JP4442859B2 - Rutherford backscattering analyzer - Google Patents

Rutherford backscattering analyzer Download PDF

Info

Publication number
JP4442859B2
JP4442859B2 JP2003398522A JP2003398522A JP4442859B2 JP 4442859 B2 JP4442859 B2 JP 4442859B2 JP 2003398522 A JP2003398522 A JP 2003398522A JP 2003398522 A JP2003398522 A JP 2003398522A JP 4442859 B2 JP4442859 B2 JP 4442859B2
Authority
JP
Japan
Prior art keywords
voltage
accelerator
power supply
voltage power
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003398522A
Other languages
Japanese (ja)
Other versions
JP2005158632A (en
Inventor
成人 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003398522A priority Critical patent/JP4442859B2/en
Priority to TW093133383A priority patent/TWI287950B/en
Priority to US10/981,531 priority patent/US7218500B2/en
Priority to KR1020040097754A priority patent/KR100679593B1/en
Publication of JP2005158632A publication Critical patent/JP2005158632A/en
Application granted granted Critical
Publication of JP4442859B2 publication Critical patent/JP4442859B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Particle Accelerators (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

本発明は,イオン若しくは電子を加速する加速装置の改良に係り,特に,加速器に高電圧を供給する高電圧回路を加速器に近接して設けることができるようにして,加速装置全体の小型化を図った加速装置に関するものである。   The present invention relates to an improvement in an accelerator that accelerates ions or electrons, and in particular, a high-voltage circuit that supplies a high voltage to the accelerator can be provided close to the accelerator, thereby reducing the overall size of the accelerator. The present invention relates to the intended accelerator.

従来,イオンもしくは,電子を加速する加速装置においては,加速器に高電圧を供給する高電圧回路を,加速管の外側に配設することで,省スペースを図っているが,放電防止を目的に加速管と高電圧電源間に一定の距離を開ける必要があり,近傍まで近づけることができず,小型化の支障となっている。   Conventionally, in accelerators that accelerate ions or electrons, a high-voltage circuit that supplies a high voltage to the accelerator has been installed outside the accelerator tube to save space. It is necessary to provide a certain distance between the accelerator tube and the high-voltage power supply, and it cannot be brought close to the vicinity, which hinders downsizing.

具体的には,かかる加速装置に用いられる高電圧回路としては,コックロフト・ウォルトン型の高電圧電源装置を用いることが多い。かかるコックロフト・ウォルトン型の高電圧電源装置は,特許文献1或いは特許文献2などにおいて周知のごとく,ダイオードとコンデンサなどを段階的に結合させた構成を有し,倍電圧回路を構成するが,順次上方に行くに従い,昇圧される構成となっている。一般に,コックロフト・ウォルトン型の高電圧電源装置と,その昇圧された電位を分布することでイオンもしくは電子を加速する加速管とは,両者が高圧であり,無防備に近接させると放電することが考えられるため,図8に示すように間にLの距離を置いて配設せざると得ないため,加速装置全体としての,小型化の支障となっていた。
また加速装置の絶縁性を高めるため,加速管11と昇圧回路10との間の空間には,絶縁ガスを充填する必要があるが,かかる絶縁ガスには,SF6等の地球温暖化ガスを使用することを多いため,加速管11と昇圧回路10との間の距離を縮めて,加速器全体の内容積を少なくし,絶縁ガスの使用量を節減することが望まれている。
特開平07−312300 特開2000−116132
Specifically, as a high voltage circuit used in such an acceleration device, a Cockloft-Walton type high voltage power supply device is often used. Such a Cockroft-Walton-type high-voltage power supply device has a configuration in which a diode and a capacitor are coupled stepwise as is well known in Patent Document 1 or Patent Document 2, and constitutes a voltage doubler circuit. The voltage is boosted as it goes upward. In general, the Cockloft-Walton-type high-voltage power supply device and the accelerator tube that accelerates ions or electrons by distributing the boosted potential are both at high pressure and can discharge when they are close to defenseless. Therefore, as shown in FIG. 8, it must be arranged with a distance L between them, which hinders miniaturization of the entire accelerator.
In order to improve the insulation of the accelerator, the space between the acceleration tube 11 and the booster circuit 10 needs to be filled with an insulating gas. For this insulating gas, a global warming gas such as SF6 is used. Therefore, it is desirable to reduce the distance between the accelerator tube 11 and the booster circuit 10 to reduce the internal volume of the accelerator and to reduce the amount of insulating gas used.
JP 07-312300 JP 2000-116132 A

従って,本発明が解決しようとする課題は,高電圧装置と加速管との距離を縮めることにできる加速装置の構造を提供することである。   Therefore, the problem to be solved by the present invention is to provide an accelerator structure that can reduce the distance between the high-voltage apparatus and the accelerator tube.

