膜(高屈折率膜)を得ることができる。
(1) By using the coated titanium oxide particles, the refractive index of the cured film can be adjusted to 1.60 or more with a relatively small amount of addition. This coated titanium oxide particle has the advantage of high transparency (low coloration).
Moreover, by configuring the curable composition in this way, a cured film (high refractive index film) having a refractive index of 1.60 or more and excellent light resistance can be obtained.

また、本発明の硬化性組成物において、(2)硬化性化合物がメラミン化合物であり、(3)硬化触媒が芳香族スルホン酸又は芳香族スルホン酸塩であり、(4)水酸基含有化合物がポリビニルブチラール樹脂であることが好ましい。   In the curable composition of the present invention, (2) the curable compound is a melamine compound, (3) the curing catalyst is an aromatic sulfonic acid or an aromatic sulfonate, and (4) the hydroxyl group-containing compound is polyvinyl. A butyral resin is preferred.

(2)硬化性化合物として、メラミン化合物を用いることにより、硬化性組成物の保存安定性を向上させることができる。また、比較的低温、例えば、200℃以下での短時間硬化が可能となる。
また、(4)水酸基含有化合物として、ポリビニルブチラール樹脂を用いることにより、硬化性組成物を調製する際に、被覆酸化チタン粒子の均一分散が容易となる。また、得られた高屈折率膜の、機械的特性を向上させることができる。
(2) By using a melamine compound as the curable compound, the storage stability of the curable composition can be improved. Further, it can be cured for a short time at a relatively low temperature, for example, 200 ° C. or less.
In addition, (4) using a polyvinyl butyral resin as the hydroxyl group-containing compound facilitates uniform dispersion of the coated titanium oxide particles when preparing the curable composition. Moreover, the mechanical characteristics of the obtained high refractive index film can be improved.

また、この硬化性組成物は、好ましくは、有機溶媒をさらに100〜10000重量部を含有する。   The curable composition preferably further contains 100 to 10,000 parts by weight of an organic solvent.

本発明の第2の態様によれば、上記の硬化性組成物を硬化させてなる屈折率が1.60以上の固体撮像素子用硬化膜が提供される。
この硬化膜は、屈折率が高いので固体撮像素子の集光効率を上げ、感度を向上することができる。
According to the 2nd aspect of this invention, the cured film for solid-state image sensors with a refractive index of 1.60 or more formed by hardening said curable composition is provided.
Since this cured film has a high refractive index, it is possible to increase the light collection efficiency of the solid-state imaging device and improve the sensitivity.

本発明の第3の態様によれば、上記の固体撮像素子用硬化性組成物をスピンコート法により塗布して該組成物の塗布膜を形成した後に、加熱又は放射線を照射して該塗布膜を硬化せしめる工程を有する上記の硬化膜の製造方法が提供される。   According to the third aspect of the present invention, after applying the curable composition for a solid-state imaging device by a spin coating method to form a coating film of the composition, the coating film is irradiated with heat or radiation. There is provided a method for producing the above-mentioned cured film, which comprises a step of curing.

本発明の第4の態様によれば、基材層と、上記の硬化膜(高屈折率膜)と、マイクロレンズとを、この順に有する固体撮像素子が提供される。
このような高屈折率膜を含むことにより、マイクロレンズで集められた光を効率的に受光素子に誘導することができる。
According to the 4th aspect of this invention, the solid-state image sensor which has a base material layer, said hardened | cured film (high refractive index film | membrane), and a micro lens in this order is provided.
By including such a high refractive index film, the light collected by the microlens can be efficiently guided to the light receiving element.

本発明の硬化性組成物によれば、屈折率が高く、耐光性に優れた硬化膜が得られる。   According to the curable composition of the present invention, a cured film having a high refractive index and excellent light resistance can be obtained.

本発明の固体撮像素子用硬化性組成物に関する実施の形態(第1の実施形態)及び固体撮像素子用硬化膜に関する実施の形態(第2の実施形態)を具体的に説明する。   An embodiment (first embodiment) relating to the curable composition for a solid-state imaging device of the present invention and an embodiment (second embodiment) relating to the cured film for the solid-state imaging device will be specifically described.

[第1の実施形態]
本発明の硬化性組成物は、(1)被覆酸化チタン粒子100重量部と、(2)硬化性化合物1〜300重量部と、(3)硬化触媒0.1〜30重量部とを含有する。
[First Embodiment]
The curable composition of the present invention contains (1) 100 parts by weight of coated titanium oxide particles, (2) 1 to 300 parts by weight of a curable compound, and (3) 0.1 to 30 parts by weight of a curing catalyst. .

(1)被覆酸化チタン粒子
被覆酸化チタン粒子とは、ケイ素、アルミニウム、チタン、ジルコニウム、スズ、アンチモン及び亜鉛からなる群から選択される一以上の金属元素の酸化物で被覆された酸化チタン粒子である。ここで酸化チタン粒子の被覆方法は、特に限定されるものではないが、例えば、「酸化チタン 物性と応用技術」(清野 学 著)技報堂出版p.28〜31(1991)に記載されている方法により、酸化チタン粒子を所定の金属塩の水溶液中で処理することにより金属水酸化物で被覆した後、焼成する方法等が挙げられる。この場合、金属水酸化物の大半は焼成により金属酸化物となる。このため、本願発明において、被覆酸化チタン粒子とは、被覆部分を形成する金属酸化物中に金属水酸化物が残存している態様をも含む概念である。
(1) Coated titanium oxide particles Coated titanium oxide particles are titanium oxide particles coated with an oxide of one or more metal elements selected from the group consisting of silicon, aluminum, titanium, zirconium, tin, antimony and zinc. is there. Here, the method of coating the titanium oxide particles is not particularly limited. For example, “Titanium oxide physical properties and applied technology” (manufactured by Kiyono Manabu) Gihodo Publishing p. 28-31 (1991), a method in which titanium oxide particles are coated with a metal hydroxide by treatment in an aqueous solution of a predetermined metal salt and then fired. In this case, most of the metal hydroxide becomes a metal oxide by firing. Therefore, in the present invention, the coated titanium oxide particles is a concept including an aspect in which the metal hydroxide remains in the metal oxide forming the coated portion.

また、被覆とは、必ずしも酸化チタン粒子の表面全体が金属酸化物によって覆われている態様に限定されるものではなく、緻密なあるいは多孔質であってよい。また、被覆酸化チタン粒子は、酸化チタン粒子と明確に分離した被覆層を有する粒子に限定されるものではなく、前記の金属酸化物又は金属水酸化物が主に粒子の外殻付近に存在しており被覆層と酸化チタン粒子が明確に分離した層を形成していない粒子をも含まれる。   The coating is not necessarily limited to an embodiment in which the entire surface of the titanium oxide particles is covered with the metal oxide, and may be dense or porous. The coated titanium oxide particles are not limited to particles having a coating layer that is clearly separated from the titanium oxide particles, and the metal oxide or metal hydroxide is mainly present near the outer shell of the particles. In addition, particles that do not form a layer in which the coating layer and the titanium oxide particles are clearly separated are also included.

被覆は、上記の金属元素の酸化物のうち、2種以上の金属元素の酸化物で行うことができる。この場合、各金属酸化物による被覆がそれぞれ被覆層を形成していてもよいし、2種以上の金属元素の酸化物が共沈して一つの被覆層を形成していてもよい。
前記金属酸化物が酸化ジルコニウム(ジルコニア)を含むものであると、少ない粒子添加量で高い屈折率が得られるため、硬化膜の透明性を損なうことなく、高屈折率の硬化膜を得ることができる点で好ましい。
The coating can be performed with two or more metal element oxides among the above metal element oxides. In this case, the coating with each metal oxide may form a coating layer, or two or more metal element oxides may be co-precipitated to form one coating layer.
When the metal oxide contains zirconium oxide (zirconia), a high refractive index can be obtained with a small amount of added particles, and thus a cured film having a high refractive index can be obtained without impairing the transparency of the cured film. Is preferable.

