JPH0413763A - Heat-resistant optical material having high refractive index and transparency - Google Patents

Heat-resistant optical material having high refractive index and transparency

Info

Publication number
JPH0413763A
JPH0413763A JP11794490A JP11794490A JPH0413763A JP H0413763 A JPH0413763 A JP H0413763A JP 11794490 A JP11794490 A JP 11794490A JP 11794490 A JP11794490 A JP 11794490A JP H0413763 A JPH0413763 A JP H0413763A
Authority
JP
Japan
Prior art keywords
oxide
group
polyimide
refractive index
optical material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11794490A
Other languages
Japanese (ja)
Inventor
Masao Tomikawa
真佐夫 富川
Masaya Asano
浅野 昌也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP11794490A priority Critical patent/JPH0413763A/en
Publication of JPH0413763A publication Critical patent/JPH0413763A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical material attaining high refractive index by low- temperature heat-treatment, having excellent light transmittance, etc., in visible range and suitable for micro-lens of color filter, etc., by compounding a specific polyimide and a specific transition element oxide at specific ratios. CONSTITUTION:The objective material can be produced by compounding (A) 80-99.9 pts.wt. of a polyimide having a light transmittance of >=90% at 400mum wavelength and having a recurring unit of formula [R is 6-30C aromatic ring; X is -O-, -SO2-, -CO-, -CH2 or -C(CH3)2; Q is 6-30C aromatic ring; at least one of the Q groups has a bond at 2- or 3-site in regard to X; Y is X except for -CO-; n is 1 or 2] and (B) 0.1-2 pts.wt. of oxide of transition elements of group IV and/or group V of the periodic table (e.g. titanium oxide, zirconium oxide or antimony oxide).

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は高屈折高透明耐熱性光学材料に関するものであ
り、さらに詳しくは低い温度の熱処理においても、大き
な屈折率を有するポリイミド系光学材料に関するもので
ある。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a highly refractive, highly transparent, heat-resistant optical material, and more specifically to a polyimide optical material that has a large refractive index even when heat treated at a low temperature. It is something.

[従来の技術] 近年、ビデオカメラの急速な発展に伴って、カメラの小
形化が要求され、この用途に使用する固体撮像素子も画
面のサイズか1 、、/ 2から1゜773インチへと
小型化されている(例えは、日経マイクロデバイス 1
989年12月号)。
[Prior Art] In recent years, with the rapid development of video cameras, there has been a demand for smaller cameras, and the screen size of solid-state image sensors used for this purpose has also increased from 1.2 mm to 1.773 inches. Miniaturized (for example, Nikkei Microdevice 1)
(December 989 issue).

しかしながら、このような小型化を行うことは、固体撮
像素子の感度の低下を招くために、受光部分を構成して
いるカラーフィルターの上面に集光レンズを直接配置す
ることによって光を効果的に受光部分に集め感度の低下
を防ぐ必要かある。
However, such miniaturization leads to a decrease in the sensitivity of the solid-state image sensor, so it is necessary to place a condenser lens directly on the top surface of the color filter that makes up the light-receiving part. Is it necessary to collect the light on the light receiving part to prevent a decrease in sensitivity?

このような、マイクロレンズ部分には従来、アクリル系
のポリマやシリコーン系の材料が検討されていたか、こ
の種の材料によるものは屈折率か1.5程度であるため
にマイクロレンズの下部にあるカラーフィルターを構成
している材料との屈折率の差か小さくなるために、効果
的な集光をするためには、マイクロレンズの曲率を大き
くする必要がある。このために、厚い膜厚か必要となる
、高度な加工精度が要求されるなどの困難か伴ない実際
にこのような材料で固体撮像素子を作成するのは難しい
Conventionally, acrylic polymers and silicone materials have been considered for the microlens part, or materials made of this type have a refractive index of about 1.5, so they are located at the bottom of the microlens. Since the difference in refractive index with the material constituting the color filter becomes smaller, it is necessary to increase the curvature of the microlens in order to effectively collect light. For this reason, it is difficult to actually produce a solid-state image sensor using such a material because of difficulties such as a thick film thickness and a high level of processing precision.