上記課題の解決を達成するために本発明は,
イオンを加速させるために高電圧部と低電圧部が設定され,上記高電圧部或いは低電圧部から低電圧部或いは高電圧部に向けて上記イオンを放出する加速器と,該加速器の外部に設けられ,上記加速器の高電圧部に,高電圧を供給する高電圧電源とを含んでなるイオンの加速装置を備えたラザフォード後方散乱分析装置において,
上記加速器が,上記加速器の高圧部の電圧及び低圧部の電圧と,高電圧電源の高圧部の電圧及び低圧部の電圧とを略等しく設定し,且つ上記加速器と上記高電圧電源とを,略平行に配置すると共に,上記加速器の高電圧部或いは低電圧部と,上記高電圧電源の高電圧部或いは低電圧部とを,対向させて配置したものであり,
上記加速装置が,円筒状の測定チャンバの中心軸の鉛直上方に,四重極マグネット及びビームダクトを介して配置され,
上記測定チャンバ内には,該測定チャンバの中心軸方向に上下動自在の試料台が設けられており,
上記加速装置から出射されたイオンが,上記加速装置の鉛直下方に位置する測定チャンバ内の試料に照射されることを特徴とするラザフォード後方散乱分析装置として構成されている。
またここで用いられる加速装置は,上記加速器と上記高電圧電源の同じ電圧設定された部分を,同じ高さレベルとなるように配置することが望ましい。
かかる加速装置においては,上記加速器及び上記高電圧電源がそれぞれ多段の電圧設定手段を含んで構成され,上記加速器及び上記高電圧電源の各対応する段の電圧が等しく設定されるように構成することが好ましい。
このような,加速装置においては,上記高電圧電源を上記加速器の周囲に同心円筒状に配置するような構成が望ましい。
上記高電圧電源と上記加速器の対応する段部を電気的に接続して構成することもできる。
上記高電圧電源の好ましい具体例としては,コックロフト・ウォルトン回路或いはこれに準じる多段型高電圧電源回路が考えられる。
In order to achieve the solution of the above problems, the present invention
A high voltage part and a low voltage part are set for accelerating the ions, and an accelerator for discharging the ions from the high voltage part or the low voltage part toward the low voltage part or the high voltage part is provided outside the accelerator. A Rutherford backscattering analyzer comprising an ion accelerator comprising a high voltage power source for supplying a high voltage to the high voltage portion of the accelerator,
The accelerator, the voltage of the voltage and low-voltage pressure section of the high-voltage pressure section of the accelerator, and substantially equal to the voltage of the voltage and low-voltage pressure section of the high-voltage pressure section of the high voltage power supply, and the above accelerators The high-voltage power supply is arranged substantially in parallel, and the high-voltage part or the low-voltage part of the accelerator and the high-voltage part or the low-voltage part of the high-voltage power supply are arranged to face each other.
The acceleration device is arranged vertically above the central axis of the cylindrical measurement chamber via a quadrupole magnet and a beam duct,
In the measurement chamber, a sample stage that is movable up and down in the direction of the central axis of the measurement chamber is provided.
It is configured as a Rutherford backscattering analyzer characterized in that ions emitted from the accelerator are irradiated to a sample in a measurement chamber located vertically below the accelerator.
Further, in the acceleration device used here, it is desirable to arrange the same voltage set portions of the accelerator and the high voltage power supply so as to have the same height level.
In such an accelerator, the accelerator and the high voltage power source are each configured to include multi-stage voltage setting means, and the voltages of the corresponding stages of the accelerator and the high voltage power source are set to be equal. Is preferred.
In such an acceleration device, it is desirable that the high-voltage power supply is arranged concentrically around the accelerator.
The high voltage power supply and the corresponding step portion of the accelerator can be electrically connected.
As a preferable specific example of the high-voltage power supply, a Cockloft-Walton circuit or a multi-stage high-voltage power supply circuit equivalent to this can be considered.