被覆酸化チタン粒子の数平均粒子径(凝集している場合には、一次粒子径)は、0.1μm以下が好ましい。数平均粒子径が0.1μmを超えると、被覆酸化チタン粒子を均一に分散させることが困難となる場合がある。また、被覆酸化チタン粒子が沈降し易くなり、保存安定性に欠ける場合がある。さらには、得られる硬化膜の透明性が低下したり、濁度(Haze値)が上昇する場合がある。数平均粒子径は、0.01〜0.08μmがより好ましく、0.02〜0.05μmがさらに好ましい。
このような被覆酸化チタン粒子を用いることにより、酸化チタンの光触媒活性を抑制することができ、硬化物の分解を抑止することができる。その結果、高屈折率で、耐光性に優れた硬化膜を得ることができる。
The number average particle diameter of the coated titanium oxide particles (the primary particle diameter in the case of aggregation) is preferably 0.1 μm or less. When the number average particle diameter exceeds 0.1 μm, it may be difficult to uniformly disperse the coated titanium oxide particles. In addition, the coated titanium oxide particles are likely to settle and lack storage stability. Furthermore, the transparency of the obtained cured film may decrease, or turbidity (Haze value) may increase. The number average particle diameter is more preferably 0.01 to 0.08 μm, and further preferably 0.02 to 0.05 μm.
By using such coated titanium oxide particles, the photocatalytic activity of titanium oxide can be suppressed, and decomposition of the cured product can be suppressed. As a result, a cured film having a high refractive index and excellent light resistance can be obtained.

(2)硬化性化合物
硬化性化合物としては、メラミン化合物、尿素化合物、グアナミン化合物、フェノール化合物、エポキシ化合物、イソシアネート化合物、多塩基酸等の一種単独又は二種以上の組み合わせが挙げられる。
これらのうち、保存安定性に比較的優れ、比較的低温での硬化が可能な点から、分子内にメチロール基及びアルコキシ化メチル基又はいずれか一方を2個以上有するメラミン化合物が最も好ましい。また、これらのメラミン化合物のうちでも、ヘキサメチルエーテル化メチロールメラミン化合物、ヘキサブチルエーテル化メチロールメラミン化合物、メチルブチル混合エーテル化メチロールメラミン化合物、メチルエーテル化メチロールメラミン化合物、ブチルエーテル化メチロールメラミン化合物等のメチル化メラミン化合物がより好ましい。
(2) Curable compound Examples of the curable compound include one kind of melamine compound, urea compound, guanamine compound, phenol compound, epoxy compound, isocyanate compound, polybasic acid, or a combination of two or more kinds.
Of these, a melamine compound having two or more methylol groups and / or alkoxylated methyl groups in the molecule is most preferred from the viewpoint of relatively excellent storage stability and curing at a relatively low temperature. Among these melamine compounds, methylated melamines such as hexamethyletherified methylolmelamine compounds, hexabutyletherified methylolmelamine compounds, methylbutyl mixed etherified methylolmelamine compounds, methyletherified methylolmelamine compounds, butyletherified methylolmelamine compounds, etc. Compounds are more preferred.

硬化性化合物の添加量は、被覆酸化チタン粒子100重量部に対して、1〜300重量部、好ましくは10〜250重量部である。添加量が1重量部未満となると、塗膜の機械的強度が低下する。一方、添加量が300重量部を超えると、硬化性組成物の保存安定性が低下する。   The addition amount of the curable compound is 1 to 300 parts by weight, preferably 10 to 250 parts by weight, with respect to 100 parts by weight of the coated titanium oxide particles. When the addition amount is less than 1 part by weight, the mechanical strength of the coating film decreases. On the other hand, when the addition amount exceeds 300 parts by weight, the storage stability of the curable composition is lowered.

(3)硬化触媒
硬化触媒としては、硬化性化合物の反応を促進するものであれば、好適に使用することができる。より具体的には、脂肪族スルホン酸、脂肪族スルホン酸塩、脂肪族カルボン酸、脂肪族カルボン酸塩、芳香族スルホン酸、芳香族スルホン酸塩、芳香族カルボン酸、芳香族カルボン酸塩、金属塩、リン酸エステル等の一種単独又は二種以上の組み合わせが挙げられる。
これらのうち、メチル化メラミン化合物等の硬化性化合物の硬化速度をより向上させることができる点から、芳香族スルホン酸が最も好ましい。
(3) Curing catalyst Any curing catalyst can be used as long as it accelerates the reaction of the curable compound. More specifically, aliphatic sulfonic acid, aliphatic sulfonate, aliphatic carboxylic acid, aliphatic carboxylate, aromatic sulfonic acid, aromatic sulfonate, aromatic carboxylic acid, aromatic carboxylate, One kind alone or a combination of two or more kinds such as metal salts and phosphoric acid esters may be mentioned.
Of these, aromatic sulfonic acids are most preferable because the curing rate of curable compounds such as methylated melamine compounds can be further improved.

硬化触媒の添加量は、被覆酸化チタン粒子100重量部に対して、0.1〜30重量部、好ましくは0.5〜30重量部、より好ましくは0.5〜20重量部である。添加量が0.1重量部未満となると、硬化触媒の添加効果が発現しない。一方、添加量が30重量部を超えると、硬化性組成物の保存安定性が低下する。   The addition amount of the curing catalyst is 0.1 to 30 parts by weight, preferably 0.5 to 30 parts by weight, and more preferably 0.5 to 20 parts by weight with respect to 100 parts by weight of the coated titanium oxide particles. When the addition amount is less than 0.1 parts by weight, the effect of adding the curing catalyst is not exhibited. On the other hand, when the addition amount exceeds 30 parts by weight, the storage stability of the curable composition is lowered.

(4)水酸基含有化合物
本発明の硬化性組成物中には、水酸基含有化合物を添加することが望ましい。水酸基含有化合物としては、分子内に水酸基を有する重合体であれば、好適に使用することができる。より具体的には、ポリビニルアセタール樹脂(ポリビニルブチラール樹脂、ポリビニルホルマール樹脂)、ポリビニルアルコール樹脂、ポリアクリル系樹脂、ポリフェノール系樹脂、フェノキシ樹脂等の一種単独又は二種以上の組み合わせが挙げられる。
これらのうち、機械的特性に優れ、被覆酸化チタン粒子の均一分散が比較的容易な点から、ポリビニルブチラール樹脂(変性ポリビニルブチラール樹脂を含む。)が最も好ましい。また、ポリビニルブチラール樹脂のうちでも、平均重合度が1,000以下であり、一分子中のポリビニルアルコール単位が18重量%以上であり、かつ、ガラス転移点が70℃以上の物性を有するものがより好ましい。
(4) Hydroxyl-containing compound It is desirable to add a hydroxyl-containing compound to the curable composition of the present invention. As the hydroxyl group-containing compound, any polymer having a hydroxyl group in the molecule can be preferably used. More specifically, a single type of polyvinyl acetal resin (polyvinyl butyral resin, polyvinyl formal resin), polyvinyl alcohol resin, polyacrylic resin, polyphenolic resin, phenoxy resin, or a combination of two or more types can be given.
Of these, polyvinyl butyral resins (including modified polyvinyl butyral resins) are most preferred because of excellent mechanical properties and relatively easy uniform dispersion of the coated titanium oxide particles. Among polyvinyl butyral resins, those having an average degree of polymerization of 1,000 or less, a polyvinyl alcohol unit in one molecule of 18% by weight or more, and a glass transition point of 70 ° C. or more. More preferred.

水酸基含有化合物の添加量は、被覆酸化チタン粒子100重量部に対して、1〜150重量部が好ましい。1重量部以上であれば、機械的特性が改善される。一方、添加量が150重量部以下であれば、相対的に十分な被覆酸化チタン粒子量を確保することができ、硬化後における硬化膜の充分な屈折率特性が得られる。
水酸基含有化合物の添加量は、1〜50重量部がより好ましく、1〜30重量部がさらに好ましい。
The amount of the hydroxyl group-containing compound added is preferably 1 to 150 parts by weight with respect to 100 parts by weight of the coated titanium oxide particles. If it is 1 part by weight or more, the mechanical properties are improved. On the other hand, if the addition amount is 150 parts by weight or less, a relatively sufficient amount of coated titanium oxide particles can be secured, and sufficient refractive index characteristics of the cured film after curing can be obtained.
The amount of the hydroxyl group-containing compound added is more preferably 1 to 50 parts by weight, still more preferably 1 to 30 parts by weight.

