JP2005228494A - High-voltage generator - Google Patents

High-voltage generator Download PDF

Info

Publication number
JP2005228494A
JP2005228494A JP2004033314A JP2004033314A JP2005228494A JP 2005228494 A JP2005228494 A JP 2005228494A JP 2004033314 A JP2004033314 A JP 2004033314A JP 2004033314 A JP2004033314 A JP 2004033314A JP 2005228494 A JP2005228494 A JP 2005228494A
Authority
JP
Japan
Prior art keywords
high voltage
circuit
voltage generator
shield member
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004033314A
Other languages
Japanese (ja)
Other versions
JP4260036B2 (en
Inventor
Shigeto Adachi
成人 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004033314A priority Critical patent/JP4260036B2/en
Priority to TW093133383A priority patent/TWI287950B/en
Priority to US10/981,531 priority patent/US7218500B2/en
Priority to KR1020040097754A priority patent/KR100679593B1/en
Publication of JP2005228494A publication Critical patent/JP2005228494A/en
Application granted granted Critical
Publication of JP4260036B2 publication Critical patent/JP4260036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent circuit elements from being damaged or burned by an electrical discharge in a high-voltage circuit by a simple method, and to make a device compact. <P>SOLUTION: In a high-voltage generator 114, provided with a CW circuit (high-voltage circuit) 51 where a high voltage is generated, by coupling booster circuits 54 for boosting input voltages to one another in multiple stages, a conductive shielding member (21a, 21b, 22a, 22b) for shielding electric circuit components used for the CW circuit 51 from an electrical discharge outside or inside the high-voltage generator 114, is provided between the electric circuit parts used for the CW circuit 51. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は,イオン若しくは電子等の荷電粒子を加速する加速装置等に供給する高電圧を発生する高電圧発生装置に関し,特に,該高電圧発生装置に用いられる電気回路部品を放電から保護すると共に,装置の小型化を実現し得る高電圧発生装置に関するものである。   The present invention relates to a high voltage generator for generating a high voltage to be supplied to an accelerator for accelerating charged particles such as ions or electrons, and in particular to protecting electrical circuit components used in the high voltage generator from discharge. The present invention relates to a high voltage generator capable of realizing downsizing of the device.

従来,イオン若しくは電子等の荷電粒子を加速する加速装置に用いられる高電圧発生装置においては,該高電圧回路がもたらす電界(電場)の不均一性を防止して,放電の発生を軽減するために,特許文献1等において周知の金属フープ(導電性の環状部材に相当)が,コンデンサやダイオード(整流素子)等で構成された高電圧回路の外側に設けられている。
図5に示すように,一般に,高電圧発生装置50においては,高電圧回路としてコッククロフト・ウォルトン回路(以下,「CW回路」と略す。)51が用いられることが多い。かかるCW回路51は,ダイオード52とコンデンサ53等で構成された昇圧回路54が段階的に複数結合されて,倍電圧回路を構成するが(図5は6段の昇圧回路で構成されたCW回路を示す。),低電位(外部電圧入力側)から順次高電位側(図5の上方向)に行くに従い,入力電圧が徐々に昇圧される構成となっている。そのため,上記CW回路51の低電圧部56と高電圧部57との間に大きな電位差が生じ,これらの異なる電位がもたらす電界の不均一により,周辺部材等に電荷がチャージしやすくなり,上記周辺部材間,或いは上記周辺部材及び上記ダイオード52やコンデンサ53等の電気回路部品間で放電が発生しやすくなる。かかる放電を防止することを目的として,上記CW回路51の外側に,上記昇圧回路54それぞれに対応する位置に略環状の金属フープ58が上記CW回路51と所定間隔を隔てて複数設けられている。これにより,上記CW回路51の周囲の電界が略均等となり,電界不均一に起因して発生する放電が抑制される。なお,上記金属フープ58を有する従来の高電圧発生装置の模式図を図6に,図6のB−B断面図を図7に示す。
Conventionally, in a high voltage generator used in an accelerator for accelerating charged particles such as ions or electrons, the non-uniformity of the electric field (electric field) caused by the high voltage circuit is prevented and the generation of discharge is reduced. In addition, a metal hoop (corresponding to a conductive annular member) known in Patent Document 1 or the like is provided outside a high voltage circuit composed of a capacitor, a diode (rectifier element) and the like.
As shown in FIG. 5, generally, in the high voltage generator 50, a Cockcroft-Walton circuit (hereinafter abbreviated as “CW circuit”) 51 is often used as a high voltage circuit. In this CW circuit 51, a plurality of booster circuits 54 each including a diode 52 and a capacitor 53 are coupled in a stepwise manner to form a voltage doubler circuit (FIG. 5 shows a CW circuit composed of six stages of booster circuits. The input voltage is gradually increased from the low potential (external voltage input side) to the high potential side (upward in FIG. 5). Therefore, a large potential difference is generated between the low voltage portion 56 and the high voltage portion 57 of the CW circuit 51. Due to the non-uniformity of the electric field caused by these different potentials, it becomes easy to charge the peripheral members and the like. Discharge easily occurs between the members or between the peripheral members and the electric circuit components such as the diode 52 and the capacitor 53. In order to prevent such discharge, a plurality of substantially annular metal hoops 58 are provided outside the CW circuit 51 at positions corresponding to the booster circuits 54 at a predetermined interval from the CW circuit 51. . As a result, the electric field around the CW circuit 51 becomes substantially uniform, and the discharge generated due to the non-uniformity of the electric field is suppressed. A schematic diagram of a conventional high voltage generator having the metal hoop 58 is shown in FIG. 6, and a cross-sectional view taken along the line BB of FIG. 6 is shown in FIG.