本発明は,イオンを加速させるために高電圧部と低電圧部が設定され,上記高電圧部或いは低電圧部から低電圧部或いは高電圧部に向けて上記イオンを放出する加速器と,該加速器の外部に設けられ,上記加速器の高電圧部に,高電圧を供給する高電圧電源とを含んでなるイオンの加速装置を備えたラザフォード後方散乱分析装置において,
上記加速器が,上記加速器の高圧部の電圧及び低圧部の電圧と,高電圧電源の高圧部の電圧及び低圧部の電圧とを略等しく設定し,且つ上記加速器と上記高電圧電源とを,略平行に配置すると共に,上記加速器の高電圧部或いは低電圧部と,上記高電圧電源の高電圧部或いは低電圧部とを,対向させて配置したものであり,上記加速装置が,円筒状の測定チャンバの中心軸の鉛直上方に,四重極マグネット及びビームダクトを介して配置され,上記測定チャンバ内には,該測定チャンバの中心軸方向に上下動自在の試料台が設けられており,上記加速装置から出射されたイオンが,上記加速装置の鉛直下方に位置する測定チャンバ内の試料に照射されることを特徴とするラザフォード後方散乱分析装置として構成されている。従って,加速器と高電圧電源の対向部分が同じ電圧に設定されるので,加速器と高電圧電源とを近接させても,近接部が同じ電圧に設定されているので相互に放電が生じない。従って,加速器と高電圧電源とを近接して配置することが可能となり,加速装置全体の小型化を達成することが出来,使用する絶縁ガスも節減も可能となる
またこの加速装置として,上記加速器と上記高電圧電源の同じ電圧設定された部分を,同じ高さレベルとなるように配置することで,確実に放電を防止することできる。
かかる加速装置において,上記加速器及び上記高電圧電源がそれぞれ多段の電圧設定手段を含んで構成され,上記加速器及び上記高電圧電源の各対応する段の電圧が等しく設定されるように構成すれば,放電防止の効果は更に確実となる。
上記高電圧電源と上記加速器の対応する段部を電気的に接続して構成することで,高電圧電源と加速器の間の放電の可能性を完全に無くすことができる。
このような,加速装置においては,加速器を中心として,上記高電圧電源を上記加速器の周囲に同心円筒状に配置するような,円柱状の構成が,小型化にとって最も優れた構造と考えられる。
上記高電圧電源の好ましい具体例としては,コックロフト・ウォルトン回路或いはこれに準じる多段型高電圧電源回路が考えられる。
The present invention includes an accelerator configured to set a high voltage portion and a low voltage portion for accelerating ions, and emitting the ions from the high voltage portion or the low voltage portion toward the low voltage portion or the high voltage portion, and the accelerator A Rutherford backscattering analyzer provided with an ion accelerator provided outside of the accelerator and including a high voltage power source for supplying a high voltage to a high voltage portion of the accelerator,
The accelerator, the voltage of the voltage and low-voltage pressure section of the high-voltage pressure section of the accelerator, and substantially equal to the voltage of the voltage and low-voltage pressure section of the high-voltage pressure section of the high voltage power supply, and the above accelerators The high-voltage power supply is arranged substantially in parallel, and the high-voltage part or the low-voltage part of the accelerator and the high-voltage part or the low-voltage part of the high-voltage power supply are arranged to face each other. The acceleration device is arranged vertically above the central axis of the cylindrical measurement chamber via a quadrupole magnet and a beam duct , and is movable up and down in the direction of the central axis of the measurement chamber in the measurement chamber. A Rutherford backscattering analyzer is provided, wherein a sample stage is provided, and ions emitted from the acceleration device are irradiated to a sample in a measurement chamber located vertically below the acceleration device. Yes. Therefore, since the facing part of the accelerator and the high voltage power supply is set to the same voltage, even if the accelerator and the high voltage power supply are brought close to each other, the proximity part is set to the same voltage, so that no discharge occurs between them. Accordingly, the accelerator and the high-voltage power supply can be arranged close to each other, the size of the accelerator can be reduced, and the insulating gas to be used can also be reduced. And by arranging the same voltage-set parts of the high-voltage power supply so as to be at the same height level, it is possible to reliably prevent discharge.
In such an accelerator, if the accelerator and the high voltage power source are each configured to include multi-stage voltage setting means, and the voltages of the corresponding stages of the accelerator and the high voltage power source are set equal, The effect of preventing discharge is further ensured.
The possibility of discharge between the high voltage power supply and the accelerator can be completely eliminated by electrically connecting the high voltage power supply and the corresponding step portion of the accelerator.
In such an accelerator, a columnar configuration in which the high voltage power source is concentrically arranged around the accelerator with the accelerator as the center is considered to be the most excellent structure for miniaturization.
As a preferable specific example of the high-voltage power supply, a Cockloft-Walton circuit or a multi-stage high-voltage power supply circuit equivalent to this can be considered.

以下添付図面を参照しながら,本発明の実施の形態及び実施例について説明し,本発明の理解に供する。尚,以下の実施の形態及び実施例は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の第1の実施形態に係るラザフォード後方散乱分析装置X1の構成を示す全体図,
図2〜図7は,いずれも本発明の実施の形態に係る高圧電源と加速器の対応関係を示す概念図である。
Hereinafter, embodiments and examples of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. It should be noted that the following embodiments and examples are examples embodying the present invention, and do not limit the technical scope of the present invention.
FIG. 1 is an overall view showing the configuration of the Rutherford backscattering analyzer X1 according to the first embodiment of the present invention.
2 to 7 are conceptual diagrams showing the correspondence between the high-voltage power supply and the accelerator according to the embodiment of the present invention.