(5)有機溶媒
硬化性組成物中には、有機溶媒を添加することが好ましい。有機溶媒を添加することにより、薄膜の硬化膜を均一に形成することができる。このような有機溶媒としては、メチルイソブチルケトン、メチルエチルケトン、メタノール、エタノール、t−ブタノール、イソプロパノール、乳酸エチル、プロピレングリコールモノメチルエーテル、n−ブタノール等の一種単独又は二種以上の組み合わせが挙げられる。好適な溶媒は、硬化性組成物の塗布方法に応じて異なる。ディップ法やキャスト法を用いる場合には、メチルイソブチルケトン、メチルエチルケトン、メタノール、エタノール、t−ブタノール、イソプロパノール等の一種単独又は二種以上の組み合わせが良好な塗布性を与えるため好ましい。一方、スピンコート法を用いる場合には、乳酸エチル、プロピレングリコールモノメチルエーテル、n−ブタノールが、良好な塗布性を与えるため好ましい。
(5) Organic solvent It is preferable to add an organic solvent in the curable composition. By adding an organic solvent, a thin cured film can be formed uniformly. Examples of such an organic solvent include one kind alone or a combination of two or more kinds such as methyl isobutyl ketone, methyl ethyl ketone, methanol, ethanol, t-butanol, isopropanol, ethyl lactate, propylene glycol monomethyl ether, and n-butanol. The suitable solvent varies depending on the application method of the curable composition. When using a dip method or a casting method, one or a combination of two or more of methyl isobutyl ketone, methyl ethyl ketone, methanol, ethanol, t-butanol, isopropanol and the like is preferable. On the other hand, when the spin coating method is used, ethyl lactate, propylene glycol monomethyl ether, and n-butanol are preferable because they give good coatability.

有機溶媒の添加量は特に制限されないが、被覆酸化チタン粒子100重量部に対し、100〜10,000重量部とするのが好ましい。添加量が100重量部未満となると、硬化性組成物の粘度調整が困難となる場合がある。一方、添加量が20,000重量部を超えると、硬化性組成物の保存安定性が低下したり、また、粘度が低下し過ぎて、取り扱いが困難となる場合がある。
有機溶媒の添加量は、300〜10,000重量部がより好ましく、500〜5,000重量部がさらに好ましい。
The addition amount of the organic solvent is not particularly limited, but is preferably 100 to 10,000 parts by weight with respect to 100 parts by weight of the coated titanium oxide particles. When the addition amount is less than 100 parts by weight, it may be difficult to adjust the viscosity of the curable composition. On the other hand, when the addition amount exceeds 20,000 parts by weight, the storage stability of the curable composition may be reduced, and the viscosity may be excessively reduced, which may make handling difficult.
The addition amount of the organic solvent is more preferably 300 to 10,000 parts by weight, and further preferably 500 to 5,000 parts by weight.

(6)添加剤
硬化性組成物には、本発明の目的や効果を損なわない範囲において、ラジカル性光重合開始剤、ラジカル重合性単量体、光増感剤、光酸発生剤、重合禁止剤、重合開始助剤、レベリング剤、濡れ性改良剤、界面活性剤、可塑剤、紫外線吸収剤、酸化防止剤、帯電防止剤、シランカップリング剤、無機充填剤、顔料、染料等の添加剤をさらに含有させることができる。
(6) Additives In the curable composition, radical photopolymerization initiator, radical polymerizable monomer, photosensitizer, photoacid generator, polymerization prohibition, as long as the object and effect of the present invention are not impaired. Additives, polymerization initiators, leveling agents, wettability improvers, surfactants, plasticizers, UV absorbers, antioxidants, antistatic agents, silane coupling agents, inorganic fillers, pigments, dyes, etc. Can further be contained.

[第2の実施形態]
本発明の第2の実施形態は、固体撮像素子用硬化性組成物を硬化させてなる屈折率が1.60以上の固体撮像素子用硬化膜(以下、「高屈折率膜という。)である。高屈折率膜は、固体撮像素子の構成中、基材層上とマイクロレンズの中間に設置される。基材層とマイクロレンズの中間には、高屈折率膜に加えて、例えば、集光効率向上層や平坦化膜等他の層が設置されるのが通常である。以下、第2の実施形態について具体的に説明する。
[Second Embodiment]
The second embodiment of the present invention is a solid imaging element cured film (hereinafter referred to as “high refractive index film”) having a refractive index of 1.60 or more obtained by curing a curable composition for a solid imaging element. In the configuration of the solid-state imaging device, the high refractive index film is installed on the base material layer and between the microlens, and in addition to the high refractive index film, for example, a collection is provided between the base material layer and the microlens. In general, other layers such as a light efficiency improving layer and a planarizing film are provided, and the second embodiment will be specifically described below.

(1)高屈折率材料
第2の実施形態に使用する硬化性組成物は、第1の実施形態の内容と同様であるため、ここでの具体的な説明は省略する。
(1) High Refractive Index Material The curable composition used in the second embodiment is the same as the content of the first embodiment, and a specific description thereof is omitted here.

(2)硬化膜の屈折率
本発明の硬化性組成物を硬化させてなる硬化膜(高屈折率膜)の屈折率(Na−D線の屈折率、測定温度25℃)は、1.60以上である。屈折率が1.60未満となると、固体撮像素子受光部への集光効率が低下する。屈折率は、より好ましくは1.60〜2.20であり、さらに好ましくは1.65〜2.20である。尚、屈折率が2.20を超えると、使用可能な材料の種類が過度に制限される場合がある。
また、高屈折率膜を複数層設ける場合には、そのうちの少なくとも一層が上述した範囲内の屈折率を有していれば良い。従って、その他の高屈折率膜は1.60未満の屈折率を有していても良い。
(2) Refractive index of cured film The refractive index of the cured film (high refractive index film) obtained by curing the curable composition of the present invention (the refractive index of Na-D line, measurement temperature 25 ° C.) is 1.60. That's it. When the refractive index is less than 1.60, the light collection efficiency to the light-receiving unit of the solid-state imaging device is lowered. The refractive index is more preferably 1.60 to 2.20, and still more preferably 1.65 to 2.20. If the refractive index exceeds 2.20, the types of materials that can be used may be excessively limited.
Further, when a plurality of high refractive index films are provided, at least one of them may have a refractive index within the above-described range. Therefore, the other high refractive index film may have a refractive index of less than 1.60.

(3)硬化膜の膜厚
次に、高屈折率膜の厚さについて説明する。高屈折率膜の厚さは特に制限されないが、例えば、50〜30,000nmが好ましい。高屈折率膜の厚さが50nm未満となると、固体撮像素子受光部への集光効率が十分向上しない場合がある。一方、厚さが30,000nmを超えると、高屈折率膜を透過する光量が減少し、かえって固体撮像素子の感度が低下する場合がある。高屈折率膜の厚さは、100〜10,000nmがより好ましく、500〜5、000nmがさらに好ましい。
(3) Film thickness of cured film Next, the thickness of the high refractive index film will be described. The thickness of the high refractive index film is not particularly limited, but is preferably 50 to 30,000 nm, for example. If the thickness of the high refractive index film is less than 50 nm, the light collection efficiency on the solid-state imaging device light receiving part may not be sufficiently improved. On the other hand, if the thickness exceeds 30,000 nm, the amount of light transmitted through the high refractive index film may decrease, and the sensitivity of the solid-state imaging device may decrease. The thickness of the high refractive index film is more preferably from 100 to 10,000 nm, further preferably from 500 to 5,000 nm.

(4)硬化膜の製造方法
本発明の固体撮像素子用硬化膜は、上記の硬化性組成物をコーティングして形成される。このようなコーティング方法としては、ディッピング法、スプレー法、ダイコート法、スリットコート法、バーコート法、ロールコート法、スピンコート法、カーテンコート法、グラビア印刷法、シルクスクリーン法、又はインクジェット法等の方法を用いることができるが、スピンコート法が均一な硬化膜が得られ易い点で優れている。
(4) Manufacturing method of cured film The cured film for a solid-state imaging device of the present invention is formed by coating the curable composition described above. Examples of such a coating method include a dipping method, a spray method, a die coating method, a slit coating method, a bar coating method, a roll coating method, a spin coating method, a curtain coating method, a gravure printing method, a silk screen method, and an ink jet method. Although the method can be used, the spin coating method is excellent in that a uniform cured film can be easily obtained.