このために、有機系のポリマの中では最も高い屈折率を
有するものの1つであるポリイミド系樹脂かこの用途に
検討されているが、通常のポリイミド系樹脂では、光線
透過率が悪いうえ、高い屈折率を得るためには300度
以上の熱処理温度が必要であるなどの問題点を有するた
めに未だ実用化されるに至っていない。
For this reason, polyimide resin, which has one of the highest refractive indexes among organic polymers, is being considered for this application, but ordinary polyimide resin has poor light transmittance and high It has not yet been put into practical use because it has problems such as the need for heat treatment at a temperature of 300 degrees or higher in order to obtain a good refractive index.

一方、高屈折材料としては酸化チタンや酸化タリウムな
どの無機材料が知られているか、これらの材料を厚く塗
布する場合、材料自身が非常に脆いものであるために、
クラックがはいり易いうえ、高い屈折率を得るためには
400度以上の高温か必要であるなどの問題がある。さ
らに、これらの材料をアクリル、シリコーン系樹脂中に
混入する場合、混入させる樹脂の耐熱性、機械特性など
の面で問題かあり、要求される性能が発揮できず実用化
するのは困難であった。
On the other hand, inorganic materials such as titanium oxide and thallium oxide are known as high refractive materials, and when these materials are applied thickly, the materials themselves are extremely brittle.
There are problems in that it is easy to crack and requires a high temperature of 400 degrees or more to obtain a high refractive index. Furthermore, when these materials are mixed into acrylic or silicone resins, there are problems with the heat resistance, mechanical properties, etc. of the resins, and the required performance cannot be achieved, making it difficult to put them into practical use. Ta.

本発明者らは、かかる在来技術の現状に鑑み、低温での
熱処理により高い屈折率か得られ、可視光領域での透過
性能に優れ、高い耐熱性を有した材料を開発すべくポリ
イミド系樹脂と無機材料の複合化について鋭意検討を進
めた結果、特定の構造を有するポリイミドに特殊な酸化
物を混入した場合には、低い温度の熱処理で予想外の大
きな屈折率を有する可視光透過性に優れ、機械特性の良
好な耐熱性光学材料が得られることを見出たし、本発明
に到達したものである。
In view of the current state of the conventional technology, the present inventors aimed to develop a material that can obtain a high refractive index through heat treatment at low temperatures, has excellent transmission performance in the visible light region, and has high heat resistance. As a result of intensive research into composites of resin and inorganic materials, we found that when polyimide with a specific structure is mixed with a special oxide, visible light transmittance with an unexpectedly large refractive index can be achieved through low-temperature heat treatment. The present inventors have discovered that a heat-resistant optical material with excellent mechanical properties can be obtained, and the present invention has been achieved.

[発明か解決しようとする課題] 従って、本発明の目的は、低温での熱処理により高い屈
折率か得られ、可視光領域での光線透過性能に優れ、機
械特性の良好な耐熱性を有する光学材料を提供すること
にある。
[Invention or Problem to be Solved] Therefore, an object of the present invention is to provide an optical device that can obtain a high refractive index by heat treatment at low temperatures, has excellent light transmission performance in the visible light region, and has good mechanical properties and heat resistance. The purpose is to provide materials.

[課題を解決するための手段] かかる本発明の目的は、400nmにおける光線透過率
か90%以上であるポリイミド80.0〜99.9重量
部と周期律表の第■族および7/または第■族の遷移元
素の酸化物0. 1〜20重量部とからなることを特徴
とする高屈折高透明耐熱性光学材料により達成される。
[Means for Solving the Problems] The object of the present invention is to provide 80.0 to 99.9 parts by weight of polyimide having a light transmittance of 90% or more at 400 nm, and a polyimide of Group Ⅰ and 7/or 7 of the periodic table. Oxide of group transition element 0. This is achieved by a highly refractive, highly transparent, heat-resistant optical material characterized by comprising 1 to 20 parts by weight.

本発明において使用されるポリイミドは、可視光の透過
性か要求されるために、400nmの波長において90
%以上の透過率を有するものであることが必要である。
The polyimide used in the present invention is required to be transparent to visible light, so at a wavelength of 400 nm, the polyimide
% or more.

