JP2005224892A - Polishing method - Google Patents

Polishing method Download PDF

Info

Publication number
JP2005224892A
JP2005224892A JP2004035055A JP2004035055A JP2005224892A JP 2005224892 A JP2005224892 A JP 2005224892A JP 2004035055 A JP2004035055 A JP 2004035055A JP 2004035055 A JP2004035055 A JP 2004035055A JP 2005224892 A JP2005224892 A JP 2005224892A
Authority
JP
Japan
Prior art keywords
polishing
workpiece
carrier
thickness
grindstone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004035055A
Other languages
Japanese (ja)
Inventor
Hiromitsu Yoshida
浩充 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Kento Co Ltd
Original Assignee
Nippon Tokushu Kento Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tokushu Kento Co Ltd filed Critical Nippon Tokushu Kento Co Ltd
Priority to JP2004035055A priority Critical patent/JP2005224892A/en
Publication of JP2005224892A publication Critical patent/JP2005224892A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing method providing a polished surface with favorable surface roughness, a little shear droop and superior dimension accuracy. <P>SOLUTION: When the both sides of a polishing work 1 are polished flat when polishing them with pads and slurry by a double-sided grinder or polishing them with a grinding wheel, the polishing is performed by making the thickness of a carrier 2 for retaining the polishing work 1 same as the finishing thickness of the work, which enables ultra low pressure machining to provide the favorable surface roughness. The carrier 2 serves as a dummy material of the outer circumferential part of the polishing work 1. This method can thus polish the work without any shear droop and improve the thickness dimension accuracy. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、両面研磨機において研磨パッドとスラリーや、砥石により研磨ワークの両面を研磨する両面研磨方法に関するものである。   The present invention relates to a double-side polishing method for polishing both surfaces of a polishing workpiece with a polishing pad and slurry or a grindstone in a double-side polishing machine.

基板の両面を研磨する場合、片面ずつ研磨を行うとワークの台座へのワックス等での貼り付け作業や表裏を返す手間等があり、またワックスの付着の均一度合いによっては両面の平行度の精度を上げることが困難である。この為、優れた表裏面の平行度や研磨面の平坦度の必要なものは、鋳鉄、錫等の金属定盤やポリウレタン製や不織布の研磨パッドで研磨ワークの両面を押圧してスラリーを供給して研磨されるか、あるいは砥石を研磨ワークの両面から押圧して研削液を供給しながら両面を同時に研磨されている。たとえば磁気記録用アルミ基板や水晶発振子等は、優れた表裏の平行度が要求されるため、現状、両面同時研磨で研磨されている。   When polishing both sides of the substrate, polishing one side at a time may cause the work of attaching the wax to the work pedestal with wax, etc., and the trouble of returning the front and back, etc. Also, depending on the uniform degree of wax adhesion, the accuracy of parallelism of both sides Is difficult to raise. For this reason, if you need excellent parallelism on the front and back surfaces and flatness of the polished surface, supply slurry by pressing both surfaces of the workpiece with a metal surface plate such as cast iron or tin, or a polishing pad made of polyurethane or nonwoven fabric. Or both surfaces are simultaneously polished while supplying a grinding liquid by pressing a grindstone from both surfaces of the polishing workpiece. For example, an aluminum substrate for magnetic recording, a crystal oscillator, and the like are polished by simultaneous double-side polishing because they require excellent parallelism between the front and back surfaces.

通常両面研磨機では、上下の定盤や研磨パッドもしくは砥石によって基板等の研磨ワークを両側から押圧し、研磨パッドや砥石を回転させ、研磨ワークは、キャリア内に保持され研磨される。このキャリアは両面研磨機のサンギアとインターナルギアにキャリア外周のギアでかみ合い自転と公転をさせられる。
この際通常、定盤や研磨パッドの場合は、研磨ワークとの間に砥粒を含んだスラリーを供給し、砥石の場合は砥粒を含まない研削液を供給して研磨する。
Usually, in a double-side polishing machine, a polishing work such as a substrate is pressed from both sides by upper and lower surface plates, a polishing pad or a grindstone, and the polishing pad and the grindstone are rotated. The polishing work is held in a carrier and polished. This carrier can be rotated and revolved by meshing the sun gear and internal gear of the double-side polishing machine with the gear on the outer periphery of the carrier.
In this case, usually, in the case of a surface plate or a polishing pad, a slurry containing abrasive grains is supplied between the polishing work and in the case of a grindstone, a polishing liquid containing no abrasive grains is supplied for polishing.

一般に、定盤では、弾性率が100GPaを超える鋳鉄や銅製、あるいは50GPa程度の錫製の定盤が多く用いられており、研磨パッドについては、2000MPa以下の樹脂製パッドや、100MPa程度以下の発泡ウレタン、不織布等のパッドが使用されている。また砥石については、10GPa以上もあるビトリファイド砥石や5GPa以上のレジノイド砥石、あるいは、弾性砥石といわれる5GPa以下の砥石が使用されている。   In general, a platen made of cast iron or copper having a modulus of elasticity exceeding 100 GPa or a tin plate having about 50 GPa is used for the surface plate. As for the polishing pad, a resin pad of 2000 MPa or less or foaming of about 100 MPa or less is used. Pads such as urethane and nonwoven fabric are used. As for the grindstone, a vitrified grindstone of 10 GPa or more, a resinoid grindstone of 5 GPa or more, or a grindstone of 5 GPa or less called an elastic grindstone is used.

両面研磨で良好な研磨面を得るためには、通常、粗い粒度の砥粒から細かい粒度の砥粒へと多段で行われる。より詳しくは、研磨レートの大きい粗い粒度の砥粒のスラリーや砥石で所定の寸法近くまで研磨して、その後細かい粒度の砥粒のスラリーや砥石によって面粗さ等の面性状を向上させ、所定の寸法まで研磨する。   In order to obtain a good polished surface by double-side polishing, it is usually performed in multiple stages from coarse abrasive grains to fine abrasive grains. More specifically, polishing is performed to a predetermined size with a slurry or a grindstone having a coarse grain size with a large polishing rate, and thereafter surface properties such as surface roughness are improved by using a slurry or a grindstone with a fine grain size abrasive grain. Polish to the size of.

また同じ粒度の砥粒を用いたスラリーや砥石でも、研磨ワークにかかる荷重を上げると研磨レートは上がるが研磨ワークの面粗さは粗くなり、また研磨ワークの外周部がダレたり、スクラッチも発生しやすい。逆に荷重を下げると研磨レートは下がるが、面粗さは良くなり、面ダレも少なくなり、またスクラッチの発生も生じにくい。しかし、荷重を下げ過ぎると、研磨ワークを押圧する力が弱いため、研磨ワーク全体がパッドや砥石に均一に接触せず、面ダレが大きくなる場合や、平担度が悪くなる場合がある。そこで、最終仕上げの段階では通常の荷重で所定の厚さ直前まで研磨して、その後、荷重を少し下げて面性状を向上させて所定の厚さに仕上げている。   Even with slurries and grindstones that use the same grain size, increasing the load applied to the polishing workpiece increases the polishing rate, but the surface roughness of the polishing workpiece becomes rougher, and the outer periphery of the polishing workpiece is sagging and scratches occur. It's easy to do. Conversely, when the load is reduced, the polishing rate is lowered, but the surface roughness is improved, surface sagging is reduced, and scratches are less likely to occur. However, if the load is reduced too much, the force that presses the polishing workpiece is weak, so that the entire polishing workpiece does not uniformly contact the pad or the grindstone, and the surface sagging may increase or the flatness may deteriorate. Therefore, in the final finishing stage, polishing is performed to a predetermined thickness just under a normal load, and then the load is slightly reduced to improve the surface properties and finish to a predetermined thickness.

両面研磨方式の研磨機において、研磨ワークを両面から定盤、パッドもしくは砥石で押圧して研磨するとき、図4に示されるようにして、通常研磨ワーク1はキャリア2の中に保持されて研磨されるが、この際、キャリア2は研磨ワーク1の厚さの約50〜70%程度が適当とされている(従来の研磨方法)。キャリア2の厚さが研磨ワーク1の厚さの50%より薄いと、研磨ワーク1の外周部がキャリア2を乗り越えてキャリア2から外れる危険がある。また、研削液やスラリーはキャリアと定盤、パッドや砥石との隙間を通ってワーク内に供給されるものもあるため、キャリアの厚さが研磨ワークの厚さの70%より厚いと研削液やスラリーの供給が少なくなり、研磨レートが落ちたり、目詰まりを生じたりするとされている。尚、図4における符号3aは上砥石で、3bは下砥石である。   In a double-side polishing type polishing machine, when polishing a workpiece by pressing it with a surface plate, a pad or a grindstone from both sides, the polishing workpiece 1 is usually held in a carrier 2 and polished as shown in FIG. However, at this time, about 50 to 70% of the thickness of the polishing workpiece 1 is appropriate for the carrier 2 (conventional polishing method). If the thickness of the carrier 2 is less than 50% of the thickness of the polishing workpiece 1, there is a risk that the outer peripheral portion of the polishing workpiece 1 gets over the carrier 2 and comes off the carrier 2. In addition, since some grinding fluid and slurry are supplied into the workpiece through the gap between the carrier and the surface plate, the pad and the grindstone, the grinding fluid is greater than 70% of the thickness of the polishing workpiece. And the supply of slurry is reduced, and the polishing rate is lowered or clogging occurs. In addition, the code | symbol 3a in FIG. 4 is an upper grindstone, 3b is a lower grindstone.

両面研磨機での荷重は通常エアーシリンダー等により、上定盤やあるいは研磨パッドを貼り付けた上定盤や上砥石の重力と逆向きの力で支えて調整している。上定盤や上砥石の重力と同等の力でエアーシリンダー等により上向きの力を加えると、研磨ワークに掛かる荷重は0になるので理論的には0〜1kPa程度の超低荷重の研磨も可能であるが、現実には、定盤や砥石は回転しており、また研磨ワークも自転や公転をしており、超低荷重で安定して研磨することは困難である。また、もし超低圧荷重で研磨が可能になった場合でも、研磨ワークの面粗さは向上するが、研磨ワークを両面から押圧する力が弱く、回転している上下定盤や砥石の間で研磨ワークが安定に保持されないために、研磨中に研磨ワークが均一にパッドや砥石に接触せず、面ダレが大きくなる。また、研磨ワークが1mm程度以下の厚さしかない場合はキャリアから研磨ワークが外れる等の問題が生じる。   The load in the double-side polishing machine is usually adjusted by an air cylinder or the like, supported by the force opposite to the gravity of the upper surface plate or the upper surface plate with the polishing pad attached, or the upper whetstone. If an upward force is applied by an air cylinder or the like with a force equivalent to the gravity of the upper surface plate or upper grinding stone, the load applied to the polishing workpiece becomes 0, so theoretically ultra-low load polishing of about 0 to 1 kPa is possible. However, in reality, the surface plate and the grindstone are rotating, and the polishing workpiece is rotating and revolving, and it is difficult to stably perform polishing with an ultra-low load. Also, even if polishing with ultra-low pressure load is possible, the surface roughness of the polishing workpiece will improve, but the force to press the polishing workpiece from both sides will be weak, and between the rotating upper and lower surface plates and grindstones Since the polishing workpiece is not stably held, the polishing workpiece does not uniformly contact the pad or the grindstone during polishing, and the surface sagging increases. Further, when the polishing workpiece has a thickness of about 1 mm or less, there arises a problem that the polishing workpiece is detached from the carrier.

たとえば、前述の磁気記録用アルミ基板の場合、砥粒の粒度が#4000程度で弾性率が100から300MPa程度の弾性砥石を用い、10kPa程度の荷重から研磨を開始し、最終、荷重を約1/2程度に下げて1〜2分程度研磨して仕上げられている。荷重をさらに下げると、研磨ワークの面粗さはさらに良くなるが、研磨レートが小さくなり、面ダレも大きくなり、またキャリアから研磨ワークが外れる等のトラブルが生じる。   For example, in the case of the above-described aluminum substrate for magnetic recording, polishing is started from a load of about 10 kPa using an elastic grindstone having an abrasive grain size of about # 4000 and an elastic modulus of about 100 to 300 MPa. It is finished by polishing to about / 2 for about 1-2 minutes. When the load is further reduced, the surface roughness of the polishing work is further improved, but the polishing rate is reduced, the surface sagging is increased, and troubles such as the polishing work being detached from the carrier occur.

通常、定盤や研磨パッド、砥石で研磨を行う場合、比較的硬い定盤や研磨パッド、砥石を用いると、研磨レートが大きくなり、また研磨ワークの外周部の面ダレを生じにくいのであるが、研磨面の面粗さが粗くなる。良好な面粗さを得るために、柔らかいパッドや砥石を使用して研磨を行うと、研磨レートが小さくなり、またパッドや砥石の弾性のため研磨ワークの外周部がダレやすい。外周部のダレが大きいと、たとえば前述の磁気記録用アルミ基板の場合では外周部に磁気記録された情報を読みとることができなくなり基板の性能が落ちる。
このために、より低圧の荷重で研磨を行ってパッドや砥石の歪み量を小さくしてダレを防ごうとすると、超低圧の研磨は前述のように、荷重の不安定、キャリアから外れる等の問題がある。
Normally, when polishing with a surface plate, polishing pad, or grindstone, if a relatively hard surface plate, polishing pad, or grindstone is used, the polishing rate increases, and it is difficult for the outer peripheral portion of the polishing work to be sag. The surface roughness of the polished surface becomes rough. When polishing is performed using a soft pad or a grindstone in order to obtain good surface roughness, the polishing rate becomes small, and the outer peripheral portion of the polishing workpiece is easily sag due to the elasticity of the pad or the grindstone. If the sagging of the outer peripheral portion is large, for example, in the case of the above-described aluminum substrate for magnetic recording, information magnetically recorded on the outer peripheral portion cannot be read, and the performance of the substrate deteriorates.
For this reason, if polishing is performed with a lower pressure load to reduce the distortion amount of the pad and the grindstone to prevent sagging, the ultra-low pressure polishing, as described above, causes unstable load, disengagement from the carrier, etc. There's a problem.

両面研磨で研磨すると定盤や研磨パッド、砥石は使用時間とともに目詰まり等で表面状態が変化して研磨レートが落ちてくるため、研磨ワークを必要な厚さにまで研磨しようとすると単に研磨時間の制御だけで厚さを所定の公差に入れるのは困難である。このため、厚さを実際に測定して次バッチの研磨時間を決定しているのが実情である。   When polishing with double-sided polishing, the surface condition of the surface plate, polishing pad, and grindstone changes due to clogging with use time and the polishing rate decreases, so when polishing the polishing workpiece to the required thickness, the polishing time is simply It is difficult to bring the thickness within a predetermined tolerance only by controlling the above. Therefore, the actual situation is that the polishing time of the next batch is determined by actually measuring the thickness.

また、研磨ワークが研磨されて、厚さが薄くなると、その分研磨パッドや上砥石が下降するので、研磨パッドや上砥石の下降量で研磨ワークの厚さを推定することができるが、研磨パッド、砥石ともに研磨で摩耗するので上定盤や砥石の下降量だけで研磨ワークの厚さを公差内にすることも困難である。   Also, when the polishing workpiece is polished and the thickness is reduced, the polishing pad and the upper whetstone are lowered accordingly, so the thickness of the polishing work can be estimated by the amount of descent of the polishing pad and upper whetstone. Since both the pad and the grindstone are worn by polishing, it is difficult to make the thickness of the polishing workpiece within the tolerance only by the lowering amount of the upper surface plate and the grindstone.

以上のように現状の両面研磨では、仕上げの面性状を向上させるため、柔らかいパッドや砥石を使用して低荷重の研磨を行っているが、このため、研磨レートが低い、面ダレを生じる、寸法精度を出しにくい等が問題となっている。
これまでに提案されている、良好な仕上げ面を得るための研磨方法としては、以下の特許文献に記載される方法が挙げられる。
特開平11−347926号公報 特開2000−185998号公報 特開平11−267963号公報
As described above, in the current double-side polishing, in order to improve the surface properties of the finish, a soft pad or a grindstone is used to perform low-load polishing, but for this reason, the polishing rate is low, causing surface sagging, The problem is that it is difficult to achieve dimensional accuracy.
Examples of the polishing method proposed so far for obtaining a good finished surface include the methods described in the following patent documents.
JP-A-11-347926 JP 2000-185998 A Japanese Patent Laid-Open No. 11-267963

前記特許文献1に記載されるシリコンウエハのラッピング方法は、シリコンウエハの両面ラッピングにおいて、キャリアの厚さをシリコンウエハの厚さより0〜20μm厚くして、シリコンウエハを超低圧でラッピングすることにより平坦性を向上させるものであり、この方法の場合、キャリアの厚さをシリコンウエハの仕上がり寸法より0〜20μm厚くしておいて研磨が行われ、キャリアの望ましい材質はSK鋼あるいはステンレス鋼であるが、キャリアの厚さがワークよりも0〜20μm厚ければ、硬い定盤を用いていることもあり、アルミナやジルコニアのスラリーで研磨されてしまい、キャリアの厚さの精度を保つのが困難であるという問題点がある。   The silicon wafer lapping method described in Patent Document 1 is flattened by lapping the silicon wafer at an ultra-low pressure by making the thickness of the carrier 0 to 20 μm thicker than the thickness of the silicon wafer in double-sided lapping of the silicon wafer. In this method, the carrier is polished with a thickness of 0 to 20 μm thicker than the finished size of the silicon wafer, and the preferred material of the carrier is SK steel or stainless steel. If the thickness of the carrier is 0 to 20 μm thicker than the workpiece, a hard surface plate may be used, and it will be polished with an alumina or zirconia slurry, making it difficult to maintain the accuracy of the carrier thickness. There is a problem that there is.

又、前記特許文献2に記載されるシリコンウエハのラッピング方法は、シリコンウエハの両面ラッピングにおいて、キャリアの厚さをシリコンウエハの厚さより0〜20μm厚くして、目標の厚さの20〜30μm厚く研磨し、その後さらに目標値まで研磨するものであるが、この方法の場合にも、前記特許文献1の方法と同様に、硬い定盤を使用しているためキャリアの摩耗が防げず、キャリア厚みの精度を保つのが困難であるという問題点がある。   The silicon wafer wrapping method described in Patent Document 2 is such that, in double-sided wrapping of a silicon wafer, the thickness of the carrier is 0 to 20 μm thicker than the thickness of the silicon wafer, and the target thickness is 20 to 30 μm thick. In this method, similarly to the method of Patent Document 1, since a hard surface plate is used, the wear of the carrier cannot be prevented, and the carrier thickness is reduced. There is a problem that it is difficult to maintain accuracy.

更に、前記特許文献3には、大口径ウェーハ用ラッピング又は研磨方法及び装置が開示されており、キャリアの中で、研磨ワークの廻りに空けられた孔にダミーウェーハを挿入して研磨を行う方法も開示されているが、この場合、ダミー材も研磨ワークと同様のシリコンウェーハなので同様に研磨され、ダミー材の厚さの管理が必要となり、またダミー材料も必要であるという問題点がある。   Further, Patent Document 3 discloses a lapping or polishing method and apparatus for large-diameter wafers, and a method for polishing by inserting a dummy wafer into a hole formed around a polishing work in a carrier. However, in this case, since the dummy material is the same silicon wafer as the polishing workpiece, the dummy material is similarly polished, and the thickness of the dummy material needs to be managed, and the dummy material is also necessary.

本発明は、従来の両面研磨における諸問題の改善を行い、優れた面粗さで、面ダレの少ない、寸法精度の良い研磨面が得られる研磨方法を提供することを課題とする。   It is an object of the present invention to provide a polishing method that improves various problems in conventional double-side polishing and provides a polished surface with excellent surface roughness, less surface sagging, and good dimensional accuracy.

上記課題を解決可能な本発明の研磨方法は、両面研磨機を用いて研磨ワークの両面を研磨する方法であって、前記研磨ワークを偏心した状態で収容保持するに適したワーク保持用穴を有した実質的に円板状のキャリアとして、前記研磨ワークの予め決められた仕上がり寸法と実質的に同一寸法の厚みを有するもの(すなわち、仕上がり寸法の公差内の寸法)を使用し、当該キャリアに設けられたワーク保持用穴内に研磨ワークを収容した状態で研磨を行う際、圧縮弾性率が3000MPa以下、好ましくは1〜3000MPaのパッド又は砥石を用いて研磨することを特徴とする。
又、本発明は、前述の研磨方法において、#220より細かい砥粒を用いて研磨することを特徴とするものでもある。
The polishing method of the present invention capable of solving the above problems is a method for polishing both surfaces of a polishing workpiece using a double-side polishing machine, and has a workpiece holding hole suitable for accommodating and holding the polishing workpiece in an eccentric state. A substantially disk-shaped carrier having a thickness that is substantially the same as a predetermined finished dimension of the polishing workpiece (that is, a dimension within a tolerance of the finished dimension) is used. When polishing is performed in a state in which the polishing workpiece is accommodated in the workpiece holding hole provided in, the polishing is performed using a pad or a grindstone having a compression elastic modulus of 3000 MPa or less, preferably 1 to 3000 MPa.
The present invention is also characterized in that in the above-described polishing method, polishing is performed using abrasive grains finer than # 220.

本発明では、圧縮弾性率が3000MPa以下の研磨パッドや砥石を用いて行う両面研磨において研磨ワークの仕上がり寸法と実質的に同一厚さのキャリアを用いて研磨を行うことで、面性状の向上と面ダレがなく寸法精度良好の研磨面を得ることができる。
また、キャリアの厚さを研磨ワークの仕上がり寸法と実質的に同一としておいて、通常の荷重で研磨を続けると、キャリアの厚さとほぼ同一になるまでは通常の研磨レートで研磨が進行し、研磨ワークとキャリアの厚さがほぼ同一となってからはキャリアもパッドや砥石の荷重を受け止めるため、研磨ワークには荷重の低減が生じる。さらに研磨を続けると、ついには、ワークに対して超低圧での研磨となり面粗さが良好となる。
更に、キャリアと研磨ワークの厚さが同一なのでキャリアが研磨ワークに外周部に付けたダミー材として働き、研磨ワークの外周部のダレも防ぐことができる。
また、キャリアの厚さが研磨ワークの仕上がり寸法になっているので、研磨ワークの厚さを研磨途中で測定することなく一定の寸法に仕上がる。
In the present invention, in the double-side polishing performed using a polishing pad or a grindstone having a compression modulus of 3000 MPa or less, polishing is performed using a carrier having substantially the same thickness as the finished dimension of the polishing workpiece, thereby improving surface properties. A polished surface with no sag and good dimensional accuracy can be obtained.
Also, if the carrier thickness is substantially the same as the finished dimensions of the polishing workpiece, and polishing is continued at a normal load, polishing proceeds at a normal polishing rate until the carrier thickness is substantially the same, Since the carrier also receives the load of the pad and the grindstone after the thickness of the polishing work and the carrier is almost the same, the load on the polishing work is reduced. If the polishing is further continued, the workpiece is finally polished at an ultra-low pressure, and the surface roughness is improved.
Further, since the thickness of the carrier and the polishing work is the same, the carrier works as a dummy material attached to the outer periphery of the polishing work, and the sagging of the outer periphery of the polishing work can be prevented.
Further, since the thickness of the carrier is the finished size of the polishing workpiece, the thickness of the polishing workpiece is finished to a certain size without being measured during polishing.

図1は、本発明の研磨方法を説明するための断面図であり、(a)は研磨開始時の断面図であり、(b)は研磨終了時の断面図である。本発明では、キャリア2として、研磨ワーク1の予め決められた仕上がり寸法と実質的に同一寸法の厚みを有し、研磨ワーク1を偏心した状態で収容保持するに適したワーク保持用穴を有した実質的に円板状のものが使用され、キャリア2のワーク保持用穴内に研磨ワーク1を収容した状態で研磨を行う。尚、図1における符号3aは上砥石で、3bは下砥石である。
図1に示されるように、本発明では、研磨ワーク1を保持するキャリア2の厚さを、研磨ワーク1の仕上がり寸法と同一にして、通常の荷重で研磨を行えば、研磨ワーク1の厚さがキャリア2の厚さとほぼ同一になった時点から、荷重を変えなくても徐々に超低圧荷重となって、優れた面粗さを得ることができる。またキャリア2の厚さ以上に研磨されることがないため、厚さの寸法精度も良くなる。さらに、キャリア2が、研磨ワーク1の外周部のダミー材の代わりにもなるため外周部の面ダレのない研磨が可能になる。
FIG. 1 is a cross-sectional view for explaining the polishing method of the present invention, (a) is a cross-sectional view at the start of polishing, and (b) is a cross-sectional view at the end of polishing. In the present invention, the carrier 2 has a workpiece holding hole having a thickness substantially the same as a predetermined finished dimension of the polishing workpiece 1 and suitable for receiving and holding the polishing workpiece 1 in an eccentric state. The substantially disk-shaped thing is used, and it grind | polishes in the state which accommodated the grinding | polishing workpiece | work 1 in the workpiece | work holding hole of the carrier 2. FIG. In addition, the code | symbol 3a in FIG. 1 is an upper grindstone, 3b is a lower grindstone.
As shown in FIG. 1, in the present invention, if the thickness of the carrier 2 holding the polishing workpiece 1 is the same as the finished dimension of the polishing workpiece 1 and polishing is performed with a normal load, the thickness of the polishing workpiece 1 is increased. From the time when the thickness becomes substantially the same as the thickness of the carrier 2, even if the load is not changed, an ultra-low pressure load is gradually obtained, and an excellent surface roughness can be obtained. In addition, since it is not polished more than the thickness of the carrier 2, the dimensional accuracy of the thickness is improved. Further, since the carrier 2 can be used in place of the dummy material on the outer peripheral portion of the polishing work 1, polishing without surface sagging on the outer peripheral portion is possible.

又、図2は、本発明の研磨方法の好ましい一例における研磨加工例を示す図であり、上砥石を取り除いた時の様子が示されている。図2において符号4はインターナルギアであり、符号5はサンギアであり、研磨ワーク1を収容保持したキャリア2が自転しながら公転するようになっている。尚、符号6は分割された砥石間の溝である。   Moreover, FIG. 2 is a figure which shows the example of grinding | polishing processing in a preferable example of the grinding | polishing method of this invention, and the mode when an upper grindstone is removed is shown. In FIG. 2, reference numeral 4 denotes an internal gear, and reference numeral 5 denotes a sun gear. The carrier 2 that accommodates and holds the polishing work 1 revolves while rotating. Reference numeral 6 denotes a groove between the divided grindstones.

本発明では、面性状の向上と面ダレがなく寸法精度良好の研磨面を得るために、圧縮弾性率が3000MPa以下の研磨パッドや砥石が使用されるが、この際、圧縮弾性率が3000MPaを超えると、キャリアの摩耗が大きくなって望ましくない。研磨に使用される研磨パッドや砥石の圧縮弾性率が3000MPa以下であれば、通常キャリアに使用されるガラス強化硬質プラスチックス等の材質では、摩耗が非常に少ないので連続使用が可能となる。
また、用いる砥粒の番手は#220以細の細かい粒径が望ましい。これは、#220より粗い番手になると、キャリアの摩耗が大きくなり、連続使用ができない場合があるからである。
In the present invention, a polishing pad or a grindstone having a compression elastic modulus of 3000 MPa or less is used in order to obtain a polished surface with improved surface properties and no surface sagging and good dimensional accuracy. At this time, the compression elastic modulus is 3000 MPa. If exceeded, the wear of the carrier increases, which is not desirable. If the compression elastic modulus of the polishing pad or the grindstone used for polishing is 3000 MPa or less, the material such as glass-reinforced hard plastics that is usually used for carriers has very little wear and can be used continuously.
Further, the count of the abrasive grains used is desirably a fine grain size of # 220 or smaller. This is because if the iron is coarser than # 220, the wear of the carrier increases, and continuous use may not be possible.

本発明では、キャリアの厚さを研磨ワークの仕上がり寸法公差内とするため、研磨の最終段階では、キャリアの厚さは研磨ワークと同一、すなわち研磨ワークの厚さに対して100%の厚さということになり、〔0007〕で述べたキャリアの厚さが研磨ワークの厚さの70%を超えるため、スラリーや研削液の供給不足が懸念されるが、これに関しては、キャリアの一方の平面から他方の平面に向かって貫通した穴(研削液供給用穴)を少なくとも1つ設けたり、キャリアの外周側面からワーク保持用穴の内周囲面にまで貫通して延びた溝(研削液供給用溝)を少なくとも1つ設けたりすることで、スラリーや研削液の供給が容易になる。図3は、ワーク保持用穴7にスラリーや研削液を供給する手段が設けられたキャリア2の具体例を示す図であり、図3(a)には、4つの研削液供給用穴8が設けられたキャリア2が示されており、図3(b)には、3本の研削液供給用溝9が設けられたキャリア2が示されている。図3(a)、(b)中の符号10はギアー部である。
また、本発明では、定盤、パッドや砥石の溝加工や穴加工を施して研削液を流すことにより、研磨ワークと砥石の隙間に供給しても良い。
本発明では、キャリアの材質は特に限定されるものではないが、研磨で摩耗しにくいもの、たとえばガラス補強材入りの硬質プラスチックのような材質が望ましい。
以下、本発明の実施例を示すが、本発明はこれに限定されるものではない。
In the present invention, since the thickness of the carrier is within the finished dimensional tolerance of the polishing workpiece, at the final stage of polishing, the thickness of the carrier is the same as that of the polishing workpiece, that is, 100% of the thickness of the polishing workpiece. Therefore, since the thickness of the carrier described in [0007] exceeds 70% of the thickness of the polishing workpiece, there is a concern that the supply of slurry or grinding fluid is insufficient. At least one hole (grinding fluid supply hole) penetrating from one side to the other plane, or a groove extending from the outer peripheral side surface of the carrier to the inner peripheral surface of the workpiece holding hole (for grinding fluid supply) Providing at least one groove) facilitates the supply of slurry and grinding fluid. FIG. 3 is a diagram showing a specific example of the carrier 2 provided with means for supplying slurry or grinding fluid to the workpiece holding hole 7. FIG. 3A shows four grinding fluid supply holes 8. The provided carrier 2 is shown, and FIG. 3B shows the carrier 2 provided with three grinding fluid supply grooves 9. Reference numeral 10 in FIGS. 3A and 3B denotes a gear portion.
Moreover, in this invention, you may supply to the clearance gap between a grinding | polishing workpiece | work and a grindstone by giving the surface plate, the groove | channel processing of a pad, and a grindstone, or drilling and flowing a grinding fluid.
In the present invention, the material of the carrier is not particularly limited, but a material that is not easily worn by polishing, such as a hard plastic containing a glass reinforcing material, is desirable.
Examples of the present invention will be described below, but the present invention is not limited thereto.

〔実施例1〕
本発明の研磨方法における実験条件は次の通りである。
砥石 日本特殊研砥株式会社製 PVA−WP砥石
砥粒番手 C#4000
外径370mm×厚さ10mm×内径180mm
圧縮弾性率 120MPa
研磨機 スピードファム5B
研磨ワーク 外径2.5インチ アルミディスク 厚さ1.29mm
5枚研磨/バッチ (キャリア数5枚)
研磨時間 5分
研磨条件 砥石回転 30rpm(下砥石) −10rpm(上砥石)
荷重 8.5kPa
研削液 水溶性研削液 500cc/min
キャリア 厚さ 1.25mm
材質 ガラス繊維入りエポキシ樹脂製
[Example 1]
The experimental conditions in the polishing method of the present invention are as follows.
Grinding wheel PVA-WP grinding wheel manufactured by NIPPON SPringu Co., Ltd.
Abrasive count C # 4000
Outer diameter 370mm x Thickness 10mm x Inner diameter 180mm
Compression modulus 120MPa
Polishing machine Speed Fam 5B
Polishing work outer diameter 2.5 inches Aluminum disc thickness 1.29mm
5 polishing / batch (5 carriers)
Polishing time 5 minutes Polishing conditions Grinding wheel rotation 30 rpm (lower grinding wheel) -10 rpm (upper grinding wheel)
Load 8.5kPa
Grinding fluid Water-soluble grinding fluid 500cc / min
Carrier thickness 1.25mm
Material: Glass fiber epoxy resin

〔比較例1〕
砥石、研磨ワーク、研磨機、研磨条件等は実施例1と同じ
キャリア厚さ 0.9mm
[Comparative Example 1]
The grinding wheel, polishing workpiece, polishing machine, polishing conditions, etc. are the same as in Example 1. Carrier thickness 0.9 mm

〔比較例2〕
砥石、研磨ワーク、研磨機は実施例1と同じ
キャリア厚さ 0.9mm
研磨条件 荷重8.5kPa(研磨時間4分)+荷重4.5kPa(研磨時間2分)
その他の研磨条件は実施例1と同じ
[Comparative Example 2]
The grindstone, polishing workpiece, and polishing machine are the same as in Example 1. Carrier thickness 0.9 mm
Polishing conditions Load 8.5 kPa (Polishing time 4 minutes) + Load 4.5 kPa (Polishing time 2 minutes)
Other polishing conditions are the same as in Example 1.

〔比較例3〕
砥石 日本特殊研砥株式会社製 FBB砥石
砥粒番手 GC#120
外径370mm×厚さ10mm×内径180mm
圧縮弾性率 3300MPa
研磨機 スピードファム5B
研磨ワーク 外径50mm軟鉄板 厚さ 1.5mm
5枚研磨/バッチ (キャリア数5枚)
研磨時間 3分
研磨条件 砥石回転 30rpm(下砥石) −10rpm(上砥石)
荷重 15kPa
研削液 水溶性研削液 500cc/min
キャリア 厚さ 1.0mm
[Comparative Example 3]
Whetstone FBB whetstone made by Nippon Kakenken Co., Ltd.
Abrasive grain count GC # 120
Outer diameter 370mm x Thickness 10mm x Inner diameter 180mm
Compression modulus 3300MPa
Polishing machine Speed Fam 5B
Polishing work outer diameter 50mm soft iron plate thickness 1.5mm
5 polishing / batch (5 carriers)
Polishing time 3 minutes Polishing conditions Wheel rotation 30 rpm (lower wheel) -10 rpm (upper wheel)
Load 15 kPa
Grinding fluid Water-soluble grinding fluid 500cc / min
Carrier thickness 1.0mm

上記実施例と比較例1〜3にて得られた研磨ワークについての面粗さは、東京精密製のサーフコム1400を用いて測定し、面ダレは、ZYGO製のNewView5010を用いて研磨ワークの外周部より5mmから6mmの間の1mmを基準面として、外周部のダレを測定した。
このようにして得られた実験結果を以下の表1に示す。
The surface roughness of the polishing workpieces obtained in the above Examples and Comparative Examples 1 to 3 was measured using a surfcom 1400 manufactured by Tokyo Seimitsu, and the surface sagging was the outer circumference of the polishing workpiece using a NewView 5010 manufactured by ZYGO. The sagging of the outer peripheral portion was measured using 1 mm between 5 mm and 6 mm as a reference plane.
The experimental results thus obtained are shown in Table 1 below.

上記の実験結果からもわかるように、キャリアの厚さを仕上がり寸法と実質的に同一にすることで、荷重を研磨途中で変化させることなく最終研磨が超低圧研磨となり良好な面粗さを得ることができた。また、キャリアが研磨ワークの外周部のダミー材となるので面ダレの非常に少ない研磨が可能になった。上記の実験結果は、圧縮弾性率が3000MPaを超えると、キャリアの摩耗が大きくなることを示している。   As can be seen from the above experimental results, by making the carrier thickness substantially the same as the finished dimensions, the final polishing becomes ultra-low pressure polishing without changing the load during polishing, and good surface roughness is obtained. I was able to. Further, since the carrier is a dummy material on the outer peripheral portion of the polishing work, polishing with very little surface sag is possible. The above experimental results indicate that the wear of the carrier increases when the compression elastic modulus exceeds 3000 MPa.

本発明の研磨方法は、優れた面粗さで、面ダレの少ない、寸法精度の良い研磨面を得るのに非常に有用である。   The polishing method of the present invention is very useful for obtaining a polished surface with excellent surface roughness, less surface sagging, and good dimensional accuracy.

本発明の研磨方法を説明するための断面図で、(a)は研磨開始時の断面図であり、(b)は研磨終了時の断面図である。It is sectional drawing for demonstrating the grinding | polishing method of this invention, (a) is sectional drawing at the time of a grinding | polishing start, (b) is sectional drawing at the time of completion | finish of grinding | polishing. 本発明の研磨方法の好ましい一例における研磨加工例を示す図である。It is a figure which shows the example of a grinding process in a preferable example of the grinding | polishing method of this invention. (a)は、4つの研削液供給用穴が設けられたキャリア2を示す図であり、(b)は、3本の研削液供給用溝が設けられたキャリア2を示す図である。(A) is a figure which shows the carrier 2 provided with four holes for grinding fluid supply, (b) is a figure which shows the carrier 2 provided with three grooves for grinding fluid supply. 従来の研磨方法を説明するための断面図である。It is sectional drawing for demonstrating the conventional grinding | polishing method.

符号の説明Explanation of symbols

1 研磨ワーク
2 キャリア
3a 上砥石
3b 下砥石
4 インターナルギア
5 サンギア
6 砥石間の溝
7 ワーク保持用穴
8 研削液供給用穴
9 研削液供給用溝
10 ギアー部
DESCRIPTION OF SYMBOLS 1 Polishing workpiece 2 Carrier 3a Upper grindstone 3b Lower grindstone 4 Internal gear 5 Sun gear 6 Groove between grindstones 7 Workpiece holding hole 8 Grinding fluid supply hole 9 Grinding fluid supply groove 10 Gear part

Claims (2)

両面研磨機を用いて研磨ワークの両面を研磨する方法であって、前記研磨ワークを偏心した状態で収容保持するに適したワーク保持用穴を有した実質的に円板状のキャリアとして、前記研磨ワークの予め決められた仕上がり寸法と実質的に同一寸法の厚みを有するものを使用し、当該キャリアに設けられたワーク保持用穴内に研磨ワークを収容した状態で研磨を行う際、圧縮弾性率が3000MPa以下のパッド又は砥石を用いて研磨することを特徴とする研磨方法。 A method of polishing both surfaces of a polishing workpiece using a double-side polishing machine, wherein the workpiece is substantially disc-shaped with a workpiece holding hole suitable for receiving and holding the polishing workpiece in an eccentric state, When using a polishing workpiece having a thickness that is substantially the same as a predetermined finished size, and polishing with the polishing workpiece contained in a workpiece holding hole provided in the carrier, the compressive elastic modulus A polishing method characterized by polishing using a pad or a grindstone of 3000 MPa or less. #220より細かい砥粒を用いて研磨することを特徴とする請求項1に記載の研磨方法。 The polishing method according to claim 1, wherein polishing is performed using finer abrasive grains than # 220.
JP2004035055A 2004-02-12 2004-02-12 Polishing method Pending JP2005224892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004035055A JP2005224892A (en) 2004-02-12 2004-02-12 Polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004035055A JP2005224892A (en) 2004-02-12 2004-02-12 Polishing method

Publications (1)

Publication Number Publication Date
JP2005224892A true JP2005224892A (en) 2005-08-25

Family

ID=34999998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004035055A Pending JP2005224892A (en) 2004-02-12 2004-02-12 Polishing method

Country Status (1)

Country Link
JP (1) JP2005224892A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210045A (en) * 2006-02-07 2007-08-23 Kobe Steel Ltd High-speed double-disk polishing method and double-end polishing apparatus
JP2007290078A (en) * 2006-04-25 2007-11-08 Tosoh Corp Grinding method of substrate
JP2012254521A (en) * 2008-10-22 2012-12-27 Siltronic Ag Device for double-sided processing of flat workpiece and method for simultaneous double-sided material processing of a plurality of semiconductor wafers
JP2014128877A (en) * 2014-03-03 2014-07-10 Femutekku:Kk Surface processing apparatus and method
WO2015063969A1 (en) * 2013-10-29 2015-05-07 株式会社Sumco Carrier plate and workpiece double-side polishing device
CN105415154A (en) * 2014-09-11 2016-03-23 Lg矽得荣株式会社 Wafer polishing apparatus
JP2017035778A (en) * 2016-09-29 2017-02-16 株式会社フェムテック Surface processing apparatus and method
CN116494027A (en) * 2023-06-19 2023-07-28 新美光(苏州)半导体科技有限公司 Double-sided grinding method of silicon part

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210045A (en) * 2006-02-07 2007-08-23 Kobe Steel Ltd High-speed double-disk polishing method and double-end polishing apparatus
JP2007290078A (en) * 2006-04-25 2007-11-08 Tosoh Corp Grinding method of substrate
JP2012254521A (en) * 2008-10-22 2012-12-27 Siltronic Ag Device for double-sided processing of flat workpiece and method for simultaneous double-sided material processing of a plurality of semiconductor wafers
WO2015063969A1 (en) * 2013-10-29 2015-05-07 株式会社Sumco Carrier plate and workpiece double-side polishing device
JP2014128877A (en) * 2014-03-03 2014-07-10 Femutekku:Kk Surface processing apparatus and method
CN105415154A (en) * 2014-09-11 2016-03-23 Lg矽得荣株式会社 Wafer polishing apparatus
JP2016055421A (en) * 2014-09-11 2016-04-21 エルジー・シルトロン・インコーポレーテッド Wafer polishing apparatus
US9744641B2 (en) 2014-09-11 2017-08-29 Lg Siltron Incorporated Wafer polishing apparatus
JP2017035778A (en) * 2016-09-29 2017-02-16 株式会社フェムテック Surface processing apparatus and method
CN116494027A (en) * 2023-06-19 2023-07-28 新美光(苏州)半导体科技有限公司 Double-sided grinding method of silicon part
CN116494027B (en) * 2023-06-19 2023-10-03 新美光(苏州)半导体科技有限公司 Double-sided grinding method of silicon part

Similar Documents

Publication Publication Date Title
TW393369B (en) A wafer processing machine and a processing method thereby
JP5294637B2 (en) Method and apparatus for polishing ceramic spheres
US20080220700A1 (en) Glass Substrate for Information Recording Medium and Method for Producing the Same
EP1205280B1 (en) Wafer polishing method and wafer polishing device
JP2014144525A (en) Polishing method
TW201309423A (en) Double-head grinding method and double-head grinding apparatus
TW509991B (en) Method of manufacturing semiconductor wafer
JP2010076013A (en) Polishing method of rotary grindstone and polishing apparatus, grinding grindstone and grinding apparatus using the grindstone
JP2005224892A (en) Polishing method
CN101837565A (en) The manufacture method of disc wafer
JP2010247254A (en) Method of preparing polishing head and polishing apparatus
JP2010250893A (en) Manufacturing method of magnetic disk glass substrate, and surface correction method of bonded abrasive tool
JP2005005315A (en) Method for polishing wafer
JP2005205542A (en) Sapphire polishing grinding wheel and sapphire polishing method
JP2000190199A (en) Plane correcting method for surface plate
JPH08174428A (en) Fixed abrasive grain type polishing surface plate
JP3498902B2 (en) Semiconductor wafer flattening device
WO2000024548A1 (en) Polishing apparatus and a semiconductor manufacturing method using the same
WO2022137934A1 (en) Method for polishing carrier plate, carrier plate, and method for polishing semiconductor wafer
JPH10328986A (en) Disk substrate intermediate, manufacture thereof, and grinding work device
JP2014168846A (en) Carrier plate used for double-side processing device
JP2001246536A (en) Method of mirror-finishing edge of recording medium disc original plate
JP2000153458A (en) Flush mounting method and device of grinding wheel surface plate in double-sided work machine
JP2004243465A (en) Diamond lapping surface plate
JP2000084856A (en) Super abrasive grinding wheel for mirror finishing provided with super abrasive layer through elastic body