また、本発明の固体撮像素子用硬化性組成物を硬化する手段も特に制限されないが、例えば、塗工後に加熱硬化することが好ましい。その場合、30〜200℃で、1〜180分間加熱するのが好ましい。この条件で加熱することにより、基材層や形成される硬化膜を損傷することなく、固体撮像素子用硬化膜を得ることができる。好ましくは、50〜180℃で、2〜120分間、より好ましくは、80〜150℃で、5〜60分間加熱する。
尚、本発明の固体撮像素子用硬化性組成物の硬化程度は、例えば、硬化性化合物としてメラミン化合物を用いた場合は、メラミン化合物のメチロール基又はアルコキシ化メチル基の量を赤外分光分析したり、又は、ゲル化率を、ソックスレー抽出器を用いて測定することにより、定量的に確認することができる。
本発明の固体撮像素子用硬化性組成物は、放射線を照射して硬化させることもできるし、熱硬化と放射線硬化を組み合わせて硬化させることもできる。この場合、放射線とは、赤外線、可視光線、紫外線、X線、電子線、α線、β線、γ線等をいう。
Further, the means for curing the curable composition for a solid-state imaging device of the present invention is not particularly limited, but for example, it is preferably heat-cured after coating. In that case, it is preferable to heat at 30-200 degreeC for 1-180 minutes. By heating under these conditions, a cured film for a solid-state imaging device can be obtained without damaging the base material layer and the formed cured film. Preferably, it heats at 50-180 degreeC for 2-120 minutes, More preferably, it heats at 80-150 degreeC for 5-60 minutes.
The degree of curing of the curable composition for a solid-state imaging device of the present invention is determined by, for example, infrared spectroscopic analysis of the amount of methylol group or alkoxylated methyl group of the melamine compound when a melamine compound is used as the curable compound. Alternatively, the gelation rate can be quantitatively confirmed by measuring using a Soxhlet extractor.
The curable composition for a solid-state imaging device of the present invention can be cured by irradiation with radiation, or can be cured by combining heat curing and radiation curing. In this case, the radiation refers to infrared rays, visible rays, ultraviolet rays, X-rays, electron beams, α rays, β rays, γ rays, and the like.

以下、本発明の実施例を詳細に説明するが、本発明の範囲は、これら実施例の記載に限定されるものではない。   Examples of the present invention will be described in detail below, but the scope of the present invention is not limited to the description of these examples.

製造例1
[被覆酸化チタン粒子分散液−1の調製]
シリカ被覆された酸化チタン微粉末3.5重量部、デンカブチラール#2000−L(電気化学工業(株)製、ポリビニルブチラール樹脂、平均重合度:約300、一分子中のポリビニルアルコール単位:21重量%以上、ガラス転移点(Tg):71℃、PVB#2000L)0.6重量部、メチルイソブチルケトン(MIBK)12重量部、t−ブタノール8重量部を加え、ガラスビーズにて10時間分散を行い、ガラスビーズを除去して、シリカ被覆酸化チタン粒子分散液−1を24重量部得た。得られた被覆酸化チタン粒子分散液−1を、アルミ皿上で秤量し、120℃のホットプレート上で1時間乾燥して、全固形分濃度を求めたところ、17重量%であった。また、このシリカ被覆酸化チタン粒子分散液−1を、磁性るつぼに秤量し、80℃のホットプレート上で30分予備乾燥した後、750℃のマッフル炉中で1時間焼成を行い、得られた無機残渣量及び全固形分濃度から、全固形分中の無機含量を求めたところ、85重量%であった。
Production Example 1
[Preparation of Coated Titanium Oxide Particle Dispersion-1]
Silica-coated titanium oxide fine powder 3.5 parts by weight, Denka Butyral # 2000-L (manufactured by Denki Kagaku Kogyo Co., Ltd., polyvinyl butyral resin, average polymerization degree: about 300, polyvinyl alcohol unit in one molecule: 21 weights %, Glass transition point (Tg): 71 ° C., PVB # 2000L 0.6 parts by weight, methyl isobutyl ketone (MIBK) 12 parts by weight, t-butanol 8 parts by weight, and dispersed for 10 hours with glass beads. Then, the glass beads were removed to obtain 24 parts by weight of silica-coated titanium oxide particle dispersion-1. The obtained coated titanium oxide particle dispersion-1 was weighed on an aluminum dish and dried on a hot plate at 120 ° C. for 1 hour to obtain a total solid content concentration of 17% by weight. Further, this silica-coated titanium oxide particle dispersion-1 was weighed in a magnetic crucible, pre-dried on a hot plate at 80 ° C. for 30 minutes, and then baked in a muffle furnace at 750 ° C. for 1 hour. When the inorganic content in the total solid content was determined from the amount of inorganic residue and the total solid content concentration, it was 85% by weight.

製造例2
[被覆酸化チタン粒子分散液−2の調製]
シリカ被覆された酸化チタン微粉末3.5重量部、エチレンオキサイド−プロピレンオキサイド共重合体(平均重合度:約20)0.6重量部、MIBK12重量部、t−ブタノール8重量部を加え、ガラスビーズにて10時間分散を行い、ガラスビーズを除去して、被覆酸化チタン粒子分散液−2を24重量部得た。この被覆酸化チタン粒子分散液−2の全固形分濃度及び全固形分中の無機含量を、製造例1と同様に測定したところ、それぞれ17重量%、85重量%であった。
Production Example 2
[Preparation of coated titanium oxide particle dispersion-2]
Silica-coated titanium oxide fine powder 3.5 parts by weight, ethylene oxide-propylene oxide copolymer (average degree of polymerization: about 20) 0.6 parts by weight, MIBK 12 parts by weight, t-butanol 8 parts by weight, glass The beads were dispersed for 10 hours, and the glass beads were removed to obtain 24 parts by weight of coated titanium oxide particle dispersion-2. When the total solid content concentration and the inorganic content in the total solid content of the coated titanium oxide particle dispersion-2 were measured in the same manner as in Production Example 1, they were 17% by weight and 85% by weight, respectively.

製造例3
[被覆酸化チタン粒子分散液−3の調製]
ジルコニア及びアルミナ被覆された酸化チタン微粉末3.5重量部、エチレンオキサイド−プロピレンオキサイド共重合体(平均重合度:約20)0.6重量部、プロピレングリコールモノメチルエーテル20重量部を加え、ガラスビーズにて10時間分散を行い、ガラスビーズを除去して、被覆酸化チタン粒子分散液−3を24重量部得た。この被覆酸化チタン粒子分散液−3の全固形分濃度及び全固形分中の無機含量を、製造例1と同様に測定したところ、それぞれ17重量%、85重量%であった。
Production Example 3
[Preparation of coated titanium oxide particle dispersion-3]
Zirconia and alumina-coated titanium oxide fine powder 3.5 parts by weight, ethylene oxide-propylene oxide copolymer (average degree of polymerization: about 20) 0.6 parts by weight, propylene glycol monomethyl ether 20 parts by weight, glass beads For 10 hours to remove the glass beads to obtain 24 parts by weight of coated titanium oxide particle dispersion-3. When the total solid content concentration and the inorganic content in the total solid content of this coated titanium oxide particle dispersion-3 were measured in the same manner as in Production Example 1, they were 17% by weight and 85% by weight, respectively.

比較製造例1
[ルチル型酸化チタン粒子分散液の調製]
シリカ被覆された酸化チタン微粉末の代わりに、ルチル型酸化チタン微粉末を用いた以外は、製造例2と同様にしてルチル型酸化チタン粒子分散液を調製した。このルチル型酸化チタン粒子分散液の全固形分濃度及び全固形分中の無機含量を、製造例1と同様に測定したところ、それぞれ17重量%、85重量%であった。
Comparative production example 1
[Preparation of rutile-type titanium oxide particle dispersion]
A rutile-type titanium oxide particle dispersion was prepared in the same manner as in Production Example 2 except that rutile-type titanium oxide fine powder was used instead of silica-coated titanium oxide fine powder. When the total solid content concentration and the inorganic content in the total solid content of the rutile-type titanium oxide particle dispersion were measured in the same manner as in Production Example 1, they were 17% by weight and 85% by weight, respectively.

比較製造例2
[アナターゼ型酸化チタン粒子分散液の調製]
ルチル型酸化チタン微粉末の代わりに、アナターゼ型酸化チタン微粉末を用いた以外は、比較製造例1と同様にしてアナターゼ型酸化チタン粒子分散液を調製した。このアナターゼ型酸化チタン粒子分散液の全固形分濃度及び全固形分中の無機含量を、製造例1と同様に測定したところ、それぞれ17重量%、85重量%であった。
Comparative production example 2
[Preparation of anatase-type titanium oxide particle dispersion]
An anatase-type titanium oxide particle dispersion was prepared in the same manner as in Comparative Production Example 1 except that anatase-type titanium oxide fine powder was used instead of the rutile-type titanium oxide fine powder. When the total solid content concentration and the inorganic content in the total solid content of this anatase-type titanium oxide particle dispersion were measured in the same manner as in Production Example 1, they were 17% by weight and 85% by weight, respectively.

