JP6570972B2 - Fusion neutron generator and fusion neutron generation method - Google Patents

Fusion neutron generator and fusion neutron generation method Download PDF

Info

Publication number
JP6570972B2
JP6570972B2 JP2015218220A JP2015218220A JP6570972B2 JP 6570972 B2 JP6570972 B2 JP 6570972B2 JP 2015218220 A JP2015218220 A JP 2015218220A JP 2015218220 A JP2015218220 A JP 2015218220A JP 6570972 B2 JP6570972 B2 JP 6570972B2
Authority
JP
Japan
Prior art keywords
vacuum vessel
cathode
neutron generator
fusion neutron
triple point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015218220A
Other languages
Japanese (ja)
Other versions
JP2017091710A (en
Inventor
啓 高倉
啓 高倉
佐藤 正幸
正幸 佐藤
晴夫 宮寺
晴夫 宮寺
黒田 英彦
英彦 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2015218220A priority Critical patent/JP6570972B2/en
Publication of JP2017091710A publication Critical patent/JP2017091710A/en
Application granted granted Critical
Publication of JP6570972B2 publication Critical patent/JP6570972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Particle Accelerators (AREA)

Description

本発明の実施形態は、本発明の実施形態は、核融合中性子発生装置および核融合中性子発生方法に関する。   Embodiments of the present invention relate to a fusion neutron generator and a fusion neutron generation method.

核融合中性子発生装置としては、慣性静電閉じ込め式核融合を用いた装置が知られている。慣性静電閉じ込め式核融合反応を用いた装置は、たとえば陽極を兼ねる球形状の真空容器の中心に、同心球に格子状の陰極を配置した構造を有する。   An apparatus using inertial electrostatic confinement fusion is known as a fusion neutron generator. An apparatus using an inertial electrostatic confinement fusion reaction has a structure in which, for example, a lattice-shaped cathode is arranged in a concentric sphere at the center of a spherical vacuum vessel that also serves as an anode.

この種の装置では、真空容器内に重水素等の燃料ガスを充填し、陽極と陰極との間に数kVから100kV程度の高電圧を印可することで、放電によって重水素イオン等が発生する。発生したイオンは電極間の電場によって中心に向かって加速収束される。陰極が格子状になっているため、大部分のイオンは陰極に衝突せず陰極内部に到達し、陰極内部から外側に飛び出し、電場によって再び中心に向かって加速収束される。   In this type of apparatus, fuel gas such as deuterium is filled in a vacuum vessel and a high voltage of about several kV to 100 kV is applied between the anode and the cathode, so that deuterium ions and the like are generated by discharge. . The generated ions are accelerated and converged toward the center by the electric field between the electrodes. Since the cathode has a lattice shape, most of the ions do not collide with the cathode, reach the inside of the cathode, jump out from the inside of the cathode, and are accelerated and converged toward the center again by the electric field.

球中心部で高密度となったイオンが相互に衝突し、燃料ガスと衝突し、あるいは陰極や陽極に埋め込まれた燃料ガスの粒子に衝突することにより、核融合反応が発生して中性子や荷電粒子が生成される。また、慣性静電閉じ込め式核融合反応を用いた核融合中性子発生装置の構造は、たとえば陽極と陰極を円筒形状にし、同軸上に配置した構造であってもよい。この種の核融合中性子発生装置は、高電圧導入部を介して陰極に高電圧を印加するよう構成される。   Ions that become dense at the center of the sphere collide with each other, collide with fuel gas, or collide with fuel gas particles embedded in the cathode or anode, causing a fusion reaction to generate neutrons or charges. Particles are generated. Moreover, the structure of the fusion neutron generator using the inertial electrostatic confinement fusion reaction may be, for example, a structure in which an anode and a cathode are formed in a cylindrical shape and arranged coaxially. This type of fusion neutron generator is configured to apply a high voltage to the cathode via a high voltage introduction section.

特許第3867972号公報Japanese Patent No. 3867972 特許第3700496号公報Japanese Patent No. 3700496 特開2004−311152号公報JP 2004-311152 A 特開2008−202942号公報JP 2008-202942 A

核融合中性子発生装置で得られる中性子や荷電粒子は、核物質探知、火薬探知、非破壊検査への応用が期待されている。このため、たとえば屋外等の現場での使用の利便性を高めるよう、装置の小型化が求められている。   Neutrons and charged particles obtained by fusion neutron generators are expected to be applied to nuclear material detection, explosives detection, and nondestructive inspection. For this reason, for example, downsizing of the apparatus is demanded so as to enhance the convenience of use in the field such as outdoors.

一方、中性子の発生量は、陰極への印加電圧に応じて大きくなるため、より高い電圧を陰極に印加することが、高出力な中性子発生を得るために有効である。しかし、高電圧導入部を介して陰極に高電圧を印加すると、たとえば真空容器の接地部などの陽極と高電圧導入部との位置関係によっては沿面放電が発生してしまう場合がある。   On the other hand, since the amount of neutron generation increases with the voltage applied to the cathode, it is effective to apply a higher voltage to the cathode in order to obtain high-power neutron generation. However, when a high voltage is applied to the cathode via the high voltage introduction part, creeping discharge may occur depending on the positional relationship between the anode such as the grounding part of the vacuum vessel and the high voltage introduction part.

そこで、従来の核融合中性子発生装置は、陰極用の高電圧導入部の軸方向に沿う方向に延びる絶縁体構造物を高電圧導入部に設けることにより、陽極と陰極用の高電圧導入部との沿面距離、絶縁距離をかせいでいる。しかし、高電圧導入部の軸方向に沿う方向に沿面距離、絶縁距離をかせぐように絶縁体構造物を設けると、高電圧導入部のサイズが大型化してしまう。このため、装置が大型化、複雑化し、屋外などでの現場での使用が制限されてしまっていた。   Therefore, the conventional fusion neutron generator is provided with an insulator structure extending in a direction along the axial direction of the cathode high-voltage introduction section, thereby providing a high-voltage introduction section for the anode and the cathode, The creepage distance and insulation distance of However, if the insulator structure is provided so as to increase the creeping distance and the insulation distance in the direction along the axial direction of the high voltage introduction portion, the size of the high voltage introduction portion is increased. For this reason, the apparatus has become larger and more complicated, and its use in the field such as outdoors has been restricted.

本発明は上述した課題を解決するためになされたものであり、高電圧導入部を小型化しつつ陽極と高電圧導入部との沿面放電を抑制することができる核融合中性子発生装置および核融合中性子発生方法を提供することを目的とする。   The present invention has been made to solve the above-described problem, and a fusion neutron generator and a fusion neutron capable of suppressing creeping discharge between the anode and the high voltage introduction portion while reducing the size of the high voltage introduction portion. The purpose is to provide a generation method.

本発明の一実施形態に係る核融合中性子発生装置は、上述した課題を解決するために、イオン化した燃料ガスを加速させて核融合反応を起こさせる核融合中性子発生装置であって、真空容器、陰極、高電圧導入部および絶縁体構造物を備える。真空容器は、陽極を有し、大気圧より低い圧力に保たれる。陰極は、真空容器と電気的に絶縁され、真空容器の内部に設けられる。高電圧導入部は、真空容器と電気的に絶縁され、陽極と陰極間の電界によってイオン化した燃料ガスを加速させるよう、電圧印加手段から供給された電力を陰極に与えることにより陰極に負電位を生じさせる。絶縁体構造物は、真空容器の内側面の少なくとも一部を構成する絶縁体構造物であって、高電圧導入部側の三重点と陽極側の三重点との沿面距離が空間距離よりも長い距離を有するように真空容器の内側面側に設けられた遮蔽物を有する。   A fusion neutron generator according to an embodiment of the present invention is a fusion neutron generator for accelerating ionized fuel gas to cause a fusion reaction in order to solve the above-described problems, and includes a vacuum vessel, A cathode, a high voltage introduction part, and an insulator structure are provided. The vacuum vessel has an anode and is maintained at a pressure lower than atmospheric pressure. The cathode is electrically insulated from the vacuum vessel and is provided inside the vacuum vessel. The high voltage introduction unit is electrically insulated from the vacuum vessel and applies a power supplied from the voltage application means to the cathode so as to accelerate the fuel gas ionized by the electric field between the anode and the cathode, thereby applying a negative potential to the cathode. Cause it to occur. The insulator structure is an insulator structure that constitutes at least a part of the inner surface of the vacuum vessel, and the creeping distance between the triple point on the high voltage introduction portion side and the triple point on the anode side is longer than the spatial distance. It has the shielding object provided in the inner surface side of the vacuum vessel so that it may have a distance.