一方,特許文献2に開示された高電圧電源装置は,CW回路の各段を構成する昇圧回路が結線された基盤を可撓性の絶縁樹脂でモールドすることにより,上記CW回路における放電の発生を防止すると共に,上記基盤間の距離を短縮して装置の小型化を実現している。
特開平06−176891号公報 特開平07−312300号公報
On the other hand, the high-voltage power supply device disclosed in Patent Document 2 generates discharge in the CW circuit by molding a substrate to which a booster circuit constituting each stage of the CW circuit is connected with a flexible insulating resin. In addition, the distance between the bases is shortened to reduce the size of the device.
Japanese Patent Laid-Open No. 06-176891 Japanese Patent Application Laid-Open No. 07-312300

しかしながら,上記特許文献1の金属フープでは,上記CW回路等の高電圧回路における放電を減少させることはできても,完全に放電を防止することはできず,上記高電圧回路に用いられる電気回路部品が放電によって破損,焼損するという問題を回避することはできない。一方,上記電気回路部品間や,周辺部材と電気回路部品間の距離を大きくすると,絶縁効果が高まり,放電が減少し,上記電気回路部品の破損,焼損を防止することができるが,その反面,装置が大型化するという問題が伴う。また,近年,イオン等の荷電粒子を高エネルギー化するために,加速装置等に供給する電圧がますます高電圧化される傾向にあることからすると,上記電気回路部品が放電により破損,焼損するという問題はより深刻化すると考えられる。
また,上記特許文献2の高電圧電源装置のように,昇圧回路を形成する各段の基盤を可撓性の絶縁樹脂でモールドすると,放電による基盤の破損,焼損を防止することができるが,モールドするために費やされる費用と時間の負担が大きく,経済的ではない。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,高電圧回路における放電による回路素子の破損,焼損を簡易な手法で防止すると共に,装置規模の小型化を実現することができる高電圧発生装置を提供することにある。
However, the metal hoop disclosed in Patent Document 1 can reduce discharge in a high-voltage circuit such as the CW circuit, but cannot completely prevent discharge, and an electric circuit used in the high-voltage circuit. The problem that parts are damaged or burned out by electric discharge cannot be avoided. On the other hand, increasing the distance between the electric circuit components or between the peripheral members and the electric circuit components increases the insulation effect and reduces the discharge, thereby preventing the electric circuit components from being damaged or burned. , Accompanied by the problem that the device becomes larger. In addition, in recent years, in order to increase the energy of charged particles such as ions, the voltage supplied to the accelerators and the like tends to be higher, so that the above electric circuit components are damaged or burned by discharge. This problem is expected to become more serious.
In addition, as in the high voltage power supply device of Patent Document 2 described above, if the base of each stage forming the booster circuit is molded with a flexible insulating resin, the base can be prevented from being damaged or burned out by discharge. The cost and time spent for molding are large and not economical.
Accordingly, the present invention has been made in view of the above circumstances, and the object of the present invention is to prevent damage and burnout of circuit elements due to discharge in a high voltage circuit by a simple method and to reduce the size of the apparatus. An object of the present invention is to provide a high voltage generator that can be realized.

上記目的を達成するために本発明は,入力電圧を昇圧する昇圧回路を多段に結合することによって高電圧を生成する高電圧回路を備えた高電圧発生装置において,上記高電圧発生装置の外部或いは内部における放電から上記高電圧回路に用いられる電気回路部品をシールドする導電性のシールド部材が,上記高電圧回路に用いられる電気回路部品間に設けられてなることを特徴とする高電圧発生装置として構成されている。
この場合,上記シールド部材が,上記多段に結合された複数の昇圧回路それぞれに対応して設けられてなるものであることが好ましい。
In order to achieve the above object, the present invention relates to a high voltage generator having a high voltage circuit for generating a high voltage by coupling a booster circuit for boosting an input voltage in multiple stages, outside the high voltage generator or As a high voltage generator, a conductive shield member for shielding an electric circuit component used in the high voltage circuit from an internal discharge is provided between the electric circuit components used in the high voltage circuit. It is configured.
In this case, it is preferable that the shield member is provided corresponding to each of the plurality of booster circuits coupled in multiple stages.

また,上記高電圧発生装置が,少なくとも上記昇圧回路の外側及び/若しくは内側に,上記昇圧回路の電界の均一性を高めるために設けられた1又は2以上の導電性の環状部材を備えて構成されている場合は,上記シールド部材が,上記高電圧回路に用いられる電気回路部品と上記環状部材との間に設けることが望ましい。
この場合,上記シールド部材が,上記環状部材と同心円筒状に配置されるように構成することが考えられる。
In addition, the high voltage generator includes one or more conductive annular members provided to increase the uniformity of the electric field of the booster circuit at least outside and / or inside the booster circuit. In this case, it is desirable that the shield member is provided between the electric circuit component used in the high voltage circuit and the annular member.
In this case, it can be considered that the shield member is arranged concentrically with the annular member.

また,上記シールド部材が,上記高電圧回路に用いられる電気回路部品と電気的に接続されて構成されたものであることが好ましい。
更にまた,上記高電圧回路が,少なくとも1以上のコンデンサを含んで構成され,上記シールド部材が,上記コンデンサの正或いは負の電極と電気的に接続されてなるものであってもよい。
また,上記高電圧発生装置の好ましい具体例としては,上記高電圧回路が,コッククロフト・ウォルトン回路或いはこれに準じる多段型の倍電圧整流回路であることが考えられる。
The shield member is preferably configured to be electrically connected to an electric circuit component used in the high voltage circuit.
Furthermore, the high voltage circuit may be configured to include at least one capacitor, and the shield member may be electrically connected to the positive or negative electrode of the capacitor.
As a preferred specific example of the high voltage generator, the high voltage circuit may be a Cockcroft-Walton circuit or a multistage type voltage doubler rectifier circuit equivalent thereto.

以上説明したように,本発明は,入力電圧を昇圧する昇圧回路を多段に結合することによって高電圧を生成する高電圧回路を備えた高電圧発生装置において,上記高電圧発生装置の外部或いは内部における放電から上記高電圧回路に用いられる電気回路部品をシールドする導電性のシールド部材が,上記高電圧回路に用いられる電気回路部品間に設けられてなることを特徴とする高電圧発生装置として構成されているため,上記高電圧回路に用いられる電気回路部品間に放電が発生した場合であっても,上記電気回路部品への直接放電を回避することができる。そのため,放電による電気回路部品の破損,焼損を防止することが可能となる。また,放電防止のために設けていた上記電気回路部品間の絶縁空間を小さくすることができるため,装置の小型化が可能となり,これにより,例えば,加速器に充填するSF6等の絶縁ガスの消費量が減少し,環境を悪化させない高電圧発生装置が実現され得る。また,上記加速器に充填された絶縁ガスの回収も容易となる。
更にまた,上記シールド部材が,上記多段に結合された複数の昇圧回路それぞれに対応して設けられてなるものであれば,上記多段に設けられた昇圧回路間の絶縁空間を小さくすることができ,装置の小型化を図ることが可能となる。
As described above, the present invention relates to a high voltage generator having a high voltage circuit for generating a high voltage by coupling a booster circuit for boosting an input voltage in multiple stages, outside or inside the high voltage generator. A high voltage generator comprising a conductive shield member for shielding an electric circuit component used in the high voltage circuit from discharge in the electric circuit component used in the high voltage circuit Therefore, even when a discharge occurs between the electric circuit components used in the high voltage circuit, direct discharge to the electric circuit components can be avoided. For this reason, it is possible to prevent the damage and burnout of the electric circuit components due to the discharge. In addition, since the insulation space between the electric circuit components provided for preventing discharge can be reduced, the apparatus can be miniaturized. For example, the insulating gas such as SF 6 filled in the accelerator can be reduced. A high voltage generator that reduces the consumption and does not deteriorate the environment can be realized. In addition, the insulating gas filled in the accelerator can be easily recovered.
Furthermore, if the shield member is provided corresponding to each of the plurality of booster circuits coupled in multiple stages, the insulation space between the booster circuits provided in the multiple stages can be reduced. Therefore, it is possible to reduce the size of the apparatus.

また,少なくとも上記昇圧回路の外側及び/若しくは内側に,上記昇圧回路の電界の均一性を高めるために設けられた1又は2以上の導電性の環状部材を備えて構成された高電圧発生装置においては,上記シールド部材が,上記高電圧回路に用いられる電気回路部品と上記環状部材との間に設けられているため,上記電気回路部品と上記環状部材との間の絶縁空間を小さくして,装置の小型化を実現することが可能となる。
また,この場合,上記シールド部材が,上記環状部材と同心円筒状に配置されることにより,上記環状部材において生じるあらゆる方向からの放電を効果的に遮断して,上記電気回路部品を保護することができる。また,装置の小型化という面においても,円筒状の構成が最も優れた構造と考えられる。
In addition, in a high voltage generator configured to include one or more conductive annular members provided at least outside and / or inside the booster circuit to improve the uniformity of the electric field of the booster circuit. Since the shield member is provided between the electric circuit component used in the high voltage circuit and the annular member, the insulation space between the electric circuit component and the annular member is reduced, It becomes possible to reduce the size of the apparatus.
Further, in this case, the shield member is arranged concentrically with the annular member, so that the electric circuit component can be protected by effectively blocking the discharge from any direction generated in the annular member. Can do. In terms of miniaturization of the device, the cylindrical configuration is considered the most excellent structure.

また,上記シールド部材が,上記高電圧回路に用いられる電気回路部品と電気的に接続されて構成されたものであれば,例え放電が発生したとしても,放電電流が電気回路部品の電極に流れ,上記電気回路部品の本体(BODY)が直接的に放電を受けることがないため,放電から上記電気回路部品を効果的に保護することが可能となる。
また,上記高電圧回路が,少なくとも1以上のコンデンサを含んで構成され,上記シールド部材が,上記コンデンサの正或いは負の電極と電気的に接続されてなるものであれば,上記コンデンサによって放電サージや放電後の続流が吸収されるため,ダイオード等の他の電気回路部品を放電から保護して部品の破損等を防止することが可能となる。
Further, if the shield member is configured to be electrically connected to an electric circuit component used in the high voltage circuit, even if a discharge occurs, a discharge current flows to the electrode of the electric circuit component. Since the main body (BODY) of the electric circuit component is not directly discharged, the electric circuit component can be effectively protected from the discharge.
In addition, if the high-voltage circuit includes at least one capacitor and the shield member is electrically connected to the positive or negative electrode of the capacitor, the capacitor causes a discharge surge. In addition, since the continuous current after the discharge is absorbed, other electric circuit components such as a diode can be protected from the discharge and the damage of the components can be prevented.