以下、本発明の硬化性組成物(高屈折率硬化性組成物)の調製例を実施例1〜11及び比較例1〜4に示す。   Hereinafter, preparation examples of the curable composition (high refractive index curable composition) of the present invention are shown in Examples 1 to 11 and Comparative Examples 1 to 4.

実施例1
容器中に、製造例1で調製したシリカ被覆酸化チタン粒子分散液−1:24重量部(シリカ被覆酸化チタン粒子として3.5重量部、PVB#2000Lとして0.6重量部)、サイメル303(硬化性化合物、メトキシ化メチルメラミン、三井サイテック(株)製):0.7重量部、キャタリスト4050(cat4050)(硬化触媒、芳香族スルホン酸化合物、固形分濃度32重量%、三井サイテック(株)製):0.16重量部、MIBK:45重量部及びt−ブタノール:30重量部をそれぞれ加え、均一な溶液の硬化性組成物を得た。この硬化性組成物中の全固形分濃度を、製造例1と同様に測定したところ、5重量%であった。また、この硬化性組成物の粘度(25℃)は、2mPa・sであった。
Example 1
In the container, silica-coated titanium oxide particle dispersion-1 prepared in Production Example 1: 24 parts by weight (3.5 parts by weight as silica-coated titanium oxide particles, 0.6 parts by weight as PVB # 2000L), Cymel 303 ( Curable compound, methylated methylmelamine, manufactured by Mitsui Cytec Co., Ltd .: 0.7 parts by weight, catalyst 4050 (cat 4050) (curing catalyst, aromatic sulfonic acid compound, solid content concentration 32% by weight, Mitsui Cytec Co., Ltd. )): 0.16 parts by weight, MIBK: 45 parts by weight, and t-butanol: 30 parts by weight, respectively, to obtain a curable composition of a uniform solution. When the total solid content concentration in the curable composition was measured in the same manner as in Production Example 1, it was 5% by weight. Moreover, the viscosity (25 degreeC) of this curable composition was 2 mPa * s.

実施例2
容器中に、製造例2で調製したシリカ被覆酸化チタン粒子分散液−2:10重量部(シリカ被覆酸化チタン粒子として1.5重量部)、PVB#2000L:1.6重量部、サイメル303:1.6重量部、cat4050(固形分濃度32重量%):0.32重量部、MIBK:52重量部及びt−ブタノール:35重量部をそれぞれ加え、均一な溶液の硬化性組成物を得た。この硬化性組成物中の全固形分濃度を、製造例1と同様に測定したところ、5重量%であった。また、この硬化性組成物の粘度(25℃)は、2mPa・sであった。
Example 2
In the container, silica-coated titanium oxide particle dispersion prepared in Production Example-2: 10 parts by weight (1.5 parts by weight as silica-coated titanium oxide particles), PVB # 2000L: 1.6 parts by weight, Cymel 303: 1.6 parts by weight, cat 4050 (solid content concentration 32% by weight): 0.32 parts by weight, MIBK: 52 parts by weight, and t-butanol: 35 parts by weight were added to obtain a curable composition of a uniform solution. . When the total solid content concentration in the curable composition was measured in the same manner as in Production Example 1, it was 5% by weight. Moreover, the viscosity (25 degreeC) of this curable composition was 2 mPa * s.

実施例3
PVB#2000Lを添加せず、サイメル303の添加量を3.2重量部とした以外は、実施例2と同様にして均一な溶液の硬化性組成物を得た。この硬化性組成物中の全固形分濃度を、製造例1と同様に測定したところ、5重量%であった。また、この硬化性組成物の粘度(25℃)は、2mPa・sであった。
Example 3
A uniform solution curable composition was obtained in the same manner as in Example 2 except that PVB # 2000L was not added and the amount of Cymel 303 added was 3.2 parts by weight. When the total solid content concentration in the curable composition was measured in the same manner as in Production Example 1, it was 5% by weight. Moreover, the viscosity (25 degreeC) of this curable composition was 2 mPa * s.

実施例4
容器中に、製造例2で調製したシリカ被覆酸化チタン粒子分散液−2:24重量部(シリカ被覆酸化チタン粒子として3.5重量部)、PVB#2000L:0.35重量部、サイメル303:0.35重量部、cat4050(固形分濃度32重量%):0.16重量部、MIBK:45重量部及びt−ブタノール:30重量部をそれぞれ加え、均一な溶液の硬化性組成物を得た。この硬化性組成物中の全固形分濃度を、製造例1と同様に測定したところ、5重量%であった。また、この硬化性組成物の粘度(25℃)は、2mPa・sであった。
Example 4
In the container, silica-coated titanium oxide particle dispersion prepared in Production Example-2: 24 parts by weight (3.5 parts by weight as silica-coated titanium oxide particles), PVB # 2000L: 0.35 parts by weight, Cymel 303: 0.35 parts by weight, cat 4050 (solid content concentration 32% by weight): 0.16 parts by weight, MIBK: 45 parts by weight and t-butanol: 30 parts by weight were added to obtain a curable composition of a uniform solution. . When the total solid content concentration in the curable composition was measured in the same manner as in Production Example 1, it was 5% by weight. Moreover, the viscosity (25 degreeC) of this curable composition was 2 mPa * s.

実施例5
PVB#2000Lを添加せず、サイメル303の添加量を0.7重量部とした以外は、実施例4と同様にして均一な溶液の硬化性組成物を得た。この硬化性組成物中の全固形分濃度を、製造例1と同様に測定したところ、5重量%であった。また、この硬化性組成物の粘度(25℃)は、2mPa・sであった。
Example 5
A curable composition of a uniform solution was obtained in the same manner as in Example 4 except that PVB # 2000L was not added and the amount of Cymel 303 added was 0.7 parts by weight. When the total solid content concentration in the curable composition was measured in the same manner as in Production Example 1, it was 5% by weight. Moreover, the viscosity (25 degreeC) of this curable composition was 2 mPa * s.

実施例6
容器中に、製造例2で調製したシリカ被覆酸化チタン粒子分散液−2:36重量部(シリカ被覆酸化チタン粒子として5.2重量部)、PVB#2000L:0.1重量部、サイメル303:0.1重量部、cat4050(固形分濃度32重量%):0.032重量部、MIBK:39重量部及びt−ブタノール:26重量部をそれぞれ加え、均一な溶液の硬化性組成物を得た。この硬化性組成物中の全固形分濃度を、製造例1と同様に測定したところ、5重量%であった。また、この硬化性組成物の粘度(25℃)は、2mPa・sであった。
Example 6
In the container, the silica-coated titanium oxide particle dispersion prepared in Production Example-2: 36 parts by weight (5.2 parts by weight as silica-coated titanium oxide particles), PVB # 2000L: 0.1 parts by weight, Cymel 303: 0.1 parts by weight, cat 4050 (solid content concentration 32% by weight): 0.032 parts by weight, MIBK: 39 parts by weight, and t-butanol: 26 parts by weight were added to obtain a curable composition having a uniform solution. . When the total solid content concentration in the curable composition was measured in the same manner as in Production Example 1, it was 5% by weight. Moreover, the viscosity (25 degreeC) of this curable composition was 2 mPa * s.

実施例7
PVB#2000Lを添加せず、サイメル303の添加量を0.2重量部とした以外は、実施例6と同様にして均一な溶液の硬化性組成物を得た。この硬化性組成物中の全固形分濃度を、製造例1と同様に測定したところ、5重量%であった。また、この硬化性組成物の粘度(25℃)は、2mPa・sであった。
Example 7
A curable composition of a uniform solution was obtained in the same manner as in Example 6 except that PVB # 2000L was not added and the amount of Cymel 303 added was 0.2 parts by weight. When the total solid content concentration in the curable composition was measured in the same manner as in Production Example 1, it was 5% by weight. Moreover, the viscosity (25 degreeC) of this curable composition was 2 mPa * s.