図1の全体図に基づいて,本発明の一実施形態にかかる加速装置を備えたラザフォード後方散乱分析装置(以下,「RBS分析装置」と略す。)X1の構成について説明する。尚,言うまでもないが,このRBS分析装置は,イオン或いは電子を加速する加速装置の用途の単なる一例に過ぎない。
図示のRBS分析装置X1では,測定チャンバ103の鉛直上方に配設されたイオン発生器119において,ガスボンベから送り出されたヘリウムなどはイオン源112でイオン化され,その後,イオン化された一価のヘリウムイオンが加速管113に送り出される。上記加速管113内では,上記ヘリウムイオンは,高圧電源回路114から高電圧が供給されることにより,この高電圧に対応したエネルギーが蓄えられて加速される。この実施形態における上記高圧電源回路(本発明における高電圧電源の一例)は,ダイオード,コンデンサなどを段階的に結合させたコックロフト・ウォルトン型の高電圧電源である。
即ち,上記加速器119は,イオン,電子などを加速させるために高電圧部と低電圧部を設定し,上記高電圧部或いは低電圧部から低電圧部或いは高電圧部にむけて上記イオン,電子などを放出する加速管(本発明における加速器の一例)113と,該加速管113の外部に設けられ,上記加速管113の高電圧部に,高電圧を供給する上記高圧電源回路114とを含んでなるイオン,電子などの加速装置を構成している。
その後,加速されたイオンは鉛直下方へ出射され,ビームダクト116を通り,途中,四重極マグネット111により収束されて,イオン発生器119の鉛直下方に位置する測定チャンバ103(真空容器)内の試料102に照射される。
上記試料102に照射され,試料102の表面又は内部で弾性散乱されたイオンのうち,検出器105で検出されたイオンが,分析に供される。
A configuration of a Rutherford backscattering analyzer (hereinafter abbreviated as “RBS analyzer”) X1 provided with an accelerating device according to an embodiment of the present invention will be described based on the overall view of FIG. Needless to say, this RBS analyzer is merely an example of the use of an accelerator that accelerates ions or electrons.
In the illustrated RBS analyzer X1, in an ion generator 119 disposed vertically above the measurement chamber 103, helium or the like sent from a gas cylinder is ionized by an ion source 112 and then ionized monovalent helium ions. Is sent to the acceleration tube 113. In the acceleration tube 113, the helium ions are accelerated by storing energy corresponding to the high voltage when a high voltage is supplied from the high-voltage power supply circuit 114. The high-voltage power supply circuit in this embodiment (an example of the high-voltage power supply in the present invention) is a Cockloft-Walton type high-voltage power supply in which diodes, capacitors, and the like are coupled in stages.
That is, the accelerator 119 sets a high voltage part and a low voltage part in order to accelerate ions, electrons, etc., and moves the ions, electrons from the high voltage part or low voltage part to the low voltage part or high voltage part. Accelerating tube (an example of an accelerator in the present invention) 113 that discharges the above and the like, and the high-voltage power supply circuit 114 that is provided outside the accelerating tube 113 and supplies a high voltage to the high-voltage portion of the accelerating tube 113. This constitutes an accelerator for ions and electrons.
Thereafter, the accelerated ions are emitted vertically downward, pass through the beam duct 116, and are converged by the quadrupole magnet 111 on the way, in the measurement chamber 103 (vacuum container) positioned vertically below the ion generator 119. The sample 102 is irradiated.
Among the ions irradiated onto the sample 102 and elastically scattered on or inside the sample 102, ions detected by the detector 105 are used for analysis.

測定チャンバ103は,円筒形の測定チャンバであり,内部を真空状にするため,測定チャンバ103近傍には内部の空気を排出して真空化するターボ分子ポンプ109が設けられている。また,この測定チャンバ103には,試料102に照射されたイオンによって上記試料102から複数の方向に散乱した散乱イオンを検出する検出器105が設けられている。
また,上記円筒形の測定チャンバ103の中心軸(円筒軸)にあたる位置には試料102を保持する試料台が配置されている。この上記試料台は上記測定チャンバ103の中心軸を中心にして上記測定チャンバ103の中心軸方向に上下動自在に支持される。上記測定チャンバ103の外部には,上記試料台に試料102を搬出入するトランファーロッド106が設けられており,該トランスファーロッド106の気密は,ロードロックチャンバ107で保持されている。また,この測定チャン103の外周には,マグネット冷却器108によって冷却される超電導マグネット104が配置されており,この超電導マグネット104によって,散乱イオンの散乱方向が変えられる。
The measurement chamber 103 is a cylindrical measurement chamber, and a turbo molecular pump 109 is provided in the vicinity of the measurement chamber 103 to exhaust and evacuate the inside in order to make the inside of the chamber vacuum. The measurement chamber 103 is provided with a detector 105 that detects scattered ions scattered from the sample 102 in a plurality of directions by ions irradiated on the sample 102.
A sample stage for holding the sample 102 is disposed at a position corresponding to the central axis (cylindrical axis) of the cylindrical measurement chamber 103. The sample stage is supported so as to be movable up and down in the direction of the central axis of the measurement chamber 103 around the central axis of the measurement chamber 103. A transfer rod 106 for carrying the sample 102 in and out of the sample stage is provided outside the measurement chamber 103, and the airtightness of the transfer rod 106 is held in a load lock chamber 107. In addition, a superconducting magnet 104 cooled by a magnet cooler 108 is disposed on the outer periphery of the measurement chamber 103, and the scattering direction of scattered ions is changed by the superconducting magnet 104.

上記高圧電源回路114は,高圧であるにもかかわらず,同じく高圧の加速管112に近接して配置可能なように,加速管113と上記上記加速管113の高圧部の電圧及び低圧部の電圧と,高電圧電源の高圧部の電圧及び低圧部の電圧とは概略或いは完全に等しく設定されており,且つ上記加速管113と上記高圧電源回路114とは,略平行に配置されている共に,上記加速管113の高電圧部或いは低電圧部と,上記高圧電源回路114の高電圧部或いは低電圧部とは,対向するように配置されている。   The high-voltage power supply circuit 114 has a high-voltage voltage and a low-voltage voltage of the acceleration tube 113 and the acceleration tube 113 so that the high-voltage power supply circuit 114 can be arranged close to the high-pressure acceleration tube 112 even though the voltage is high. And the voltage of the high voltage part and the voltage of the low voltage part of the high voltage power source are set to be approximately or completely equal, and the acceleration tube 113 and the high voltage power circuit 114 are arranged substantially in parallel, The high voltage part or the low voltage part of the acceleration tube 113 and the high voltage part or the low voltage part of the high voltage power supply circuit 114 are arranged to face each other.

このような構成により,高圧電源回路114及び加速管113の電圧が高圧であるにもかかわらず,加速管113と高圧電源回路114との対向する部分の電圧が略等しいか或いは完全に等しくなるので,加速管113と高圧電源回路114とを近接して配置しても,且つ両者の近接部位間に電圧の差異が発生しないので,危険な放電が生じるといった問題が発生しない。
このような高圧電源回路114と,加速管113との構成については種々の変形例が考えられる。
With such a configuration, although the voltages of the high-voltage power supply circuit 114 and the acceleration tube 113 are high, the voltages at the opposing portions of the acceleration tube 113 and the high-voltage power supply circuit 114 are substantially equal or completely equal. Even if the acceleration tube 113 and the high-voltage power supply circuit 114 are arranged close to each other and no voltage difference occurs between the adjacent portions of the accelerator tube 113 and the high-voltage power supply circuit 114, there is no problem that dangerous discharge occurs.
Various modifications of the configuration of the high-voltage power supply circuit 114 and the acceleration tube 113 are conceivable.

図2〜図7はそのような変形例を図示したものであるが,まず図2の例では,加速管113の外側に高圧電源回路114を配置し,かつ加速管113の長さと高圧電源回路114の昇圧部の長さを合致させることを模式的にあらわしている。また図3の例では,加速管113の内部に多段に配置した周知の導体にならって,高圧電源回路114にも等電位に導体を配置したものである。この場合,加速管113内の導体と高圧電源回路114の内部に配置した導体とは逐一対応していないが,加速管113の昇圧部の中央における導体と,高圧電源回路114の中央部に配置した導体は高さ関係が同一で対応関係にあり,両導体の電圧が一致するように設定されている。その結果,加速管113内のある高さ位置における電圧と,高圧電源回路114内の,同じ高さ位置における電圧とは完全に或いは略一致することになる。その結果,同じ高さ位置における加速器113の電圧と高圧電源回路114における電圧とが一致,或いは略一致するので加速管113と高圧電源回路が近接して配置されても,両者の間における放電の危険性はほぼ完全に回避される。   2 to 7 illustrate such modifications. First, in the example of FIG. 2, a high voltage power supply circuit 114 is arranged outside the acceleration tube 113, and the length of the acceleration tube 113 and the high voltage power supply circuit are shown. It is schematically shown that the lengths of the 114 boosting portions are matched. In the example of FIG. 3, the high-voltage power supply circuit 114 is also provided with conductors at equipotentials in accordance with known conductors arranged in multiple stages inside the acceleration tube 113. In this case, the conductor in the acceleration tube 113 and the conductor arranged in the high voltage power supply circuit 114 do not correspond to each other, but the conductor in the center of the boosting portion of the acceleration tube 113 and the central portion of the high voltage power supply circuit 114 are arranged. These conductors have the same height relationship and are in a corresponding relationship, and the voltages of both conductors are set to match. As a result, the voltage at a certain height position in the acceleration tube 113 and the voltage at the same height position in the high-voltage power supply circuit 114 completely or substantially coincide with each other. As a result, the voltage of the accelerator 113 at the same height position and the voltage of the high-voltage power supply circuit 114 match or substantially match, so even if the accelerator tube 113 and the high-voltage power supply circuit are arranged close to each other, The danger is almost completely avoided.

上記同じ高さ位置における加速管113と高圧電源回路114との電圧差を更に少なくするには,図4に示すように,加速管113と高圧電源回路114の導体の段数を合致させる,もしくは,整数倍とする(部分的に整数倍も含む)ことが望ましい。
このように高圧電源回路の等電位に配置したて適宜の導体の位置と加速管113の適宜の段の位置を合わせることで,対応する段ごとに同電位となるため,より確実に,両者間の放電を防止することが出来,高圧電源回路114と加速管113とを近接して配置することが可能となる。
In order to further reduce the voltage difference between the acceleration tube 113 and the high-voltage power supply circuit 114 at the same height position, as shown in FIG. 4, the number of conductor stages of the acceleration tube 113 and the high-voltage power supply circuit 114 is matched, or It is desirable to use an integer multiple (including some integer multiples).
Thus, by arranging the appropriate conductor position and the appropriate step position of the accelerating tube 113 by arranging them at the same potential of the high-voltage power supply circuit, the same potential is obtained for each corresponding step. The high-voltage power supply circuit 114 and the acceleration tube 113 can be disposed close to each other.

上記加速管113と高圧電源回路114との間における放電を完全に無くすための方策としては,上記のように電位差の無くなった加速管113側の段における導体と,高圧電源回路114側の段における導体とを電気的に接続することが考えられる。図5に示した概念図は,このような構成を示したものであり,この場合,対応する加速管113の段と,高圧電源回路114の段との間の電位差が完全になくなるので,まったく放電現象が生じず,装置の小型化は極限にまで達する。
上記図2〜図5に示した構成例では,加速管113と高圧電源回路114の縦断面における近接化について検討したものであるが,かかる近接化は立体的に把握することも可能であり,その場合さらに小さい加速装置を構成することが可能である。
図6は,そのような立体的に見た加速管113と高圧電源回路114との関係を表現したものであり,上記高圧電源回路114が上記加速管113の周囲に同心円筒状に配置されてなる場合を示すものである。このように,同心円筒状(水平断面に見て同心円状)の配置により,立体的に見ての装置全体として最も小さい構造が提案される。
As a measure for completely eliminating the discharge between the accelerating tube 113 and the high-voltage power circuit 114, the conductor in the stage on the accelerating tube 113 side where the potential difference disappeared as described above, and the stage on the high-voltage power circuit 114 side are used. It is conceivable to electrically connect the conductor. The conceptual diagram shown in FIG. 5 shows such a configuration. In this case, the potential difference between the corresponding stage of the acceleration tube 113 and the stage of the high-voltage power supply circuit 114 is completely eliminated. The discharge phenomenon does not occur, and the miniaturization of the device reaches the limit.
In the configuration examples shown in FIGS. 2 to 5 above, the approach in the longitudinal section of the acceleration tube 113 and the high-voltage power supply circuit 114 has been studied, but such approach can be grasped in three dimensions. In that case, it is possible to construct a smaller acceleration device.
FIG. 6 represents the relationship between the acceleration tube 113 and the high-voltage power supply circuit 114 viewed in a three-dimensional manner. The high-voltage power supply circuit 114 is concentrically arranged around the acceleration tube 113. This is the case. In this way, the smallest structure of the whole device in a three-dimensional view is proposed by the arrangement of concentric cylinders (concentric circles in a horizontal section).

図7は,上記同心円筒状に配置された加速装置の具体的回路例を示すものである。
図7は,図5と同様に,加速管113側の導体と高圧電源回路114側の導体を4つに1つの割合で接続したものであって,高圧電源回路として,ダイオードとコンデンサとからなるコックトフト・ウォルトン回路を用いている。尚,高圧電源回路としては,コックトフト・ウォルトン回路でなくても,これに準じるものであれば良い。
FIG. 7 shows a specific circuit example of the accelerator arranged in the concentric cylindrical shape.
FIG. 7 is similar to FIG. 5, in which the conductor on the acceleration tube 113 side and the conductor on the high voltage power circuit 114 side are connected at a ratio of one to four. The high voltage power circuit is composed of a diode and a capacitor. Cocktoft-Walton circuit is used. The high-voltage power supply circuit is not limited to the Cocktoft-Walton circuit, but may be any circuit that conforms to this.