かかるポリイミドとしては、下記一般式(たたし、Rは
それぞれ炭素数6〜30の芳香族環、Xは−O−−−S
O□−−C〇− 1種であり、Qはそれぞれ炭素数6〜30の芳香族環で
、少なくともその一方はXに対し、2位または3位に結
合手を有するものであり、YはO−−5O7−−CH2
−および nは1または2である。) で表わされる構造を有するものであることが好ましく、
この構造に対応するテトラカルボン酸とジアミンとの組
み合わせにより製造できる。
Such a polyimide has the following general formula (R is an aromatic ring having 6 to 30 carbon atoms, X is -O---S
One type of O O--5O7--CH2
- and n are 1 or 2. ) It is preferable that it has a structure represented by
It can be produced by combining a tetracarboxylic acid corresponding to this structure and a diamine.

本発明に好適に使用されるポリイミドの具体例としては
、3.3’ 、4.4’ −ビフェニルテトラカルボン
酸と1.3−ビス(アミノフェノキシ)ベンゼン、3.
3’ 、4.4’  −ビフェニルテトラカルボン酸と
3.3′ −ジアミノジフェニルスルホン、3.3’ 
、4.4’ −ビフェニルテトラカルボン酸と3,4′
−ジアミノジフェニルエーテル、3.3’ 、4.4’
 −ビフェニルテトラカルボン酸と3,4′ −ジアミ
ノジフェニルメタン、3.3’ 、4.4’ −ジフェ
ニルエーテルテトラカルボン酸と1.3−ビス(アミノ
フェノキシ)ベンゼン、3.3’ 、4.4’ −ジフ
ェニルエーテルテトラカルボン酸と3.3′ −ジアミ
ノジフェニルスルホン、3.3’ 、4.4’  −ジ
フェニルエーテルテトラカルボン酸と3.4′ 〜ジア
ミノジフェニルエーテル、3.3’ 、4.4’ −ジ
フェニルエーテルテトラカルボン酸と3.4′ジアミノ
ジフエニルメタン、2,2−ビス(3゜4−ジカルボキ
シフェニル)−プロパンと1.3ビス(アミノフェノキ
シ)ベンゼン、2.2ビス(3,4−ジカルボキシフェ
ニル)−プロパンと3.3′−ジアミノジフェニルスル
ホン、2゜2−ビス(3,4−ジカルボキシフェニル)
−プロパンと3.4′−ジアミノジフェニルエーテル、
2.2−ビス(3,4−ジカルボキシフェニル)−プロ
パンと3.4′ −ジアミノジフェニルメタン、3.3
’ 、4.4’ −ジフェニルスルホンテトラカルボン
酸と3.3′ −ジアミノジフェニルスルホン、3.3
’ 、4.4’  −ベンゾフェノンテトラカルボン酸
と3.3′ −ジアミノジフェニルスルホンあるいはこ
れらの共重合体などが挙げられるが、これらに限定され
ない。
Specific examples of polyimides preferably used in the present invention include 3.3', 4.4'-biphenyltetracarboxylic acid and 1.3-bis(aminophenoxy)benzene.
3', 4.4'-biphenyltetracarboxylic acid and 3.3'-diaminodiphenylsulfone, 3.3'
, 4,4'-biphenyltetracarboxylic acid and 3,4'
-diaminodiphenyl ether, 3.3', 4.4'
-Biphenyltetracarboxylic acid and 3,4'-diaminodiphenylmethane, 3.3',4.4'-diphenyl ethertetracarboxylic acid and 1,3-bis(aminophenoxy)benzene, 3.3',4.4'- Diphenyl ether tetracarboxylic acid and 3.3'-diaminodiphenylsulfone, 3.3',4.4'-diphenyl ether tetracarboxylic acid and 3.4'-diaminodiphenyl ether, 3.3',4.4'-diphenyl ether tetracarboxylic acid. acid and 3.4'diaminodiphenylmethane, 2,2-bis(3°4-dicarboxyphenyl)-propane and 1.3bis(aminophenoxy)benzene, 2.2bis(3,4-dicarboxyphenyl) )-propane and 3,3′-diaminodiphenylsulfone, 2°2-bis(3,4-dicarboxyphenyl)
-propane and 3,4'-diaminodiphenyl ether,
2.2-bis(3,4-dicarboxyphenyl)-propane and 3.4′-diaminodiphenylmethane, 3.3
', 4.4'-diphenylsulfone tetracarboxylic acid and 3.3'-diaminodiphenylsulfone, 3.3
Examples include, but are not limited to, 4,4'-benzophenonetetracarboxylic acid, 3,3'-diaminodiphenylsulfone, and copolymers thereof.

本発明のポリイミドの製法としては、対応するテトラカ
ルボン酸無水物とジアミンをN−メチルピロリドンやジ
メチルホルムアミドのような双極性非プロトン溶媒、あ
るいはこれらの双極性非プロトン溶媒とキシレン、カル
ピトール、セロソルブ、エチルセロソルブアセテートお
よびジイソブチルケトンのような芳香族炭化水素、グリ
コール系溶剤、ケトン系溶剤などとの混合液中にて、0
度から100度の範囲で反応させ、対応するポリイミド
の前駆体のワニスを得ることができる。
The method for producing the polyimide of the present invention involves mixing the corresponding tetracarboxylic acid anhydride and diamine with a dipolar aprotic solvent such as N-methylpyrrolidone or dimethylformamide, or combining these dipolar aprotic solvents with xylene, calpitol, cellosolve, In a mixture of ethyl cellosolve acetate and aromatic hydrocarbons such as diisobutyl ketone, glycol solvents, ketone solvents, etc.
A corresponding polyimide precursor varnish can be obtained by reacting at a temperature ranging from 100 degrees to 100 degrees.

本発明のポリイミドには、ピロメリット酸のような芳香
族テトラカルボン酸、1.2.3.4−ブタンテトラカ
ルボン酸、1.2.3.4−シクロペンタンテトラカル
ボン酸のような脂肪族テトラカルボン酸、テレフタール
酸のような芳香族ジカルボン酸、アジピン酸のような脂
肪族ジカルボン酸、パラフェニレンジアミン、メタフェ
ニレンジアミン、4,4′−ジアミノジフェニルエーテ
ル、4. 4’ −ジアミノジフェニルメタン、ベンジ
ジンなどの芳香族ジアミン、ヘキサメチレンジアミン、
ヘプタメチレンジアミンのような脂肪族ジアミンをその
可視光の透過率を著しく低下させない範囲で共重合させ
ることができる。
The polyimide of the present invention includes aromatic tetracarboxylic acids such as pyromellitic acid, aliphatic tetracarboxylic acids such as 1.2.3.4-butanetetracarboxylic acid, and 1.2.3.4-cyclopentanetetracarboxylic acid. Aromatic dicarboxylic acids such as tetracarboxylic acid and terephthalic acid, aliphatic dicarboxylic acids such as adipic acid, para-phenylene diamine, meta-phenylene diamine, 4,4'-diaminodiphenyl ether, 4. 4'-diaminodiphenylmethane, aromatic diamines such as benzidine, hexamethylene diamine,
Aliphatic diamines such as heptamethylene diamine can be copolymerized within a range that does not significantly reduce the transmittance of visible light.

該ポリイミドは光学材料全体の80重量部から99.9
重量部の範囲で配合するのが良く、さらに好ましくは9
0重量部から99重量部である。
The polyimide accounts for 80 to 99.9 parts by weight of the entire optical material.
It is preferable to mix within a range of parts by weight, more preferably 9 parts by weight.
The range is from 0 parts by weight to 99 parts by weight.

ポリイミドの成分が上記範囲より多に場合は屈折率の向
上が期待できす、また該範囲よりも少ない場合はもろく
なり、良好な機械的性質が期待できなくなる。
If the polyimide component is more than the above range, an improvement in the refractive index can be expected; if it is less than the above range, it will become brittle and good mechanical properties cannot be expected.

また、下地との密着性を向上させるために、1゜3−ビ
ス(アミノプロピル)テトラメチルジシロキサンのよう
なシロキサンジアミンを全ジアミン成分の1から5モル
%共重合させたり、あるいは、オキシプロピルトリメト
キシシランやγ−アミノプロピルトリエトキシシランの
ようなシランカップリング剤、アルミニウムトリス(エ
チルアセトアセテート)のようなアルミニウムキレート
化合物、チタニウムビス(アセチルアセトネート)のよ
うなチタニウムキレート化合物などを予め下地表面に塗
布しておくことも好ましい。
In addition, in order to improve adhesion to the substrate, siloxane diamine such as 1゜3-bis(aminopropyl)tetramethyldisiloxane is copolymerized with 1 to 5 mol% of the total diamine component, or oxypropyl Apply a silane coupling agent such as trimethoxysilane or γ-aminopropyltriethoxysilane, an aluminum chelate compound such as aluminum tris (ethyl acetoacetate), a titanium chelate compound such as titanium bis (acetylacetonate), etc. to the base in advance. It is also preferable to apply it to the surface.

本発明の光学材料は、上述のようなポリイミドと周期律
表の第■族および7./または第■族の遷移元素の酸化
物とから構成することか重要である。
The optical material of the present invention comprises the above-mentioned polyimide and Group Ⅰ and VIII of the periodic table. It is important that the oxide is composed of an oxide of a transition element of Group Ⅰ.

本発明において使用される周期律表の第■族の遷移元素
の酸化物としては酸化チタンや酸化ジルコニウムなどが
挙げられ、また第■族の遷移元素の酸化物としては酸化
アンチモンや酸化ニオブなどが挙げられ、これらは微粒
子状で添加するのが好ましい。上記のうちで特に好まし
い酸化物は酸化ジルコニウムである。これら周期律表の
第■族または第■族の遷移元素の酸化物は単独で使用し
てもよいが、両者を併用することもできる。
Examples of the oxides of the transition elements in group Ⅰ of the periodic table used in the present invention include titanium oxide and zirconium oxide, and examples of oxides of the transition elements in group Ⅰ of the periodic table include antimony oxide and niobium oxide. These are preferably added in the form of fine particles. Among the above, a particularly preferred oxide is zirconium oxide. These oxides of transition elements of Group 1 or Group 2 of the periodic table may be used alone, or both may be used in combination.

酸化物の微粒子の粒子径は、可視光の波長以下であるこ
とが光の散乱の面より好ましく、より好ましくは、11
00n以下である。
From the viewpoint of light scattering, the particle diameter of the oxide fine particles is preferably less than or equal to the wavelength of visible light, and more preferably 11
00n or less.

該酸化物は光学材料全体の0.1重量部以上、20重量
部以下の範囲で加えるのか好ましく、さらに好ましくは
1重量部以上10重量部以下加えるのか良い。この範囲
より、添加量か少ないと屈折率に変化が見られなくなり
、この範囲より添加量か多いとクラックか発生しやすく
なるうえ、層分離か生じ透過率か低下するために好まし
くない。
The oxide is preferably added in an amount of 0.1 part by weight or more and 20 parts by weight or less based on the entire optical material, more preferably 1 part by weight or more and 10 parts by weight or less. If the amount added is less than this range, no change in the refractive index will be observed, and if the amount added is more than this range, cracks are likely to occur, layer separation occurs, and the transmittance decreases, which is not preferable.

本発明の高屈折高透明耐熱性光学材料は、カラフィルタ
−のマイクロレンズ、トップコート剤、光学レンズのハ
ードコート剤などに好ましく用いられる。
The highly refractive, highly transparent, heat-resistant optical material of the present invention is preferably used for microlenses of color filters, top coating agents, hard coating agents for optical lenses, and the like.

[特性の測定方法] (1)透過率の測定 島津制作所製自記分光光度計UV−260型を用いて、
パイレックスガラス上にポリイミドを約3ミクロン塗布
し、100度1時間、170度2時間の熱処理を行った
ものの300から500nmの透過率を測定した。
[Method for measuring characteristics] (1) Measurement of transmittance Using a self-recording spectrophotometer UV-260 manufactured by Shimadzu Corporation,
About 3 microns of polyimide was coated on Pyrex glass and heat treated at 100 degrees for 1 hour and at 170 degrees for 2 hours, and the transmittance from 300 to 500 nm was measured.

(2)屈折率の測定 溝尻光学工業所製偏光解析装置(エリプソメタ−)DV
−36L型を用いて、シリコンウェハー上にポリイミド
を約1000オングストローム塗布し、100度1時間
、170度2時間の熱処理を行ったものの屈折率を測定
した。
(2) Measurement of refractive index Polarization analyzer (Ellipsometer) DV manufactured by Mizojiri Optical Kogyo Co., Ltd.
-36L type was used to coat a silicon wafer with polyimide to a thickness of about 1000 angstroms, heat treatment was performed at 100 degrees for 1 hour and at 170 degrees for 2 hours, and the refractive index was measured.

U実施例コ 以下、本発明を実施例を用いて具体的に説明するか、本
発明はこれらに限定されない。
EXAMPLES The present invention will be specifically explained below using examples, but the present invention is not limited thereto.

実施例1 3.3’ 、4.4’  −ジフェニルエーテルテトラ
カルポン酸二無水物31.02gと3,3′ジアミノジ
フエニルスルホン24.85gをNメチルピロリドン2
00 g、エチルセロソルブアセテート90g中で50
°Cで1時間、80℃で5時間反応させてポリイミド前
駆体のワニスを得た。
Example 1 31.02 g of 3.3',4.4'-diphenyl ether tetracarboxylic dianhydride and 24.85 g of 3,3'diaminodiphenylsulfone were mixed with N-methylpyrrolidone 2
00 g, 50 in 90 g of ethyl cellosolve acetate
The reaction was carried out at 80°C for 1 hour and 5 hours to obtain a polyimide precursor varnish.

このワニス200重量部と粒径が1100nの酸化ジル
コニウム1重量部を混合して30°Cで3時間攪拌の後
、5ミクロンのフィルターで濾過を行ったものについて
、透過率と屈折率を測定したところ、40Qnmでの透
過率は95%、屈折率は1.73と良好な値を示した。
200 parts by weight of this varnish and 1 part by weight of zirconium oxide with a particle size of 1100 nm were mixed, stirred at 30°C for 3 hours, filtered through a 5 micron filter, and the transmittance and refractive index were measured. However, the transmittance at 40Qnm was 95%, and the refractive index was 1.73, which were good values.

また、透過率測定用のフィルムサンプルについて評価し
たところ、得られたフィルムは自己支持性を有する強靭
なフィルムであった。
Further, when a film sample for transmittance measurement was evaluated, the obtained film was a strong film with self-supporting properties.

実施例2 3.3’ 、4.4’ −ビフェニルテトラカルボン酸
二無水物29.42gと3.4′ −ジアミノジフェニ
ルエーテル20.02gをN−メチルピロリドン200
 g、ジイソブチルケトン70g中で50°Cで1時間
、80℃で5時間反応させてポリイミド前駆体のワニス
を得た。このワニス200重量部と粒径が40%mの酸
化チタン1重量部を混合して30°Cで3時間攪拌の後
、5ミクロンのフィルターで濾過を行ったものについて
、透過率と屈折率の測定を行ったところ、400nmで
の透過率は94%、屈折率は1.72と良好な値を示し
た。また、得られたフィルムは自己支持性を有する強靭
なフィルムであった。
Example 2 29.42 g of 3.3',4.4'-biphenyltetracarboxylic dianhydride and 20.02 g of 3.4'-diaminodiphenyl ether were mixed with 200 g of N-methylpyrrolidone.
g, and reacted in 70 g of diisobutyl ketone at 50°C for 1 hour and at 80°C for 5 hours to obtain a polyimide precursor varnish. 200 parts by weight of this varnish and 1 part by weight of titanium oxide with a particle size of 40% m were mixed, stirred at 30°C for 3 hours, and then filtered through a 5 micron filter. When measured, the transmittance at 400 nm was 94%, and the refractive index was 1.72, which were good values. Moreover, the obtained film was a strong film with self-supporting properties.

比較例1 無水ピロメリット酸21.82gとメタフェニレンジア
ミン10.81gをN−メチルピロリドン150g中で
50’Cで1時間、80°Cで4時間反応させてポリイ
ミド前駆体のワニスを得た。
Comparative Example 1 21.82 g of pyromellitic anhydride and 10.81 g of metaphenylenediamine were reacted in 150 g of N-methylpyrrolidone at 50'C for 1 hour and at 80C for 4 hours to obtain a polyimide precursor varnish.

得られたワニスの透過率と屈折率の測定を行ったところ
、400nmでの透過率は50%、屈折率は1.66と
低い値であった。
When the transmittance and refractive index of the obtained varnish were measured, the transmittance at 400 nm was 50% and the refractive index was as low as 1.66.

比較例2 比較例1で合成したポリイミド前駆体のワニスを用い、
ポリイミドの熱処理を100°01時間、170°C1
時間および300°01時間行ったものについて同様に
評価したところ、屈折率は1.74と良好であったが、
透過率は48%と低い値であった。
Comparative Example 2 Using the polyimide precursor varnish synthesized in Comparative Example 1,
Heat treatment of polyimide at 100°C for 1 hour at 170°C
Similar evaluations were made for time and 300° 01 hours, and the refractive index was 1.74, which was good.
The transmittance was a low value of 48%.

比較例3 3.3’ 、4.4’ −ベンゾフェノンテトラカルボ
ン酸32.22gと4.4′ −ジアミノジフェニルエ
ーテル20.02gをN−メチルピロリドン250g中
で30℃で1時間、80℃で3時間反応させてポリイミ
ド前駆体のワニスを得た。
Comparative Example 3 32.22 g of 3.3', 4.4'-benzophenone tetracarboxylic acid and 20.02 g of 4.4'-diaminodiphenyl ether were mixed in 250 g of N-methylpyrrolidone at 30°C for 1 hour and at 80°C for 3 hours. A polyimide precursor varnish was obtained by reaction.

このものの透過率と屈折率の測定を行ったところ、屈折
率は1.64.400nmでの透過率は53%であった
When the transmittance and refractive index of this material were measured, the refractive index was 1.64.The transmittance at 400 nm was 53%.

[発明の効果] 本発明は上述のごとく構成したので、低温での熱処理に
より高い屈折率が得られ、可視光領域での光線透過性能
に優れ、機械特性の良好な耐熱性を有する光学材料を得
ることかできる。
[Effects of the Invention] Since the present invention is configured as described above, it is possible to obtain a high refractive index by heat treatment at low temperatures, to have excellent light transmission performance in the visible light region, and to have heat resistance with good mechanical properties. You can get it.

Claims (3)

【特許請求の範囲】[Claims] (1)400nmにおける光線透過率が90%以上であ
るポリイミド80.0〜99.9重量部と周期律表の第
IV族および/または第V族の遷移元素の酸化物0.1〜
20重量部とからなることを特徴とする高屈折高透明耐
熱性光学材料。
(1) 80.0 to 99.9 parts by weight of polyimide with a light transmittance of 90% or more at 400 nm and
Oxides of group IV and/or group V transition elements 0.1~
20 parts by weight of a highly refractive, highly transparent, heat-resistant optical material.
(2)400nmにおける光線透過率が90%以上であ
るポリイミドが、次式で表わされる繰返し単位を有する
ものであることを特徴とする請求項1記載の高屈折高透
明耐熱性光学材料。 ▲数式、化学式、表等があります▼ (ただし、Rはそれぞれ炭素数6〜30の芳香族環、X
は−O−、−SO_2−、−CO−、−、−CH_2−
および▲数式、化学式、表等があります▼の群から選ば
れた1種であり、Qはそれぞれ炭素数6〜30の芳香族
環で、少なくとも一方はXに対し、2位または3位に結
合手を有する物であり、Yは −O−、−SO_2−、 −CH_2−および▲数式、化学式、表等があります▼
の群から選ばれ た1種であり、nは1または2である。)
(2) The high refractive, highly transparent, heat-resistant optical material according to claim 1, wherein the polyimide having a light transmittance of 90% or more at 400 nm has a repeating unit represented by the following formula. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (However, R is an aromatic ring with 6 to 30 carbon atoms,
-O-, -SO_2-, -CO-, -, -CH_2-
and ▲There are mathematical formulas, chemical formulas, tables, etc.▼, and each Q is an aromatic ring having 6 to 30 carbon atoms, and at least one is bonded to the 2nd or 3rd position of X. It is an object with hands, and Y is -O-, -SO_2-, -CH_2-, and ▲Mathematical formulas, chemical formulas, tables, etc.▼
One type selected from the group of , and n is 1 or 2. )
(3)周期律表の第IV族および/または第V族の遷移元
素の酸化物が酸化チタン、酸化ジルコニウム、酸化アン
チモンおよび酸化ニオブの群から選ばれた少なくとも1
種であることを特徴とする請求項1記載の高屈折高透明
耐熱性光学材料。
(3) The oxide of a transition element of Group IV and/or Group V of the periodic table is at least one selected from the group of titanium oxide, zirconium oxide, antimony oxide, and niobium oxide.
The highly refractive and highly transparent heat-resistant optical material according to claim 1, which is a seed.
JP11794490A 1990-05-07 1990-05-07 Heat-resistant optical material having high refractive index and transparency Pending JPH0413763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11794490A JPH0413763A (en) 1990-05-07 1990-05-07 Heat-resistant optical material having high refractive index and transparency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11794490A JPH0413763A (en) 1990-05-07 1990-05-07 Heat-resistant optical material having high refractive index and transparency

Publications (1)

Publication Number Publication Date
JPH0413763A true JPH0413763A (en) 1992-01-17

Family

ID=14724094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11794490A Pending JPH0413763A (en) 1990-05-07 1990-05-07 Heat-resistant optical material having high refractive index and transparency

Country Status (1)

Country Link
JP (1) JPH0413763A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002012926A1 (en) * 2000-08-09 2002-02-14 Mitsui Chemicals, Inc. Optical members made of polyimide resins
US6383578B2 (en) 1996-05-23 2002-05-07 3M Innovative Properties Co. Polyimide angularity enhancement layer
US6656990B2 (en) 2001-07-11 2003-12-02 Corning Incorporated Curable high refractive index compositions
JP2005228888A (en) * 2004-02-12 2005-08-25 Jsr Corp Curing composition for solid-state imaging device, and the solid-state imaging device using the same
WO2017175679A1 (en) 2016-04-05 2017-10-12 三菱瓦斯化学株式会社 Polyimide resin composition, method for producing same, and polyimide film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6383578B2 (en) 1996-05-23 2002-05-07 3M Innovative Properties Co. Polyimide angularity enhancement layer
WO2002012926A1 (en) * 2000-08-09 2002-02-14 Mitsui Chemicals, Inc. Optical members made of polyimide resins
JP4786859B2 (en) * 2000-08-09 2011-10-05 三井化学株式会社 Optical member made of polyimide resin
US6656990B2 (en) 2001-07-11 2003-12-02 Corning Incorporated Curable high refractive index compositions
JP2005228888A (en) * 2004-02-12 2005-08-25 Jsr Corp Curing composition for solid-state imaging device, and the solid-state imaging device using the same
WO2017175679A1 (en) 2016-04-05 2017-10-12 三菱瓦斯化学株式会社 Polyimide resin composition, method for producing same, and polyimide film
KR20180124890A (en) 2016-04-05 2018-11-21 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 POLYIMIDE RESIN COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND POLYIMIDE FILM
US10954339B2 (en) 2016-04-05 2021-03-23 Mitsubishi Gas Chemical Company, Inc. Polyimide resin composition, method for producing same, and polyimide film

Similar Documents

Publication Publication Date Title
CN110684195B (en) Polyimide film, polyimide precursor, and polyimide
CN104854165B (en) Resin precursor, resin composition containing the same, resin film and method for producing the same, and laminate and method for producing the same
EP3187528B1 (en) Composition for preparing transparent polymer film, transparent polymer film, and electronic device including same
TWI435902B (en) Polyimide film
JP5757876B2 (en) Optical film, method for manufacturing optical film, transparent substrate, image display device, and solar cell
EP0280801B1 (en) Colorless transparent polyimide shaped articles and process for their production
US11945199B2 (en) Laminated film, and display device including same
WO2009028862A1 (en) Polyimide film
JP7047852B2 (en) Polyimide precursors, polyimides, polyimide films, varnishes, and substrates
KR20170076171A (en) Poly(amide-imide) copolymer film, and display device including same
CN105315666B (en) Transparent polymer film, electronic device including the same, and composition
US20210032420A1 (en) Laminated film, and composition for preparing same
WO2009045537A1 (en) Poly(aryletherimides) for negative birefringent films for lcds
JP5044908B2 (en) Non-photosensitive resin composition and optical element using the same
TW202014448A (en) Polyimide resin, polyimide varnish, and polyimide film
JPH0413763A (en) Heat-resistant optical material having high refractive index and transparency
EP0310320B1 (en) Curable composition
JP2007505973A (en) High refractive index, polyimide used as thin film material
JPH08225645A (en) Colorless clear polyimide molding and production thereof
WO2020196103A1 (en) Production method for colorless transparent resin film
JPH04122729A (en) Fluoropolyimide
US11306182B2 (en) Oligomer, composition including oligomer, article prepared from the composition, method for preparing article, and display device including the article
JPH023991A (en) Optical semiconductor device
KR101495111B1 (en) Novel diamine compounds, and polyamic acids and polyimides prepared by using same
JPH01156371A (en) Varnish for protective coating of color filter