実施例8
容器中に、製造例3で調製した被覆酸化チタン粒子分散液−3:40重量部(ジルコニア及びアルミナ被覆された酸化チタンとして5.7重量部、エチレンオキサイド−プロピレンオキサイドとして0.99重量部)、サイメル303:1.15重量部、cat4050(固形分濃度32重量%):0.26重量部、乳酸エチル59重量部をそれぞれ加え、均一な溶液の硬化性組成物を得た。この硬化性組成物中の全固形分濃度を、製造例1と同様に測定したところ、8重量%であった。また、この硬化性組成物の粘度(25℃)は、2mPa・sであった。
Example 8
In the container, coated titanium oxide particle dispersion prepared in Production Example 3: 40 parts by weight (5.7 parts by weight as titanium oxide coated with zirconia and alumina, and 0.99 parts by weight as ethylene oxide-propylene oxide) Cymel 303: 1.15 parts by weight, cat 4050 (solid content concentration: 32% by weight): 0.26 parts by weight, and 59 parts by weight of ethyl lactate were added to obtain a curable composition of a uniform solution. When the total solid content concentration in the curable composition was measured in the same manner as in Production Example 1, it was 8% by weight. Moreover, the viscosity (25 degreeC) of this curable composition was 2 mPa * s.

実施例9
希釈溶剤として乳酸エチルに代えてプロピレングリコールモノメチルエーテル59重量部を用いた以外は実施例8と同様にして硬化性組成物を得た。この硬化性組成物中の全固形分濃度を、製造例1と同様に測定したところ、8重量%であった。また、この硬化性組成物の粘度(25℃)は、2mPa・sであった。
Example 9
A curable composition was obtained in the same manner as in Example 8 except that 59 parts by weight of propylene glycol monomethyl ether was used instead of ethyl lactate as a diluent solvent. When the total solid content concentration in the curable composition was measured in the same manner as in Production Example 1, it was 8% by weight. Moreover, the viscosity (25 degreeC) of this curable composition was 2 mPa * s.

実施例10
容器中に、製造例3で調製したジルコニア及びアルミナ被覆された酸化チタン粒子分散液−3:40重量部(ジルコニア及びアルミナ被覆された酸化チタンとして5.7重量部、エチレンオキサイド−プロピレンオキサイドとして0.99重量部)、サイメル303:1.15重量部、cat4050(固形分濃度32重量%):0.26重量部、プロピレングリコールモノメチルエーテルアセテート59重量部をそれぞれ加え、均一な溶液の硬化性組成物を得た。この硬化性組成物中の全固形分濃度を、製造例1と同様に測定したところ、8重量%であった。また、この硬化性組成物の粘度(25℃)は、2mPa・sであった。
Example 10
In the container, zirconia and alumina-coated titanium oxide particle dispersion prepared in Production Example 3: 40 parts by weight (5.7 parts by weight as zirconia and alumina-coated titanium oxide, 0 as ethylene oxide-propylene oxide) 99 parts by weight), Cymel 303: 1.15 parts by weight, cat 4050 (solid content concentration 32% by weight): 0.26 parts by weight, and 59 parts by weight of propylene glycol monomethyl ether acetate, respectively, and a curable composition of a uniform solution. I got a thing. When the total solid content concentration in the curable composition was measured in the same manner as in Production Example 1, it was 8% by weight. Moreover, the viscosity (25 degreeC) of this curable composition was 2 mPa * s.

実施例11
希釈溶剤としてプロピレングリコールモノメチルエーテルアセテートに代えてメチルイソブチルケトン59重量部を用いた以外は実施例10と同様にして硬化性組成物を得た。この硬化性組成物中の全固形分濃度を、製造例1と同様に測定したところ、8重量%であった。また、この硬化性組成物の粘度(25℃)は、2mPa・sであった。
Example 11
A curable composition was obtained in the same manner as in Example 10 except that 59 parts by weight of methyl isobutyl ketone was used in place of propylene glycol monomethyl ether acetate as a diluent solvent. When the total solid content concentration in the curable composition was measured in the same manner as in Production Example 1, it was 8% by weight. Moreover, the viscosity (25 degreeC) of this curable composition was 2 mPa * s.

比較例1
比較製造例1で調製したルチル型酸化チタン粒子分散液を用いた以外は、実施例4と同様にして均一な溶液の硬化性組成物を得た。この硬化性組成物中の全固形分濃度を、製造例1と同様に測定したところ、5重量%であった。また、この硬化性組成物の粘度(25℃)は、2mPa・sであった。
Comparative Example 1
A curable composition of a uniform solution was obtained in the same manner as in Example 4 except that the rutile-type titanium oxide particle dispersion prepared in Comparative Production Example 1 was used. When the total solid content concentration in the curable composition was measured in the same manner as in Production Example 1, it was 5% by weight. Moreover, the viscosity (25 degreeC) of this curable composition was 2 mPa * s.

比較例2
PVB#2000Lを添加せず、サイメル303の添加量を0.7重量部とした以外は、比較例1と同様にして均一な溶液の硬化性組成物を得た。この硬化性組成物中の全固形分濃度を、製造例1と同様に測定したところ、5重量%であった。また、この硬化性組成物の粘度(25℃)は、2mPa・sであった。
Comparative Example 2
A uniform solution curable composition was obtained in the same manner as in Comparative Example 1 except that PVB # 2000L was not added and the amount of Cymel 303 added was 0.7 parts by weight. When the total solid content concentration in the curable composition was measured in the same manner as in Production Example 1, it was 5% by weight. Moreover, the viscosity (25 degreeC) of this curable composition was 2 mPa * s.

比較例3
比較製造例2で調製したアナターゼ型酸化チタン粒子分散液を用いた以外は、実施例4と同様にして均一な溶液の硬化性組成物を得た。この硬化性組成物中の全固形分濃度を、製造例1と同様に測定したところ、5重量%であった。また、この硬化性組成物の粘度(25℃)は、2mPa・sであった。
Comparative Example 3
A uniform solution curable composition was obtained in the same manner as in Example 4 except that the anatase-type titanium oxide particle dispersion prepared in Comparative Production Example 2 was used. When the total solid content concentration in the curable composition was measured in the same manner as in Production Example 1, it was 5% by weight. Moreover, the viscosity (25 degreeC) of this curable composition was 2 mPa * s.

比較例4
PVB#2000Lを添加せず、サイメル303の添加量を0.7重量部とした以外は、比較例3と同様にして均一な溶液の硬化性組成物を得た。この硬化性組成物中の全固形分濃度を、製造例1と同様に測定したところ、5重量%であった。また、この硬化性組成物の粘度(25℃)は、2mPa・sであった。
Comparative Example 4
A uniform curable composition of a solution was obtained in the same manner as in Comparative Example 3 except that PVB # 2000L was not added and the amount of Cymel 303 added was 0.7 parts by weight. When the total solid content concentration in the curable composition was measured in the same manner as in Production Example 1, it was 5% by weight. Moreover, the viscosity (25 degreeC) of this curable composition was 2 mPa * s.

実施例1〜11及び比較例1〜4の硬化性組成物の組成、全固形分濃度及び粘度を、それぞれ表1及び表2に示す。   Tables 1 and 2 show the compositions, total solids concentrations and viscosities of the curable compositions of Examples 1 to 11 and Comparative Examples 1 to 4, respectively.

Figure 2005228888
Figure 2005228888

Figure 2005228888
Figure 2005228888

以下、本発明の硬化膜(高屈折率硬化膜)の製造例を、実施例12〜22及び比較例5〜8に示す。   Hereinafter, the manufacture example of the cured film (high refractive index cured film) of this invention is shown in Examples 12-22 and Comparative Examples 5-8.

実施例12〜22
[硬化膜の評価]
(1)評価用硬化膜の調製
(1−1)屈折率の評価用硬化膜
屈折率の評価用硬化膜は、各硬化性組成物に用いた有機溶媒に適した方法で硬化性組成物を塗布して調製した。
即ち、実施例12〜18の硬化性組成物については、表1に示した各実施例で調製した硬化性組成物を、ワイヤーバーコーター(#3)を用いて、シリコンウェーハー上に、乾燥後の厚みが約0.1μmとなるように塗布し(表3及び表4において、「バーコート」法という。)、次いで、オーブンを用いて、120℃、10分の条件で加熱し、高屈折率硬化膜を得た。
実施例19〜22の硬化性組成物については、スピンコーター(ミカサ(株)製1H−360S型)を用いて塗布した。スピンコーターの回転条件は、300rpmで5秒回転させた後にさらに2000rpmで20秒回転とした。シリコンウェーハー上に、乾燥後の厚みが約0.1μmとなるようにスピンコートし(表3において、「スピンコート」法という。)、次いで、オーブンを用いて、120℃、10分の条件で加熱し、高屈折率硬化膜を得た。
得られた高屈折率硬化膜の屈折率を、下記(2−1)の条件で測定した。結果を表3に示す。
(1−2)濁度、耐光性、塗布性の評価用硬化膜
濁度、耐光性及び塗布性の評価用硬化膜は、各硬化性組成物に用いた有機溶媒に適した方法で硬化性組成物を塗布して調製した。
即ち、実施例12〜18の硬化性組成物については、表1に示した各実施例で調製した硬化性組成物を、ワイヤーバーコータ(#3)を用いて、乾燥後の厚みが約0.1μmとなるように、片面易接着ポリエチレンテレフタレート(PET)フィルムA4100(東洋紡績(株)製、膜厚188μm)の易接着処理面、又は未処理面に塗工し、オーブン中、120℃で10分間乾燥し、高屈折率硬化膜を得た。
実施例19〜22の硬化性組成物については、(1−1)と同様にして高屈折率硬化膜を得た。
得られた高屈折率硬化膜の濁度、耐光性、塗布性を、下記(2−2)〜(2−4)の基準で評価した。結果を表3に示す。
Examples 12-22
[Evaluation of cured film]
(1) Preparation of cured film for evaluation (1-1) Cured film for evaluation of refractive index The cured film for evaluation of refractive index is obtained by a method suitable for the organic solvent used in each curable composition. It was prepared by coating.
That is, about the curable composition of Examples 12-18, after drying the curable composition prepared in each Example shown in Table 1 on a silicon wafer using a wire bar coater (# 3). (Refer to the “bar coating” method in Tables 3 and 4), and then heated in an oven at 120 ° C. for 10 minutes for high refraction. A rate cured film was obtained.
About the curable composition of Examples 19-22, it apply | coated using the spin coater (Mikasa Co., Ltd. product 1H-360S type | mold). The spin coater was rotated at 300 rpm for 5 seconds and then at 2000 rpm for 20 seconds. A silicon wafer was spin-coated so that the thickness after drying was about 0.1 μm (referred to as “spin coating” in Table 3), and then using an oven at 120 ° C. for 10 minutes. Heated to obtain a high refractive index cured film.
The refractive index of the obtained high refractive index cured film was measured under the following condition (2-1). The results are shown in Table 3.
(1-2) Cured film for evaluation of turbidity, light resistance and applicability The cured film for evaluation of turbidity, light resistance and applicability is curable by a method suitable for the organic solvent used in each curable composition. The composition was applied and prepared.
That is, for the curable compositions of Examples 12 to 18, the curable compositions prepared in each Example shown in Table 1 were dried using a wire bar coater (# 3), and the thickness after drying was about 0. .1 μm, coated on an easy-adhesion treated or untreated surface of a single-sided easy-adhesive polyethylene terephthalate (PET) film A4100 (manufactured by Toyobo Co., Ltd., film thickness 188 μm), in an oven at 120 ° C. The film was dried for 10 minutes to obtain a high refractive index cured film.
About the curable composition of Examples 19-22, it carried out similarly to (1-1), and obtained the high refractive index cured film.
The turbidity, light resistance, and coatability of the obtained high refractive index cured film were evaluated according to the following criteria (2-2) to (2-4). The results are shown in Table 3.

(2)評価方法
(2−1)屈折率
得られた各硬化膜について、エリプソメーターを用いて、25℃での波長589nmにおける屈折率(nD25)を測定した。
(2) Evaluation method (2-1) Refractive index About each obtained cured film, the refractive index (nD25) in wavelength 589nm in 25 degreeC was measured using the ellipsometer.

(2−2)濁度
得られた硬化膜の濁度(Haze値)を、Haze計を用いて測定し、以下の基準で評価した。
○:Haze値が2%以下である。
△:Haze値が3%以下である。
×:Haze値が5%以上である。
(2-2) Turbidity Turbidity (Haze value) of the obtained cured film was measured using a Haze meter and evaluated according to the following criteria.
○: Haze value is 2% or less.
Δ: Haze value is 3% or less.
X: Haze value is 5% or more.

(2−3)耐光性
得られた硬化膜に対して、QUV促進耐候試験機(Q−Panel社製)を用いて、150時間紫外線を照射した後、外観を目視で観察し、以下の基準で評価した。
○:耐光性試験で、塗膜の白化がなく、爪で擦った場合の剥がれが生じない。×:耐光性試験で、塗膜の白化が観察されたり、爪で擦ると簡単に剥がれる。
(2-3) Light resistance The obtained cured film was irradiated with ultraviolet rays for 150 hours using a QUV accelerated weathering tester (manufactured by Q-Panel), and the appearance was visually observed. It was evaluated with.
○: In the light resistance test, there is no whitening of the coating film, and no peeling occurs when rubbed with a nail. X: In the light resistance test, whitening of the coating film is observed or it is easily peeled off when rubbed with a nail.

(2−4)塗布性
塗布性は、硬化膜の外観により、以下の基準で評価した。
○:硬化膜の外観が透明であり、色むらがほとんどない。
×:硬化膜の外観が不透明であるか、又は色むらがある。
(2-4) Applicability The applicability was evaluated according to the following criteria based on the appearance of the cured film.
○: The appearance of the cured film is transparent and there is almost no color unevenness.
X: The appearance of the cured film is opaque or has uneven color.

Figure 2005228888
Figure 2005228888

尚、実施例19で用いたジルコニア及びアルミナ被覆された酸化チタン微粉末(被覆酸化チタン粒子分散液−3)に代えて、製造例2のシリカ被覆酸化チタン微粉末(被覆酸化チタン粒子分散液−2)を用いて硬化性組成物を製造し、当該硬化性組成物を用いて実施例19と同様にして硬化膜を作製したところ、ジルコニア及びアルミナ被覆された酸化チタン微粉末を用いた実施例19では、硬化膜の屈折率は1.89であるのに対して、シリカ被覆酸化チタン微粉末を用いた場合では、1.85であった。   In place of the zirconia and alumina-coated titanium oxide fine powder (coated titanium oxide particle dispersion-3) used in Example 19, the silica-coated titanium oxide fine powder (coated titanium oxide particle dispersion- 2) was used to produce a curable composition, and a cured film was produced using the curable composition in the same manner as in Example 19. Example using titanium oxide fine powder coated with zirconia and alumina In No. 19, the refractive index of the cured film was 1.89, whereas it was 1.85 when silica-coated titanium oxide fine powder was used.

比較例5〜8
比較例1〜4で調製した高屈折率硬化性組成物をそれぞれ用いた以外は、実施例12と同様にして硬化膜を得た。評価結果を表4に示す。
Comparative Examples 5-8
A cured film was obtained in the same manner as in Example 12 except that each of the high refractive index curable compositions prepared in Comparative Examples 1 to 4 was used. The evaluation results are shown in Table 4.

Figure 2005228888
Figure 2005228888

本発明の硬化性組成物を用いて得られる硬化膜を含む固体撮像素子は、各種マイクロレンズアレイを用いたカメラ等の光学系機構に、有用に利用できる。   A solid-state imaging device including a cured film obtained by using the curable composition of the present invention can be usefully used for an optical system mechanism such as a camera using various microlens arrays.

従来の固体撮像装置の断面図を示す。A sectional view of a conventional solid-state imaging device is shown.

符号の説明Explanation of symbols

1 基板
2 受光部
3 転送部
4 シリコン酸化膜
5 ポリシリコン電極
6 タングステンシリサイド
7 BPSG膜
8 遮光メタル
9 平坦化膜
10 マイクロレンズ
DESCRIPTION OF SYMBOLS 1 Substrate 2 Light-receiving part 3 Transfer part 4 Silicon oxide film 5 Polysilicon electrode 6 Tungsten silicide 7 BPSG film 8 Light shielding metal 9 Flattening film 10 Microlens

Claims (8)

(1)ケイ素、アルミニウム、チタン、ジルコニウム、スズ、アンチモン及び亜鉛からなる群から選択される一以上の金属元素の酸化物で被覆された酸化チタン粒子100重量部と、
(2)硬化性化合物1〜300重量部と、
(3)硬化触媒0.1〜30重量部と
を含有する固体撮像素子用硬化性組成物。
(1) 100 parts by weight of titanium oxide particles coated with an oxide of one or more metal elements selected from the group consisting of silicon, aluminum, titanium, zirconium, tin, antimony and zinc;
(2) 1 to 300 parts by weight of a curable compound,
(3) A curable composition for a solid-state imaging device, comprising 0.1 to 30 parts by weight of a curing catalyst.
さらに、水酸基含有化合物1〜150重量部を含有する請求項1に記載の固体撮像素子用硬化性組成物。   Furthermore, the curable composition for solid-state image sensors of Claim 1 containing 1-150 weight part of hydroxyl-containing compounds. 前記硬化性化合物が、メラミン化合物である請求項1又は2に記載の固体撮像素子用硬化性組成物。   The curable composition for a solid-state imaging device according to claim 1, wherein the curable compound is a melamine compound. 有機溶媒をさらに100〜10000重量部含有する請求項1〜3のいずれか一項に記載の固体撮像素子用硬化性組成物。   The curable composition for a solid-state imaging device according to any one of claims 1 to 3, further comprising 100 to 10,000 parts by weight of an organic solvent. 前記有機溶媒が、乳酸エチル、プロピレングリコールモノメチルエーテル及びn−ブタノールからなる群から選択される一以上の溶剤を含むものである請求項4に記載の固体撮像素子用硬化性組成物。   The curable composition for a solid-state imaging device according to claim 4, wherein the organic solvent contains one or more solvents selected from the group consisting of ethyl lactate, propylene glycol monomethyl ether, and n-butanol. 請求項1〜5のいずれか一項に記載の固体撮像素子用硬化性組成物を硬化させてなる屈折率が1.60以上の固体撮像素子用硬化膜。   A cured film for a solid-state imaging device having a refractive index of 1.60 or more obtained by curing the curable composition for a solid-state imaging device according to any one of claims 1 to 5. 請求項1〜5のいずれか一項に記載の固体撮像素子用硬化性組成物をスピンコート法により塗布して該組成物の塗布膜を形成した後に、加熱又は放射線を照射して該塗布膜を硬化せしめる工程を有する請求項6に記載の固体撮像素子用硬化膜の製造方法。   After applying the curable composition for solid-state image sensors as described in any one of Claims 1-5 by a spin coat method, and forming the coating film of this composition, this coating film is irradiated with a heating or a radiation. The manufacturing method of the cured film for solid-state image sensors of Claim 6 which has the process of hardening | curing. 基材層、請求項6に記載の硬化膜、マイクロレンズを、この順に含む固体撮像素子。   The solid-state image sensor which contains a base material layer, the cured film of Claim 6, and a micro lens in this order.
JP2004035524A 2004-02-12 2004-02-12 Curing composition for solid-state imaging device, and the solid-state imaging device using the same Pending JP2005228888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004035524A JP2005228888A (en) 2004-02-12 2004-02-12 Curing composition for solid-state imaging device, and the solid-state imaging device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004035524A JP2005228888A (en) 2004-02-12 2004-02-12 Curing composition for solid-state imaging device, and the solid-state imaging device using the same

Publications (1)

Publication Number Publication Date
JP2005228888A true JP2005228888A (en) 2005-08-25

Family

ID=35003364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004035524A Pending JP2005228888A (en) 2004-02-12 2004-02-12 Curing composition for solid-state imaging device, and the solid-state imaging device using the same

Country Status (1)

Country Link
JP (1) JP2005228888A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170680A1 (en) * 2016-03-30 2017-10-05 三井化学株式会社 Polymerizable composition for optical material, optical material obtained from composition, and plastic lens

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413763A (en) * 1990-05-07 1992-01-17 Toray Ind Inc Heat-resistant optical material having high refractive index and transparency
JPH07149520A (en) * 1993-11-29 1995-06-13 Hoya Corp Coating composition
JP2000171603A (en) * 1998-12-04 2000-06-23 Tomoegawa Paper Co Ltd Antireflection material and polarizing film using the same
JP2000186216A (en) * 1998-12-22 2000-07-04 Jsr Corp High-refractive-index material and antireflection laminate made by using same
JP2001166104A (en) * 1999-09-28 2001-06-22 Fuji Photo Film Co Ltd Antireflection film, polarizing plate and image display device using the same
JP2001194797A (en) * 2000-01-14 2001-07-19 Nippon Kayaku Co Ltd Thermosetting resin composition for protective layer of color filter and its cured body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413763A (en) * 1990-05-07 1992-01-17 Toray Ind Inc Heat-resistant optical material having high refractive index and transparency
JPH07149520A (en) * 1993-11-29 1995-06-13 Hoya Corp Coating composition
JP2000171603A (en) * 1998-12-04 2000-06-23 Tomoegawa Paper Co Ltd Antireflection material and polarizing film using the same
JP2000186216A (en) * 1998-12-22 2000-07-04 Jsr Corp High-refractive-index material and antireflection laminate made by using same
JP2001166104A (en) * 1999-09-28 2001-06-22 Fuji Photo Film Co Ltd Antireflection film, polarizing plate and image display device using the same
JP2001194797A (en) * 2000-01-14 2001-07-19 Nippon Kayaku Co Ltd Thermosetting resin composition for protective layer of color filter and its cured body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170680A1 (en) * 2016-03-30 2017-10-05 三井化学株式会社 Polymerizable composition for optical material, optical material obtained from composition, and plastic lens
JPWO2017170680A1 (en) * 2016-03-30 2018-08-09 三井化学株式会社 Polymerizable composition for optical material, optical material obtained from the composition, and plastic lens
KR20180107286A (en) * 2016-03-30 2018-10-01 미쯔이가가꾸가부시끼가이샤 Polymerizable composition for optical material, optical material obtained from the composition, and plastic lens
CN108884209A (en) * 2016-03-30 2018-11-23 三井化学株式会社 Polymerizable composition for optical material, the optical material and plastic lens obtained by the composition
EP3438147A4 (en) * 2016-03-30 2019-11-27 Mitsui Chemicals, Inc. Polymerizable composition for optical material, optical material obtained from composition, and plastic lens
KR102097883B1 (en) * 2016-03-30 2020-04-06 미쯔이가가꾸가부시끼가이샤 Polymeric composition for optical materials, optical material and plastic lenses obtained from the composition
CN108884209B (en) * 2016-03-30 2021-05-25 三井化学株式会社 Polymerizable composition for optical material, optical material obtained from the composition, and plastic lens
US11414515B2 (en) 2016-03-30 2022-08-16 Mitsui Chemicals, Inc. Polymerizable composition for optical material and optical material and plastic lens obtainable from same composition

Similar Documents

Publication Publication Date Title
TWI555638B (en) Antibacterial transparent film and antibacterial adhesive sheet
EP1369439B1 (en) Polyvinyl acetal, polyvinyl acetal composition, ink, coating material, dispersant, heat-developable photosensitive material, ceramic green sheet, primer for plastic lens, recording agent for water-based ink, and adhesive for metal foil
CN104428698A (en) Infrared shielding film having dielectric multilayer film structure
JP5709707B2 (en) Heat ray shielding material
WO2015093422A1 (en) Heat-shielding material and window glass
CN1918252A (en) Coating material, preparation of optical film, optical film, polarizing plate and image display device
EP3026469B1 (en) Optical element and method for producing optical element
JP2015028540A (en) Production method of optical film
JP3952619B2 (en) High refractive index material and antireflection laminate using the same
WO2013058141A1 (en) Infrared shielding film and infrared shield using same
JP6797548B2 (en) Heat shield film, heat shield paint, and optical equipment
EP1557447A1 (en) Curing composition and antireflective multilayer body using same
JP2004169018A (en) Curing composition and antireflective multilayer body using the same
JP2005228888A (en) Curing composition for solid-state imaging device, and the solid-state imaging device using the same
JP2009204698A (en) Antireflection base material and method for manufacturing it
KR101226776B1 (en) Near-infrared absorbing film
JP6159291B2 (en) Near-infrared absorbing composition, near-infrared cut filter using the same, method for producing the same, and camera module
JP6610229B2 (en) Printed matter and container using the printed matter
CN107003457B (en) The manufacturing method of optical film
WO2017077810A1 (en) Light reflecting film
JP2015212736A (en) Laminated reflective film, manufacturing method therefor, and optical reflector having the same
JP2003049012A (en) Polyester film
EP3982413A1 (en) Color conversion panel
JP2017042948A (en) Inkjet recording material for illumination and method of manufacturing inkjet recording material for illumination, method of forming image for illumination, and illumination signboard
EP4349578A1 (en) Method of generating a topographic structure or a plurality of topographic structures and plastic substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091222