本発明は,半導体を初めとする各種材料の定量,組成分析する分析装置分野,もしくは,イオンを材料に注入するイオン注入分野,イオンや電子を照射することで殺菌,その他の効果があるイオン照射,イオンもしくは電子ヒ゛ームによる加工などの分野されるイオン源に利用可能である。   The present invention relates to the field of analyzers for quantification and composition analysis of various materials including semiconductors, or the field of ion implantation for injecting ions into materials, ion sterilization by irradiating ions and electrons, and ion irradiation having other effects. It can be used for ion sources in the field such as processing by ions or electron beams.

本発明の第1の実施形態に係るラザフォード後方散乱分析装置X1の構成を示す全体図。1 is an overall view showing the configuration of a Rutherford backscattering analyzer X1 according to a first embodiment of the present invention. 本発明の実施の形態に係る高圧電源と加速器の対応関係を示す概念図。The conceptual diagram which shows the correspondence of the high voltage power supply and accelerator which concern on embodiment of this invention. 本発明の実施の形態に係る高圧電源と加速器の対応関係を示す概念図。The conceptual diagram which shows the correspondence of the high voltage power supply and accelerator which concern on embodiment of this invention. 本発明の実施の形態に係る高圧電源と加速器の対応関係を示す概念図。The conceptual diagram which shows the correspondence of the high voltage power supply and accelerator which concern on embodiment of this invention. 本発明の実施の形態に係る高圧電源と加速器の対応関係を示す概念図。The conceptual diagram which shows the correspondence of the high voltage power supply and accelerator which concern on embodiment of this invention. 本発明の実施の形態に係る高圧電源と加速器の対応関係を示す概念図。The conceptual diagram which shows the correspondence of the high voltage power supply and accelerator which concern on embodiment of this invention. 本発明の実施の形態に係る高圧電源と加速器の対応関係を示す概念図。The conceptual diagram which shows the correspondence of the high voltage power supply and accelerator which concern on embodiment of this invention. 本発明の背景をなす加速装置の概念図。The conceptual diagram of the acceleration apparatus which makes the background of this invention.

符号の説明Explanation of symbols

113…加速器
114…高圧電源回路
113 ... Accelerator 114 ... High-voltage power supply circuit

Claims (6)

イオンを加速させるために高電圧部と低電圧部が設定され,上記高電圧部或いは低電圧部から低電圧部或いは高電圧部に向けて上記イオンを放出する加速器と,該加速器の外部に設けられ,上記加速器の高電圧部に,高電圧を供給する高電圧電源とを含んでなるイオンの加速装置を備えたラザフォード後方散乱分析装置において,
上記加速器が,上記加速器の高圧部の電圧及び低圧部の電圧と,高電圧電源の高圧部の電圧及び低圧部の電圧とを略等しく設定し,且つ上記加速器と上記高電圧電源とを,略平行に配置すると共に,上記加速器の高電圧部或いは低電圧部と,上記高電圧電源の高電圧部或いは低電圧部とを,対向させて配置したものであり,
上記加速装置が,円筒状の測定チャンバの中心軸の鉛直上方に,四重極マグネット及びビームダクトを介して配置され,
上記測定チャンバ内には,該測定チャンバの中心軸方向に上下動自在の試料台が設けられており,
上記加速装置から出射されたイオンが,上記加速装置の鉛直下方に位置する測定チャンバ内の試料に照射されることを特徴とするラザフォード後方散乱分析装置。
A high voltage part and a low voltage part are set for accelerating the ions, and an accelerator for discharging the ions from the high voltage part or the low voltage part toward the low voltage part or the high voltage part is provided outside the accelerator. A Rutherford backscattering analyzer comprising an ion accelerator comprising a high voltage power source for supplying a high voltage to the high voltage portion of the accelerator,
The accelerator, the voltage of the voltage and low-voltage pressure section of the high-voltage pressure section of the accelerator, and substantially equal to the voltage of the voltage and low-voltage pressure section of the high-voltage pressure section of the high voltage power supply, and the above accelerators The high-voltage power supply is arranged substantially in parallel, and the high-voltage part or the low-voltage part of the accelerator and the high-voltage part or the low-voltage part of the high-voltage power supply are arranged to face each other.
The acceleration device is arranged vertically above the central axis of the cylindrical measurement chamber via a quadrupole magnet and a beam duct,
In the measurement chamber, a sample stage that is movable up and down in the direction of the central axis of the measurement chamber is provided.
A Rutherford backscattering analyzer characterized in that ions emitted from the accelerator are irradiated to a sample in a measurement chamber located vertically below the accelerator.
上記加速器と上記高電圧電源の同じ電圧に設定された部分が,同じ高さレベルに配置されてなる請求項1に記載のラザフォード後方散乱分析装置。   The Rutherford backscattering analyzer according to claim 1, wherein portions of the accelerator and the high voltage power supply set to the same voltage are arranged at the same level. 上記加速器及び上記高電圧電源がそれぞれ多段の電圧設定手段を含んで構成され,上記加速器及び上記高電圧電源の各対応する段の電圧が等しく設定されてなる請求項1或いは2のいずれかに記載のラザフォード後方散乱分析装置。   3. The accelerator according to claim 1, wherein each of the accelerator and the high voltage power source includes multi-stage voltage setting means, and the voltages of the corresponding stages of the accelerator and the high voltage power source are set equal. Rutherford backscattering analyzer. 上記高電圧電源が上記加速器の周囲に同心円筒状に配置されてなる請求項1〜3のいずれかに記載のラザフォード後方散乱分析装置。   The Rutherford backscattering analyzer according to any one of claims 1 to 3, wherein the high-voltage power source is arranged concentrically around the accelerator. 上記高電圧電源と上記加速器の対応する段部が電気的に接続されてなる請求項1〜4のいずれかに記載のラザフォード後方散乱分析装置。   The Rutherford backscattering analyzer according to any one of claims 1 to 4, wherein the high voltage power supply and the corresponding step portion of the accelerator are electrically connected. 上記高電圧電源が,コッククロフト・ウォルトン回路或いはこれに準じる多段型昇圧式高電圧電源である請求項1〜5のいずれかに記載のラザフォード後方散乱分析装置。   The Rutherford backscattering analyzer according to any one of claims 1 to 5, wherein the high-voltage power supply is a Cockcroft-Walton circuit or a multistage boost type high-voltage power supply conforming thereto.
JP2003398522A 2003-11-28 2003-11-28 Rutherford backscattering analyzer Expired - Fee Related JP4442859B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003398522A JP4442859B2 (en) 2003-11-28 2003-11-28 Rutherford backscattering analyzer
TW093133383A TWI287950B (en) 2003-11-28 2004-11-02 High-voltage generator and accelerator using same
US10/981,531 US7218500B2 (en) 2003-11-28 2004-11-05 High-voltage generator and accelerator using same
KR1020040097754A KR100679593B1 (en) 2003-11-28 2004-11-26 High-voltage generator and accelerator using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003398522A JP4442859B2 (en) 2003-11-28 2003-11-28 Rutherford backscattering analyzer

Publications (2)

Publication Number Publication Date
JP2005158632A JP2005158632A (en) 2005-06-16
JP4442859B2 true JP4442859B2 (en) 2010-03-31

Family

ID=34723347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003398522A Expired - Fee Related JP4442859B2 (en) 2003-11-28 2003-11-28 Rutherford backscattering analyzer

Country Status (1)

Country Link
JP (1) JP4442859B2 (en)

Also Published As

Publication number Publication date
JP2005158632A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
US8148922B2 (en) High-current DC proton accelerator
US7218500B2 (en) High-voltage generator and accelerator using same
WO2016063325A1 (en) Scanning electron microscope
JP4442859B2 (en) Rutherford backscattering analyzer
CN108701575B (en) Target assembly for x-ray emitting device and x-ray emitting device
CN115988728A (en) Neutron generator
US3371238A (en) Neutron generator
JP4260036B2 (en) High voltage generator
US9548182B2 (en) Charged particle beam generating apparatus, charged particle beam apparatus, high voltage generating apparatus, and high potential apparatus
JP7255952B2 (en) ion beam source
Bayanov et al. Vacuum insulation tandem accelerator for NCT
JP3167207B2 (en) Ion accelerator
Burov et al. Fermilab Electron Cooling project: Commissioning of the 5 MeV recirculation test set-up
Ciuti A study of ion beams produced by a duoplasmatron ion source
Yan et al. Plasma diagnosis in a miniature penning ion source by a mass-energy analyer
JPH0689682A (en) Ion accelerating device
Koudijs et al. Introduction of the new high voltage, engineering (HVE) accelerator for high energy/high current ion implantation
Bogomolov et al. Investigation of 2.45 GHz ECR Ion Source for Production of Radioactive Ion Beams.
Ames et al. Charge State Breeding with an ECRIS for ISAC at TRIUMF
JP2019102162A (en) High voltage potential plasma generation device and ion source
Zavjalov et al. Electrical insulation problem in quasi-stationary high-current relativistic e-beam injectors
JP2018120774A (en) Electrostatic accelerator
Cojocaru et al. A microwave plasma cathode for the high‐current CHORDIS ion source
JP2006127832A (en) Insulation method of high voltage generating circuit and charged particle accelerator
Bizyukov et al. Gas-discharge neutralizer for ion-beam system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100108

R150 Certificate of patent or registration of utility model

Ref document number: 4442859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees