JP2005227803A - 光ファイバアレイ - Google Patents

光ファイバアレイ Download PDF

Info

Publication number
JP2005227803A
JP2005227803A JP2005140194A JP2005140194A JP2005227803A JP 2005227803 A JP2005227803 A JP 2005227803A JP 2005140194 A JP2005140194 A JP 2005140194A JP 2005140194 A JP2005140194 A JP 2005140194A JP 2005227803 A JP2005227803 A JP 2005227803A
Authority
JP
Japan
Prior art keywords
optical fiber
heating
optical fibers
core
fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005140194A
Other languages
English (en)
Inventor
Mitsuaki Tamura
充章 田村
Eiichiro Yamada
英一郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005140194A priority Critical patent/JP2005227803A/ja
Publication of JP2005227803A publication Critical patent/JP2005227803A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

【課題】 融着接続した後にTEC処理を行なう加熱で、熱により光ファイバが変形したり、ファイバ被覆が焦げたり、多芯の光ファイバで加熱にばらつきが生じず、しかもTEC長を所定の領域に限定した光ファイバアレイを提供する。
【解決手段】 モードフィールド径が互いに異なる異種光ファイバ1aと1bとを融着接続した後、光ファイバ1a,1bの融着接続部5の近傍を加熱台11,12として用いられる基板上に載置する。加熱台は、セラミックスで形成され、内面側に融着接続部近傍に接する凸部11a,12aを備えており、融着接続部が凸部に接するように載置される。この状態で熱源6により加熱し、加熱台を介して光ファイバを加熱して、接続部のモードフィールド径を一致させた光ファイバアレイが得られる。
【選択図】 図1

Description

本発明は、モードフィールド径が互いに異なる異種光ファイバ同士の融着接続した融着接続部を有する光ファイバアレイに関するものである。
近年、波長多重伝送用光ファイバやラマン増幅用光ファイバ等のモードフィールド径を小さくした高機能光ファイバを、モードフィールド径が比較的大きい通常のシングルモード光ファイバと組合わせたハイブリッド光ファイバの開発が進められている。光ファイバのモードフィールド径またはコア径(以下、両者を含めてコア径という)が異なる前記の高機能光ファイバと、通常のシングルモード光ファイバの接続では、単に融着接続したのみでは実用的な接続損失が得るのが難しい。このため、融着接続部を加熱処理して、接続部のコア径を一致させるようにテーパー状にして、滑らかな接続形状にする方法(Thermally Expanded Core 、以下、TECという)が知られている(例えば、特許文献1参照)。
図9は、上述の融着接続後に加熱によるTEC処理の一例を示す図である。図9(A)は、コア径の異なる光ファイバ同士を融着接続した後にTECの加熱処理を示す図、図9(B)はバーナーによる加熱でTEC処理を行なった後の状態を示す図である。図中、1a,1bは光ファイバ、2a,2bはガラスファイバ部(クラッド部)、3a,3bはコア部、4a,4bはファイバ被覆、5は融着接続部、6はバーナー、7はコア拡大部である。
互いに融着接続する光ファイバ1aと1bは、ガラスファイバ部(クラッド部)2a,2bの外径は同じであるが、コア部3aと3bのコア径および比屈折率差が異なる。光ファイバ1aと1bは、図9(A)に示すように接続端面を対向配置させた後、アーク放電等により接続端面を溶融して突合せ融着する。単に融着接続しただけでは、融着接続部5において、光ファイバ1aのコア部3aと光ファイバ1bのコア部3bのコア径の違いにより、接続が不連続となり接続損失が大きくなる。
これを改善するために、燃焼ガスを用いたマイクロトーチまたはバーナー6で融着接続部5の近傍を加熱しTEC処理する。この加熱は、光ファイバ1a,1b自身は溶融しないが、コア部3a,3bに添加されている屈折率を上げるドーパント剤がクラッド部側に拡散する温度と時間で行なわれる。この加熱により、コア部3a,3bに添加されているドーパント剤がクラッド部2a,2b側に拡散して、コア部3a,3bのコア径が拡大される。コア径が小さくドーパント濃度が高い方の光ファイバ1aは、コア径が大きくドーパント濃度が低い方の光ファイバ1bより、ドーパント剤が多く拡散する。
このTEC処理を行なうことにより、図9(B)に示すように、コア径が小さい光ファイバ1aのコア部3aのコア径がより大きくテーパー状に拡大されて、コア径の大きい光ファイバ1bのコア部3bとの不連続状態を軽減する。このような異種光ファイバ同士を融着接続する場合は、上述したTEC処理を行なうことで、コア径の小さい光ファイバを、他方の光ファイバのコア径に徐々に近づけ、接続損失を低減できることが明らかになっている。また、このような加熱によるTEC処理は、同種の光ファイバ同士の接続でも、融着接続部分のコア径を拡大して偏心等による接続損失を低減することに有効であることが知られている(例えば、特許文献2参照)。
しかし、高強度の融着接続を行なう場合、ファイバ被覆4a,4bを除去してガラスファイバ部2a,2bを露出させる距離をできるだけ短くし、ファイバ被覆4a,4bを直接クランプする方法が行なわれている。このような場合、図10(A)に示すように、バーナー6の炎の広がりにより、ファイバ被覆4a,4bの被覆除去端8が焦げたり溶融することがある。このためファイバ被覆4a,4bをバーナー6の炎より十分離れた位置まで除去する必要があり、高強度接続が行なえなくなる。
また、TEC処理は、コア部3a,3bのドーパント剤がクラッド部2a,2bに拡散するのに十分な温度と時間で加熱する必要がある。光ファイバ1a,1bは融点以下で加熱されるが、図10(B)に示すように、加熱部分9が軟化して光ファイバの自重で弛みを生じることがある。弛みによる変形が残ると損失増加の一因となる。さらに、バーナーの炎は、不均一な温度分布と広がりを有し、また、外部環境により炎にゆらぎが生じ、一定した加熱状態に管理するのが難しい。このため、TEC長にばらつきが生じ、TEC処理される領域が必要以上に長くなると、製造時のハンドリングが不便となり、強度面でも不利となる。また、光ファイバアレイのような光部品に組み込まれる場合は、光部品の小型化、高密度実装ができなくなる。
また、光ファイバテープ芯線等で、例えば、8芯、12芯、24芯といった多芯の光ファイバを一括融着して、これをTEC処理することがある。この場合、図10(C)に示すようにバーナー6の炎は、炎の中心部分より外側部分の方が加熱温度が高く、均一に加熱されない。このため、光ファイバ配列の外側芯と内側芯でTEC処理に差が生じ、接続損失にばらつきが生じるというような問題がある。
特許第2618500号公報 特開61−117508号公報
本発明は、上述した事情に鑑みてなされたもので、融着接続した後に融着接続部にTEC処理を行なう加熱で、熱により光ファイバが変形したり、ファイバ被覆が焦げたり、多芯の光ファイバで加熱にばらつきが生じず、しかもTEC長を所定の領域に限定できる光ファイバアレイを提供することを課題とする。
本発明の光ファイバアレイは、モードフィールド径が互いに異なる異種光ファイバ同士を融着接続した融着接続部を基板内に含む光ファイバアレイであって、前記基板はセラミックスで形成され、前記基板の内面に前記光ファイバの融着接続部近傍に接する凸部を備えていることを特徴とするものである。
本発明によれば、TEC処理のための加熱により、光ファイバが軟化変形するのを防止することができる。また、多芯光ファイバに対しては、均一な加熱で全光ファイバにばらつきのないTEC処理がされた光ファイバアレイを提供することができる。さらに、TEC長を所定の領域に限定して行なわれた光ファイバアレイを提供でき、信頼性のある高品質で接続損失の小さい融着接続が得られ、光ファイバアレイの小型化も可能となる。
モードフィールド径が互いに異なる異種光ファイバ同士が融着接続された光ファイバアレイの融着接続部を、加熱台として用いられる基板に載置する。基板はセラミックスで形成され、基板の内面側に光ファイバの融着接続部近傍に接する凸部が備えられており、融着接続部の近傍が凸部に載置される。このようにして融着接続部が基板に載置された状態で融着接続部の近傍を加熱して、TEC処理を行なうことにより、コア径が小さい光ファイバのコア部のコア径がテーパー状により大きく拡大されて、コア径の大きい光ファイバのコア部との不連続状態を軽減する。
図1は、本発明の第1の実施例を説明するためのもので、図1(A)および図1(B)は加熱台を用いて融着接続部を加熱する図、図1(C)は加熱により光ファイバの融着接続部がTEC処理された状態を示す図である。図中、11、12は加熱台を示し、他は図9に示した符号と同じ符号を用いることにより説明を省略する。
図9で説明したのと同様に、互いに融着接続する異種光ファイバ1aと1bは、ガラスファイバ部(クラッド部)2aと2bの外径は同じであるが、コア部3aと3bのモードフィールド径(以下、コア径という)および比屈折率差が異なる。例えば、光ファイバ1aのコア径を5μm位、光ファイバ1bのコア径を10μm位の場合がある。光ファイバ1aと1bは、図1(A)に示すように、接続端面を対向配置させた後、アーク放電等により接続端面を溶融して突合せ融着される。単に融着接続しただけでは、融着接続部5において、光ファイバ1aのコア部3aと光ファイバ1bのコア部3bのコア径の違いにより、接続が不連続となり接続損失が大きくなる。
このコア部3a,3bの不連続状態を解消するために、融着接続部5の近傍を加熱してTEC処理する。本発明では、この加熱に加熱台11を用い、この上に融着接続された後の光ファイバを載置し、加熱台11をバーナー6等で加熱して行なう。すなわち、光ファイバの融着接続部5の近傍を、加熱台11を介して加熱する。加熱台11は、耐熱性で熱伝導性がよく、熱膨張係数が光ファイバガラスに近いセラミックス等の材料で形成し、好ましくは窒化アルミニウムを用いるとよい。また、コスト的には高価ではあるがダイヤモンドを用いることもできる。特に窒化アルミニウムを用いた場合は、表面粗さを小さく仕上げることができ、接触するガラスファイバ部分を傷を付けないようにすることができる。加熱台11には、融着接続部5の近傍を載置する凸部11aが設けられている。
光ファイバ1a,1bの加熱は、加熱台11からの熱伝導と輻射により行なわれ、バーナー6からの炎が回り込んで光ファイバに直接当たることはない。このため、光ファイバを均一に加熱することができる。また、光ファイバ1a,1bは加熱台11上に載置されているため、加熱により光ファイバ1a,1bが軟化するようなことがあっても、図7(B)に示すような弛みが生じず、これによる変形がなく、損失増加を防止することができる。
図1(B)の加熱台12は、光ファイバ軸方向の長さLを光ファイバ被覆4a,4bの端部をバーナー6の視界から遮蔽する長さとし、光ファイバ1a,1bに接触する凸部12aの長さXをTEC長さとした例を示す。加熱台12の凸部12a上に載置された融着接続部5の近傍の加熱範囲は、凸部12aの長さXにより限定され、均一な温度分布で加熱することができる。これにより、TEC領域が必要以上に広がらないようにすることができる。また、加熱台12の下部は、ファイバ被覆4a,4bの端部近くまで延ばすことにより、図10(A)で示したようなバーナー6の炎でファイバ被覆4a,4bの端部を焦がしたり溶融するのを防止することができる。
加熱台11,12を介して光ファイバを加熱するのに、光ファイバ1a,1b自身は溶融しないが、コア部3a,3bに添加されているドーパント剤がクラッド部2a,2b側に拡散を生じさせる温度と時間で行なう。加熱台11,12の温度検出は容易なので、加熱の制御も容易に行なうことができる。この加熱により、コア部に添加されているドーパント剤がクラッド部2a,2b側に拡散して、コア部3a,3bのコア径がコア拡大部7のように拡大される。コア径が小さくドーパント濃度が高い方の光ファイバ1aは、コア径が大きくドーパント濃度が低い方の光ファイバ1bより、ドーパント剤が多く拡散する。このTEC処理を行なうことにより、図1(C)に示すように、コア径が小さい光ファイバ1aのコア部3aのコア径がテーパー状により大きく拡大されて、コア径の大きい光ファイバ1bのコア部3bとの不連続状態を軽減する。
図2は本発明の第2の実施例を説明するためのもので、図2(A)は単心光ファイバの例を示す図、図2(B)は多芯光ファイバの例を示す図、図2(C)は他の加熱例を示す図である。図中、13は加熱台、14はV溝、15は蓋部材を示し、他は図1に示した符号と同じ符号を用いることにより説明を省略する。
この実施の形態は、加熱台13上に載置した光ファイバ1a,1bを蓋部材15を用いて軽く押えることで、光ファイバ1a,1bを加熱台13から浮き上がらないように接触保持させることができる。光ファイバ1a,1bが加熱台13に確実に接触させることで、熱伝導を均一にし安定した加熱を行なうことができる。加熱台13および蓋部材15は、図1の場合と同様に、耐熱性で熱伝導性がよく、熱膨張係数が光ファイバガラスに近いセラミックス等の材料で形成する。バーナー6は、加熱台13の下面側に配され、加熱台13を介して光ファイバ1a,1bの所定の範囲を均一に加熱してTEC処理を行なう。
また、この第2の実施の形態で、加熱台13は、上面に溝を設けた形状とすることができる。溝の形状としては、図に示すように、一般に光ファイバの位置決めに多く使用されているV溝14で形成するのが好ましい。図2(B)の多芯の場合は、バーナー6の炎の噴出口をマトリックス状に設け、光ファイバの配列方向の加熱が均一に行なわれるようにする。多心の場合、バーナー6の炎が直接光ファイバに当たることがなく、炎の回り込みもないので、図10(C)に示したような炎の中心部分と外側部分との温度差により、光ファイバ配列位置での加熱温度に差は生じない。したがって、多芯の全光ファイバに対して、TEC処理を均一に行なうことができる。
光ファイバ1a,1bは、加熱台13のV溝14で保持されるので、図1の場合と比べ加熱台13との接触個所が増え、側面からの輻射も増加するので加熱の均一性を高めることができる。また、蓋部材15で押えることにより、高精度の位置決めができ、光ファイバ1a,1bが加熱により軟化することがあっても、湾曲が抑制されて真直性を保つことができる。
また、バーナー6は、蓋部材15側に配し、蓋部材15側を加熱するようにすることもできる。この場合、蓋部材15が加熱台の役目をなす。さらに、図2(C)に示すように、バーナー6を加熱台13と蓋部材15の両側に配し、上下両側から加熱するようにしてもよい。この場合、光ファイバへの加熱の均熱性をより高めることができる。
図3は、第3の実施例を説明するためのもので、図3(A)は加熱台の斜視図、図3(B)はV溝を用いた例を示す図、図3(C)は半円溝を用いた例を示す図である。図中、16は半円溝を示し、他は図2に示した符号と同じ符号を用いることにより説明を省略する。
この実施の形態は、図2(C)の変形例で、V溝14を設けた加熱台13を上下に配したものである。すなわち、蓋部材15側にもV溝14を設けたのと同等の構成としたものである。光ファイバ1a,1bは、上下のV溝14で位置決め保持されるので、位置決め精度が高く、また、上下にバーナー6を配することにより、加熱の均一性は図2(C)と比べて、さらに良好にすることができる。
図3(C)は、図3(B)の構成において、光ファイバ1a,1bの位置決め用のV溝14を、半円溝16で形成したものである。また、図には示していないが、図2に示すように、半円溝16を設けた加熱台13と溝を有しない蓋部材15を用いて、バーナー6を下方のみ、上方のみ、または下方と上方の両方に配して使用してもよい。光ファイバ1a,1bの位置決め溝を半円溝16とすることにより、光ファイバ1a,1bとの接触面積が広がる。したがって、半円溝16で形成したものは、V溝14で形成したものと比べて、加熱の均一性はさらに向上させることができる。
図4は、第4の実施例を説明するためのもので、図4(A)は単心光ファイバの例を示す図、図4(B)は多芯光ファイバの例を示す図、図4(C)は他の加熱例を示す図である。図中の符号は、図2に示した符号と同じ符号を用いることにより説明を省略する。
図1の例のように、光ファイバが加熱台13に載置されて光ファイバの上方が露出されていると、作業環境によっては、光ファイバの露出面から熱が放散されて熱の均一性が欠けることが想定される。また、図2の例のように蓋部材15で上側を覆っても、加熱台13と加熱台13と蓋部材15の両端が開いていると、この部分の熱が逃げやすく、同様に熱の均一性に欠けることが想定される。そこで、この第4の実施の形態では、蓋部材15の両側が加熱台13の上面に接触するように脚部15cを有する形状として、加熱台13に載置されている光ファイバ1a,1bの加熱部分の全体を囲うようにしている。
この構成により、光ファイバの加熱部分の露出面をなくし、熱の放散を抑制することができる。また、蓋部材15には、加熱台13の熱が脚部15cを介して伝達され、光ファイバ1a,1bを蓋部材15側からも加熱することとなり、加熱効率と加熱の均一性を向上させることができる。なお、蓋部材15の脚部15cが、加熱台13の面に接することから、図2のように光ファイバ1a,1bを加熱台13側に押しつける機能は多少薄れるが、外周を囲うことで加熱および熱の均一性は維持することができる。
また、図4(B)のように多芯光ファイバの場合においても、蓋部材15も脚部15cを介して熱せられ、蓋部材15側からも全光ファイバに対して加熱が行なわれ、加熱効率と加熱の均一性を高めることができる。さらに、図4(C)に示すように、図2(C)の例と同様に蓋部材15側もバーナー6で加熱するようにしてもよい。この場合、脚部15cを通じて、加熱台13と蓋部材15との温度が均一化され、全光ファイバに対する加熱の均一性を一層高めることができる。
図5は、第5の実施例を説明するためのもので、図5(A)は単心光ファイバの例を示す図、図5(B)は多芯光ファイバの例を示す図である。図中、17は無機分粉末材で、他の符号は、図2に示した符号と同じ符号を用いることにより説明を省略する。
図4の例のように、光ファイバ1a,1bの加熱部分が露出されないようにしても、加熱台13または蓋部材15と光ファイバとの間に空隙があると、加熱が均一に行なえないことが想定される。空気は熱伝導性が良くないことから、光ファイバが加熱台13または蓋部材15と接触する部分と、接触しない部分では加熱の均一性が欠けることが想定される。そこで、この第5の実施の形態では、図4に示したような蓋部材15の脚部15cで形成される光ファイバを囲う凹部分を少し大きめに形成し、この凹部分に無機粉末材17を充填して、光ファイバ周囲の空隙を可能な限り少なくするようにしている。
無機粉末材17には、少なくとも光ファイバガラス程度の軟化温度を有する高融点で、熱伝導性のよい微少粉末、例えば、窒化アルミニウム粉末を用いるとよい。この無機粉末材は、例えば、水やアルコールを加えて流動性のある状態にして、空隙部に充填する。また、加熱台13にV溝14が設けられている場合、V溝と光ファイバとの間に生じる空隙部にも充填するのが好ましい。加熱により水やアルコールは蒸発するが、充填される空隙部分は微少なため無機粉末は空隙内に残り、空隙体積を減じるとともに加熱台13および蓋部材15からの熱を伝達し、光ファイバ1a,1bの加熱を均一に行なうことができる。
図6は、第6の実施例を説明するためのもので、図6(A)は単心光ファイバの例を示す図、図6(B)は多芯光ファイバの例を示す図である。図中の符号は、図2および図5に示した符号と同じ符号を用いることにより説明を省略する。
図5の例のように、蓋部材15の凹部分に無機粉末材17を充填するのは、粉末材の流出や充填量に気を遣うなど作業性に多少の難がある。そこで、この第6の実施例では、蓋部材15を用いずに光ファイバ1a,1bを加熱台13に載置した上からに無機粉末材17を直接付与する。無機粉末材17は、比較的耐熱性のある樹脂等に混合して粘土状にし、押し型等を用いて光ファイバ1a,1bを加熱台13上に無機粉末材17とともに固定する。また、加熱台13にV溝14が設けられている場合、V溝と光ファイバとの間に生じる空隙部にも充填するのが好ましい。なお、V溝14内には粘土状にしない粉末形状のままで充填してもよい。
無機粉末材17は、光ファイバ1a,1bの加熱部分の露出部を外囲気から完全に覆い、露出部からの熱放散を防止し、加熱台13から無機粉末材17に伝達された熱は、光ファイバの露出部側からも加えられ光ファイバの加熱を均一に行なうことができる。なお、加熱により無機粉末材を保持して樹脂材が焼失または炭化するが、最終的には無機粉末材は除去するので、特に問題とはならない。
図7は、バーナーの代わりに発熱抵抗ヒーターを用いた実施の形態を示す図である。図中、18は発熱抵抗ヒーター、19は温度検出器、20は温度制御器を示し、他は図2に示した符号と同じ符号を用いることにより説明を省略する。
発熱抵抗ヒーター18は、加熱台13または蓋部材15に図のように埋設した構成の他に、加熱台13または蓋部材15の外面に貼り付けた構成や隣接して配置した構成としてもよい。加熱台13または蓋部材15の加熱温度は、埋設または外面に貼り付けた温度検出器19により容易に検出することができる。この温度検出器19からの温度検出信号を温度制御器20に入力し、ヒーター電流を調整することにより、加熱台13または蓋部材15の加熱温度を制御することができ、温度管理が容易で安定したTEC処理を行なうことができる。
図8は、平面導波路との結合に用いる光ファイバアレイに適用した例を示す図である。図8(A)はTEC処理状態を示す図、図8(B)はTEC処理後の状態を示す図、図8(C)は光ファイバアレイを示す図、図8(D)は光ファイバアレイのa−a断面を示す図である。図中、21は接着剤、22は切断面を示し、他は図1,図2に示した符号と同じ符号を用いることにより説明を省略する。
平面導波路と光ファイバとの結合で、例えば、平面導波路とはコア径の小さい光ファイバで結合し、線路側は通常のコア径を有する光ファイバとする場合がある。このため、結合用の光ファイバアレイで、通常のコア径を有する光ファイバの先端にコア径の小さい光ファイバを融着接続して使用される。融着接続部は上述したTEC処理して接続損失を減じている。しかし、TEC長が長くなると光ファイバアレイ寸法が大きくなり、光部品の小型化、高密度実装を妨げることとなる。また、光ファイバアレイの製造時のハンドリングの不便さもあったが、本発明の加熱台を用いることにより、これらの問題を解決することが可能となる。
図8(A)において、互いに融着接続されたコア径の小さい光ファイバ1aとコア径の大きい光ファイバ1bを、図2で説明したように単芯または多心用のV溝を有する加熱台13上に載置し、蓋部材15で押えて位置決めする。加熱台13および蓋部材15は、窒化アルミニウムのような耐熱性、熱伝導性に優れ、熱膨張係数が光ファイバガラスに近いセラミックス等の材料で形成する。
また、加熱台13および蓋部材15は、光ファイバ1a,1bのファイバ被覆4a,4bの端部分を覆うような長さを有し、光ファイバ1a,1bと接触する凸部13aおよび15aの長さを、所定のTEC長が得られるように設定してある。なお、TEC処理は必要としないが、光ファイバ1a側の位置決めを正確に行なうための凸部13bおよび15bを、凸部13a、15aから離れた位置に設けることができる。光ファイバ加熱台13および蓋部材15は、バーナー6より加熱され、光ファイバ1a,1bの融着接続部の近傍をTEC処理する。
図8(B)は、TEC処理後の状態を示し、光ファイバ1a,1bの融着接続部近傍は、コア拡大部7が形成され、コア径の不連続状態がテーパー状にスムーズになるようにされる。TEC処理が終えた後、加熱台13および蓋部材15は取外さずにそのまま光ファイバアレイの基板として使用する。光ファイバ1a,1bと加熱台13、蓋部材15との隙間部分に接着剤21を流し込み、光ファイバ1a,1bを加熱台13、蓋部材15に接着一体化する。この後、鎖線Y−Yで示す位置で、コア径の小さい方の光ファイバ1aを加熱台13、蓋部材15の一部とともに切断する。なお、光ファイバ1aの位置決め用の凸部13b,15bも、この切断で除去される。
図8(C)は、光ファイバ1a側を切断除去して形成した光ファイバアレイ23を示し、切断された切断面22は研磨処理される。切断面22には、コア径の小さい方の光ファイバ1aが露出されて平面導波路の光路と結合され、反対側は、コア径の大きい方の光ファイバ1bが接着剤21で封止された形で導出される。加熱台13と蓋部材15は、光ファイバアレイ23を構成する基板13’および15’として使用される。図5(D)は、光ファイバアレイ23のa−a断面で、複数の光ファイバ1aをV溝14で正確に位置決めされている状態を示し、基板13’と15’間ならびに光ファイバとの隙間には、接着剤21を充填して一体化されている。
加熱台13および蓋部材15は、凸部13a,15aにより加熱領域が正確に規制され、所定のTEC長で形成することができるので、光ファイバアレイの形状を必要最小限の大きさで形成することができる。また、加熱台13および蓋部材15をそのまま光ファイバアレイ23の基板13’,15’として使用することにより、加熱台13から光ファイバを外して他の基板に組み込む必要がなくなり、作業性がよくなる。さらに、TEC処理後に光ファイバを加熱台からの外して基板に移す搬送作業時に、光ファイバを傷つけやすいが、このような傷を発生する機会を少なくでき、信頼性の高い光ファイバアレイとすることができる。以上、光部品への適用について、光ファイバアレイの例を用いて説明したが、異種光ファイバの融着接続部を内蔵させた他の光部品にも適用することができる。
また、図5で説明したように、図8の光ファイバアレイ23の製造に際して、TEC処理を行なう凸部13a,15aの間に無機粉末材を充填して加熱することができる。この光ファイバアレイ23では、加熱台13、蓋部材15をそのまま基板13’,15’として用いるので、無機粉末材は加熱後に除去する必要がない。したがって、この場合、無機粉末材は加熱により溶融し接着性を有するものであってもよいので、シリカまたはアルミナを主成分とする無機接着剤(例えば、(株)バイオロゴス製のセラムースSA2000)を用いることができる。また、低融点のガラス微粉末(例えば、日本電気硝子(株)製のアルミナ封着用ガラス粉末や低膨張セラミックス封着用ガラス粉末)を水またはアルコールを加えて充填しやすいようにして用いることができる。
基板13’,15’の凸部13a,15aと光ファイバ1a,1bとの間の隙間に充填された無機接着剤は、TEC処理の加熱において、隙間部分からの熱が放散されるのを防ぎ光ファイバ1a,1bの加熱を均一にする。また、加熱終了後は、基板13’,15’と光ファイバ1a,1bとを一体化する接着剤としての機能も備えることができる。
本発明によれば、TEC処理のための加熱により、光ファイバが軟化変形するのを防止することができ、均一な加熱で全光ファイバにばらつきのないTEC処理がされた光ファイバアレイを提供することができる。
本発明の第1の実施例を説明する図である。 本発明の第2の実施例を説明する図である。 本発明の第3の実施例を説明する図である。 本発明の第4の実施例を説明する図である。 本発明の第5の実施例を説明する図である。 本発明の第6の実施例を説明する図である。 本発明の加熱源に発熱抵抗ヒーターを用いる例を示す図である。 本発明を光ファイバアレイに適用する例を示す図である。 従来の加熱方法とTEC処理を説明する図である。 従来の問題点を説明する図である。
符号の説明
1a,1b…光ファイバ、2a,2b…ガラスファイバ部(クラッド部)、3a,3b…コア部、4a,4b…ファイバ被覆、5…融着接続部、6…バーナー、7…コア拡大部、11,12,13…加熱台、14…V溝、15…蓋部材、16…半円溝、17…無機粉末材、18…発熱抵抗ヒーター、19…温度検出器、20…温度制御器、21…接着剤、22…切断面、23…光ファイバアレイ。

Claims (5)

  1. モードフィールド径が互いに異なる異種光ファイバ同士を融着接続した融着接続部を基板内に含む光ファイバアレイであって、前記基板はセラミックスで形成され、前記基板の内面に前記光ファイバの融着接続部近傍に接する凸部を備えていることを特徴とする光ファイバアレイ。
  2. 前記セラミックスは窒化アルミニウムであることを特徴とする請求項1に記載の光ファイバアレイ。
  3. 前記凸部と前記光ファイバとの間隙に無機接着剤が充填されていることを特徴とする請求項1または2に記載の光ファイバアレイ。
  4. 前記無機接着剤は、シリカまたはアルミナを主成分とすることを特徴とする請求項3に記載の光ファイバアレイ。
  5. 前記無機接着剤は、低融点ガラス粉末であることを特徴とする請求項3に記載の光ファイバアレイ。
JP2005140194A 2005-05-12 2005-05-12 光ファイバアレイ Pending JP2005227803A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005140194A JP2005227803A (ja) 2005-05-12 2005-05-12 光ファイバアレイ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005140194A JP2005227803A (ja) 2005-05-12 2005-05-12 光ファイバアレイ

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001290845A Division JP3753040B2 (ja) 2001-09-25 2001-09-25 光ファイバ融着接続部の加熱方法および加熱装置

Publications (1)

Publication Number Publication Date
JP2005227803A true JP2005227803A (ja) 2005-08-25

Family

ID=35002503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005140194A Pending JP2005227803A (ja) 2005-05-12 2005-05-12 光ファイバアレイ

Country Status (1)

Country Link
JP (1) JP2005227803A (ja)

Similar Documents

Publication Publication Date Title
JP3753040B2 (ja) 光ファイバ融着接続部の加熱方法および加熱装置
JP4368844B2 (ja) エッチングによる先細型光ファイバ束、およびその製法
JP6477890B2 (ja) 光接続部品
JP2008277582A (ja) 光ポンピングデバイス用マルチコアファイバとその製造方法、光ポンピングデバイス、ファイバレーザ及びファイバ増幅器
JP3158105B2 (ja) コア拡散光ファイバーの製造方法
JP5224317B2 (ja) 光導波路部品および光導波路部品の製造方法
US6883975B2 (en) Connector ferrule and method of sealing
US7236669B2 (en) Fiber fuse stopper
WO2015155994A1 (ja) 光ファイバアセンブリ及び光結合装置、光ファイバ結合装置
JP2012002959A (ja) 光ファイバ及びその製造方法
JP2004205654A (ja) スポットサイズ変換用光ファイバ部品及びその製造方法
JP4684130B2 (ja) モードフィールド変換器の製造方法
US6597853B2 (en) Device packaging and method
JP2005227803A (ja) 光ファイバアレイ
JP2005017702A (ja) 光コネクタおよびその接続構造
JP2007165822A (ja) 光ポンピングデバイス、光増幅器、ファイバレーザ及び光ポンピングデバイス用マルチコアファイバ
JP2005300596A (ja) 複合光ファイバ、光コネクタ、及び、光コネクタ付光ファイバ
WO2020027125A1 (ja) 光接続部品
JP2009092940A (ja) 光パワーモニターおよびその製造方法
JP2005062338A (ja) 光コネクタの製造方法
CA2570905A1 (en) Method and apparatus for heating fusion spliced portion of optical fibers and optical fiber array
JP2005024842A (ja) 光ファイバ端部の封止構造及びその封止方法
JP2005345701A (ja) ファイバフューズストッパ
JP2018063455A (ja) 光ファイバ
JP2008076983A (ja) 光ファイバカップラー、光ファイバの結合構造及び結合方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080116