本発明の第1実施形態に係る核融合中性子発生装置の一例を示す構成図。The lineblock diagram showing an example of the fusion neutron generator concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る核融合中性子発生装置の他の例を示す構成図。The block diagram which shows the other example of the fusion neutron generator which concerns on 1st Embodiment of this invention. 従来の核融合中性子発生装置の一例を示す構成図。The block diagram which shows an example of the conventional fusion neutron generator. 絶縁距離と沿面放電電圧との関係の一例を示す説明図。Explanatory drawing which shows an example of the relationship between an insulation distance and a creeping discharge voltage. 第1実施形態に係る絶縁体構造物および遮蔽物を真空容器内部から見た様子の一例を示す説明図。Explanatory drawing which shows an example of a mode that the insulator structure and shield which concern on 1st Embodiment were seen from the inside of a vacuum vessel. (a)は、従来の遮蔽物がない場合の陰極側三重点TJcと陽極側三重点TJaとの沿面距離の一例を示す説明図であり、(b)は、第1実施形態に係る遮蔽物が設けられた場合の陰極側三重点TJcと陽極側三重点TJaとの沿面距離の一例を示す説明図。(A) is explanatory drawing which shows an example of the creeping distance of the cathode side triple point TJc and anode side triple point TJa when there is no conventional shield, (b) is the shield which concerns on 1st Embodiment. Explanatory drawing which shows an example of the creeping distance of the cathode side triple point TJc at the time of providing, and the anode side triple point TJa. (a)は第1実施形態に係る遮蔽物の第1変形例を示す説明図、(b)は第1実施形態に係る遮蔽物の第2変形例を示す説明図。(A) is explanatory drawing which shows the 1st modification of the shielding object which concerns on 1st Embodiment, (b) is explanatory drawing which shows the 2nd modification of the shielding object which concerns on 1st Embodiment. 本発明の第2実施形態に係る核融合中性子発生装置の一例を示す構成図。The block diagram which shows an example of the fusion neutron generator which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る核融合中性子発生装置の他の例を示す構成図。The block diagram which shows the other example of the fusion neutron generator which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る核融合中性子発生装置の変形例を示す構成図。The block diagram which shows the modification of the fusion neutron generator which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る核融合中性子発生装置の一例を示す構成図。The block diagram which shows an example of the fusion neutron generator which concerns on 3rd Embodiment of this invention. 第3実施形態に係る遮蔽物が有する傾斜により沿面で発生した2次電子雪崩の進展を抑制する様子の一例を示す説明図。Explanatory drawing which shows an example of a mode that the progress of the secondary electron avalanche which generate | occur | produced on the creeping surface by the inclination which the shielding which concerns on 3rd Embodiment has occurred is suppressed. (a)は、第3実施形態に係る遮蔽物の変形例を示す説明図であり、(b)は、第3実施形態に係る遮蔽物の傾斜角θを接触角φから求める例を示す説明図。(A) is explanatory drawing which shows the modification of the shield which concerns on 3rd Embodiment, (b) is description which shows the example which calculates | requires inclination-angle (theta) of the shield which concerns on 3rd Embodiment from contact angle (phi). Figure. 本発明の第4実施形態に係る核融合中性子発生装置の一例を示す構成図。The block diagram which shows an example of the fusion neutron generator which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る核融合中性子発生装置の一例を示す構成図。The block diagram which shows an example of the fusion neutron generator which concerns on 5th Embodiment of this invention. (a)は第5実施形態に係る電荷逃し手段の第1例を示す説明図、(b)は電荷逃し手段の第2例を示す説明図、(c)は電荷逃し手段の第3例を示す説明図。(A) is explanatory drawing which shows the 1st example of the charge release means which concerns on 5th Embodiment, (b) is explanatory drawing which shows the 2nd example of charge release means, (c) is the 3rd example of charge release means. FIG. 本発明の第6実施形態に係る核融合中性子発生装置の一例を示す構成図。The block diagram which shows an example of the fusion neutron generator which concerns on 6th Embodiment of this invention. (a)は真空容器の形状が円錐台である場合の一例を示す説明図、(b)は六角錐台である場合の一例を示す説明図、(c)は高電圧導入部側を底とする円錐体である場合の一例を示す説明図、(d)は真空容器の形状が円筒であるとともに絶縁体構造物がなす真空容器の内側面が曲面である場合の一例を示す説明図、(e)真空容器が球状である場合の一例を示す説明図、(f)は真空容器の形状が高電圧導入部を頂点とする円錐体であるとともに真空容器の側面が絶縁体構造物により構成される場合の一例を示す説明図。(A) is explanatory drawing which shows an example when the shape of a vacuum vessel is a truncated cone, (b) is explanatory drawing which shows an example when it is a hexagonal truncated cone, (c) is a high voltage introduction part side as a bottom. (D) is an explanatory view showing an example when the shape of the vacuum vessel is a cylinder and the inner surface of the vacuum vessel formed by the insulator structure is a curved surface. e) Explanatory drawing showing an example of a vacuum vessel having a spherical shape, (f) is a cone whose shape is a cone with the high voltage introduction part at the top, and the side surface of the vacuum vessel is constituted by an insulator structure. Explanatory drawing which shows an example in the case of.

本発明に係る核融合中性子発生装置および核融合中性子発生方法の実施の形態について、添付図面を参照して説明する。   Embodiments of a fusion neutron generator and a fusion neutron generation method according to the present invention will be described with reference to the accompanying drawings.

本発明の一実施形態に係る核融合中性子発生装置は、少なくとも真空容器の内側面の一部を構成する絶縁体構造物であって、絶縁体構造物に設けられた遮蔽物により陰極側の三重点と陽極側の三重点との沿面距離を空間距離よりも長くすることにより、高電圧導入部の軸方向に沿う方向に延びるように絶縁体構造物を設けることなく高電圧導入部との沿面放電を抑制するものである。   A fusion neutron generator according to an embodiment of the present invention is an insulator structure that constitutes at least a part of the inner surface of a vacuum vessel, and is provided with three shields on the cathode side by a shield provided on the insulator structure. By making the creepage distance between the emphasis and the triple point on the anode side longer than the spatial distance, the creepage with the high-voltage introduction part without providing an insulator structure extending in the direction along the axial direction of the high-voltage introduction part It suppresses discharge.

(第1の実施形態)
図1は、本発明の第1実施形態に係る核融合中性子発生装置10の一例を示す構成図である。また、図2は、本発明の第1実施形態に係る核融合中性子発生装置10の他の例を示す構成図である。図1および図2には、真空容器11が円筒形状を有する場合における、円筒の軸に平行な面で切った真空容器11の断面図の一例を概略的に示した。
(First embodiment)
FIG. 1 is a configuration diagram showing an example of a fusion neutron generator 10 according to the first embodiment of the present invention. FIG. 2 is a block diagram showing another example of the fusion neutron generator 10 according to the first embodiment of the present invention. FIGS. 1 and 2 schematically show an example of a cross-sectional view of the vacuum vessel 11 taken along a plane parallel to the axis of the cylinder when the vacuum vessel 11 has a cylindrical shape.

核融合中性子発生装置10は、図1に示すように、陽極を兼ねた真空容器11、真空容器11の内部に配置された陰極12、陰極12に所定の高電圧を印加するための高電圧導入部13および高電圧印加手段14、および少なくとも真空容器11の内側面の一部を構成するとともに真空容器11のフランジを兼ねる絶縁体構造物15を有する。   As shown in FIG. 1, the fusion neutron generator 10 includes a vacuum vessel 11 that also serves as an anode, a cathode 12 that is arranged inside the vacuum vessel 11, and a high voltage introduction for applying a predetermined high voltage to the cathode 12. And an insulator structure 15 that constitutes at least a part of the inner surface of the vacuum vessel 11 and also serves as a flange of the vacuum vessel 11.

真空容器11は、大気圧より低い圧力に保たれ、内部に重水素、3重水素、またはこれらの混合ガスから構成された燃料ガスが導入されている。真空容器11の形状は、球形、円筒形、6面体など任意の形状が選択可能である。真空容器11は、たとえばアルミニウムやSUS304などのステンレス、チタンなどの導電性の物質で構成されてもよいし、ガラスなどの絶縁性の物質で構成されていてもよい。   The vacuum vessel 11 is maintained at a pressure lower than the atmospheric pressure, and a fuel gas composed of deuterium, deuterium, or a mixed gas thereof is introduced therein. As the shape of the vacuum vessel 11, an arbitrary shape such as a spherical shape, a cylindrical shape, or a hexahedron can be selected. The vacuum vessel 11 may be made of a conductive material such as aluminum or stainless steel such as SUS304, or titanium, or may be made of an insulating material such as glass.

陽極は、真空容器11の内壁と陰極12との間に設けられ、導電性の物質により構成される。陽極の形状は、陰極12の形状に応じて任意に選択可能である。真空容器11の内壁がアルミニウム、ステンレスまたはステンレスなどの導電性の物質である場合、真空容器11は陽極を兼ねることができる。   The anode is provided between the inner wall of the vacuum vessel 11 and the cathode 12 and is made of a conductive material. The shape of the anode can be arbitrarily selected according to the shape of the cathode 12. When the inner wall of the vacuum vessel 11 is a conductive substance such as aluminum, stainless steel, or stainless steel, the vacuum vessel 11 can also serve as an anode.

以下の説明では、真空容器11が円筒形状を有し、真空容器11の内壁がSUS304などの導電性の物質で構成され、真空容器11の内壁が陽極を兼ねる場合の例について示す。   In the following description, an example is shown in which the vacuum vessel 11 has a cylindrical shape, the inner wall of the vacuum vessel 11 is made of a conductive material such as SUS304, and the inner wall of the vacuum vessel 11 also serves as an anode.

陰極12は、陽極を兼ねた真空容器11と電気的に絶縁されるように陽極の内側に設けられ、導電性の材質により構成されたかご状の電極である。かご状の陰極12の幾何学的透過率は、90%以上であることが好ましい。また陰極12の形状は、円筒形状や球形状、リング形状などの形状とすることが可能である。陰極12の材質としては、チタンやタンタルなどの導電性があり高融点の材質であれば、各種の材質を用いることができる。以下の説明では、陰極12が純タングステンにより構成され、幾何学的透過率95%の円筒形状を有する場合の例について示す。すなわち、以下では、陽極を兼ねた円筒形状の真空容器11と、円筒形状の陰極12とが同心軸状に設けられており、電圧を印加した際に、周方向に対称な電場分布となる場合の例について説明する。   The cathode 12 is a cage-like electrode that is provided inside the anode so as to be electrically insulated from the vacuum vessel 11 that also serves as the anode, and is made of a conductive material. The geometric transmittance of the cage cathode 12 is preferably 90% or more. The shape of the cathode 12 can be a cylindrical shape, a spherical shape, a ring shape, or the like. As the material of the cathode 12, various materials can be used as long as they are conductive and have a high melting point such as titanium and tantalum. In the following description, an example in which the cathode 12 is made of pure tungsten and has a cylindrical shape with a geometric transmittance of 95% will be described. That is, in the following, a cylindrical vacuum vessel 11 that also serves as an anode and a cylindrical cathode 12 are provided concentrically, and when a voltage is applied, the electric field distribution is symmetrical in the circumferential direction. An example will be described.

なお、陽極と陰極12との間には、導電性の材質からなるかご状の電極である中間電極を設けてもよい。この場合、かご状の中間電極の幾何学的透過率は、90%以上であることが好ましい。また、中間電極の形状は円筒形状や球形状、リング形状などの形状とすることが可能である。中間電極は、陽極と陰極12との間の空間に少なくとも1個以上配置可能である。   An intermediate electrode, which is a cage electrode made of a conductive material, may be provided between the anode and the cathode 12. In this case, the geometric transmittance of the cage-shaped intermediate electrode is preferably 90% or more. Further, the shape of the intermediate electrode can be a cylindrical shape, a spherical shape, a ring shape, or the like. At least one intermediate electrode can be arranged in the space between the anode and the cathode 12.

高電圧導入部13は、導電性材料により構成され、陰極12を支持する。高電圧導入部13は、陽極を兼ねた真空容器11と電気的に絶縁され、ケーブル14aを介して真空容器11の外側にある高電圧印加手段14から供給された電力を陰極12に与えることにより、陰極12に負電位を生じさせる。高電圧導入部13は、図1の断面図に示すように、周囲を絶縁体構造物15で囲まれており、この絶縁体構造物15により真空容器11と陰極12とは電気的に絶縁されている。高電圧導入部13は、真空に関しても、真空容器11の外側(大気圧側)と内側(真空側)とをシールしている。また、図2に示すように、高電圧導入部13は、たとえばアルミナなどの絶縁性の材料で囲ってもよい。   The high voltage introducing portion 13 is made of a conductive material and supports the cathode 12. The high voltage introduction unit 13 is electrically insulated from the vacuum vessel 11 serving also as an anode, and supplies the cathode 12 with power supplied from the high voltage applying means 14 outside the vacuum vessel 11 via the cable 14a. A negative potential is generated at the cathode 12. As shown in the cross-sectional view of FIG. 1, the high voltage introducing portion 13 is surrounded by an insulator structure 15, and the vacuum vessel 11 and the cathode 12 are electrically insulated by the insulator structure 15. ing. The high voltage introduction unit 13 also seals the outside (atmospheric pressure side) and the inside (vacuum side) of the vacuum vessel 11 with respect to vacuum. Further, as shown in FIG. 2, the high voltage introducing portion 13 may be surrounded by an insulating material such as alumina.

高電圧印加手段14は、高電圧導入部13を介して陰極12に負極性の高電圧を印可するための電源である。   The high voltage applying unit 14 is a power source for applying a negative high voltage to the cathode 12 through the high voltage introducing unit 13.

ここで、核融合中性子発生装置10における核融合反応発生の流れについて簡単に説明する。まず、高電圧印加手段14により、陽極を兼ねた真空容器11と陰極12との間に負極性の電圧を印加する。なお、真空容器11は接地されている。陰極12と陽極を兼ねた真空容器11との間の負の電圧によって、円筒形状の真空容器11の円径方向内向きの電場が生じる。この電場により、陽極を兼ねた真空容器11と陰極12との間でグロー放電が生じ、燃料ガスイオンが生成される。陰極12と真空容器11との間の空間で生成されたイオンは、陰極12に向かって加速される。加速されたイオンは、かご状の陰極12の隙間を通過して陰極12の内側に収束される。そして加速、収束されたイオンどうしによる衝突や、イオンと燃料ガスとの衝突等によって核融合反応が生じる。たとえば、燃料ガスに重水素を用いた場合、核融合反応によって中性子や陽子が発生する。   Here, the flow of fusion reaction generation in the fusion neutron generator 10 will be briefly described. First, a high voltage applying means 14 applies a negative voltage between the vacuum vessel 11 that also serves as an anode and the cathode 12. The vacuum vessel 11 is grounded. A negative voltage between the cathode 12 and the vacuum vessel 11 serving also as an anode generates an electric field inward in the radial direction of the cylindrical vacuum vessel 11. By this electric field, glow discharge is generated between the vacuum vessel 11 serving also as the anode and the cathode 12, and fuel gas ions are generated. Ions generated in the space between the cathode 12 and the vacuum vessel 11 are accelerated toward the cathode 12. The accelerated ions pass through the gap between the basket-like cathodes 12 and are converged inside the cathode 12. A fusion reaction occurs due to collision between accelerated and converged ions, collision between ions and fuel gas, or the like. For example, when deuterium is used as the fuel gas, neutrons and protons are generated by the fusion reaction.

絶縁体構造物15は、絶縁性の材料により構成される。絶縁体構造物15は、真空容器11と高電圧導入部13とが交わる面に設けられるとともに、真空容器11の内側面の少なくとも一部を構成する。絶縁体構造物15の形状は、真空容器11の形状に応じて任意に選択可能である。たとえば、真空容器11が円筒形状である場合は、絶縁体構造物15は、図1に示すように円柱形状を有する。また、絶縁体構造物15は、真空容器11のフランジを兼ねてもよい。もちろん、別途任意の材質のフランジと絶縁体構造物15とを組み合わせて使用することも可能である。   The insulator structure 15 is made of an insulating material. The insulator structure 15 is provided on a surface where the vacuum vessel 11 and the high voltage introducing portion 13 intersect with each other, and constitutes at least a part of the inner surface of the vacuum vessel 11. The shape of the insulator structure 15 can be arbitrarily selected according to the shape of the vacuum vessel 11. For example, when the vacuum vessel 11 has a cylindrical shape, the insulator structure 15 has a columnar shape as shown in FIG. The insulator structure 15 may also serve as the flange of the vacuum vessel 11. Of course, it is also possible to use a combination of a flange of an arbitrary material and the insulator structure 15 separately.

絶縁体構造物15と高電圧導入部13とが接触する位置は、真空雰囲気とともに三重点(トリプルジャンクション)を形成する。絶縁体構造物15と陽極を兼ねた真空容器11とが接触する位置もまた、真空雰囲気とともに三重点(トリプルジャンクション)を形成する。以下の説明では、絶縁体構造物15と高電圧導入部13との接合部に形成される高電圧導入部13側の三重点を陰極側三重点TJcといい、絶縁体構造物15と陽極を兼ねた真空容器11との接合部の三重点を陽極側三重点TJaという。図1に示す例では、陰極側三重点TJcはおよび陽極側三重点TJaは、それぞれ真空容器11の円筒の軸を中心とする円形状を有する。   The position where the insulator structure 15 and the high voltage introducing portion 13 are in contact forms a triple junction with the vacuum atmosphere. The position where the insulator structure 15 and the vacuum vessel 11 serving as the anode come into contact also forms a triple junction with the vacuum atmosphere. In the following description, the triple point on the high voltage introduction portion 13 side formed at the junction between the insulator structure 15 and the high voltage introduction portion 13 is referred to as the cathode side triple point TJc, and the insulator structure 15 and the anode are referred to as the triple point TJc. The triple point at the junction with the vacuum vessel 11 that also serves as the anode side triple point TJa. In the example shown in FIG. 1, the cathode-side triple point TJc and the anode-side triple point TJa each have a circular shape centering on the cylinder axis of the vacuum vessel 11.

絶縁体構造物15の真空容器11の内側面側には、陰極側三重点TJcと陽極側三重点TJaとの沿面距離が、空間距離よりも長い距離を有するように、遮蔽物16が設けられる。一方、絶縁体構造物15の真空容器11の外側面側、すなわち大気圧側の面は、任意の形状を選択可能である。絶縁体構造物15と遮蔽物16とは、同一の絶縁性材料から構成されてたとえば一体的に形成されてもよいし、それぞれ異なる絶縁性材料により構成されてもよい。   On the inner surface side of the vacuum container 11 of the insulator structure 15, a shield 16 is provided so that the creeping distance between the cathode side triple point TJc and the anode side triple point TJa is longer than the spatial distance. . On the other hand, an arbitrary shape can be selected for the outer surface side of the vacuum vessel 11 of the insulator structure 15, that is, the surface on the atmospheric pressure side. The insulator structure 15 and the shield 16 may be formed of the same insulating material, for example, may be integrally formed, or may be formed of different insulating materials.

また、この遮蔽物16を有する絶縁体構造物15は、真空容器11内の電界分布を均一化するように、高電圧導入部13と真空容器11の中心を結ぶ直線に垂直(たとえば円筒形状の真空容器11の軸に垂直)かつ真空容器11の中心を通る面に対して絶縁体構造物15と対称となるように、絶縁体構造物15に対向する真空容器11の内側面にさらに設けられてもよい(図2の下側参照)。   Further, the insulator structure 15 having the shield 16 is perpendicular to a straight line (for example, a cylindrical shape) connecting the center of the high voltage introducing portion 13 and the vacuum vessel 11 so as to make the electric field distribution in the vacuum vessel 11 uniform. It is further provided on the inner surface of the vacuum vessel 11 facing the insulator structure 15 so as to be symmetric with the insulator structure 15 with respect to a plane passing through the center of the vacuum vessel 11 and perpendicular to the axis of the vacuum vessel 11. (See the lower side of FIG. 2).

次に、本実施形態に係る核融合中性子発生装置10および核融合中性子発生方法の動作の一例について説明する。   Next, an example of operation | movement of the fusion neutron generator 10 and the fusion neutron generation method which concern on this embodiment is demonstrated.

真空中での絶縁物沿面放電は、三重点(トリプルジャンクション)と呼ばれる導体、絶縁体構造物、真空の3者の接合部からの電子放出が起点となって発生する。トリプルジャンクションでは電界強度が高くなり、電子が電界放出される。トリプルジャンクションから放出された2次電子は、絶縁体構造物表面に衝突し、2次電子を発生させる。この2次電子が絶縁体構造物表面で二次電子雪崩を引き起こし、沿面放電(絶縁破壊)を発生させてしまう。   Insulator creeping discharge in a vacuum is generated starting from electron emission from a conductor called a triple junction (triple junction), an insulator structure, and a three-part junction of vacuum. In triple junction, the electric field strength is high and electrons are field-emitted. The secondary electrons emitted from the triple junction collide with the surface of the insulator structure and generate secondary electrons. The secondary electrons cause a secondary electron avalanche on the surface of the insulator structure and cause creeping discharge (dielectric breakdown).

図3は、従来の核融合中性子発生装置100の一例を示す構成図である。また、図4は、絶縁距離と沿面放電電圧との関係の一例を示す説明図である。   FIG. 3 is a configuration diagram showing an example of a conventional fusion neutron generator 100. FIG. 4 is an explanatory diagram showing an example of the relationship between the insulation distance and the creeping discharge voltage.

図4に示すように、絶縁距離、すなわち接地部と高電圧部との沿面距離が大きいほど、沿面放電電圧が高くなることが知られている。このため、従来の核融合中性子発生装置100は、高電圧印加手段104から陰極102に電圧を印加するための高電圧導入部103と、陽極を兼ねた真空容器101との沿面距離をかせぐため、陰極102用の高電圧導入部103の軸方向に沿う方向に延びる絶縁体構造物105を高電圧導入部103に設けている。   As shown in FIG. 4, it is known that the creeping discharge voltage increases as the insulation distance, that is, the creeping distance between the ground portion and the high voltage portion increases. For this reason, the conventional fusion neutron generator 100 increases the creepage distance between the high voltage introduction unit 103 for applying a voltage from the high voltage applying means 104 to the cathode 102 and the vacuum vessel 101 that also serves as the anode. An insulator structure 105 extending in the direction along the axial direction of the high voltage introducing portion 103 for the cathode 102 is provided in the high voltage introducing portion 103.

しかし、高電圧導入部103の軸方向に沿う方向に沿面距離、絶縁距離をかせぐように絶縁体構造物105を設けると、真空容器101から絶縁体構造物105が大きく突出してしまい、核融合中性子発生装置100は大型化してしまう。   However, if the insulator structure 105 is provided so as to increase the creeping distance and the insulation distance in the direction along the axial direction of the high-voltage introduction portion 103, the insulator structure 105 protrudes greatly from the vacuum vessel 101, and thus the fusion neutron The generator 100 will be enlarged.

そこで、本実施形態に係る核融合中性子発生装置10は、高電位部である陰極12および高電圧導入部13と、接地電位である真空容器11との間に絶縁体構造物15を設けるとともに、絶縁体構造物15の真空容器11の内側面側に遮蔽物16を設ける。   Therefore, the fusion neutron generator 10 according to the present embodiment is provided with the insulator structure 15 between the cathode 12 and the high voltage introduction unit 13 which are high potential portions and the vacuum vessel 11 which is a ground potential, A shield 16 is provided on the inner surface side of the vacuum vessel 11 of the insulator structure 15.

図5は、第1実施形態に係る絶縁体構造物15および遮蔽物16を真空容器11内部から見た様子の一例を示す説明図である。図5には、遮蔽物16が陰極側三重点TJcを囲むように真空容器11の内側面から突出した円環状のひだである場合の例を示した。図5に示すように、陰極側三重点TJcはおよび陽極側三重点TJaは、それぞれ真空容器11の円筒の軸を中心とする円形状を有する。   FIG. 5 is an explanatory diagram illustrating an example of a state in which the insulator structure 15 and the shield 16 according to the first embodiment are viewed from the inside of the vacuum vessel 11. FIG. 5 shows an example in which the shield 16 is an annular pleat protruding from the inner surface of the vacuum vessel 11 so as to surround the cathode side triple point TJc. As shown in FIG. 5, the cathode-side triple point TJc and the anode-side triple point TJa each have a circular shape centering on the axis of the cylinder of the vacuum vessel 11.

図6(a)は、従来の遮蔽物16がない場合の陰極側三重点TJcと陽極側三重点TJaとの沿面距離20の一例を示す説明図であり、(b)は、第1実施形態に係る遮蔽物16が設けられた場合の陰極側三重点TJcと陽極側三重点TJaとの沿面距離20の一例を示す説明図である。   FIG. 6A is an explanatory view showing an example of a creeping distance 20 between the cathode side triple point TJc and the anode side triple point TJa when there is no conventional shield 16, and FIG. 6B shows the first embodiment. It is explanatory drawing which shows an example of the creeping distance 20 of the cathode side triple point TJc at the time of providing the shielding body 16 which concerns on, and the anode side triple point TJa.

陰極側三重点TJcと陽極側三重点TJaとの沿面距離20が空間距離よりも長い距離を有するように絶縁体構造物15の真空容器11の内側面側に遮蔽物16を設けることにより(図6(b)参照)、遮蔽物16を設けない場合(図6(a)参照)と比較して実効的な沿面距離20を長くとることができ、絶縁電圧を向上させることができる。   By providing a shield 16 on the inner surface side of the vacuum vessel 11 of the insulator structure 15 so that the creeping distance 20 between the cathode side triple point TJc and the anode side triple point TJa is longer than the spatial distance (see FIG. 6 (b)), the effective creepage distance 20 can be made longer compared to the case where the shield 16 is not provided (see FIG. 6 (a)), and the insulation voltage can be improved.

図7(a)は第1実施形態に係る遮蔽物16の第1変形例を示す説明図であり、(b)は第1実施形態に係る遮蔽物16の第2変形例を示す説明図である。   Fig.7 (a) is explanatory drawing which shows the 1st modification of the shielding object 16 which concerns on 1st Embodiment, (b) is explanatory drawing which shows the 2nd modification of the shielding object 16 which concerns on 1st Embodiment. is there.

第1実施形態に係る遮蔽物16は、陰極側三重点TJcと陽極側三重点TJaとの沿面距離20が空間距離よりも長い距離を有するように設けられればよく、その形状および配置位置は、複数の円形の島や(図7(a)参照)円形の溝、複数の長円の島(図7(b)参照)や長円の溝、あるいは陰極側三重点TJcを囲むように絶縁体構造物15の内側面をくぼませた円環状の溝など、様々な形状および配置位置を採用することができる。   The shield 16 according to the first embodiment may be provided so that the creeping distance 20 between the cathode side triple point TJc and the anode side triple point TJa is longer than the spatial distance. Insulator so as to surround a plurality of circular islands (see FIG. 7A), a circular groove, a plurality of elliptical islands (see FIG. 7B), an elliptical groove, or the cathode-side triple point TJc. Various shapes and arrangement positions such as an annular groove in which the inner surface of the structure 15 is recessed can be adopted.

第1実施形態に係る核融合中性子発生装置10は、高電圧導入部13と陽極を兼ねた真空容器11との間に絶縁体構造物15を設けるとともに、絶縁体構造物15の真空容器11の内側面側に、陰極側三重点TJcと陽極側三重点TJaとの沿面距離20が空間距離よりも長い距離を有するように遮蔽物16を設ける。このため、高電圧導入部13の軸方向に沿う方向に沿面距離、絶縁距離をかせぐように絶縁体構造物15を設けることなく、陰極側三重点TJcと陽極側三重点TJaとの間での沿面放電を抑制することができる。したがって、本実施形態に係る核融合中性子発生装置10によれば、高電圧導入部13の軸方向に沿う方向に設けられる絶縁体構造物を排して高電圧導入部13をたとえば数cm程度まで小型化しつつ、陽極と高電圧導入部13との沿面放電を抑制することができる。   In the fusion neutron generator 10 according to the first embodiment, an insulator structure 15 is provided between a high-voltage introducing portion 13 and a vacuum vessel 11 that also serves as an anode, and the vacuum vessel 11 of the insulator structure 15 is provided. The shield 16 is provided on the inner surface side so that the creeping distance 20 between the cathode-side triple point TJc and the anode-side triple point TJa is longer than the spatial distance. For this reason, without providing the insulator structure 15 so as to increase the creeping distance and the insulation distance in the direction along the axial direction of the high-voltage introducing portion 13, the cathode-side triple point TJc and the anode-side triple point TJa are not provided. Creeping discharge can be suppressed. Therefore, according to the fusion neutron generator 10 according to the present embodiment, the insulator structure provided in the direction along the axial direction of the high voltage introducing portion 13 is eliminated, and the high voltage introducing portion 13 is reduced to, for example, about several cm. Creeping discharge between the anode and the high voltage introducing portion 13 can be suppressed while downsizing.

(第2の実施形態)
次に、本発明に係る核融合中性子発生装置および核融合中性子発生方法の第2実施形態について説明する。
(Second Embodiment)
Next, a second embodiment of the fusion neutron generator and fusion neutron generation method according to the present invention will be described.

図8は、本発明の第2実施形態に係る核融合中性子発生装置10の一例を示す構成図である。また、図9は、本発明の第2実施形態に係る核融合中性子発生装置10の他の例を示す構成図である。   FIG. 8 is a block diagram showing an example of a fusion neutron generator 10 according to the second embodiment of the present invention. Moreover, FIG. 9 is a block diagram which shows the other example of the fusion neutron generator 10 which concerns on 2nd Embodiment of this invention.

第2実施形態に係る核融合中性子発生装置10は、電界強度が高いトリプルジャンクション近傍の電界を緩和する点で第1実施形態に係る核融合中性子発生装置10と異なる。他の構成および作用については図1に示す第1実施形態に係る核融合中性子発生装置10と実質的に異ならないため、同じ構成には同一符号を付して説明を省略する。   The fusion neutron generator 10 according to the second embodiment is different from the fusion neutron generator 10 according to the first embodiment in that the electric field in the vicinity of a triple junction having a high electric field strength is relaxed. Since other configurations and operations are not substantially different from those of the fusion neutron generator 10 according to the first embodiment shown in FIG. 1, the same components are denoted by the same reference numerals and description thereof is omitted.

図8に示すように、第2実施形態に係る核融合中性子発生装置10は、たとえば陰極側三重点TJcの近傍と、陽極側三重点TJaの近傍と、の少なくとも一方を、ひだ状形状を有する遮蔽物16で遮蔽する。三重点を遮蔽するようにひだ状形状を有する遮蔽物16を配置することで、三重点の電界強度を緩和することができるとともに、陰極側三重点TJcからの電気力線の浸みだしを抑制することができる。   As shown in FIG. 8, the fusion neutron generator 10 according to the second embodiment has a pleated shape, for example, at least one of the vicinity of the cathode-side triple point TJc and the vicinity of the anode-side triple point TJa. It is shielded by the shield 16. By arranging the shield 16 having a pleated shape so as to shield the triple point, the electric field strength at the triple point can be relaxed and the oozing of the electric lines of force from the cathode side triple point TJc can be suppressed. be able to.

また、図9に示すように、第2実施形態に係る核融合中性子発生装置10は、高電圧導入部13の周辺の絶縁体構造物15の内側面をくぼませて、遮蔽物16として円環状の溝31を設けることにより、円環状の溝31に陰極側三重点TJcを内包させてもよい。この場合、陰極側三重点TJcは、円環状の溝31により遮蔽される。なお、くぼみの深さは任意の値を選択可能である。   Further, as shown in FIG. 9, the fusion neutron generator 10 according to the second embodiment has an inner surface of the insulator structure 15 around the high-voltage introduction part 13 recessed to form an annular shape as the shield 16. By providing this groove 31, the cathode-side triple point TJc may be included in the annular groove 31. In this case, the cathode side triple point TJc is shielded by the annular groove 31. An arbitrary value can be selected for the depth of the recess.

円環状の溝31によっても、陰極側三重点TJcを遮蔽することができ、陰極側三重点TJcの電界強度を緩和することができるとともに陰極側三重点TJcからの電気力線の浸みだしを抑制することができる。   The annular groove 31 can also shield the cathode-side triple point TJc, reduce the electric field intensity at the cathode-side triple point TJc, and suppress the seepage of electric field lines from the cathode-side triple point TJc. can do.

図10は、本発明の第2実施形態に係る核融合中性子発生装置10の変形例を示す構成図である。   FIG. 10 is a configuration diagram showing a modification of the fusion neutron generator 10 according to the second embodiment of the present invention.

図10に示すように、高電圧導入部13を囲むように、かつ一端が陰極12と接し他端が絶縁体構造物15と接し、かつ陰極12の外径L2より小さい外径L1を有する導電性材料32を設けてもよい。この導電性材料32は、擬似的な陰極12として機能し、陰極側三重点TJcの電界強度を緩和することができる。   As shown in FIG. 10, the conductive material has an outer diameter L1 that surrounds the high-voltage introducing portion 13, has one end in contact with the cathode 12 and the other end in contact with the insulator structure 15, and is smaller than the outer diameter L2 of the cathode 12. A material 32 may be provided. This conductive material 32 functions as the pseudo cathode 12 and can reduce the electric field strength of the cathode side triple point TJc.

図5に示したひだ形状の遮蔽物16、図7(a)、(b)に示した遮蔽物16などの第1実施形態に係る遮蔽物16と、三重点近傍のひだ形状の遮蔽物16、溝31、導電性材料32は、適宜組み合わせて用いることができる。   The shield 16 according to the first embodiment such as the pleated shield 16 shown in FIG. 5, the shield 16 shown in FIGS. 7A and 7B, and the pleated shield 16 near the triple point. The groove 31 and the conductive material 32 can be used in appropriate combination.

第2実施形態に係る核融合中性子発生装置10は、第1実施形態に係る核融合中性子発生装置10と同様の作用効果を奏する。また、第2実施形態に係る核融合中性子発生装置10は、三重点での電界強度を緩和することで、沿面放電のきっかけとなる三重点からの電子放出を抑制することができる。また、陰極側三重点TJcからの電気力線の浸みだしを抑制することにより、接地部と高電圧部との間での局所的な気中放電発生を抑制できる。このため、第2実施形態に係る核融合中性子発生装置10によれば、真空容器11の内部での沿面放電および局所的な気中放電発生を抑制することができる。   The fusion neutron generator 10 according to the second embodiment has the same effects as the fusion neutron generator 10 according to the first embodiment. In addition, the fusion neutron generator 10 according to the second embodiment can suppress the emission of electrons from the triple point that triggers the creeping discharge by relaxing the electric field strength at the triple point. Further, by suppressing the oozing of the lines of electric force from the cathode side triple point TJc, it is possible to suppress the occurrence of local air discharge between the ground portion and the high voltage portion. For this reason, according to the fusion neutron generator 10 which concerns on 2nd Embodiment, the creeping discharge in the inside of the vacuum vessel 11 and local air discharge generation | occurrence | production can be suppressed.

(第3の実施形態)
次に、本発明に係る核融合中性子発生装置および核融合中性子発生方法の第3実施形態について説明する。
(Third embodiment)
Next, a third embodiment of the fusion neutron generation apparatus and fusion neutron generation method according to the present invention will be described.

図11は、本発明の第3実施形態に係る核融合中性子発生装置10の一例を示す構成図である。   FIG. 11 is a configuration diagram showing an example of a fusion neutron generator 10 according to the third embodiment of the present invention.

第3実施形態に係る核融合中性子発生装置10は、絶縁体構造物15のひだ沿面での二次電子増幅を低減するよう、ひだ状形状の沿面に傾斜を持たせた点で第2実施形態に係る核融合中性子発生装置10と異なる。他の構成および作用については図8−10に示す第2実施形態に係る核融合中性子発生装置10と実質的に異ならないため、同じ構成には同一符号を付して説明を省略する。   The fusion neutron generator 10 according to the third embodiment is the second embodiment in that the pleated surface is inclined so as to reduce secondary electron amplification along the pleated surface of the insulator structure 15. This is different from the fusion neutron generator 10 according to FIG. Since other configurations and operations are not substantially different from those of the fusion neutron generator 10 according to the second embodiment shown in FIG. 8-10, the same components are denoted by the same reference numerals and description thereof is omitted.

図11に示すように、第3実施形態に係る核融合中性子発生装置10は、ひだ形状の遮蔽物16の陰極側三重点TJcに対向する側の沿面が、たとえば図11に示す例では真空容器11の円筒の軸に平行な面に対する角度θがマイナス90度以上プラス45度以内の傾斜を有する。ここで、角度θは、絶縁体構造物15がなす真空容器11の内側面に垂直な面から、ひだ形状の遮蔽物16の陰極側三重点TJcに対向する側の沿面の図11の下側(真空容器11の中心側)が陽極側三重点TJaに近づく向きをプラスの向きとする。   As shown in FIG. 11, in the fusion neutron generator 10 according to the third embodiment, the creeping surface on the side facing the cathode triple point TJc of the pleated shield 16 is, for example, a vacuum vessel in the example shown in FIG. The angle θ with respect to a plane parallel to the axis of 11 cylinders has an inclination of −90 degrees or more and 45 degrees or less. Here, the angle θ is the lower side of FIG. 11 along the surface of the pleated shield 16 facing the cathode side triple point TJc from the surface perpendicular to the inner surface of the vacuum vessel 11 formed by the insulator structure 15. The direction in which the (center side of the vacuum vessel 11) approaches the anode side triple point TJa is defined as a positive direction.

図12は、第3実施形態に係る遮蔽物16が有する傾斜により沿面で発生した2次電子雪崩の進展を抑制する様子の一例を示す説明図である。図12に示すように、ひだ形状の遮蔽物16の沿面の傾斜と絶縁体構造物15のなす角度θをプラス45度以下とすることで、遮蔽物16が陰極側三重点TJcから生じた電子を止める壁として機能するとともに、絶縁体構造物15の沿面で発生した2次電子雪崩の進展を抑制することができる。   FIG. 12 is an explanatory diagram illustrating an example of how the secondary electron avalanche generated on the creeping surface is suppressed due to the inclination of the shield 16 according to the third embodiment. As shown in FIG. 12, the angle θ formed by the creeping surface of the pleated shield 16 and the insulator structure 15 is set to 45 ° or less so that the shield 16 has electrons generated from the cathode triple point TJc. It is possible to suppress the progress of secondary electron avalanches generated along the surface of the insulator structure 15.

図13(a)は、第3実施形態に係る遮蔽物16の変形例を示す説明図であり、(b)は、第3実施形態に係る遮蔽物16の傾斜角θを接触角φから求める例を示す説明図である。図13(a)に示すように、第3実施形態に係る遮蔽物16の陰極側三重点TJcに対向する側の沿面の形状は、くぼんだ形状であってもよい。また、図13(b)に示すように、沿面が平面的でない場合は、遮蔽物16の陰極側三重点TJc側の接触角φを90度から減じた角度をθとしてもよい。   FIG. 13A is an explanatory view showing a modified example of the shielding object 16 according to the third embodiment, and FIG. 13B obtains the inclination angle θ of the shielding object 16 according to the third embodiment from the contact angle φ. It is explanatory drawing which shows an example. As shown in FIG. 13A, the shape of the creeping surface on the side facing the cathode-side triple point TJc of the shield 16 according to the third embodiment may be a concave shape. Further, as shown in FIG. 13B, when the creeping surface is not planar, an angle obtained by subtracting the contact angle φ of the shield 16 on the cathode side triple point TJc side from 90 degrees may be θ.

第1実施形態に係る遮蔽物16と、第2実施形態に係る三重点近傍のひだ形状の遮蔽物16、溝31、導電性材料32と、第3実施形態に係る傾斜した遮蔽物16とは、適宜組み合わせて用いることができる。   The shield 16 according to the first embodiment, the pleated shield 16 near the triple point according to the second embodiment, the groove 31, the conductive material 32, and the inclined shield 16 according to the third embodiment. Can be used in appropriate combinations.

第3実施形態に係る核融合中性子発生装置10は、第1実施形態に係る核融合中性子発生装置10と同様の作用効果を奏する。また、第3実施形態に係る核融合中性子発生装置10は、第2実施形態に係る三重点近傍のひだ形状の遮蔽物16、溝31、導電性材料32またはこれらの組み合わせを用いることができ、この場合は第2実施形態に係る核融合中性子発生装置10と同様の作用効果を奏する。   The fusion neutron generator 10 according to the third embodiment has the same effects as the fusion neutron generator 10 according to the first embodiment. Further, the fusion neutron generator 10 according to the third embodiment can use the pleated shield 16, the groove 31, the conductive material 32 or a combination thereof near the triple point according to the second embodiment, In this case, the same effects as the fusion neutron generator 10 according to the second embodiment are obtained.

また、第3実施形態に係る核融合中性子発生装置10は、ひだ形状の遮蔽物16の陰極側三重点TJc側の沿面を傾斜させることにより、遮蔽物16が陰極側三重点TJcから生じた電子を止めることができるともに、絶縁体構造物15の沿面で発生した2次電子雪崩の進展を抑制することができる。   Further, the fusion neutron generator 10 according to the third embodiment tilts the creeping side of the pleated shield 16 on the cathode side triple point TJc side, so that the shield 16 has electrons generated from the cathode side triple point TJc. Can be stopped, and the progress of secondary electron avalanches occurring along the creeping surface of the insulator structure 15 can be suppressed.

(第4の実施形態)
次に、本発明に係る核融合中性子発生装置および核融合中性子発生方法の第4実施形態について説明する。
(Fourth embodiment)
Next, a fourth embodiment of a fusion neutron generator and a fusion neutron generation method according to the present invention will be described.

図14は、本発明の第4実施形態に係る核融合中性子発生装置10の一例を示す構成図である。   FIG. 14 is a configuration diagram showing an example of a fusion neutron generator 10 according to the fourth embodiment of the present invention.

第4実施形態に係る核融合中性子発生装置10は、絶縁体構造物15の表面のチャージアップを抑制するために、絶縁体構造物15上に荷電粒子収集用の導体41を設けた点で図11に示す第3実施形態に係る核融合中性子発生装置10と異なる。他の構成および作用については図11に示す第3実施形態に係る核融合中性子発生装置10と実質的に異ならないため、同じ構成には同一符号を付して説明を省略する。   The fusion neutron generator 10 according to the fourth embodiment is illustrated in that a charged particle collecting conductor 41 is provided on the insulator structure 15 in order to suppress charge-up of the surface of the insulator structure 15. 11 differs from the fusion neutron generator 10 according to the third embodiment shown in FIG. Since other configurations and operations are not substantially different from those of the fusion neutron generator 10 according to the third embodiment shown in FIG. 11, the same components are denoted by the same reference numerals and description thereof is omitted.

荷電粒子収集導体41としては、たとえばチタンやタンタルなどの導電性の金属などを用いることができる。なお、荷電粒子収集導体41の形状は、球形状、リング形状など、遮蔽物16や真空容器11の形状に応じた任意の形状とすることが可能である。本実施形態では、図14に示すように、第3実施形態に係る核融合中性子発生装置10は、ひだ形状の遮蔽物16の陰極側三重点TJcに対向する側の沿面に固設された荷電粒子収集導体41を有する。ひだ形状の遮蔽物16が陰極側三重点TJcを囲むように設けられていることに伴い、荷電粒子収集導体41は、陰極側三重点TJcを囲む円筒形状を有する。   As the charged particle collection conductor 41, for example, a conductive metal such as titanium or tantalum can be used. Note that the shape of the charged particle collection conductor 41 can be an arbitrary shape corresponding to the shape of the shielding object 16 or the vacuum vessel 11 such as a spherical shape or a ring shape. In the present embodiment, as shown in FIG. 14, the fusion neutron generator 10 according to the third embodiment is charged on a creeping surface of the pleated shield 16 facing the cathode-side triple point TJc. A particle collecting conductor 41 is provided. As the pleated shield 16 is provided so as to surround the cathode side triple point TJc, the charged particle collection conductor 41 has a cylindrical shape surrounding the cathode side triple point TJc.

円筒形状の荷電粒子収集導体41の内側面は、陰極側三重点TJcに対向し、導体が露出している。一方、円筒形状の荷電粒子収集導体41の外側面は、陰極側三重点TJcに背を向けており、絶縁体構造物15のひだ形状の遮蔽物16の沿面に埋め込まれて固設され、導体面が露出しないように配置されている。なお円筒形状の荷電粒子収集導体41は絶縁体構造物15のひだ形状の遮蔽物16の個数に応じて任意の数を配置可能である。荷電粒子収集導体41は、各々が電気的に絶縁されているとともに、陽極および陰極12に対しても電気的に絶縁されている。   The inner side surface of the cylindrical charged particle collection conductor 41 faces the cathode side triple point TJc, and the conductor is exposed. On the other hand, the outer surface of the cylindrical charged particle collecting conductor 41 faces the cathode side triple point TJc, and is embedded and fixed in the creeping surface of the pleated shield 16 of the insulator structure 15. It is arranged so that the surface is not exposed. Any number of cylindrical charged particle collection conductors 41 can be arranged according to the number of pleated shields 16 of the insulator structure 15. The charged particle collection conductors 41 are electrically insulated from each other, and are also electrically insulated from the anode and the cathode 12.

絶縁体構造物15は、三重点で発生した電子が流入し、二次電子発生により電子流出し、あるいは真空容器11内で生成されるプラズマから電子が流入することによって、表面がチャージアップしてしまう。この絶縁体構造物15の表面がチャージアップしてしまうと、沿面放電発生電圧が低下してしまう。   The insulator structure 15 has its surface charged up when electrons generated at the triple point flow in, flow out due to secondary electron generation, or flow in from plasma generated in the vacuum vessel 11. End up. If the surface of the insulator structure 15 is charged up, the creeping discharge generation voltage is lowered.

第4実施形態に係る核融合中性子発生装置10は、荷電粒子収集導体41を設けることにより、遮蔽物16の沿面での電子の移動を容易とし、絶縁体構造物15の表面のチャージアップを抑制することができる。また第4実施形態に係る核融合中性子発生装置10は、荷電粒子収集導体41の導体面を陰極側三重点TJcに対向する側にのみ配置し、陽極側三重点TJaに対向する側には導体面を配置しない。このため、陰極側三重点TJcから流入した電子を荷電粒子収集導体41で収集してしまうことができるとともに、陽極側三重点TJaへの電子増幅を抑制することができる。さらに、陽極側三重点TJaには導体面を設けないことにより、真空容器11内で発生したイオンが荷電粒子収集導体41や絶縁体構造物15に衝突することで発生する二次電子雪崩増幅を低減することができる。   In the fusion neutron generator 10 according to the fourth embodiment, by providing the charged particle collecting conductor 41, the movement of electrons along the surface of the shield 16 is facilitated, and the charge-up of the surface of the insulator structure 15 is suppressed. can do. In the fusion neutron generator 10 according to the fourth embodiment, the conductor surface of the charged particle collection conductor 41 is disposed only on the side facing the cathode side triple point TJc, and the conductor is disposed on the side facing the anode side triple point TJa. Do not place faces. For this reason, the electrons flowing from the cathode side triple point TJc can be collected by the charged particle collection conductor 41, and the electron amplification to the anode side triple point TJa can be suppressed. Further, by not providing a conductor surface at the anode side triple point TJa, secondary electron avalanche amplification generated when ions generated in the vacuum vessel 11 collide with the charged particle collecting conductor 41 or the insulator structure 15 is prevented. Can be reduced.

したがって、第4実施形態に係る核融合中性子発生装置10によれば、絶縁体構造物15の沿面での電子の移動を容易にしてチャージアップを抑制することができるため、沿面放電や局所的な気中放電発生を低減することができる。   Therefore, according to the fusion neutron generator 10 according to the fourth embodiment, it is possible to facilitate the movement of electrons along the creeping surface of the insulator structure 15 and suppress the charge-up. Generation of air discharge can be reduced.

また、第4実施形態に係る核融合中性子発生装置10は、第1実施形態に係る遮蔽物16と、第2実施形態に係る三重点近傍のひだ形状の遮蔽物16、溝31、導電性材料32と、第3実施形態に係る傾斜した遮蔽物16と、を適宜組み合わせて用いることができ、第1−3実施形態に係る核融合中性子発生装置10と同様の作用効果を奏する。   Further, the fusion neutron generator 10 according to the fourth embodiment includes a shield 16 according to the first embodiment, a pleated shield 16 near the triple point according to the second embodiment, a groove 31, and a conductive material. 32 and the inclined shielding object 16 according to the third embodiment can be used in appropriate combination, and the same effects as the fusion neutron generator 10 according to the first to third embodiments can be obtained.

(第5の実施形態)
次に、本発明に係る核融合中性子発生装置および核融合中性子発生方法の第5実施形態について説明する。
(Fifth embodiment)
Next, a fifth embodiment of the fusion neutron generator and fusion neutron generation method according to the present invention will be described.

図15は、本発明の第5実施形態に係る核融合中性子発生装置10の一例を示す構成図である。   FIG. 15: is a block diagram which shows an example of the fusion neutron generator 10 which concerns on 5th Embodiment of this invention.

第5実施形態に係る核融合中性子発生装置10は、荷電粒子収集導体41の電荷を真空容器11の外部に取り除く電荷逃し手段42を備え点で図14に示す第4実施形態に係る核融合中性子発生装置10と異なる。他の構成および作用については図14に示す第4実施形態に係る核融合中性子発生装置10と実質的に異ならないため、同じ構成には同一符号を付して説明を省略する。   The fusion neutron generator 10 according to the fifth embodiment includes a charge escaping means 42 that removes the electric charge of the charged particle collection conductor 41 to the outside of the vacuum vessel 11 in that the fusion neutron according to the fourth embodiment shown in FIG. Different from the generator 10. Since other configurations and operations are not substantially different from those of the fusion neutron generator 10 according to the fourth embodiment shown in FIG. 14, the same components are denoted by the same reference numerals and description thereof is omitted.

図15に示すように、第5実施形態に係る核融合中性子発生装置10は、荷電粒子収集導体41の電荷を真空容器11の外部に逃す電荷逃し手段42を備えている。   As shown in FIG. 15, the fusion neutron generator 10 according to the fifth embodiment includes a charge release means 42 that releases the charge of the charged particle collection conductor 41 to the outside of the vacuum vessel 11.

図16(a)は第5実施形態に係る電荷逃し手段42の第1例を示す説明図であり、(b)は電荷逃し手段42の第2例を示す説明図であり、(c)は電荷逃し手段42の第3例を示す説明図である。   FIG. 16A is an explanatory view showing a first example of the charge releasing means 42 according to the fifth embodiment, FIG. 16B is an explanatory view showing a second example of the charge releasing means 42, and FIG. It is explanatory drawing which shows the 3rd example of the electric charge escape means.

電荷逃し手段42は、電源V1−V3と抵抗R1−R3をそれぞれ組み合わせて荷電粒子収集導体41のそれぞれに独立に設けられてもよい(図16(a)参照)。また、電荷逃し手段42は、抵抗により構成されて抵抗を介して荷電粒子収集導体41どうしを電気的に接続してもよいし(図16(b)参照)、荷電粒子収集導体41どうしを等電位に接続してもよい(図16(c)参照)。このように、電荷逃し手段42としては抵抗や高電圧電源などの任意の手段を選択可能であり、たとえば高電圧電源を用いて、複数の抵抗に電圧印加、分圧して各荷電粒子収集導体41に電圧を印加してもよい。   The charge release means 42 may be provided independently for each of the charged particle collection conductors 41 by combining the power sources V1-V3 and the resistors R1-R3 (see FIG. 16A). Further, the charge release means 42 may be constituted by a resistor and electrically connect the charged particle collection conductors 41 via the resistance (see FIG. 16B), or may be connected between the charged particle collection conductors 41, etc. You may connect to an electric potential (refer FIG.16 (c)). As described above, any means such as a resistor or a high voltage power supply can be selected as the charge release means 42. For example, using a high voltage power supply, voltage is applied to a plurality of resistors, and the divided particles are collected. A voltage may be applied to.

また、電荷逃し手段42は、荷電粒子収集導体41が複数ある場合はこれらの間や、陰極12、真空容器11との間で平等な電界を発生させるように、荷電粒子収集導体41にかかる電位を調整するとよい。   Further, the charge release means 42 has a potential applied to the charged particle collection conductor 41 so as to generate an equal electric field between the charged particle collection conductors 41 when there are a plurality of charged particle collection conductors 41 and between the cathode 12 and the vacuum vessel 11. It is good to adjust.

たとえば、本実施形態では陰極12が負電位、真空容器11が接地電位のため、各荷電粒子収集導体41には陰極12に印加した電位よりも絶対値で小さな値の負電位を印加するとよい。この場合、発生する電場の向きは真空容器11から陰極12に向かう方向である。   For example, in this embodiment, since the cathode 12 is a negative potential and the vacuum vessel 11 is a ground potential, a negative potential having a smaller absolute value than the potential applied to the cathode 12 may be applied to each charged particle collection conductor 41. In this case, the direction of the generated electric field is the direction from the vacuum vessel 11 toward the cathode 12.

第4実施形態に係る荷電粒子収集導体41は、電位が浮遊電位となってしまい、任意の値に設定することができない。このため、各荷電粒子収集導体41間や、陰極12、真空容器11との間で、局所的な電界が発生してしまう場合がある。局所的な電界が発生すると、電子雪崩が発生し、沿面放電や局所的な気中放電が生じる可能性がある。   In the charged particle collection conductor 41 according to the fourth embodiment, the potential becomes a floating potential, and cannot be set to an arbitrary value. For this reason, a local electric field may be generated between the charged particle collection conductors 41 and between the cathode 12 and the vacuum vessel 11. When a local electric field is generated, an electronic avalanche occurs, which may cause creeping discharge and local air discharge.

一方、第5実施形態に係る核融合中性子発生装置10は、電荷逃し手段42を用いて、各荷電粒子収集導体41の電位を任意の値に設定することができる。このため、局所的な電界発生を抑制し、各荷電粒子収集導体41間や、陰極12、真空容器11との間で平等な電界を発生させることができる。したがって、第5実施形態に係る核融合中性子発生装置10によれば、局所的な電界の発生を抑制することができ、電子雪崩発生による沿面放電や局所的な気中放電を低減することができる。   On the other hand, the fusion neutron generator 10 according to the fifth embodiment can set the potential of each charged particle collection conductor 41 to an arbitrary value using the charge release means 42. For this reason, local electric field generation can be suppressed, and an equal electric field can be generated between the charged particle collection conductors 41, and between the cathode 12 and the vacuum vessel 11. Therefore, according to the fusion neutron generator 10 according to the fifth embodiment, the generation of a local electric field can be suppressed, and the creeping discharge and the local air discharge due to the occurrence of an electron avalanche can be reduced. .

また、第5実施形態に係る核融合中性子発生装置10は、第1実施形態に係る遮蔽物16と、第2実施形態に係る三重点近傍のひだ形状の遮蔽物16、溝31、導電性材料32と、第3実施形態に係る傾斜した遮蔽物16と、を適宜組み合わせて用いることができ、第1−4実施形態に係る核融合中性子発生装置10と同様の作用効果を奏する。   Further, the fusion neutron generator 10 according to the fifth embodiment includes a shield 16 according to the first embodiment, a pleated shield 16 near the triple point according to the second embodiment, a groove 31, and a conductive material. 32 and the inclined shielding object 16 according to the third embodiment can be used in appropriate combination, and the same operational effects as the fusion neutron generator 10 according to the first to fourth embodiments can be obtained.

(第6の実施形態)
次に、本発明に係る核融合中性子発生装置および核融合中性子発生方法の第6実施形態について説明する。
(Sixth embodiment)
Next, a sixth embodiment of the fusion neutron generator and fusion neutron generation method according to the present invention will be described.

図17は、本発明の第6実施形態に係る核融合中性子発生装置10の一例を示す構成図である。   FIG. 17: is a block diagram which shows an example of the fusion neutron generator 10 which concerns on 6th Embodiment of this invention.

第6実施形態に係る核融合中性子発生装置10は、真空容器11の外側の高電圧導入部13を覆う絶縁物質51を備え点で図15に示す第5実施形態に係る核融合中性子発生装置10と異なる。他の構成および作用については図15に示す第5実施形態に係る核融合中性子発生装置10と実質的に異ならないため、同じ構成には同一符号を付して説明を省略する。   The fusion neutron generator 10 according to the sixth embodiment is provided with an insulating material 51 that covers the high-voltage introduction part 13 outside the vacuum vessel 11, and the fusion neutron generator 10 according to the fifth embodiment shown in FIG. And different. Since other configurations and operations are not substantially different from those of the fusion neutron generator 10 according to the fifth embodiment shown in FIG. 15, the same components are denoted by the same reference numerals and description thereof is omitted.

第6実施形態に係る核融合中性子発生装置10は、図17の破線で囲んだ円Aに示すように、高電圧導入部13のうち真空容器11の外側に露出した部分と、高電圧導入部13と高電圧印加手段14との接合部と、絶縁物質51で覆う。   The fusion neutron generator 10 according to the sixth embodiment includes a portion exposed to the outside of the vacuum vessel 11 in the high voltage introduction unit 13 and a high voltage introduction unit, as shown by a circle A surrounded by a broken line in FIG. 13 and the high voltage applying means 14 and the insulating material 51.

図17に示す例では、高電圧導入部13と高電圧印加手段14との接合箇所は、ケーブル14aと高電圧導入部13としての金属端子との接続部分を指す。絶縁物質51としては、たとえばアルミナなどのセラミックや絶縁油、絶縁性の樹脂など、任意の材料を用いることができる。絶縁物質51は、印加する電圧に対して選択した材料が固体絶縁破壊を起こさないように、適切な厚みを有することが好ましい。たとえば、絶縁物質51として絶縁性の樹脂を用いて高電位部をモールドする場合であって印加する電圧がマイナス100kVであれば、絶縁物質51は数cm程度の厚みを有すればよく、装置の小型化にはほとんど影響しない。   In the example shown in FIG. 17, the joint portion between the high voltage introducing portion 13 and the high voltage applying means 14 indicates a connection portion between the cable 14 a and the metal terminal as the high voltage introducing portion 13. As the insulating substance 51, for example, an arbitrary material such as ceramic such as alumina, insulating oil, or insulating resin can be used. The insulating material 51 preferably has an appropriate thickness so that the material selected for the applied voltage does not cause solid breakdown. For example, when the high potential portion is molded using an insulating resin as the insulating material 51 and the applied voltage is minus 100 kV, the insulating material 51 may have a thickness of about several centimeters. Little impact on miniaturization.

第6実施形態に係る核融合中性子発生装置10は、第1−5実施形態に係る核融合中性子発生装置10と適宜組み合わせることが可能であり、第1−5実施形態に係る核融合中性子発生装置10と同様の作用効果を奏する。   The fusion neutron generator 10 according to the sixth embodiment can be appropriately combined with the fusion neutron generator 10 according to the first to fifth embodiments, and the fusion neutron generator according to the first to fifth embodiments. 10 has the same effect.

また、第6実施形態に係る核融合中性子発生装置10は、真空容器11の外側の高電位部を絶縁物質51で覆い、高電位部が露出しないようにすることができる。このため、高電位部と真空容器11の外側面との間の大気圧沿面放電や期中放電発生を未然に防ぐことができる。第6実施形態に係る核融合中性子発生装置10は、絶縁物質51の絶縁破壊電圧のみを考慮した絶縁設計を行えばよく、従来必要であった沿面放電、気中放電を防ぐための絶縁構造が不要となる。このため、大気圧側の高電圧導入部13のサイズを小型にすることができる。   Moreover, the fusion neutron generator 10 according to the sixth embodiment can cover the high potential portion outside the vacuum vessel 11 with the insulating material 51 so that the high potential portion is not exposed. For this reason, it is possible to prevent the occurrence of atmospheric pressure creeping discharge or discharge during the period between the high potential portion and the outer surface of the vacuum vessel 11. The fusion neutron generator 10 according to the sixth embodiment only needs to perform an insulation design considering only the dielectric breakdown voltage of the insulating material 51, and has an insulation structure for preventing creeping discharge and air discharge, which are conventionally required. It becomes unnecessary. For this reason, the size of the high voltage introduction part 13 on the atmospheric pressure side can be reduced.

以上説明した少なくとも1つの実施形態によれば、高電圧導入部13と陽極を兼ねた真空容器11との間に絶縁体構造物15が設けられるとともに、絶縁体構造物15の真空容器11の内側面側に、陰極側三重点TJcと陽極側三重点TJaとの沿面距離20が空間距離よりも長い距離を有するように遮蔽物16が設けられる。このため、高電圧導入部13の軸方向に沿う方向に沿面距離、絶縁距離をかせぐように絶縁体構造物15を設けることなく、陰極側三重点TJcと陽極側三重点TJaとの間での沿面放電を抑制することができる。したがって、高電圧導入部13の軸方向に沿う方向に設けられる絶縁体構造物を排して高電圧導入部13を小型化しつつ、陽極と高電圧導入部13との沿面放電を抑制することができる。   According to at least one embodiment described above, the insulator structure 15 is provided between the high voltage introducing portion 13 and the vacuum container 11 serving also as an anode, and the inside of the vacuum container 11 of the insulator structure 15 On the side surface side, the shield 16 is provided such that the creeping distance 20 between the cathode side triple point TJc and the anode side triple point TJa is longer than the spatial distance. For this reason, without providing the insulator structure 15 so as to increase the creeping distance and the insulation distance in the direction along the axial direction of the high-voltage introducing portion 13, the cathode-side triple point TJc and the anode-side triple point TJa are not provided. Creeping discharge can be suppressed. Therefore, it is possible to suppress creeping discharge between the anode and the high voltage introduction part 13 while eliminating the insulator structure provided in the direction along the axial direction of the high voltage introduction part 13 and reducing the size of the high voltage introduction part 13. it can.

なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   In addition, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

たとえば、上記説明では真空容器11が円筒形状を有する場合の例を示したが、真空容器11の形状はこれに限られない。   For example, although the example in the case where the vacuum vessel 11 has a cylindrical shape is shown in the above description, the shape of the vacuum vessel 11 is not limited to this.

図18(a)は真空容器11の形状が円錐台である場合の一例を示す説明図であり、(b)は六角錐台である場合の一例を示す説明図であり、(c)は高電圧導入部13側を底とする円錐体である場合の一例を示す説明図である。   FIG. 18A is an explanatory view showing an example when the shape of the vacuum vessel 11 is a truncated cone, FIG. 18B is an explanatory view showing an example when it is a hexagonal truncated cone, and FIG. It is explanatory drawing which shows an example in the case of the cone which makes the voltage introduction part 13 side the bottom.

絶縁体構造物15は、真空容器11と高電圧導入部13とが交わる面に設けられるとともに、真空容器11の内側面の少なくとも一部を構成すればよい。また、たとえばひだ形状の遮蔽物16は、陰極側三重点TJcと陽極側三重点TJaとの沿面距離20が空間距離よりも長い距離を有するように絶縁体構造物15の真空容器11の内側面側に設けられればよい。この限りにおいて、真空容器11はさまざまな形状を取り得る(たとえば図18(a)―(c)参照)。   The insulator structure 15 may be provided on the surface where the vacuum vessel 11 and the high-voltage introducing portion 13 intersect and constitute at least a part of the inner surface of the vacuum vessel 11. Further, for example, the pleated shield 16 has an inner surface of the vacuum vessel 11 of the insulator structure 15 such that the creeping distance 20 between the cathode side triple point TJc and the anode side triple point TJa is longer than the spatial distance. What is necessary is just to be provided in the side. As long as this is the case, the vacuum vessel 11 can take various shapes (see, for example, FIGS. 18A to 18C).

また、上記説明のように真空容器11の形状が円筒である場合であっても、絶縁体構造物15は上記説明のような平面に限られず、絶縁体構造物15がなす真空容器11の内側面は曲面であってもよい(図18(d)参照)。   Further, even when the shape of the vacuum vessel 11 is a cylinder as described above, the insulator structure 15 is not limited to a plane as described above, and the inside of the vacuum vessel 11 formed by the insulator structure 15 is not limited. The side surface may be a curved surface (see FIG. 18D).

また、真空容器11は球状であってもよい。真空容器11が球状である場合は、陰極12の形状もまた球状であることが好ましい。この場合も、絶縁体構造物15は、真空容器11と高電圧導入部13とが交わる面に設けられるとともに、真空容器11の内側面の少なくとも一部を構成すればよい(図18(e)参照)。また、真空容器11の側面が絶縁体構造物15により構成されて、真空容器11と高電圧導入部13とが交わる面と真空容器11の側面との両者を絶縁体構造物15が兼ねてもよい(図18(f)参照)。   The vacuum vessel 11 may be spherical. When the vacuum vessel 11 is spherical, the shape of the cathode 12 is also preferably spherical. Also in this case, the insulator structure 15 may be provided on the surface where the vacuum vessel 11 and the high voltage introducing portion 13 intersect, and at least part of the inner surface of the vacuum vessel 11 may be configured (FIG. 18E). reference). Further, even if the side surface of the vacuum vessel 11 is constituted by the insulator structure 15 and the insulator structure 15 serves as both the surface where the vacuum vessel 11 and the high voltage introducing portion 13 intersect and the side surface of the vacuum vessel 11. Good (see FIG. 18 (f)).

10…核融合中性子発生装置、11…真空容器、12…陰極、13…高電圧導入部、14…高電圧印加手段、15…絶縁体構造物、16…遮蔽物、20…沿面距離、31…溝、41…導体、41…荷電粒子収集導体、42…手段、51…絶縁物質、TJa…陽極側三重点、TJc…陰極側三重点。   DESCRIPTION OF SYMBOLS 10 ... Fusion neutron generator, 11 ... Vacuum container, 12 ... Cathode, 13 ... High voltage introduction part, 14 ... High voltage application means, 15 ... Insulator structure, 16 ... Shielding object, 20 ... Creeping distance, 31 ... Groove, 41 ... conductor, 41 ... charged particle collection conductor, 42 ... means, 51 ... insulating material, TJa ... anode side triple point, TJc ... cathode side triple point.

Claims (12)

イオン化した燃料ガスを加速させて核融合反応を起こさせる核融合中性子発生装置であって、
陽極を有し、大気圧より低い圧力に保たれた真空容器と、
前記真空容器と電気的に絶縁され、前記真空容器の内部に設けられた陰極と、
前記真空容器と電気的に絶縁され、前記陽極と前記陰極間の電界によって前記イオン化した燃料ガスを加速させるよう、電圧印加手段から供給された電力を前記陰極に与えることにより前記陰極に負電位を生じさせる高電圧導入部と、
前記真空容器の内側面の少なくとも一部を構成する絶縁体構造物であって、前記高電圧導入部側の三重点と前記陽極側の三重点との沿面距離が空間距離よりも長い距離を有するように前記真空容器の内側面側に設けられた遮蔽物を有する絶縁体構造物と、
を備えた核融合中性子発生装置。
A fusion neutron generator that accelerates ionized fuel gas to cause a fusion reaction,
A vacuum vessel having an anode and maintained at a pressure lower than atmospheric pressure;
A cathode electrically insulated from the vacuum vessel and provided inside the vacuum vessel;
A negative potential is applied to the cathode by applying power supplied from voltage applying means to the cathode so as to accelerate the ionized fuel gas by an electric field between the anode and the cathode, which is electrically insulated from the vacuum vessel. A high voltage introduction part to be generated;
An insulator structure constituting at least a part of the inner surface of the vacuum vessel, wherein a creeping distance between the triple point on the high voltage introduction portion side and the triple point on the anode side is longer than a spatial distance. An insulator structure having a shield provided on the inner surface side of the vacuum vessel,
Fusion neutron generator equipped with.
前記絶縁体構造物は、
前記遮蔽物として、前記高電圧導入部側の三重点を囲むように、前記絶縁体構造物がなす前記真空容器の内側面から突出した円環状のひだを少なくとも1つ有する、
請求項1記載の核融合中性子発生装置。
The insulator structure is
The shield has at least one annular pleat projecting from the inner surface of the vacuum vessel formed by the insulator structure so as to surround the triple point on the high voltage introduction part side,
The fusion neutron generator according to claim 1.
前記ひだの少なくとも1つは、
前記高電圧導入部側の三重点に対向する側の沿面が、前記絶縁体構造物がなす前記真空容器の内側面に垂直な面から前記沿面の前記真空容器の中心側が前記陽極側の三重点に近づく向きをプラスとして、前記真空容器の内側面に垂直な面からマイナス90度以上プラス45度以内の傾斜を有する、
請求項2記載の核融合中性子発生装置。
At least one of the pleats is
The creeping surface on the side opposite to the triple point on the high voltage introduction part side is a surface perpendicular to the inner surface of the vacuum vessel formed by the insulator structure, and the triple point on the anode side is the center side of the creeping vacuum vessel With a direction approaching to a plus, with a slope of minus 90 degrees or more plus 45 degrees or less from a plane perpendicular to the inner surface of the vacuum vessel,
The fusion neutron generator according to claim 2.
前記ひだの少なくとも1つは、
荷電粒子を収集するための荷電粒子収集導体を有する、
請求項2または3に記載の核融合中性子発生装置。
At least one of the pleats is
Having a charged particle collection conductor for collecting charged particles;
The fusion neutron generator according to claim 2 or 3.
前記荷電粒子収集導体は、
円環状の前記ひだの前記高電圧導入部側の三重点に対向する側の沿面に固設され、前記高電圧導入部側の三重点を囲む円筒形状を有する、
請求項4記載の核融合中性子発生装置。
The charged particle collection conductor is:
The annular pleat is fixed to a creeping surface on the side facing the triple point on the high voltage introduction part side, and has a cylindrical shape surrounding the triple point on the high voltage introduction part side,
The fusion neutron generator according to claim 4.
前記荷電粒子収集導体により収集された電荷を外部に取り除く電荷逃し手段、
をさらに備えた請求項4または5に記載の核融合中性子発生装置。
Charge escape means for removing the charge collected by the charged particle collection conductor to the outside;
The fusion neutron generator according to claim 4 or 5, further comprising:
前記電荷逃し手段は、
前記陰極と前記荷電粒子収集導体と前記真空容器との間の電界が平等電界となるように、前記荷電粒子収集導体にかかる電位を調整する、
請求項6記載の核融合中性子発生装置。
The charge releasing means is
Adjusting the potential applied to the charged particle collection conductor so that the electric field between the cathode, the charged particle collection conductor and the vacuum vessel is a uniform electric field;
The fusion neutron generator according to claim 6.
前記絶縁体構造物は、
前記遮蔽物として、前記高電圧導入部側の三重点を囲むように、前記絶縁体構造物がなす前記真空容器の内側面をくぼませた円環状の溝を少なくとも1つ有する、
請求項1ないし7のいずれか1項に記載の核融合中性子発生装置。
The insulator structure is
The shield has at least one annular groove in which the inner surface of the vacuum vessel formed by the insulator structure is recessed so as to surround a triple point on the high voltage introduction part side,
The fusion neutron generator according to any one of claims 1 to 7.
前記溝の少なくとも1つは、
前記高電圧導入部側の三重点を内包するように設けられた、
請求項8記載の核融合中性子発生装置。
At least one of the grooves is
Provided to enclose the triple point on the high voltage introduction part side,
The fusion neutron generator according to claim 8.
前記高電圧導入部のうち前記真空容器の外側に露出した部分と、前記高電圧導入部と前記電圧印加手段との接合部と、を覆う絶縁物質、
をさらに備えた請求項1ないしのいずれか1項に記載の核融合中性子発生装置。
An insulating material that covers a portion of the high voltage introduction portion exposed to the outside of the vacuum vessel, and a junction between the high voltage introduction portion and the voltage application means;
The fusion neutron generator according to any one of claims 1 to 9 , further comprising:
前記高電圧導入部と前記真空容器の中心を結ぶ直線に垂直かつ前記真空容器の中心を通る面に対して前記絶縁体構造物と対称となるように、前記絶縁体構造物が構成する前記真空容器の内側面の一部に対向する前記真空容器の内側面に、前記遮蔽物を有する前記絶縁体構造物、
をさらに備えた請求項1ないし10のいずれか1項に記載の核融合中性子発生装置。
The vacuum formed by the insulator structure so as to be symmetrical to the insulator structure with respect to a plane perpendicular to a straight line connecting the high-voltage introduction portion and the center of the vacuum vessel and passing through the center of the vacuum vessel. The insulator structure having the shield on the inner surface of the vacuum container facing a part of the inner surface of the container;
The fusion neutron generator according to any one of claims 1 to 10 , further comprising:
陽極を有し大気圧より低い圧力に保たれた真空容器と電気的に絶縁され、前記真空容器の内部に設けられた陰極と、前記真空容器と電気的に絶縁され、イオン化した燃料ガスを前記陽極と前記陰極間の電界により加速させるよう、電圧印加手段から供給された電力を前記陰極に与えることにより前記陰極に負電位を生じさせる高電圧導入部と、を備え、イオン化した燃料ガスを加速させて核融合反応を起こさせる核融合中性子発生装置の核融合中性子発生方法であって、
前記真空容器の内側面の少なくとも一部を構成するように絶縁体構造物を設けるステップと、
前記高電圧導入部側の三重点と前記陽極側の三重点との沿面距離が空間距離よりも長い距離を有するように前記真空容器の内側面側に遮蔽物を設けるステップと、
を有する核融合中性子発生方法。
A vacuum vessel that has an anode and is maintained at a pressure lower than atmospheric pressure; a cathode provided inside the vacuum vessel; and an electrically insulated and ionized fuel gas that is electrically insulated from the vacuum vessel. A high voltage introduction section for generating a negative potential at the cathode by applying electric power supplied from a voltage application means to the cathode so as to accelerate the electric field between the anode and the cathode, and accelerate the ionized fuel gas A fusion neutron generation method of a fusion neutron generator for causing a fusion reaction,
Providing an insulator structure to constitute at least part of the inner surface of the vacuum vessel;
Providing a shield on the inner surface side of the vacuum vessel so that the creepage distance between the triple point on the high voltage introduction portion side and the triple point on the anode side is longer than the spatial distance;
A method for generating fusion neutrons.
JP2015218220A 2015-11-06 2015-11-06 Fusion neutron generator and fusion neutron generation method Active JP6570972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015218220A JP6570972B2 (en) 2015-11-06 2015-11-06 Fusion neutron generator and fusion neutron generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015218220A JP6570972B2 (en) 2015-11-06 2015-11-06 Fusion neutron generator and fusion neutron generation method

Publications (2)

Publication Number Publication Date
JP2017091710A JP2017091710A (en) 2017-05-25
JP6570972B2 true JP6570972B2 (en) 2019-09-04

Family

ID=58768281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015218220A Active JP6570972B2 (en) 2015-11-06 2015-11-06 Fusion neutron generator and fusion neutron generation method

Country Status (1)

Country Link
JP (1) JP6570972B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1235569A (en) * 1996-11-01 1999-11-17 乔治·H·米利 Plasma jet source using internal electrostatic confinement discharge plasma
JP2001083298A (en) * 1999-09-10 2001-03-30 Hitachi Ltd Electrostatic containment nuclear fusion device
JP2001133569A (en) * 1999-11-02 2001-05-18 Hitachi Ltd Electrostatic containment nuclear fusion apparatus
JP3696079B2 (en) * 2000-12-04 2005-09-14 株式会社日立製作所 Inertial electrostatic confinement device

Also Published As

Publication number Publication date
JP2017091710A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
TWI766748B (en) X-ray generating tube, X-ray generating device and X-ray imaging device
JP6570972B2 (en) Fusion neutron generator and fusion neutron generation method
KR101584411B1 (en) X-ray tube
JP2013507733A5 (en)
JPH0213900A (en) Sealed high beam flux neutron tube
US20210100088A1 (en) X-ray generator
JP6612453B2 (en) Target assembly for X-ray emission device and X-ray emission device
CN1711008B (en) Sectional-drum-shape X-ray source
CN111786309B (en) Insulator surface charge rapid dissipation method based on X-ray
JP3696079B2 (en) Inertial electrostatic confinement device
US11201031B2 (en) High voltage seals and structures having reduced electric fields
JP2013178906A (en) Deflector
WO2013187155A1 (en) Charged particle beam generating apparatus, charged particle beam apparatus, high voltage generating apparatus, and high potential apparatus
JP2008172976A (en) Dc-gas insulated bus-bar
CN220106426U (en) X-ray vacuum tube monolithic protective structure and X-ray vacuum tube
JP7478907B2 (en) High-voltage insulating structure, charged particle gun and charged particle beam device
CN219421139U (en) Single-way high-voltage feed-in device and neutron source
JP2018181526A (en) Nuclear fusion neutron generator
CN116825594B (en) X-ray tube anode and X-ray tube
JP7429154B2 (en) Microwave ion source and particle acceleration system equipped with it
JPS60180028A (en) Vacuum bulb
KR101691912B1 (en) The secondary electron suppression electrode reinforced with field wires and short faraday cup using the same
JP4260036B2 (en) High voltage generator
JP2009081108A (en) X-ray tube
CN116017834A (en) Negative high pressure neutron source

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190807

R150 Certificate of patent or registration of utility model

Ref document number: 6570972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150