以下添付図面を参照しながら,本発明の一実施形態及び実施例について説明し,本発明の理解に供する。尚,以下の実施の形態及び実施例は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施形態に係る高電圧発生装置を備えたラザフォード後方散乱分析装置Xの概略構成を示す全体図,図2は本発明の実施形態に係る高電圧発生装置を示す模式図,図3は図2のA−A断面図,図4は本発明の他の実施例に係る高電圧発生装置Xの断面図,図5は従来の高電圧発生装置の高電圧回路を示す等価回路,図6は従来の高電圧発生装置を示す模式図,図7は図6のB−B断面図である。
In the following, an embodiment and an example of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. It should be noted that the following embodiments and examples are examples embodying the present invention, and do not limit the technical scope of the present invention.
FIG. 1 is a general view showing a schematic configuration of a Rutherford backscattering analyzer X equipped with a high voltage generator according to an embodiment of the present invention, and FIG. 2 shows a high voltage generator according to an embodiment of the present invention. 3 is a cross-sectional view taken along the line AA of FIG. 2, FIG. 4 is a cross-sectional view of a high voltage generator X according to another embodiment of the present invention, and FIG. 5 is a high voltage circuit of a conventional high voltage generator. FIG. 6 is a schematic diagram showing a conventional high voltage generator, and FIG. 7 is a cross-sectional view taken along the line BB of FIG.

まず,図1の全体図に基づいて,本発明の一実施形態にかかるコッククロフト・ウォルトン型の高電圧発生装置114を備えたラザフォード後方散乱分析装置(以下,「RBS分析装置」と略す。)Xの概略構成について説明する。尚,言うまでもないが,このRBS分析装置Xは,入力電圧を昇圧して所定の高電圧を発生する高電圧発生装置114の用途の単なる一例に過ぎない。
図示のRBS分析装置Xでは,測定チャンバ103(真空容器)の鉛直上方に配設された加速器(加速装置)110において,不図示のガスボンベから送り出されたヘリウムなどがイオン源112でイオン化され,その後,イオン化された一価のヘリウムイオン(荷電粒子の一例)が加速管113に送り出される。上記加速管113内では,上記ヘリウムイオンは,上記高圧電源発生装置114から高電圧が供給されることにより,この高電圧に対応したエネルギーが蓄えられて加速される。上記加速器110内は,高電圧による放電等を抑制するため,消弧性及び絶縁性の高いSF6等の絶縁ガスで充填されている。
この実施形態における上記高圧電源発生装置114は,PN型ダイオード(整流素子の一例,以下,「ダイオード」と称す。),コンデンサなどで構成された昇圧回路54(図5参照)を段階的に複数結合して構成されたCW回路51(図5参照)によって入力電圧を所定の高電圧に昇圧するコッククロフト・ウォルトン型の高電圧発生装置である。なお,上記CW回路51は高電圧回路の単なる一例であって,上記CW回路51をこれに準じる多段型の倍電圧整流回路に置き換えた高電圧発生装置であっても,本発明の技術的範囲に属することは言うまでもない。
上記加速管113内で加速されたイオンは鉛直下方へ出射され,ビームダクト116を通り,途中,四重極マグネット111により収束されて,加速器110の鉛直下方に位置する測定チャンバ103内の試料102に照射される。
上記試料102に照射され,試料102の表面又は内部で弾性散乱されたイオンのうち,検出器105で検出されたイオンが,分析に供される。
First, based on the overall view of FIG. 1, Rutherford backscattering analyzer (hereinafter abbreviated as “RBS analyzer”) X having a Cockcroft-Walton type high voltage generator 114 according to an embodiment of the present invention. The schematic configuration of will be described. Needless to say, the RBS analyzer X is merely an example of the use of the high voltage generator 114 that generates a predetermined high voltage by boosting the input voltage.
In the illustrated RBS analyzer X, helium or the like sent from a gas cylinder (not shown) is ionized by an ion source 112 in an accelerator (accelerator) 110 disposed vertically above a measurement chamber 103 (vacuum vessel), and thereafter , Ionized monovalent helium ions (an example of charged particles) are sent to the acceleration tube 113. In the acceleration tube 113, the helium ions are accelerated by storing energy corresponding to the high voltage when a high voltage is supplied from the high-voltage power generator 114. The accelerator 110 is filled with an insulating gas such as SF 6 having high arc extinguishing and insulating properties in order to suppress discharge caused by a high voltage.
The high-voltage power generation device 114 in this embodiment includes a plurality of step-up circuits 54 (refer to FIG. 5) composed of PN diodes (an example of a rectifier, hereinafter referred to as “diodes”), capacitors, and the like. This is a Cockcroft-Walton type high voltage generator that boosts the input voltage to a predetermined high voltage by a combined CW circuit 51 (see FIG. 5). The CW circuit 51 is merely an example of a high voltage circuit, and the technical scope of the present invention can be applied to a high voltage generator in which the CW circuit 51 is replaced with a multi-stage voltage doubler rectifier circuit according to the CW circuit 51. It goes without saying that it belongs to.
Ions accelerated in the acceleration tube 113 are emitted vertically downward, pass through the beam duct 116, and are converged by the quadrupole magnet 111 on the way, and the sample 102 in the measurement chamber 103 positioned vertically below the accelerator 110. Is irradiated.
Among the ions irradiated onto the sample 102 and elastically scattered on or inside the sample 102, ions detected by the detector 105 are used for analysis.

測定チャンバ103は,円筒形の測定チャンバであり,内部を真空状にするため,測定チャンバ103近傍には内部の空気を排出して真空化するターボ分子ポンプ109が設けられている。また,この測定チャンバ103には,試料102に照射されたイオンによって上記試料102から複数の方向に散乱した散乱イオンを検出する検出器105が設けられている。
また,上記円筒形の測定チャンバ103の中心軸(円筒軸)にあたる位置には試料102を保持する試料台が配置されている。この上記試料台は上記測定チャンバ103の中心軸を中心にして上記測定チャンバ103の中心軸方向に上下動自在に支持される。上記測定チャンバ103の外部には,上記試料台に試料102を搬出入するトランファーロッド106が設けられており,該トランスファーロッド106の気密は,ロードロックチャンバ107で保持されている。また,この測定チャン103の外周には,マグネット冷却器108によって冷却される超電導マグネット104が配置されており,この超電導マグネット104によって,散乱イオンの散乱方向が変えられる。
The measurement chamber 103 is a cylindrical measurement chamber, and a turbo molecular pump 109 is provided in the vicinity of the measurement chamber 103 to exhaust and evacuate the inside in order to make the inside of the chamber vacuum. The measurement chamber 103 is provided with a detector 105 that detects scattered ions scattered from the sample 102 in a plurality of directions by ions irradiated on the sample 102.
A sample stage for holding the sample 102 is disposed at a position corresponding to the central axis (cylindrical axis) of the cylindrical measurement chamber 103. The sample stage is supported so as to be movable up and down in the direction of the central axis of the measurement chamber 103 around the central axis of the measurement chamber 103. A transfer rod 106 for carrying the sample 102 in and out of the sample stage is provided outside the measurement chamber 103, and the airtightness of the transfer rod 106 is held in a load lock chamber 107. In addition, a superconducting magnet 104 cooled by a magnet cooler 108 is disposed on the outer periphery of the measurement chamber 103, and the scattering direction of scattered ions is changed by the superconducting magnet 104.

上記高電圧発生装置114は,図5に示す従来の高電圧発生装置50と略同様に構成されており,絶縁支持部材61により互いに絶縁された状態で支持された低電圧部56及び高電圧部57と,上記低電圧部56及び高電圧部57の間に設けられたCW回路51(高電圧回路)と,上記低電圧部56の下部に配置された上記CW回路51に入力電圧を供給するトランス55と,上記CW回路51で生成された高電圧を加速器111に供給するための高電圧ターミナル(高電圧端子)と,により構成され,上記加速器110内に加速管113やイオン源112等(図1)と共に配設されている。
上記CW回路51は,上記トランス55により変圧されて入力された入力電圧を昇圧する昇圧回路54を多段に結合して構成され,所定の高電圧を生成する高電圧回路である。このCW回路51の外側には,所定の間隔を隔てて設けられた1又は2以上の導電性の金属フープ58(導電性の環状部材の一例)が不図示の絶縁支持部材により支持されて配設されている。なお,上記金属フープ58が上記CW回路51の内側に設けられたものであってもかまわない。
上記金属フープ58は,その上下に配設された他の金属フープと所定間隔を持って離間されており,更に,隣接する金属フープ間は,抵抗60を介して接続されている。また,複数の金属フープにチャージされた電荷を放出すると共に,該金属フープを略接地電位に均一化するため,最下部に配置された金属フープは接地されている。
The high voltage generator 114 is configured in substantially the same manner as the conventional high voltage generator 50 shown in FIG. 5, and includes a low voltage unit 56 and a high voltage unit that are supported by an insulating support member 61 while being insulated from each other. 57, the CW circuit 51 (high voltage circuit) provided between the low voltage unit 56 and the high voltage unit 57, and the CW circuit 51 disposed below the low voltage unit 56 are supplied with input voltage. The transformer 55 includes a high voltage terminal (high voltage terminal) for supplying the high voltage generated by the CW circuit 51 to the accelerator 111, and the accelerator 110, the ion source 112, etc. 1).
The CW circuit 51 is a high-voltage circuit that is configured by combining a booster circuit 54 that boosts an input voltage transformed and input by the transformer 55 in multiple stages and generates a predetermined high voltage. Outside the CW circuit 51, one or more conductive metal hoops 58 (an example of a conductive annular member) provided at a predetermined interval are supported by an insulating support member (not shown). It is installed. The metal hoop 58 may be provided inside the CW circuit 51.
The metal hoop 58 is separated from other metal hoops disposed above and below it at a predetermined interval, and adjacent metal hoops are connected via a resistor 60. Further, the metal hoop disposed at the bottom is grounded in order to release the charges charged in the plurality of metal hoops and to make the metal hoops substantially equal to the ground potential.

上述の如く,本発明に係る高電圧発生装置114は,従来の高電圧発生装置50と略同様に構成されているが,本高電圧発生装置114は,上記高電圧発生装置50とは,図2の模式図及び図3の断面図に示すように,上記CW回路51に用いられるダイオード52やコンデンサ53等の電気回路部品と上記金属フープ58との間,即ち,上記CW回路51と上記金属フープ58との間に導電性のシールド部材21a,21bが設けられ,上記ダイオード52や上記コンデンサ53と上記抵抗60との間(電気回路部品間)に導電性のシールド部材22a,22bが設けられている点において大きく異なる。
このように,本高電圧発生装置114が構成されることにより,放電が発生したとしても,上記シールド部材21a等に放電され,上記ダイオード52や上記コンデンサ54,或いは上記金属フープ58間に設けられた抵抗60等の電気回路部品への直接的な放電が回避されるため,放電による上記電気回路部品の破損,焼損を防止することが可能となる。また,放電防止のために離間させていた上記電気回路部品間の絶縁空間(絶縁距離),及び上記電気回路部品と上記金属フープとの間の絶縁空間(絶縁距離)を小さくすることができるため,装置の小型化を図ることが可能となる。この結果,上記加速器110内に充填されるSF6等の絶縁ガスの消費量が減少するため,絶縁ガスの回収が容易となると共に,環境を悪化させない高電圧発生装置が実現され得る。
なお,上記シールド部材に放電されることにより,該シールド部材に電荷がチャージされるため,上記シールド部材をそれぞれ接地することが望ましい。また,このように,上記シールド部材を接地電位に保持することにより,上記接地された金属フープ58と上記シールド部材とが等電位となるため,上記金属フープ58及び上記シールド部材間における放電の発生が抑制される。
As described above, the high voltage generator 114 according to the present invention is configured in substantially the same manner as the conventional high voltage generator 50. However, the high voltage generator 114 is different from the high voltage generator 50 in FIG. As shown in the schematic diagram of FIG. 2 and the cross-sectional view of FIG. 3, between the electric circuit components such as the diode 52 and the capacitor 53 used in the CW circuit 51 and the metal hoop 58, that is, the CW circuit 51 and the metal. Conductive shield members 21a and 21b are provided between the hoop 58 and conductive shield members 22a and 22b are provided between the diode 52 and the capacitor 53 and the resistor 60 (between electric circuit components). It is very different in that it is.
Thus, even if a discharge occurs due to the configuration of the high voltage generator 114, the shield member 21a is discharged and provided between the diode 52, the capacitor 54, or the metal hoop 58. Since direct discharge to the electric circuit components such as the resistor 60 is avoided, it is possible to prevent the electric circuit components from being damaged or burned out by the discharge. In addition, the insulation space (insulation distance) between the electric circuit components that have been separated to prevent discharge and the insulation space (insulation distance) between the electric circuit component and the metal hoop can be reduced. Therefore, it is possible to reduce the size of the apparatus. As a result, since the consumption of the insulating gas such as SF6 filled in the accelerator 110 is reduced, the insulating gas can be easily recovered and a high voltage generator that does not deteriorate the environment can be realized.
In addition, since the electric charge is charged to this shield member by discharging to the said shield member, it is desirable to ground the said shield member, respectively. In addition, since the grounded metal hoop 58 and the shield member become equipotential by holding the shield member at the ground potential in this way, the discharge between the metal hoop 58 and the shield member is generated. Is suppressed.

また,図示されるように,上記シールド部材21a等は,上記金属フープ58と同心円筒状に配置されているため,上記金属フープ58において生じるあらゆる方向からの放電が効果的に遮断される。これにより,上記電気回路部品を放電から保護することが可能となる。また,装置の小型化という面においても,図2に示されるシールド部材21a等のように円筒状の構成が最も優れた構造であると考えられる。
なお,本実施形態例では,図3に示すように,略半円筒状のシールド部材21aと21bとが,そして,略半円筒状のシールド部材22aと22bとが対向して配設されているが,特にこれに限定されることはない。
即ち,上記シールド部材が,放電元となる加速器113等の周辺部材と電気回路部品との間に設けられていれば,本発明の課題である,上記電気回路部品の保護を十分に図ることが可能である。従って,例えば,上記シールド部材が,上記多段に結合された複数の昇圧回路54(図5)それぞれに対応して設けられたものであってもよい。このように構成されることで,上記昇圧回路54を放電から防止することができると共に,上記昇圧回路54間の絶縁空間,或いは,上記昇圧回路54と上記金属フープ58との間の絶縁空間をを小さくすることができ,装置の小型化を図ることが可能となる。また,この場合,上記昇圧回路54それぞれに対応して設けられた複数のシールド部材をそれぞれ内部抵抗等を介して接続することにより,上記それぞれのシールド部材の電位を均一にすることで,本高電圧発生装置X内の電位或いは電界の不均一性が軽減されるため,放電を効果的に抑制することができる。
Further, as shown in the figure, the shield member 21a and the like are arranged concentrically with the metal hoop 58, so that discharge from all directions generated in the metal hoop 58 is effectively blocked. This makes it possible to protect the electric circuit component from discharge. Also, in terms of downsizing the device, a cylindrical configuration is considered to be the most excellent structure, such as the shield member 21a shown in FIG.
In this embodiment, as shown in FIG. 3, the substantially semi-cylindrical shield members 21a and 21b and the substantially semi-cylindrical shield members 22a and 22b are arranged to face each other. However, it is not particularly limited to this.
That is, if the shield member is provided between a peripheral member such as the accelerator 113 serving as a discharge source and the electric circuit component, it is possible to sufficiently protect the electric circuit component, which is an object of the present invention. Is possible. Therefore, for example, the shield member may be provided corresponding to each of the plurality of booster circuits 54 (FIG. 5) coupled in multiple stages. With this configuration, the booster circuit 54 can be prevented from being discharged, and an insulating space between the booster circuit 54 or an insulating space between the booster circuit 54 and the metal hoop 58 can be provided. It is possible to reduce the size of the apparatus. In this case, a plurality of shield members provided corresponding to the respective booster circuits 54 are connected through internal resistors or the like, so that the potentials of the respective shield members are made uniform. Since the nonuniformity of the potential or electric field in the voltage generator X is reduced, the discharge can be effectively suppressed.

上記高電圧発生装置Xに設けられたシールド部材21a,21b,22a,22bは,図4の断面図に示すように,上記電気回路部品と電気的に接続された実施例であってもよい。具体的には,上記シールド部材21aと22aとがコンデンサ53bの正或いは負の電極に配線41b等により接続されて構成されている。このように構成されることにより,例え放電が発生したとしても,放電電流が電気回路部品の電極に流れ,上記電気回路部品の本体(BODY)が直接的に放電を受けることがないため,放電から上記電気回路部品を効果的に保護することができる。
また,上記シールド部材21a,21b,22a,22bが,上述の如く上記コンデンサ53a,53bに電気的に接続されることにより,上記コンデンサ53によって放電サージや放電後の続流が吸収されるため,ダイオード52や抵抗60等の他の電気回路部品を放電から保護し,部品の破損等を防止することが可能となる。
The shield members 21a, 21b, 22a, and 22b provided in the high voltage generator X may be an embodiment that is electrically connected to the electric circuit component as shown in the cross-sectional view of FIG. Specifically, the shield members 21a and 22a are connected to the positive or negative electrode of the capacitor 53b by the wiring 41b or the like. With this configuration, even if a discharge occurs, a discharge current flows to the electrode of the electric circuit component, and the main body (BODY) of the electric circuit component is not directly discharged. Thus, the electric circuit component can be effectively protected.
Further, since the shield members 21a, 21b, 22a, and 22b are electrically connected to the capacitors 53a and 53b as described above, the capacitor 53 absorbs a discharge surge and a continuation after discharge. It is possible to protect other electric circuit components such as the diode 52 and the resistor 60 from discharge and prevent damage to the components.

本発明は,半導体を初めとする各種材料の定量,組成分析する分析装置分野,若しくは,イオンを材料に注入するイオン注入分野,イオンや電子を照射することで殺菌,その他の効果があるイオン照射,イオン若しくは電子ビームによる加工などの分野に利用可能である。   The present invention relates to the field of analyzers for quantification and composition analysis of various materials including semiconductors, or the field of ion implantation for injecting ions into materials, sterilization by irradiating ions and electrons, and ion irradiation having other effects. , Can be used in fields such as ion or electron beam processing.

本発明の実施形態に係る高電圧発生装置を備えたラザフォード後方散乱分析装置Xの概略構成を示す全体図。1 is an overall view showing a schematic configuration of a Rutherford backscattering analyzer X provided with a high voltage generator according to an embodiment of the present invention. 本発明の実施形態に係る高電圧発生装置を示す模式図。The schematic diagram which shows the high voltage generator which concerns on embodiment of this invention. 図2のA−A断面図。AA sectional drawing of FIG. 本発明の実施例に係る高電圧発生装置の断面図。Sectional drawing of the high voltage generator which concerns on the Example of this invention. 従来の高電圧発生装置の高電圧回路を示す等価回路。The equivalent circuit which shows the high voltage circuit of the conventional high voltage generator. 従来の高電圧発生装置を示す模式図。The schematic diagram which shows the conventional high voltage generator. 図6のB−B断面図。BB sectional drawing of FIG.

符号の説明Explanation of symbols

21a,21b,22a,22b…シールド部材
51…コッククロフト・ウォルトン回路(高電圧回路の一例)
52…ダイオード(電気回路部品の一例)
53…コンデンサ(電気回路部品の一例)
54…昇圧回路
58…金属フープ(環状部材の一例)
60…抵抗(電気回路部品の一例)
102…試料
103…測定チャンバ
104…超電導マグネット
105…検出器
106…トランスファーロッド
107…ロードロックチャンバ
108…マグネット冷却器
109…ターボ分子ポンプ
110…加速器(加速装置)
111…四重極マグネット
112…イオン源
113…加速管
114…高電圧発生装置
116…ビームダクト
21a, 21b, 22a, 22b ... shield member 51 ... Cockcroft-Walton circuit (an example of a high voltage circuit)
52 ... Diode (an example of an electric circuit component)
53. Capacitor (an example of an electric circuit component)
54 ... Booster circuit 58 ... Metal hoop (an example of an annular member)
60: Resistance (an example of an electric circuit component)
DESCRIPTION OF SYMBOLS 102 ... Sample 103 ... Measurement chamber 104 ... Superconducting magnet 105 ... Detector 106 ... Transfer rod 107 ... Load lock chamber 108 ... Magnet cooler 109 ... Turbo molecular pump 110 ... Accelerator (accelerator)
111 ... Quadrupole magnet 112 ... Ion source 113 ... Accelerating tube 114 ... High voltage generator 116 ... Beam duct

Claims (8)

入力電圧を昇圧する昇圧回路を多段に結合することによって高電圧を生成する高電圧回路を備えた高電圧発生装置において,
上記高電圧発生装置の外部或いは内部における放電から上記高電圧回路に用いられる電気回路部品をシールドする導電性のシールド部材が,上記高電圧回路に用いられる電気回路部品間に設けられてなることを特徴とする高電圧発生装置。
In a high voltage generator having a high voltage circuit for generating a high voltage by coupling a booster circuit for boosting an input voltage in multiple stages,
A conductive shield member for shielding electrical circuit components used in the high voltage circuit from discharges outside or inside the high voltage generator is provided between the electrical circuit components used in the high voltage circuit. High voltage generator characterized.
上記シールド部材が,上記多段に結合された複数の昇圧回路それぞれに対応して設けられてなる請求項1に記載の高電圧発生装置。   2. The high voltage generator according to claim 1, wherein the shield member is provided corresponding to each of the plurality of booster circuits coupled in multiple stages. 少なくとも上記昇圧回路の外側及び/若しくは内側に,上記昇圧回路の電界の均一性を高めるために設けられた1又は2以上の導電性の環状部材を更に備え,
上記シールド部材が,上記高電圧回路に用いられる電気回路部品と上記環状部材との間に設けられてなる請求項1又は2に記載の高電圧発生装置。
One or more conductive annular members provided to increase the uniformity of the electric field of the booster circuit at least outside and / or inside the booster circuit;
The high voltage generator according to claim 1 or 2, wherein the shield member is provided between an electric circuit component used in the high voltage circuit and the annular member.
上記シールド部材が,上記環状部材と同心円筒状に配置されてなる請求項3に記載の高電圧発生装置。   The high-voltage generator according to claim 3, wherein the shield member is arranged concentrically with the annular member. 上記シールド部材が,上記高電圧回路に用いられる電気回路部品と電気的に接続されてなる請求項1〜4のいずれかに記載の高電圧発生装置。   The high voltage generator according to any one of claims 1 to 4, wherein the shield member is electrically connected to an electric circuit component used in the high voltage circuit. 上記高電圧回路が,少なくとも1以上のコンデンサを含んで構成され,上記シールド部材が,上記コンデンサの正或いは負の電極と電気的に接続されてなる請求項1〜5のいずれかに記載の高電圧発生装置。   The high voltage circuit according to claim 1, wherein the high voltage circuit includes at least one capacitor, and the shield member is electrically connected to a positive or negative electrode of the capacitor. Voltage generator. 上記シールド部材の電位を略均一にする電位均一手段を更に備えてなる請求項1〜4のいずれかに記載の高電圧発生装置。   The high voltage generator according to any one of claims 1 to 4, further comprising a potential uniforming means for making the potential of the shield member substantially uniform. 上記高電圧回路が,コッククロフト・ウォルトン回路或いはこれに準じる多段型の倍電圧整流回路である請求項1〜7のいずれかに記載の高電圧発生装置。   8. The high voltage generator according to claim 1, wherein the high voltage circuit is a Cockcroft-Walton circuit or a multistage type voltage doubler rectifier circuit equivalent thereto.
JP2004033314A 2003-11-28 2004-02-10 High voltage generator Expired - Fee Related JP4260036B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004033314A JP4260036B2 (en) 2004-02-10 2004-02-10 High voltage generator
TW093133383A TWI287950B (en) 2003-11-28 2004-11-02 High-voltage generator and accelerator using same
US10/981,531 US7218500B2 (en) 2003-11-28 2004-11-05 High-voltage generator and accelerator using same
KR1020040097754A KR100679593B1 (en) 2003-11-28 2004-11-26 High-voltage generator and accelerator using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004033314A JP4260036B2 (en) 2004-02-10 2004-02-10 High voltage generator

Publications (2)

Publication Number Publication Date
JP2005228494A true JP2005228494A (en) 2005-08-25
JP4260036B2 JP4260036B2 (en) 2009-04-30

Family

ID=35003037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004033314A Expired - Fee Related JP4260036B2 (en) 2003-11-28 2004-02-10 High voltage generator

Country Status (1)

Country Link
JP (1) JP4260036B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102771195A (en) * 2010-02-24 2012-11-07 西门子公司 DC high voltage source and particle accelerator
WO2014013645A1 (en) * 2012-07-18 2014-01-23 株式会社リガク Industrial x-ray generator for non-destructive inspection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102771195A (en) * 2010-02-24 2012-11-07 西门子公司 DC high voltage source and particle accelerator
WO2014013645A1 (en) * 2012-07-18 2014-01-23 株式会社リガク Industrial x-ray generator for non-destructive inspection
JP2014022185A (en) * 2012-07-18 2014-02-03 Rigaku Corp Industrial x-ray generation device for nondestructive inspection

Also Published As

Publication number Publication date
JP4260036B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
KR100679593B1 (en) High-voltage generator and accelerator using same
US4977352A (en) Plasma generator having rf driven cathode
US9060412B2 (en) Ion drive for a spacecraft
KR20090094290A (en) Plasma generator apparatus
JP2008282813A (en) System and method for high-voltage transient suppression, and spit protection in x-ray tube
JP2022511076A (en) Arc detection system and method using dynamic threshold
JP4260036B2 (en) High voltage generator
US20120161673A1 (en) Particle accelerator having a switch arrangement near an accelerator cell
JP2008234880A (en) Ion source
US7885386B2 (en) Systems and apparatus for a compact low power X-ray generator
CN108701575B (en) Target assembly for x-ray emitting device and x-ray emitting device
Hinterberger Electrostatic accelerators
JP2988764B2 (en) Accelerator tube of DC voltage accelerator
JP4442859B2 (en) Rutherford backscattering analyzer
JP2004221016A (en) Ion implanter and method for shielding x-ray therein
JP3143016B2 (en) Plasma generator
JPS58161234A (en) Field emission type charged particle generator
JP2757963B2 (en) Ion source accelerating electrode
JP3265987B2 (en) Ion irradiation equipment
Koudijs et al. Introduction of the new high voltage, engineering (HVE) accelerator for high energy/high current ion implantation
Lee et al. Lifetime enhancement of a multicusp ion source for lithography
CN116017834A (en) Negative high pressure neutron source
Yoshida et al. Drift field generation with Cockcroft-Walton voltage multiplier in xenon gas for AXEL 0vββ search detector
JP6570972B2 (en) Fusion neutron generator and fusion neutron generation method
KR0138973Y1 (en) Anti-static electricity of cathode ray tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4260036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees