JP2005222923A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2005222923A
JP2005222923A JP2004185443A JP2004185443A JP2005222923A JP 2005222923 A JP2005222923 A JP 2005222923A JP 2004185443 A JP2004185443 A JP 2004185443A JP 2004185443 A JP2004185443 A JP 2004185443A JP 2005222923 A JP2005222923 A JP 2005222923A
Authority
JP
Japan
Prior art keywords
ring
secondary battery
electrolyte secondary
ptc element
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004185443A
Other languages
Japanese (ja)
Inventor
Katsuyuki Sakurai
勝之 櫻井
Yuichi Sato
雄一 佐藤
Takahiro Shimizu
孝洋 清水
Hirotaka Hayashida
浩孝 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004185443A priority Critical patent/JP2005222923A/en
Publication of JP2005222923A publication Critical patent/JP2005222923A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte secondary battery for preventing the leakage of non-aqueous electrolyte in case of damage to a rapture board by intense falling, vibration and shock, and restricting the flow of a current in an abnormal case such as an external short circuit and over charge, and further including a PTC element acting as a gas passageway when gas escapes and disperses by the rapture board. <P>SOLUTION: The non-aqueous electrolyte secondary battery comprises an enclosure can 1 having an opening at its one end, a group of electrodes each consisting of a negative electrode 4, a separator 5 and a positive electrode 3, non-aqueous electrolyte stored in the enclosure can, a group of sealing covers 9 for airtightly sealing the opening of the enclosure can via an insulating member, wherein the group of sealing covers are in ring-shaped, and a PTC element 14 having disc-like polymer molecule resin layer arranged to adhere closely to an inner circumference surface of the ring in the space of the ring. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、非水電解液二次電池に関し、特に安全機構として組み込まれるPTC素子の構造を改良した非水電解液二次電池に係わる。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having an improved structure of a PTC element incorporated as a safety mechanism.

近年、携帯電話やVTRなどの電子機器の小型化高性能化に伴い、これら電子機器の電源である二次電池に対する高容量化が要求されている。また、自動車からの排ガスによる大気汚染が社会問題となっており、電気自動車用電源として軽量で高性能な二次電池を用いることが期待されている。   In recent years, with the downsizing and high performance of electronic devices such as mobile phones and VTRs, it is required to increase the capacity of secondary batteries that are power sources of these electronic devices. In addition, air pollution due to exhaust gas from automobiles has become a social problem, and it is expected to use a lightweight and high-performance secondary battery as a power source for electric vehicles.

特に、リチウムイオン二次電池は電池電圧が高く、高いエネルギー密度が得られ、電池の小型、軽量化が可能であるため、ポータブル機器用の電源として実用化され、さらにより高エネルギー密度を実現するための研究、開発が進められている。   In particular, lithium ion secondary batteries have high battery voltage, high energy density, and can be made smaller and lighter, so they are put to practical use as power sources for portable devices, and achieve even higher energy densities. Research and development are underway.

一方、円筒形リチウムイオン二次電池において、過充電や短絡状態などの異常時に電池内部に過電流が流れて非水電解液が分解され、この電解液の分解反応による発熱により電池温度が上昇し、非水電解液の漏洩が生じたり、場合によっては破裂したりする問題がある。このため、リチウムイオン二次電池は電池構成部材の一つとして過充電などで電池温度が上昇した時に抵抗が上昇して電流の流れを制限するPTC素子が組み込まれている。このPTC素子は、一対の電極間に過電流等に起因する温度上昇に伴って急激な抵抗増大を示す素子本体を介在させた構造を有する。   On the other hand, in a cylindrical lithium ion secondary battery, when an abnormality such as overcharge or short circuit occurs, an overcurrent flows inside the battery and the nonaqueous electrolyte is decomposed, and the battery temperature rises due to heat generated by the decomposition reaction of the electrolyte. There is a problem that the non-aqueous electrolyte leaks or ruptures in some cases. For this reason, a lithium ion secondary battery incorporates a PTC element as one of the battery constituent members that increases the resistance and restricts the flow of current when the battery temperature rises due to overcharging or the like. This PTC element has a structure in which an element body showing a sudden increase in resistance with a temperature rise caused by an overcurrent or the like is interposed between a pair of electrodes.

また、従来のPTC素子は特許文献1に記載されているようにガス流路を十分確保するためにドーナツ形状(リング形状)をなしている。すなわち、ガス発生に伴う内圧上昇時に破断されるラプチャー板は、外装缶内に前記PTC素子と接続するようにそのPTC素子より内部側に別途組み込まれ、異常時の発熱などにより電池内圧が上昇した場合、前記ラプチャー板が破断してガスを開放する動作をなす。この時、PTC素子をリング形状にすることによりその中空部でガス流路を確保してガスの円滑な外部への放出、開放が図られる。   Further, as disclosed in Patent Document 1, the conventional PTC element has a donut shape (ring shape) in order to ensure a sufficient gas flow path. That is, the rupture plate that is broken when the internal pressure is increased due to gas generation is separately incorporated in the outer can from the PTC element so as to be connected to the PTC element, and the internal pressure of the battery is increased due to heat generation at the time of abnormality. In this case, the rupture plate is broken to release the gas. At this time, by making the PTC element into a ring shape, a gas flow path is secured in the hollow portion, and the gas can be smoothly discharged to the outside and released.

しかしながら、二次電池の激しい落下、振動衝撃によりラプチャー板が破損した場合、前記PTC素子はその形状面から非水電解液の漏洩を生じる虞があった。非水電解液の漏洩は、この二次電池を組み込んだ電池パックの保護回路の短絡等を引き起こし、発煙、発火に至る可能性が高くなる。
特開平7−65856号公報
However, when the rupture plate is damaged due to a violent drop or vibration shock of the secondary battery, the PTC element may leak a non-aqueous electrolyte from its shape. The leakage of the non-aqueous electrolyte causes a short circuit or the like of the protection circuit of the battery pack incorporating the secondary battery, and there is a high possibility of causing smoke or ignition.
JP-A-7-65856

本発明は、激しい落下、振動衝撃によりラプチャー板が破損した場合の非水電解液の漏洩を防止し、かつ外部短絡、過充電のような異常時において電流の流れを制限し、さらにラプチャー板によるガスの逃散に際してガス流路として働くPTC素子を備えた非水電解質二次電池を提供することを目的とする。   The present invention prevents leakage of the non-aqueous electrolyte when the rupture plate is damaged due to violent dropping or vibration shock, and restricts the current flow in the event of an abnormality such as an external short circuit or overcharge. It aims at providing the nonaqueous electrolyte secondary battery provided with the PTC element which works as a gas channel at the time of gas escape.

本発明によると、一端が開口された外装缶と、
前記外装缶に収納され、負極、セパレータおよび正極からなる電極群と、
前記外装缶に収容された非水系電解液と
前記外装缶の開口部に絶縁部材を介して密閉封口する封口蓋群と
を具備し、
前記封口蓋群は、リング状をなし、かつそのリング内の空間にリング内周面に密着して配置された円板状高分子樹脂層を有するPTC素子を備えたことを特徴とする非水電解質二次電池が提供される。
According to the present invention, an outer can opened at one end;
An electrode group housed in the outer can and comprising a negative electrode, a separator and a positive electrode;
A non-aqueous electrolyte contained in the outer can, and a sealing lid group that hermetically seals the opening of the outer can via an insulating member,
The sealing lid group comprises a non-water-containing PTC element having a ring shape and having a disk-shaped polymer resin layer disposed in close contact with the inner peripheral surface of the ring in a space within the ring. An electrolyte secondary battery is provided.

また本発明によると、一端が開口された外装缶と、
前記外装缶に収納され、負極、セパレータおよび正極からなる電極群と、
前記外装缶に収容された非水系電解液と
前記外装缶の開口部に絶縁部材を介して密閉封口する封口蓋群と
を具備し、
前記封口蓋群は、リング状をなし、かつそのリング内の空間にリング内周面に密着して配置された円板状電解液保持部材を有するPTC素子を備えたことを特徴とする非水電解質二次電池が提供される。
According to the present invention, an outer can whose one end is opened;
An electrode group housed in the outer can and comprising a negative electrode, a separator and a positive electrode;
A non-aqueous electrolyte contained in the outer can, and a sealing lid group that hermetically seals the opening of the outer can via an insulating member,
The sealing lid group includes a non-water-containing PTC element having a ring shape and having a disk-like electrolyte solution holding member disposed in close contact with the inner peripheral surface of the ring in a space in the ring. An electrolyte secondary battery is provided.

さらに本発明によると、一端が開口された一極性端子を兼ねる外装缶と、
前記外装缶に収納され、負極、セパレータおよび正極から構成される電極群と、
前記外装缶に収容された非水電解液と、
前記外装缶の開口部に絶縁物を介して密閉封口された封口蓋群と
を具備し、
前記封口蓋群は、前記電極群と対向して配置され、電極群の正負極のうちの一方と電極接続タブを通して電気的に接続され、電流の伝達および遮断をなすと共にガス発生に伴う内圧上昇時に破断される開放弁を有する電流遮断機構と、外部側に配置された他極性端子となる端子部材と、前記電流遮断機構と前記端子部材の間に介在されたリング状のPTC素子と、このPTC素子のリング内の空間にそのリング内面に密着して配置された円板状高分子樹脂層とを備えること特徴とする非水電解液二次電池が提供される。
Furthermore, according to the present invention, an outer can that also serves as a unipolar terminal having one end opened;
An electrode group housed in the outer can and composed of a negative electrode, a separator and a positive electrode;
A non-aqueous electrolyte contained in the outer can;
A sealing lid group hermetically sealed via an insulator at the opening of the outer can,
The sealing lid group is disposed to face the electrode group, and is electrically connected to one of the positive and negative electrodes of the electrode group through an electrode connection tab to transmit and cut off current and increase internal pressure accompanying gas generation. A current interrupting mechanism having an open valve that is sometimes broken, a terminal member that becomes an other polarity terminal arranged on the outside, a ring-shaped PTC element interposed between the current interrupting mechanism and the terminal member, There is provided a nonaqueous electrolyte secondary battery comprising a disk-shaped polymer resin layer disposed in close contact with an inner surface of a ring in a space in a ring of a PTC element.

さらに本発明によると、一端が開口された一極性端子を兼ねる外装缶と、
前記外装缶に収納され、負極、セパレータおよび正極から構成される電極群と、
前記外装缶に収容された非水電解液と、
前記外装缶の開口部に絶縁物を介して密閉封口された封口蓋群と
を具備し、
前記封口蓋群は、前記電極群と対向して配置され、電極群の正負極のうちの一方と電極接続タブを通して電気的に接続され、電流の伝達および遮断をなすと共にガス発生に伴う内圧上昇時に破断される開放弁を有する電流遮断機構と、外部側に配置される他極性端子となる端子部材と、前記電流遮断機構と前記端子部材の間に介在されたリング状のPTC素子と、このPTC素子のリング内の空間にそのリング内面に密着して配置された円板状電解液保持部材とを備えること特徴とする非水電解液二次電池が提供される。
Furthermore, according to the present invention, an outer can that also serves as a unipolar terminal having one end opened;
An electrode group housed in the outer can and composed of a negative electrode, a separator and a positive electrode;
A non-aqueous electrolyte contained in the outer can;
A sealing lid group hermetically sealed via an insulator at the opening of the outer can,
The sealing lid group is disposed to face the electrode group, and is electrically connected to one of the positive and negative electrodes of the electrode group through an electrode connection tab to transmit and cut off current and increase internal pressure accompanying gas generation. A current interrupting mechanism having an open valve that is sometimes broken, a terminal member serving as an other polarity terminal disposed on the outside, a ring-shaped PTC element interposed between the current interrupting mechanism and the terminal member, There is provided a non-aqueous electrolyte secondary battery comprising a disk-like electrolyte solution holding member disposed in close contact with an inner surface of a ring in a ring of a PTC element.

本発明は、激しい落下、振動衝撃によりラプチャー板が破損した場合の非水電解液の漏洩、これに伴う電池パックの保護回路の短絡等を防止し、かつ過充電や短絡状態などの異常時において電流の流れを制限し、さらにラプチャー板によるガスの逃散に際してガス流路として働くPTC素子を備えた安全な非水電解液二次電池を提供できる。   The present invention prevents non-aqueous electrolyte leakage when the rupture plate is damaged due to violent dropping, vibration shock, and short circuit of the protection circuit of the battery pack accompanying this, and at the time of abnormality such as overcharge or short circuit state It is possible to provide a safe non-aqueous electrolyte secondary battery including a PTC element that restricts the flow of current and functions as a gas flow path when gas escapes by the rupture plate.

以下、本発明に係る非水電解液二次電池を図面を参照して詳細に説明する。   Hereinafter, a non-aqueous electrolyte secondary battery according to the present invention will be described in detail with reference to the drawings.

(第1実施形態)
図1は、この第1実施形態に係る円筒形非水電解質二次電池を示す部分断面図、図2は図1の円筒形非水電解質二次電池に組み込まれる封口蓋群の要部を示す分解斜視図である。
(First embodiment)
FIG. 1 is a partial sectional view showing a cylindrical nonaqueous electrolyte secondary battery according to the first embodiment, and FIG. 2 shows a main part of a sealing lid group incorporated in the cylindrical nonaqueous electrolyte secondary battery of FIG. It is a disassembled perspective view.

図1に示すように有底円筒状の外装缶1は、例えばステンレス鋼、鉄もしくはアルミニウムから作られると共に、一極性端子(例えば負極端子)を兼ね、底部に図示しない絶縁体が配置されている。電極群2は、前記外装缶1内に収納されている。この電極群2は、正極3と負極4とをその間にセパレータ5を介在させて渦巻き状に捲回することにより作製されている。2つの半円形の穴6および中心付近に小穴7が開口された絶縁押さえ板8は、前記外装缶1内の電極群2上に配置されている。   As shown in FIG. 1, the bottomed cylindrical outer can 1 is made of, for example, stainless steel, iron, or aluminum, and also serves as a unipolar terminal (for example, a negative electrode terminal), and an insulator (not shown) is disposed at the bottom. . The electrode group 2 is housed in the outer can 1. This electrode group 2 is produced by winding the positive electrode 3 and the negative electrode 4 in a spiral shape with a separator 5 interposed therebetween. Two semicircular holes 6 and an insulating pressing plate 8 having a small hole 7 opened near the center are arranged on the electrode group 2 in the outer can 1.

封口蓋群9は、前記外装缶1の上端開口部に絶縁部材、例えば絶縁ガスケット10を介して取り付けられている。この封口蓋群9は、図1および図2に示すように前記電極群2側から金属製のストリッパー11と、絶縁シート12と、金属製のラプチャー板13と、環状のPTC素子14と、ガス抜き穴15が開口された他極性端子(例えば正極端子)となる端子板16とがこの順序でそれら周縁部を前記絶縁ガスケット10でかしめ固定して配置した構造を有する。この絶縁シート12は、皿状をなし、その立上り部付近から中心側が開口されてガス流路を形成している。   The sealing lid group 9 is attached to the upper end opening of the outer can 1 via an insulating member, for example, an insulating gasket 10. As shown in FIGS. 1 and 2, the sealing lid group 9 includes a metal stripper 11, an insulating sheet 12, a metal rupture plate 13, an annular PTC element 14, and a gas from the electrode group 2 side. A terminal plate 16 serving as another polarity terminal (for example, a positive electrode terminal) having a punched hole 15 is disposed in this order by caulking and fixing the peripheral edges thereof with the insulating gasket 10. The insulating sheet 12 has a dish shape, and the center side is opened from the vicinity of the rising portion to form a gas flow path.

前記ストリッパー11は、図2に示すように皿状をなし、前記絶縁シート12の開口部に対応する箇所にガス流路となる例えば3つの扇状穴17が開口され、かつ中心付近に小穴18が開口されている。接続板19は、前記電極群2と対向する前記ストリッパー11の面(底面)に前記小穴18を封止するよう接合されている。この接続板19の前記電極群2と対向する面には、例えばアルミニウムなどの金属から作られる折込型のリード線20が接続されている。このリード線20は、前記電極群2の一方の電極(例えば正極3)と接続されている。前記ストリッパー11は、例えばステンレス鋼もしくはアルミニウムから作られ、0.1〜1.0mmの厚さを有する。前記接続板19は、例えばアルミニウムから作られ、0.05〜0.2mmの厚さを有する。なお、前記接続板を省略することもできる。   As shown in FIG. 2, the stripper 11 has a dish shape. For example, three fan holes 17 serving as gas flow paths are opened at locations corresponding to the openings of the insulating sheet 12, and a small hole 18 is formed near the center. It is open. The connection plate 19 is bonded to the surface (bottom surface) of the stripper 11 facing the electrode group 2 so as to seal the small hole 18. A foldable lead wire 20 made of a metal such as aluminum is connected to the surface of the connection plate 19 facing the electrode group 2. The lead wire 20 is connected to one electrode (for example, the positive electrode 3) of the electrode group 2. The stripper 11 is made of stainless steel or aluminum, for example, and has a thickness of 0.1 to 1.0 mm. The connecting plate 19 is made of aluminum, for example, and has a thickness of 0.05 to 0.2 mm. The connecting plate can be omitted.

前記ラプチャー板13は、図2に示すように皿状をなし、前記ストリッパー11に前記絶縁シート12を介して重ねられている。このラプチャー板13は、中心部に前記ストリッパー11に向けて突出した逆円錐状の電流伝達・遮断部21を有する。この電流伝達・遮断部21の先端は、前記絶縁シート12の開口および前記ストリッパー11の小穴18を通して前記接続板19に接続されている。つまり、電流伝達・遮断部21は前記接続板19を通して前記折込型のリード線20に接続されている。したがって、電流遮断部材はストリッパー11、絶縁シート12およびラプチャー板13により構成される。また、前記ラプチャー板13は前記PTC素子14側の面にガス発生に伴う内圧上昇で破断可能な易破断部である切込部、例えば前記電流伝達・遮断部21を囲む円形切込部22および円形切込部22から周縁に放射状に延出される例えば8本の線状切込部23が形成されている。前記ラプチャー板13は、例えばアルミニウムから作られ、0.1〜0.5mmの厚さを有する。   As shown in FIG. 2, the rupture plate 13 has a dish shape and is overlapped on the stripper 11 with the insulating sheet 12 interposed therebetween. The rupture plate 13 has an inverted conical current transmission / cut-off portion 21 protruding toward the stripper 11 at the center. The tip of the current transmission / cut-off portion 21 is connected to the connection plate 19 through the opening of the insulating sheet 12 and the small hole 18 of the stripper 11. That is, the current transmission / cut-off unit 21 is connected to the folding lead wire 20 through the connection plate 19. Therefore, the current interrupting member is composed of the stripper 11, the insulating sheet 12, and the rupture plate 13. Further, the rupture plate 13 has a notch portion that is a breakable portion that can be broken by an increase in internal pressure accompanying gas generation on the surface on the PTC element 14 side, for example, a circular notch portion 22 surrounding the current transmission / cutoff portion 21 and For example, eight linear cut portions 23 extending radially from the circular cut portion 22 to the periphery are formed. The rupture plate 13 is made of aluminum, for example, and has a thickness of 0.1 to 0.5 mm.

なお、前述した電流遮断部材は電池内での圧力増大に伴って、所要の電流遮断が行えるならば、前述した構成に限定されず、いずれの手段・構成でも構わない。例えば、電流の伝達および遮断をなす部材を電池内圧力の増大による圧縮で変形して接・離される折込み型のリード線とし、内圧上昇時に破断される部材を弁膜とした構造にしてもよい。   Note that the above-described current interrupting member is not limited to the above-described configuration as long as the required current interrupting can be performed in accordance with the increase in pressure in the battery, and any means / configuration may be used. For example, the member that transmits and interrupts the current may be a foldable lead wire that is deformed by compression due to an increase in the internal pressure of the battery, and the member that is broken when the internal pressure increases is a valve membrane.

前記PTC素子14は、前記ラプチャー板13と前記端子板16との間に介在、つまり正極の電流経路に介在され、過電流が流れて温度が上昇すると抵抗値の増大により電流を制限し、大電流による異常な発熱を防止する。PTC素子14は、図1および図2に示すようにリング状をなし、そのリング内の空間に円板状高分子樹脂層24をその外周面がPTC素子14のリング内面に密着するように配置した(埋め込んだ)構造を有する。   The PTC element 14 is interposed between the rupture plate 13 and the terminal plate 16, that is, is interposed in the current path of the positive electrode. When the overcurrent flows and the temperature rises, the PTC element 14 limits the current by increasing the resistance value. Prevents abnormal heat generation due to current. The PTC element 14 has a ring shape as shown in FIGS. 1 and 2, and a disk-shaped polymer resin layer 24 is disposed in the space in the ring so that the outer peripheral surface thereof is in close contact with the inner surface of the ring of the PTC element 14. (Embedded) structure.

前記PTC素子14は、図1に示すように2枚のリング状金属薄板(例えばリング状ニッケル薄板)25a,25b間にカーボンのような導電材を含有したポリエチレン、ポリプロピレンのようなリング状樹脂シート26を介在した構造を有する。   As shown in FIG. 1, the PTC element 14 includes a ring-shaped resin sheet such as polyethylene or polypropylene containing a conductive material such as carbon between two ring-shaped metal thin plates (for example, ring-shaped nickel thin plates) 25a and 25b. 26.

前記円板状高分子樹脂層24は、非水電解液の漏洩を防止する作用と、高温異常時に大量のガスが発生した場合、ガス流路を確保するために、150〜200℃程度で溶融する高分子樹脂から作ることが好ましい。この高分子樹脂としては、例えばポリフッ化ビニリデン、ポリプロピレン等が挙げられる。   The disk-shaped polymer resin layer 24 melts at about 150 to 200 ° C. in order to prevent the leakage of the non-aqueous electrolyte and to secure a gas flow path when a large amount of gas is generated when the temperature is abnormal. It is preferable to make it from a polymer resin. Examples of the polymer resin include polyvinylidene fluoride and polypropylene.

なお、前記円板状高分子樹脂層24を有するリング状PTC素子14は例えばこのPTC素子14のリング内空間に高分子樹脂を射出成形機等で注入する方法、または同リング内空間に予め成形した円板状高分子樹脂層を圧入する方法により製作することが可能である。   The ring-shaped PTC element 14 having the disk-shaped polymer resin layer 24 is formed by, for example, a method in which a polymer resin is injected into the ring inner space of the PTC element 14 by an injection molding machine or the like, or is previously molded in the ring inner space. The disc-shaped polymer resin layer can be manufactured by press-fitting.

前記ガス抜き穴15が開口された他極性端子(例えば正極端子)となる端子板16は、例えばステンレス鋼、鉄もしくはアルミニウムから作られ、0.2〜1.0mmの厚さを有する。   The terminal plate 16 which becomes the other polarity terminal (for example, positive electrode terminal) with which the said gas vent hole 15 was opened is made from stainless steel, iron, or aluminum, for example, and has a thickness of 0.2-1.0 mm.

次に、前記正極3、前記負極4および非水電解液を具体的に説明する。   Next, the positive electrode 3, the negative electrode 4, and the non-aqueous electrolyte will be specifically described.

a)正極3
この正極3は、例えば正極活物質、導電剤および結着剤を適当な溶媒に分散させて得られる正極材ペーストを集電体に片側、もしくは両面に所望する大きさより大きな面積に、連続もしくは所望する長さと未塗布部分との交互に塗布し、乾燥して薄板状にしたものを所望する大きさに裁断することにより作製する。
a) Positive electrode 3
For example, the positive electrode 3 is made of a positive electrode material paste obtained by dispersing a positive electrode active material, a conductive agent, and a binder in an appropriate solvent, continuously or in a larger area than desired on one side or both sides of a current collector. It is produced by alternately applying a length to be applied and an uncoated portion, and cutting a dried thin sheet into a desired size.

前記正極活物質としては、リチウム複合金属酸化物を使用することができる。具体的にはLiCoO2、LiNiO2、LiMnO2、LiMn24などが用いられる.前記結着剤としては、ポリフッ化ビニリデン、フッ化ビニリデン−6フッ化プロピレンの共重合体、ポリフッ化ビニリデン−テトラフルオロエチレン−6フッ化プロピレンの3元共重合体、フッ化ビニリデン−ペンタフルオロプロピレンの共重合体、フッ化ビニリデン−クロロトリフルオロエチレンの共重合体、あるいは他のフッ素系のモノマーとフッ化ビニリデンを共重合体させたものを挙げることができる。前記他のフッ素系モノマーとフッ化ビニリデンとの共重合体としては、テトラフルオロエチレン−フッ化ビニリデンの共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル(PFA)−フッ化ビニリデンの3元共重合体、テトラフルオロエチレン−へキサフルオロプロピレン(FEP)−フッ化ビニリデンの3元共重合体、テトラフルオロエチレン−エチレン−フッ化ビニリデンの共重合体、クロロトリフルオロエチレン−フッ化ビニリデンの共重合体、クロロトリフルオロエチレン−エチレン−フッ化ビニリデンの3元共重合体、フッ化ビニル−フッ化ビニリデンの共重合体を挙げることができる。前記結着剤は、これらを単独で使用してもよい。 A lithium composite metal oxide can be used as the positive electrode active material. Specifically such LiCoO 2, LiNiO 2, LiMnO 2 , LiMn 2 O 4 is used. Examples of the binder include polyvinylidene fluoride, a copolymer of vinylidene fluoride-6-propylene fluoride, a terpolymer of polyvinylidene fluoride-tetrafluoroethylene-6-propylene fluoride, and vinylidene fluoride-pentafluoropropylene. And a copolymer of vinylidene fluoride-chlorotrifluoroethylene, or a copolymer of other fluorine-based monomer and vinylidene fluoride. Examples of the copolymer of the other fluorine-based monomer and vinylidene fluoride include tetrafluoroethylene-vinylidene fluoride copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether (PFA) -vinylidene fluoride terpolymer. Polymer, Tetrafluoroethylene-hexafluoropropylene (FEP) -vinylidene fluoride terpolymer, Tetrafluoroethylene-ethylene-vinylidene fluoride copolymer, Chlorotrifluoroethylene-vinylidene fluoride copolymer And a terpolymer of chlorotrifluoroethylene-ethylene-vinylidene fluoride and a copolymer of vinyl fluoride-vinylidene fluoride. These binders may be used alone.

前記結着剤を分散させるための有機溶媒としては、N−メチルピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、メチルエチルケトン、テトラヒドロフラン、アセトン、酢酸エチル等が使用される。   As the organic solvent for dispersing the binder, N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide, methyl ethyl ketone, tetrahydrofuran, acetone, ethyl acetate and the like are used.

前記導電剤としては、例えばアセチレンブラック、ケッチェンブラック、グラファイト等を挙げることができる。   Examples of the conductive agent include acetylene black, ketjen black, and graphite.

前記結着剤の配合量は、前記活物質と前記結着剤を合わせて100重量部(前記導電剤を含む場合には導電剤も合わせて100重量部)に対して2重量%〜8重量%の範囲にすることが好ましい。   The amount of the binder is 2% to 8% by weight based on 100 parts by weight of the active material and the binder (100 parts by weight of the conductive agent when the conductive agent is included). % Is preferable.

前記導電剤の配合量は、前記活物質100重量部に対して1重量%〜15重量%の範囲にすることが好ましい。   The blending amount of the conductive agent is preferably in the range of 1% by weight to 15% by weight with respect to 100 parts by weight of the active material.

前記有機溶媒の配合量は、前記活物質と前記結着剤を合わせて100重量部(前記導電剤を含む場合には導電剤も合わせて100重量部)に対して65重量%〜150重量%の範囲にすることが好ましい。   The organic solvent is blended in an amount of 65% to 150% by weight based on 100 parts by weight of the active material and the binder (100 parts by weight of the conductive agent when the conductive agent is included). It is preferable to be in the range.

前記正極活物質、導電剤および結着剤を適当な溶媒に分散させる手段としては、ボールミル、ビーズミル、ディゾルバー、サンドグラインダー、ロールミル等の分散装置が用いられる。   As a means for dispersing the positive electrode active material, the conductive agent and the binder in an appropriate solvent, a dispersing device such as a ball mill, a bead mill, a dissolver, a sand grinder, or a roll mill is used.

前記集電体としては、例えば厚さ10〜40μmのアルミニウム箔、ステンレス箔、チタン箔等を挙げることができる。   Examples of the current collector include aluminum foil, stainless steel foil, and titanium foil having a thickness of 10 to 40 μm.

b)負極4
この負極4は、例えばリチウムイオンを吸蔵・放出する炭素質物またはカルコゲン化合物を含むもの、軽金属等から作られる。中でもリチウムイオンを吸蔵・放出する炭素質物またはカルコゲン化合物を含む負極は、前記二次電池のサイクル寿命などの電池特性が向上するために好ましい。
b) Negative electrode 4
The anode 4 is made of, for example, a carbonaceous material that occludes / releases lithium ions or a chalcogen compound, a light metal, or the like. Among these, a negative electrode containing a carbonaceous material or a chalcogen compound that occludes / releases lithium ions is preferable because battery characteristics such as cycle life of the secondary battery are improved.

前記リチウムイオンを吸蔵・放出する炭素質物としては、例えばコークス、炭素繊維、熱分解気相炭素物、黒鉛、樹脂焼成体、メソフェーズピッチ系炭素繊維またはメソフェーズ球状カーボンの焼成体などを挙げることができる。中でも、2500℃以上で黒鉛化したメソフェーズピッチ系炭素繊維を用いると電極容量が高くなるため好ましい。   Examples of the carbonaceous material that occludes / releases lithium ions include coke, carbon fiber, pyrolytic vapor phase carbon material, graphite, resin fired body, mesophase pitch-based carbon fiber, or mesophase spherical carbon fired body. . Among them, it is preferable to use mesophase pitch carbon fiber graphitized at 2500 ° C. or higher because the electrode capacity is increased.

前記リチウムイオンを吸蔵・放出するカルコゲン化合物としては、二硫化チタン(TiS2)、二硫化モリブデン(MoS2)、セレン化ニオブ(NbSe2)などを挙げることができる。このようなカルコゲン化合物を負極に用いると、前記二次電池の電圧は降下するものの前記負極の容量が増加するため、前記二次電池の容量が向上される。更に、前記負極はリチウムイオンの拡散速度が大きいため、前記二次電池の急速充放電性能が向上される。 Examples of the chalcogen compound that absorbs and releases lithium ions include titanium disulfide (TiS 2 ), molybdenum disulfide (MoS 2 ), and niobium selenide (NbSe 2 ). When such a chalcogen compound is used for the negative electrode, although the voltage of the secondary battery drops, the capacity of the negative electrode increases, so that the capacity of the secondary battery is improved. Furthermore, since the negative electrode has a high diffusion rate of lithium ions, the rapid charge / discharge performance of the secondary battery is improved.

前記軽金属としては、アルミニウム、アルミニウム合金、マグネシウム合金、リチウム金属、リチウム合金などを挙げることができる。   Examples of the light metal include aluminum, aluminum alloy, magnesium alloy, lithium metal, and lithium alloy.

前記結着剤としては、ポリフッ化ビニリデン、フッ化ビニリデン−6フッ化プロピレンの共重合体、ポリフッ化ビニリデン−テトラフルオロエチレン−6フッ化プロピレンの3元共重合体、フッ化ビニリデン−ペンタフルオロプロピレンの共重合体、フッ化ビニリデン−クロロトリフルオロエチレンの共重合体、あるいは他のフッ素系のモノマーとフッ化ビニリデンを共重合体させたものを挙げることができる。かかる他のフッ素系モノマーとフッ化ビニリデンとの共重合体としては、テトラフルオロエチレン−フッ化ビニリデンの共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル(PFA)−フッ化ビニリデンの3元共重合体、テトラフルオロエチレン−へキサフルオロプロピレン(FEP)−フッ化ビニリデンの3元共重合体、テトラフルオロエチレン−エチレン−フッ化ビニリデンの共重合体、クロロトリフルオロエチレン−フッ化ビニリデンの共重合体、クロロトリフルオロエチレン−エチレン−フッ化ビニリデンの3元共重合体、フッ化ビニル−フッ化ビニリデンの共重合体、スチレンブタジエン共重合体、ニトリルブタジエン共重合体、アクリル系共重合体、ポリアクリル酸、カルボキシルメチルセルロース、メチルセルロースを挙げることができる。   Examples of the binder include polyvinylidene fluoride, a copolymer of vinylidene fluoride-6-propylene fluoride, a terpolymer of polyvinylidene fluoride-tetrafluoroethylene-6-propylene fluoride, and vinylidene fluoride-pentafluoropropylene. And a copolymer of vinylidene fluoride-chlorotrifluoroethylene, or a copolymer of other fluorine-based monomer and vinylidene fluoride. Examples of such a copolymer of another fluorine-based monomer and vinylidene fluoride include a copolymer of tetrafluoroethylene-vinylidene fluoride and a terpolymer of tetrafluoroethylene-perfluoroalkyl vinyl ether (PFA) -vinylidene fluoride. Polymer, Tetrafluoroethylene-hexafluoropropylene (FEP) -vinylidene fluoride terpolymer, Tetrafluoroethylene-ethylene-vinylidene fluoride copolymer, Chlorotrifluoroethylene-vinylidene fluoride copolymer , Chlorotrifluoroethylene-ethylene-vinylidene fluoride terpolymer, vinyl fluoride-vinylidene fluoride copolymer, styrene butadiene copolymer, nitrile butadiene copolymer, acrylic copolymer, polyacrylic Acid, carboxymethylcellulose, Mention may be made of Le cellulose.

前記結着剤を分散させるための有機溶媒としては、N−メチルピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、メチルエチルケトン、テトラヒドロフラン、アセトン、酢酸エチル、水等が使用される。   As an organic solvent for dispersing the binder, N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide, methyl ethyl ketone, tetrahydrofuran, acetone, ethyl acetate, water and the like are used.

前記負極(例えば炭素材からなる負極)は、具体的には前記炭素材、導電剤および結着剤を適当な溶媒に分散させて得られる負極材ペーストを集電体に片側、もしくは両面に所望する大きさより大きな面積に、連続もしくは所望する長さと未塗布部分との交互に塗布し、乾燥して薄板状にしたものを所望する大きさに裁断することにより作製する。   The negative electrode (for example, a negative electrode made of a carbon material) is specifically desired on one side or both sides of a negative electrode material paste obtained by dispersing the carbon material, a conductive agent, and a binder in an appropriate solvent. A continuous or desired length and an unapplied portion are alternately applied to an area larger than the size to be formed, and dried and cut into a desired plate size.

前記負極材料、結着剤の配合割合は、負極材料80〜98重量%、結着剤2〜20重量%の範囲であることが好ましい。特に、前記炭素材は負極6を作製した状態で、片面当たりの塗布量として50〜200g/m2の範囲にすることが好ましい。 The mixing ratio of the negative electrode material and the binder is preferably in the range of 80 to 98% by weight of the negative electrode material and 2 to 20% by weight of the binder. In particular, the carbon material is preferably in the range of 50 to 200 g / m 2 as the coating amount per side in the state in which the negative electrode 6 is produced.

前記集電体としては、例えば銅箔、ニッケル箔等を用いることができるが、電気化学的な安定性および捲回時の柔軟性等を考慮すると、銅箔がもっとも好ましい。このときの箔の厚さとしては、8μm以上20μm以下であることが好ましい。   As the current collector, for example, a copper foil, a nickel foil, or the like can be used, but a copper foil is most preferable in view of electrochemical stability and flexibility during winding. In this case, the thickness of the foil is preferably 8 μm or more and 20 μm or less.

c)非水電解液
この非水電解液は、非水溶媒に電解質を溶解した組成を有する。
c) Nonaqueous electrolyte This nonaqueous electrolyte has a composition in which an electrolyte is dissolved in a nonaqueous solvent.

前記非水溶媒としては、例えばプロピレンカーボネート(PC)、エチレンカーボネート(EC)などの環状カーボネート、例えばジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)などの鎖状カーボネート、1,2−ジメトキシエタン(DME)、ジエトキシエタン(DEE)などの鎖状エーテル、テトラヒドロフラン(THF)や2−メチルテトラヒドロフラン(2−MeTHF)などの環状エーテルやクラウンエーテル、γ−ブチロラクトン(γ−BL)などの脂肪酸エステル、アセトニトリル(AN)などの窒素化合物、スルホラン(SL)やジメチルスルホキシド(DMSO)などの硫黄化合物などから選ばれる少なくとも1種を用いることができる。   Examples of the non-aqueous solvent include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), chain carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC). , 2-dimethoxyethane (DME), chain ethers such as diethoxyethane (DEE), cyclic ethers such as tetrahydrofuran (THF) and 2-methyltetrahydrofuran (2-MeTHF), crown ethers, γ-butyrolactone (γ-BL) ), Nitrogen compounds such as acetonitrile (AN), sulfur compounds such as sulfolane (SL) and dimethyl sulfoxide (DMSO), and the like.

中でも、EC、PC、γ−BLから選ばれる少なくとも1種からなるものや、EC、PC、γ−BLから選ばれる少なくとも1種とDMC、MEC、DEC、DME、DEE、THF、2−MeTHF、ANから選ばれる少なくとも1種とからなる混合溶媒を用いることが好ましい。また、負極に前記リチウムイオンを吸蔵・放出する炭素質物を含むものを用いる場合に、前記負極を備えた二次電池のサイクル寿命を向上させる観点から、ECとPCとγ−BL、ECとPCとMEC、ECとPCとDEC、ECとPCとDEE、ECとAN、ECとMEC、PCとDMC、PCとDEC、またはECとDECからなる混合溶媒を用いることが好ましい。   Among these, at least one selected from EC, PC, and γ-BL, at least one selected from EC, PC, and γ-BL and DMC, MEC, DEC, DME, DEE, THF, 2-MeTHF, It is preferable to use a mixed solvent composed of at least one selected from AN. Moreover, when using what contains the carbonaceous material which occludes and discharge | releases the said lithium ion for a negative electrode, from a viewpoint of improving the cycle life of the secondary battery provided with the said negative electrode, EC and PC, (gamma) -BL, EC and PC It is preferable to use a mixed solvent consisting of EC and MEC, EC and PC and DEC, EC and PC and DEE, EC and AN, EC and MEC, PC and DMC, PC and DEC, or EC and DEC.

前記電解質としては、例えば過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、ホウフッ化リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、四塩化アルミニウムリチウム(LiAlCl4)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO22]などのリチウム塩を挙げることができる。中でもLiPF6、LiBF4、LiN(CF3SO22を用いると、導電性や安全性が向上されるために好ましい。 Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), and lithium trifluorometasulfonate. Examples thereof include lithium salts such as (LiCF 3 SO 3 ), lithium aluminum tetrachloride (LiAlCl 4 ), and bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 2 ) 2 ]. Of these, LiPF 6 , LiBF 4 , and LiN (CF 3 SO 2 ) 2 are preferable because conductivity and safety are improved.

前記電解質の前記非水溶媒に対する溶解量は、0.5モル/L〜2.0モル/Lの範囲にすることが好ましい。   The amount of the electrolyte dissolved in the non-aqueous solvent is preferably in the range of 0.5 mol / L to 2.0 mol / L.

以上のような図1、図2に示す第1実施形態に係る非水電解質二次電池において、1)異常時(外部短絡時)および2)異常時(過充電時)の動作を説明する。   In the nonaqueous electrolyte secondary battery according to the first embodiment shown in FIG. 1 and FIG. 2 described above, the operation at the time of 1) abnormality (at the time of external short circuit) and 2) at the time of abnormality (at the time of overcharge) will be described.

1)外部短絡時
外部短絡により大電流が流れた場合、ラプチャー板13と端子板16との間に位置するPTC素子14が自身の抵抗による発熱により作動してその抵抗値が急激に増加する。このため、電流流れを抑制して大電流が流れつづけることによる発熱、内圧の上昇を回避することができる。
1) At the time of an external short circuit When a large current flows due to an external short circuit, the PTC element 14 located between the rupture plate 13 and the terminal plate 16 operates due to heat generated by its own resistance, and its resistance value increases rapidly. For this reason, it is possible to avoid heat generation and an increase in internal pressure due to a large current continuing by suppressing the current flow.

3)過充電時
過充電により外装缶1内の温度が上昇して電極群2と非水系電解液の反応、および非水系電解液の分解に起因するガスを発生し、内圧が上昇すると、そのガスは絶縁押え板8の穴6、7、ストリッパー11に開口された3つの扇状穴17および絶縁シート12の開口部を通してラプチャー板13に達し、そのラプチャー板13を端子板16側に押上げる。ラプチャー板13が押上げられる時には、前記ストリッパー11および接続板19が変形しないため、ラプチャー板13の逆円錐状の電流伝達・遮断部21が接続板19から離れ、正極の伝達路が電気的に遮断される。その結果、電流が流れつづけることに伴うより一層の発熱、内圧の上昇を回避することができる。
3) At the time of overcharge When the temperature in the outer can 1 rises due to overcharge, and gas is generated due to the reaction between the electrode group 2 and the nonaqueous electrolyte and the decomposition of the nonaqueous electrolyte, and the internal pressure rises, The gas reaches the rupture plate 13 through the holes 6 and 7 of the insulating retainer plate 8, the three fan-shaped holes 17 opened in the stripper 11 and the opening of the insulating sheet 12, and pushes up the rupture plate 13 toward the terminal plate 16. When the rupture plate 13 is pushed up, the stripper 11 and the connection plate 19 are not deformed. Therefore, the reverse cone-shaped current transmission / cut-off portion 21 of the rupture plate 13 is separated from the connection plate 19 and the positive electrode transmission path is electrically connected. Blocked. As a result, it is possible to avoid further heat generation and an increase in internal pressure due to the continuous flow of current.

前記正極の電流伝達路の遮断後にも内圧上昇が生じると、前記ラプチャー板13に前記ガス経路を通してさらに高温で高いガス圧力が加わる。この時、ラプチャー板13には図2に示すように切込部23、24が形成されているため、ガスの加圧力によりそのラプチャー板13が切込部23、24を起点にして破断される。このラプチャー板13の破断に伴って前記ガスはさらにリング状のPTC素子14に向かって流れる。このPTC素子14には、そのリング内の空間に円板状高分子樹脂層24が配置され、前記高温のガスが吹き付けられると、その熱により円板状高分子樹脂層24が溶融してガス流路を形成するため、外装缶1内で発生したガスはこのガス流路を通して外部に円滑に開放される。その結果、過度な内圧上昇による電池の破裂を未然に防止することができる。   If an increase in internal pressure occurs even after the current transmission path of the positive electrode is interrupted, a higher gas pressure is applied to the rupture plate 13 at a higher temperature through the gas path. At this time, the rupture plate 13 is formed with the cut portions 23 and 24 as shown in FIG. 2, so that the rupture plate 13 is broken from the cut portions 23 and 24 as a starting point due to the pressure of the gas. . As the rupture plate 13 is broken, the gas further flows toward the ring-shaped PTC element 14. In this PTC element 14, a disk-shaped polymer resin layer 24 is disposed in the space in the ring, and when the high-temperature gas is blown, the disk-shaped polymer resin layer 24 is melted by the heat and gas is discharged. In order to form the flow path, the gas generated in the outer can 1 is smoothly opened to the outside through the gas flow path. As a result, battery rupture due to an excessive increase in internal pressure can be prevented in advance.

さらに、図1、図2に示す構成の非水電解液二次電池において、激しい落下、振動衝撃によりラプチャー板13が破損した場合、外装缶1内の非水電解液はストリッパー11に開口された扇状穴17、絶縁リング12の開口部およびラプチャー板13の破損箇所を通してPTC素子14に達する。このPTC素子14には、前述のようにそのリング内の空間に円板状高分子樹脂層24がそのリング内面に密着して配置されているため、従来のリング状PTC素子のようにそのリング内の空間から非水電解液が漏洩するのを防ぐことができる。   Furthermore, in the non-aqueous electrolyte secondary battery having the configuration shown in FIGS. 1 and 2, when the rupture plate 13 is damaged due to severe drop or vibration shock, the non-aqueous electrolyte in the outer can 1 is opened to the stripper 11. The PTC element 14 is reached through the fan-shaped hole 17, the opening of the insulating ring 12 and the damaged portion of the rupture plate 13. Since the disk-shaped polymer resin layer 24 is disposed in close contact with the inner surface of the ring in the space in the ring as described above, the PTC element 14 has the ring like the conventional ring-shaped PTC element. It is possible to prevent the nonaqueous electrolyte from leaking from the inner space.

したがって、本発明の第1実施形態によれば外部短絡、過充電のような異常時において発熱(温度上昇)、内圧上昇を防ぎ、さらに温度上昇によるガス発生、内圧上昇が起こっても前記PTC素子でのガス流路を確保してガスを速やかに逃散させて破裂等を未然に防止できるため、電池特性と安全性の優れた非水電解質二次電池を提供することができる。   Therefore, according to the first embodiment of the present invention, it is possible to prevent heat generation (temperature increase) and increase in internal pressure at the time of abnormality such as external short circuit and overcharge, and even if gas generation due to temperature increase and internal pressure increase occur, the PTC element Therefore, it is possible to provide a non-aqueous electrolyte secondary battery excellent in battery characteristics and safety because it can ensure gas flow path and quickly escape gas to prevent rupture and the like.

また、激しい落下、振動衝撃によりラプチャー板が破損した場合、非水電解液の漏洩を防いで、電池パックの保護回路が非水電解液の漏洩に伴って短絡するのを防止して発煙、発火に至る事故を阻止できる。   In addition, when the rupture plate is damaged due to violent dropping or vibration shock, the non-aqueous electrolyte is prevented from leaking, and the battery pack protection circuit is prevented from being short-circuited due to the leakage of the non-aqueous electrolyte. Can be prevented.

なお、前述した第1実施形態ではPTC素子14のリング内の空間に円板状高分子樹脂層24を直接固定したが、これに限定されない。例えば、図3に示すようにラプチャー板13側に位置するPTC素子14のリング状ニッケル薄板25bをそのPTC素子14のリング内の空間に延出してリング状の鍔部27を形成し、このPTC素子14のリング内の空間に円板状高分子樹脂層24をその外周面がPTC素子14のリング内面に密着するように、かつ前記鍔部27に支持して配置してもよい。また、図4に示すようにラプチャー板13側に位置するPTC素子14のリング状ニッケル薄板25bに金属メッシュ28をPTC素子14のリング内の空間に位置するように一体的に取り付け、このPTC素子14のリング内の空間に円板状高分子樹脂層24をその外周面がPTC素子14のリング内面に密着するように、かつ前記金属メッシュ28に支持して配置してもよい。   In the first embodiment described above, the disc-shaped polymer resin layer 24 is directly fixed in the space in the ring of the PTC element 14, but the present invention is not limited to this. For example, as shown in FIG. 3, a ring-shaped nickel thin plate 25b of the PTC element 14 located on the rupture plate 13 side is extended into a space in the ring of the PTC element 14 to form a ring-shaped flange 27, and this PTC The disc-shaped polymer resin layer 24 may be disposed in a space in the ring of the element 14 so that the outer peripheral surface thereof is in close contact with the inner surface of the ring of the PTC element 14 and supported by the flange portion 27. Further, as shown in FIG. 4, a metal mesh 28 is integrally attached to the ring-shaped nickel thin plate 25b of the PTC element 14 positioned on the rupture plate 13 side so as to be positioned in the space in the ring of the PTC element 14, and this PTC element The disc-shaped polymer resin layer 24 may be disposed in the space in the ring 14 so that the outer peripheral surface thereof is in close contact with the inner surface of the ring of the PTC element 14 and supported by the metal mesh 28.

このような図3または図4に示す構成によれば、PTC素子14のリング内の空間に円板状高分子樹脂層24をより一層良好に固定させることができる。   According to such a configuration shown in FIG. 3 or FIG. 4, the disk-shaped polymer resin layer 24 can be fixed more satisfactorily in the space in the ring of the PTC element 14.

なお、前述した図1、図2に示す本発明の第1実施形態に係る円筒形非水電解質二次電池において、封口蓋群が以下に説明する図5〜図8に示す導電性支持板をさらに備えた構成にすることを許容する。
図5に示すように導電性支持板41は、円板状高分子樹脂層24を含むPTC素子14上面全体を覆うように配置されている。この導電性支持板41は、前記絶縁ガスケット10にかしめ固定される導電性円板42と、この導電性円板42に形成され、ガス発生に伴う内圧上昇で破断可能な易破断部である切込部、例えば円形の切込部43およびこの切込部43から外側に放射状に延出する8本の線状切込部44とから構成されている。
図5に示す構成の導電性支持板41において、ガス発生に伴う外装缶の内圧上昇が起きてラプチャー板13が破断され、さらにPTC素子14のリング内の空間に位置する円板状高分子樹脂層24に高温のガス圧力により溶融してガス流路が形成され、その支持板41にガス圧力が加わると、前記切込部43、44を起点として破断されてガスを逃散させる。
図6に示すように導電性支持板である導電性リング板45は、円板状高分子樹脂層24を含むPTC素子14上面全体を覆うように前記絶縁ガスケット10にかしめ固定されている。
In addition, in the cylindrical nonaqueous electrolyte secondary battery according to the first embodiment of the present invention shown in FIGS. 1 and 2 described above, the conductive support plate shown in FIGS. Further, it is allowed to have a configuration provided.
As shown in FIG. 5, the conductive support plate 41 is disposed so as to cover the entire top surface of the PTC element 14 including the disk-shaped polymer resin layer 24. The conductive support plate 41 includes a conductive disc 42 that is caulked and fixed to the insulating gasket 10, and a cut portion that is formed on the conductive disc 42 and is an easily breakable portion that can be broken by an increase in internal pressure due to gas generation. It is comprised from the notch part, for example, the circular notch part 43, and the eight linear notch parts 44 extended radially outward from this notch part 43. As shown in FIG.
In the conductive support plate 41 having the configuration shown in FIG. 5, the internal pressure of the outer can increases due to gas generation, the rupture plate 13 is broken, and the disc-shaped polymer resin located in the space in the ring of the PTC element 14 When the gas pressure is applied to the support plate 41 by melting at a high temperature gas pressure in the layer 24 and the gas pressure is applied to the support plate 41, the gas is released by breaking at the notches 43 and 44.
As shown in FIG. 6, a conductive ring plate 45 that is a conductive support plate is caulked and fixed to the insulating gasket 10 so as to cover the entire upper surface of the PTC element 14 including the disk-shaped polymer resin layer 24.

図7に示すように導電性支持板46は、円板状高分子樹脂層24を含むPTC素子14上面全体を覆うように配置されている。この導電性支持板46は、前記絶縁ガスケット10にかしめ固定されるリング板47と、前記絶縁ガスケット10による固定部を除く前記リング板47の少なくとも一方の面(例えば上面)にその中空部を覆ように固定された円形薄板48と、この薄板48に形成されたガス発生に伴う内圧上昇で破断可能な易破断部である切込部、例えば円形の切込部49およびこの切込部49から外側に放射状に延出する8本の線状切込部50とから構成されている。円形薄板は、例えばニッケルなどから作られ、ガス発生に伴う内圧上昇で破断され易い厚さ、例えば0.05〜0.3mmの厚さを有することが好ましい。
図7に示す構成の導電性支持板46において、ガス発生に伴う外装缶の内圧上昇が起きてラプチャー板13が破断し、さらにPTC素子14のリング内の空間に位置する円板状高分子樹脂層24に高温のガス圧力により溶融してガス流路が形成され、その支持板46にガス圧力が加わると、前記薄板48に形成された切込部49,50を起点として破断されてガスを逃散させる。
図8に示すように導電性支持板51は、円板状高分子樹脂層24を含むPTC素子14上面全体を覆うように配置されている。この導電性支持板51は、前記絶縁ガスケット10にかしめ固定されるリング板52と、このリング板52の中空部内面に密着して配置された円板状高分子樹脂層53とから構成されている。円板状高分子樹脂層53は、100〜200℃程度で溶融することが好ましく、例えばポリエチレン、ポリフッ化ビニリデン、ポリプロピレン等から製作される。
As shown in FIG. 7, the conductive support plate 46 is disposed so as to cover the entire top surface of the PTC element 14 including the disc-shaped polymer resin layer 24. The conductive support plate 46 covers the hollow portion on at least one surface (for example, the upper surface) of the ring plate 47 excluding the fixing portion by the insulating gasket 10 by caulking and fixing to the insulating gasket 10. A circular thin plate 48 fixed in this manner, and a cut portion which is an easily breakable portion which can be broken by an increase in internal pressure due to gas generation formed in the thin plate 48, for example, a circular cut portion 49 and the cut portion 49 It is comprised from the eight linear notch parts 50 extended radially outside. The circular thin plate is preferably made of, for example, nickel, and has a thickness that is easily broken due to an increase in internal pressure accompanying gas generation, for example, a thickness of 0.05 to 0.3 mm.
In the conductive support plate 46 having the configuration shown in FIG. 7, the inner pressure of the outer can increases due to gas generation, the rupture plate 13 is broken, and the disc-shaped polymer resin is located in the space in the ring of the PTC element 14. The gas flow path is formed by melting the layer 24 with a high temperature gas pressure, and when the gas pressure is applied to the support plate 46, the gas is broken by starting from the notches 49 and 50 formed in the thin plate 48. Escape.
As shown in FIG. 8, the conductive support plate 51 is disposed so as to cover the entire top surface of the PTC element 14 including the disk-shaped polymer resin layer 24. The conductive support plate 51 includes a ring plate 52 that is caulked and fixed to the insulating gasket 10, and a disk-shaped polymer resin layer 53 that is disposed in close contact with the inner surface of the hollow portion of the ring plate 52. Yes. The disk-shaped polymer resin layer 53 is preferably melted at about 100 to 200 ° C., and is made of, for example, polyethylene, polyvinylidene fluoride, polypropylene or the like.

図8に示す構成の導電性支持板51において、ガス発生に伴う外装缶の内圧上昇が起き、ラプチャー板13が破断され、さらにPTC素子14のリング内の空間に位置する円板状高分子樹脂層24に比較的高い温度のガス圧力により溶融してガス流路が形成され、その支持板51にガス圧力が加わると、前記円板状高分子樹脂層53が溶融してガス流路を作り、ここを通してガスを逃散させる。
前記導電性支持板を構成する導電性円板および導電性リング板は、PTC素子14およびラプチャー板13を絶縁ガスケット10に対して安定的にかしめ固定するために用いられる。このため、前記導電性円板および導電性リング板は厚さを薄くすると前記機能が十分に発揮され難くなり、反面厚くし過ぎると封口蓋群の厚さが増大して電極群の収容容量が実効的に低下する虞がある。したがって、導電性円板および導電性リング板は0.1〜0.5mm、より好ましくは0.2〜0.35mmの厚さを有することが望ましい。
前記導電性支持板を構成する導電性円板および導電性リング板は、前記機能を効果的に発現するために比較的ヤング率が大きな(25℃でのヤング率が1×1011Pa〜3.27×1011Paの)導電材料から製作されることが好ましい。例えば鉄、ニッケル、銅、コバルト、クロム、もしくはこれらの合金、またはモリブデン、タンタル等から製作することができる。
このような図5〜図8に示す構成によれば、導電性支持板によりラプチャー板13およびPTC素子14の周縁での絶縁ガスケット10に対するかしめ固定性が向上されるため、それら部材の周縁がガス発生に伴う外装缶の内圧上昇の圧力で変形するのを防止できる。その結果、ラプチャー板13が破断される作動圧およびPTC素子14の円板状高分子樹脂層24が溶融される作動圧のばらつきを抑制できるため、安定的なラプチャー機能を付与できる。
特に、図5に示す切込部43,44を有する導電性支持板41、図7に示す切込部49,50が形成された円形薄板48を有する導電性支持板46、および図8に示す円形高分子樹脂層53を有する導電性支持板51は前述したようにラプチャー機能を有するため、ラプチャー板13およびPTC素子14の円板状高分子樹脂層24と共に三重のラプチャー機能部材を設けることができ、落下などの衝撃を受けても外界からの水分流入、非水電解液の漏洩をより一層確実に防止することができる。
In the conductive support plate 51 having the configuration shown in FIG. 8, the internal pressure of the outer can increases due to gas generation, the rupture plate 13 is broken, and the disc-shaped polymer resin is located in the space in the ring of the PTC element 14. When the gas pressure is applied to the support plate 51, the disc-shaped polymer resin layer 53 is melted to form a gas flow path. , Let the gas escape through here.
The conductive disk and the conductive ring plate constituting the conductive support plate are used for stably caulking and fixing the PTC element 14 and the rupture plate 13 to the insulating gasket 10. For this reason, if the thickness of the conductive disk and conductive ring plate is reduced, the function is not sufficiently exhibited.On the other hand, if the thickness is too large, the thickness of the sealing lid group increases and the capacity of the electrode group is increased. There is a risk that it will be effectively reduced. Therefore, it is desirable that the conductive disk and the conductive ring plate have a thickness of 0.1 to 0.5 mm, more preferably 0.2 to 0.35 mm.
The conductive disk and conductive ring plate constituting the conductive support plate have a relatively large Young's modulus (the Young's modulus at 25 ° C. is 1 × 10 11 Pa-3 in order to effectively express the function). It is preferably made from a conductive material (.27 × 10 11 Pa). For example, it can be manufactured from iron, nickel, copper, cobalt, chromium, or an alloy thereof, molybdenum, tantalum, or the like.
According to the configuration shown in FIGS. 5 to 8, since the caulking fixing property to the insulating gasket 10 at the periphery of the rupture plate 13 and the PTC element 14 is improved by the conductive support plate, the periphery of these members is gas. It is possible to prevent the outer can from being deformed by an increase in the internal pressure of the outer can. As a result, it is possible to suppress variations in operating pressure at which the rupture plate 13 is broken and operating pressure at which the disc-shaped polymer resin layer 24 of the PTC element 14 is melted, thereby providing a stable rupture function.
In particular, the conductive support plate 41 having the cut portions 43 and 44 shown in FIG. 5, the conductive support plate 46 having the circular thin plate 48 with the cut portions 49 and 50 shown in FIG. 7, and FIG. Since the conductive support plate 51 having the circular polymer resin layer 53 has a rupture function as described above, a triple rupture function member may be provided together with the rupture plate 13 and the disk-like polymer resin layer 24 of the PTC element 14. It is possible to prevent the inflow of moisture from the outside and the leakage of the non-aqueous electrolyte even more reliably even under impact such as dropping.

なお、前述した図5〜図8に示す導電性支持板は円板状高分子樹脂層24を含むPTC素子14上面に配置する場合に限らず、ラプチャー板13とPTC素子14の間、つまりPTC素子14下面に配置してもよい。
(第2実施形態)
この第2実施形態の円筒形非水電解液二次電池は、前述した図1に示す構造を有し、ラプチャ−板と端子板との間に介在されるPTC素子14は図9に示すようにそのリング内の空間に円板状電解液保持部材、例えば連通気孔を有する円板状多孔質体31が配置されている。具体的には、ラプチャ−板13側に位置するPTC素子14のリング状ニッケル薄板25bをそのPTC素子14のリング内の空間に延出してリング状の鍔部27を形成し、円板状多孔質体31は前記PTC素子14のリング内の空間にその外周面がPTC素子14のリング内面に密着するように、かつ前記鍔部27に支持して配置されている。
The conductive support plate shown in FIGS. 5 to 8 is not limited to the case where the conductive support plate is disposed on the upper surface of the PTC element 14 including the disc-shaped polymer resin layer 24, but between the rupture plate 13 and the PTC element 14, that is, the PTC. You may arrange | position on the element 14 lower surface.
(Second Embodiment)
The cylindrical nonaqueous electrolyte secondary battery of the second embodiment has the structure shown in FIG. 1 described above, and the PTC element 14 interposed between the rupture plate and the terminal plate is as shown in FIG. In addition, a disk-shaped electrolyte solution holding member, for example, a disk-shaped porous body 31 having continuous air holes is disposed in the space in the ring. Specifically, the ring-shaped nickel thin plate 25b of the PTC element 14 located on the rupture plate 13 side is extended into the space in the ring of the PTC element 14 to form the ring-shaped flange portion 27, and the disk-shaped porous The material 31 is arranged in the space in the ring of the PTC element 14 so that the outer peripheral surface thereof is in close contact with the inner surface of the ring of the PTC element 14 and supported by the flange portion 27.

前記多孔質体31は、無機系、有機系のいずれの材料からも作ることができる。無機系多孔質体としては、例えば、連続気孔を有するシリカ多孔質体、アルミナ多孔質体等を挙げることができる。なお、無機系多孔質体を用いる場合にはその多孔質体の外周面とPTC素子のリング内面の間に接着剤層を介して相互に密着させることが好ましい。有機系多孔質体としては、連続気孔を有するポリウレタン発泡体、ポリエチレン発泡体などの高分子樹脂発泡体を挙げることができる。   The porous body 31 can be made of any inorganic or organic material. Examples of the inorganic porous material include a silica porous material having continuous pores and an alumina porous material. In addition, when using an inorganic type porous body, it is preferable to mutually adhere | attach between the outer peripheral surface of the porous body, and the ring inner surface of a PTC element through an adhesive bond layer. Examples of the organic porous material include polymer resin foams such as polyurethane foam and polyethylene foam having continuous pores.

このような図9に示すPTC素子14が組み込まれた円筒形非水電解液二次電池において、外部短絡により大電流が流れた場合、過充電により外装缶内の温度が上昇して電極群と非水系電解液の反応、および非水系電解液の分解に起因するガスを発生し、内圧が上昇した場合には前記第1実施形態で説明したようにそれぞれリング状のPTC素子14により電流流れを抑制し、正極の伝達路を電気的に遮断する。   In the cylindrical nonaqueous electrolyte secondary battery in which the PTC element 14 shown in FIG. 9 is incorporated, when a large current flows due to an external short circuit, the temperature in the outer can rises due to overcharging, and the electrode group When the gas resulting from the reaction of the non-aqueous electrolyte and the decomposition of the non-aqueous electrolyte is generated and the internal pressure rises, the current flows by the ring-shaped PTC elements 14 as described in the first embodiment. Suppresses and electrically interrupts the positive electrode transmission path.

一方、前記正極の電流伝達路の遮断後にも発熱を伴って内圧上昇が生じると、ラプチャ−板が破断され、このラプチャ−板の破断に伴って前記ガスはさらにリング状PTC素子14に向かって流れる。この時、PTC素子14はそのリング内の空間に円板状電解液保持部材(例えば連続気孔を有する円板状シリカ多孔質体)31が配置されているため、前記ガスはその円板状シリカ多孔質体31の連続気孔(ガス流路)を通して外部に円滑に開放される。その結果、過度な内圧上昇による電池の破裂を未然に防止することができる。   On the other hand, if the internal pressure rises with heat generation even after the current transmission path of the positive electrode is interrupted, the rupture plate is broken, and the gas further moves toward the ring-shaped PTC element 14 as the rupture plate is broken. Flowing. At this time, since the PTC element 14 is provided with a disk-shaped electrolyte solution holding member (for example, a disk-shaped silica porous body having continuous pores) 31 in the space in the ring, the gas is the disk-shaped silica. It is smoothly opened to the outside through the continuous pores (gas flow path) of the porous body 31. As a result, battery rupture due to an excessive increase in internal pressure can be prevented in advance.

さらに、図9に示すPTC素子を組み込んだ非水電解液二次電池において、激しい落下、振動衝撃によりラプチャ−板が破損した場合、前記第1実施形態で説明したように外装缶内の非水電解液は前記ラプチャ−板の破損箇所を通してPTC素子14に達する。このPTC素子14には、前述のようにそのリング内の空間に円板状電解液保持部材(例えば連続気孔を有するシリカ多孔質体)31が配置されているため、その非水電解液を前記円板状シリカ多孔質体31で気孔内に保持して漏洩を防ぐことができる。   Further, in the non-aqueous electrolyte secondary battery incorporating the PTC element shown in FIG. 9, when the rupture plate is damaged due to severe drop or vibration shock, as described in the first embodiment, the non-aqueous electrolyte in the outer can The electrolytic solution reaches the PTC element 14 through the damaged portion of the rupture plate. Since the disk-shaped electrolyte solution holding member (for example, a silica porous body having continuous pores) 31 is disposed in the space in the ring of the PTC element 14 as described above, the non-aqueous electrolyte solution is used as the non-aqueous electrolyte solution. The disc-like silica porous body 31 can be held in the pores to prevent leakage.

したがって、本発明の第2実施形態によれば外部短絡、過充電のような異常時において発熱(温度上昇)、内圧上昇を防ぎ、さらに温度上昇によるガス発生、内圧上昇が起こっても前記PTC素子でのガス流路を確保してガスを速やかに逃散させて破裂等を未然に防止できるため、電池特性と安全性の優れた非水電解質二次電池を提供することができる。   Therefore, according to the second embodiment of the present invention, it is possible to prevent heat generation (temperature rise) and increase in internal pressure at the time of abnormality such as external short circuit and overcharge, and even if gas generation due to temperature rise and internal pressure increase occur, the PTC element Therefore, it is possible to provide a non-aqueous electrolyte secondary battery excellent in battery characteristics and safety because it can ensure gas flow path and quickly escape gas to prevent rupture and the like.

また、激しい落下、振動衝撃によりラプチャ−板が破損した場合、非水電解液が漏洩するのを防いで、電池パックの保護回路が非水電解液の漏洩に伴って短絡するのを防止して発煙、発火に至る事故を阻止することができる。   In addition, when the rupture plate is damaged due to a violent drop or vibration shock, the non-aqueous electrolyte is prevented from leaking, and the protection circuit of the battery pack is prevented from being short-circuited due to the leakage of the non-aqueous electrolyte. Accidents that lead to smoke or fire can be prevented.

なお、前述した第2実施形態ではPTC素子14のリング内の空間に円板状電解液保持部材31をリング状ニッケル薄板25bのリング状鍔部27で支持したが、これに限定されない。例えば、図10に示すように電流遮断機構側に位置するPTC素子14のリング状ニッケル薄板25bに金属メッシュ28をPTC素子14のリング内の空間に位置するように一体的に取り付け、このPTC素子14のリング内の空間に円板状電解液保持部材31をその外周面がPTC素子14のリング内面に密着するように、かつ前記金属メッシュ28に支持して配置してもよい。   In the second embodiment described above, the disc-shaped electrolyte solution holding member 31 is supported in the space in the ring of the PTC element 14 by the ring-shaped flange portion 27 of the ring-shaped nickel thin plate 25b. However, the present invention is not limited to this. For example, as shown in FIG. 10, a metal mesh 28 is integrally attached to a ring-shaped nickel thin plate 25b of the PTC element 14 positioned on the current interrupting mechanism side so as to be positioned in a space in the ring of the PTC element 14, and this PTC element The disc-shaped electrolyte holding member 31 may be disposed in a space in the ring of the 14 ring so that the outer peripheral surface thereof is in close contact with the inner surface of the ring of the PTC element 14 and supported by the metal mesh 28.

また、前述した第2実施形態では円板状電解液保持部材31として多孔質体を用いたが、多孔質体の代わりに無機系繊維または有機系繊維からなる円板状不織布層を用いてもよい。例えば、図11に示すように電流遮断機構側に位置するPTC素子14のリング状ニッケル薄板25bをそのPTC素子14のリング内の空間に延出してリング状の鍔部27を形成し、このPTC素子14のリング内の空間に円板状不織布層32をその外周面がPTC素子14のリング内面に密着するように、かつ前記鍔部27に支持して配置する。また、図12に示すように電流遮断機構側に位置するPTC素子14のリング状ニッケル薄板25bに金属メッシュ28をPTC素子14のリング内の空間に位置するように一体的に取り付け、このPTC素子14のリング内の空間に円板状不織布層32をその外周面がPTC素子14のリング内面に密着するように、かつ前記金属メッシュ28に支持して配置する。   In the second embodiment described above, a porous body is used as the disc-shaped electrolyte solution holding member 31, but a disk-shaped nonwoven fabric layer made of inorganic fibers or organic fibers may be used instead of the porous body. Good. For example, as shown in FIG. 11, a ring-shaped nickel thin plate 25b of the PTC element 14 positioned on the current interrupting mechanism side is extended into a space in the ring of the PTC element 14 to form a ring-shaped flange portion 27. A disc-shaped nonwoven fabric layer 32 is disposed in a space in the ring of the element 14 so that the outer peripheral surface thereof is in close contact with the inner surface of the ring of the PTC element 14 and supported by the flange portion 27. Further, as shown in FIG. 12, a metal mesh 28 is integrally attached to the ring-shaped nickel thin plate 25b of the PTC element 14 positioned on the current interrupting mechanism side so as to be positioned in the space in the ring of the PTC element 14, and this PTC element The disc-shaped nonwoven fabric layer 32 is disposed in the space in the ring 14 so that the outer peripheral surface thereof is in close contact with the inner surface of the ring of the PTC element 14 and supported by the metal mesh 28.

前記各繊維は、非水電解液に対して親和性を有することが好ましく、無機系繊維としては例えばガラス繊維を、有機系繊維としてはポリメチルメタクリレート繊維、ポリビニルアルコール繊維、ポリエチレンテレフタレート繊維を挙げることができる。   Each of the fibers preferably has an affinity for a non-aqueous electrolyte. Examples of inorganic fibers include glass fibers, and examples of organic fibers include polymethyl methacrylate fibers, polyvinyl alcohol fibers, and polyethylene terephthalate fibers. Can do.

さらに、本発明の第2実施形態に係る円筒形非水電解質二次電池において、封口蓋群を前述した図5〜図8に示す導電性支持板をさらに備えた構成にすることを許容する。
以下,本発明の実施例を前述した図面を参照して説明する。
Furthermore, in the cylindrical nonaqueous electrolyte secondary battery according to the second embodiment of the present invention, the sealing lid group is allowed to have a configuration further including the conductive support plate shown in FIGS.
Embodiments of the present invention will be described below with reference to the drawings described above.

(実施例1)
LiCoO2粉末100重量部、平均粒径50nmのアセチレンブラック2量部および平均粒径1μmの燐片状黒鉛(人造黒鉛)3重量部とをミキサで混合し、得られた混合物に結着剤であるポリフッ化ビニリデン5重量部を加えた後、N−メチルピロリドンに分散させて正極ペーストを調製した。つづいて、このペーストを集電体としてのアルミニウム箔の両面に塗布し、乾燥した後、圧延して正極を作製した。この後、正極のペースト未塗布部にリードタブを接続した。
(Example 1)
100 parts by weight of LiCoO 2 powder, 2 parts by weight of acetylene black having an average particle diameter of 50 nm and 3 parts by weight of flake graphite (artificial graphite) having an average particle diameter of 1 μm are mixed with a mixer, and the resulting mixture is mixed with a binder. After adding 5 parts by weight of certain polyvinylidene fluoride, it was dispersed in N-methylpyrrolidone to prepare a positive electrode paste. Subsequently, this paste was applied to both sides of an aluminum foil as a current collector, dried, and then rolled to produce a positive electrode. Thereafter, a lead tab was connected to the non-coated portion of the positive electrode.

また、メソフェーズピッチを原料としたメソフェーズピッチ炭素繊維を黒鉛化することによりメソフェーズピッチ系炭素繊維を製造した。つづいて、このメソフェーズピッチ系炭素繊維90重量部、天然黒鉛10重量部およびポリフッ化ビニリデン7重量部からなる混合物をN−メチルピロリドンに分散させて負極ペーストを調製した。このペーストを集電体である銅箔の両面に塗布し、乾燥した後、ロールプレスを行い充填密度1.4g/cm3の負極を作製した。この後、負極のペースト未塗布部にリードタブを接続した。 In addition, mesophase pitch carbon fibers were produced by graphitizing mesophase pitch carbon fibers made from mesophase pitch. Subsequently, a mixture comprising 90 parts by weight of this mesophase pitch-based carbon fiber, 10 parts by weight of natural graphite and 7 parts by weight of polyvinylidene fluoride was dispersed in N-methylpyrrolidone to prepare a negative electrode paste. This paste was applied to both sides of a copper foil as a current collector and dried, followed by roll pressing to produce a negative electrode having a filling density of 1.4 g / cm 3 . Thereafter, a lead tab was connected to the non-coated portion of the negative electrode.

さらに、エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)の混合溶媒(混合体積比1:2)に、六フッ化リン酸リチウム(LiPF6)を1M/L溶解することにより非水電解液を調製した。 Furthermore, 1M / L of lithium hexafluorophosphate (LiPF 6 ) is dissolved in a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) (mixing volume ratio 1: 2) to obtain a non-aqueous electrolyte. Prepared.

次いで、前記正極、ポリエチレン製多孔質フィルムからなるセパレータ(シャットダウン温度135℃)および前記負極をそれぞれこの順序で積層した後、前記負極が外側に位置するように渦巻き状に捲回して電極群を作製した。この電極群をステンレス製の有底円筒状外装缶に収納し、さらに前記非水電解液を前記外装缶内に注入し、その外装缶の上端開口部に封口蓋群を絶縁ガスケットを介して絶縁的に密閉することにより図1、図2に示す構造を有し、設計定格容量1600mAhの円筒形リチウムイオン二次電池(18650サイズ)を組み立てた。   Next, the positive electrode, a separator made of a polyethylene porous film (shutdown temperature of 135 ° C.) and the negative electrode are laminated in this order, and then wound in a spiral shape so that the negative electrode is located on the outer side to produce an electrode group. did. This electrode group is housed in a stainless steel bottomed cylindrical outer can, and the non-aqueous electrolyte is injected into the outer can, and the sealing lid group is insulated from the upper end opening of the outer can via an insulating gasket. The cylindrical lithium-ion secondary battery (18650 size) having the structure shown in FIGS. 1 and 2 and having a design rated capacity of 1600 mAh was assembled by sealing in a sealed manner.

なお、前記封口蓋群に組み込まれるPTC素子は、前述した図1、図2に示すようにリング内空間にポリフッ化ビニリデンからなる円板状高分子樹脂層24を圧入してリング内面に密着させた構造を有する。   The PTC element incorporated in the sealing lid group is press-fitted with a disk-like polymer resin layer 24 made of polyvinylidene fluoride in the inner space of the ring as shown in FIGS. Has a structure.

(実施例2)
図3に示すようにラプチャ−板側に位置するPTC素子14のリング状ニッケル薄板25bをそのPTC素子14のリング内の空間に延出してリング状の鍔部27を形成し、このPTC素子14のリング内の空間にポリフッ化ビニリデンからなる円板状高分子樹脂層24をその外周面がPTC素子14のリング内面に密着するように、かつ前記鍔部27に支持して配置した構造のものを封口蓋群に組み込んだ以外、実施例1と同様な構成の円筒形非水電解液二次電池を組み立てた。
(Example 2)
As shown in FIG. 3, the ring-shaped nickel thin plate 25b of the PTC element 14 located on the rupture plate side is extended into a space in the ring of the PTC element 14 to form a ring-shaped flange portion 27. A disk-shaped polymer resin layer 24 made of polyvinylidene fluoride is arranged in a space inside the ring so that its outer peripheral surface is in close contact with the inner surface of the ring of the PTC element 14 and supported by the flange 27. A cylindrical nonaqueous electrolyte secondary battery having the same configuration as in Example 1 was assembled except that was incorporated into the sealing lid group.

(実施例3)
図4に示すようにラプチャ−板側に位置するPTC素子14のリング状ニッケル薄板25bにニッケルメッシュ29をPTC素子14のリング内の空間に位置するように一体的に取り付け、このPTC素子14のリング内の空間にポリフッ化ビニリデンからなる円板状高分子樹脂層24をその外周面がPTC素子14のリング内面に密着するように、かつ前記ニッケルメッシュ29に支持して配置した構造のものを封口蓋群に組み込んだ以外、実施例1と同様な構成の円筒形非水電解液二次電池を組み立てた。
(Example 3)
As shown in FIG. 4, a nickel mesh 29 is integrally attached to the ring-shaped nickel thin plate 25b of the PTC element 14 located on the rupture plate side so as to be located in the space in the ring of the PTC element 14, and the PTC element 14 A structure in which a disk-shaped polymer resin layer 24 made of polyvinylidene fluoride is disposed in a space in the ring so that its outer peripheral surface is in close contact with the inner surface of the ring of the PTC element 14 and supported by the nickel mesh 29. A cylindrical non-aqueous electrolyte secondary battery having the same configuration as in Example 1 was assembled except that it was incorporated in the sealing lid group.

(実施例4)
図9に示すようにラプチャ−板側に位置するPTC素子14のリング状ニッケル薄板25bをそのPTC素子14のリング内の空間に延出してリング状の鍔部27を形成し、このPTC素子14のリング内の空間に円板状シリカ多孔質体31をその外周面がPTC素子14のリング内面に密着するように、かつ前記鍔部27に支持して配置した構造のものを封口蓋群に組み込んだ以外、実施例1と同様な構成の円筒形非水電解液二次電池を組み立てた。
Example 4
As shown in FIG. 9, the ring-shaped nickel thin plate 25b of the PTC element 14 located on the rupture plate side is extended into a space in the ring of the PTC element 14 to form a ring-shaped flange portion 27, and this PTC element 14 The sealing lid group has a structure in which the porous silica 31 is disposed in the space inside the ring so that its outer peripheral surface is in close contact with the inner surface of the ring of the PTC element 14 and is supported by the flange 27. A cylindrical non-aqueous electrolyte secondary battery having the same configuration as in Example 1 was assembled except that it was incorporated.

(実施例5)
図10に示すようにラプチャ−板側に位置するPTC素子14のリング状ニッケル薄板25bにニッケルメッシュ29をPTC素子14のリング内の空間に位置するように一体的に取り付け、このPTC素子14のリング内の空間に円板状シリカ多孔質体31をその外周面がPTC素子14のリング内面に密着するように、かつ前記ニッケルメッシュ29に支持して配置した構造のものを封口蓋群に組み込んだ以外、実施例1と同様な構成の円筒形非水電解液二次電池を組み立てた。
(Example 5)
As shown in FIG. 10, a nickel mesh 29 is integrally attached to the ring-shaped nickel thin plate 25b of the PTC element 14 located on the rupture plate side so as to be located in the space in the ring of the PTC element 14, and the PTC element 14 A structure having a structure in which a disk-like silica porous body 31 is arranged in a space in the ring so that its outer peripheral surface is in close contact with the inner surface of the ring of the PTC element 14 and supported by the nickel mesh 29 is incorporated in a sealing lid group. A cylindrical nonaqueous electrolyte secondary battery having the same configuration as in Example 1 was assembled.

(実施例6)
図11に示すようにラプチャ−板側に位置するPTC素子14のリング状ニッケル薄板25bをそのPTC素子14のリング内の空間に延出してリング状の鍔部27を形成し、このPTC素子14のリング内の空間に円板状ガラス繊維不織布層32をその外周面がPTC素子14のリング内面に密着するように、かつ前記鍔部27に支持して配置した構造のものを封口蓋群に組み込んだ以外、実施例1と同様な構成の円筒形非水電解液二次電池を組み立てた。
(Example 6)
As shown in FIG. 11, a ring-shaped nickel thin plate 25b of the PTC element 14 located on the rupture plate side is extended into a space in the ring of the PTC element 14 to form a ring-shaped flange portion 27, and this PTC element 14 A sealing lid group is formed of a disk-shaped glass fiber nonwoven fabric layer 32 in a space inside the ring so that its outer peripheral surface is in close contact with the inner surface of the ring of the PTC element 14 and supported by the flange 27. A cylindrical non-aqueous electrolyte secondary battery having the same configuration as in Example 1 was assembled except that it was incorporated.

(実施例7)
図12に示すようにラプチャ−板側に位置するPTC素子14のリング状ニッケル薄板25bにニッケルメッシュからなる支持部材29をPTC素子14のリング内の空間に位置するように一体的に取り付け、このPTC素子14のリング内の空間に円板状ガラス繊維不織布層32をその外周面がPTC素子14のリング内面に密着するように、かつ前記支持部材29に支持して配置した構造のものを封口蓋群に組み込んだ以外、実施例1と同様な構成の円筒形非水電解液二次電池を組み立てた。
(Example 7)
As shown in FIG. 12, a support member 29 made of nickel mesh is integrally attached to the ring-shaped nickel thin plate 25b of the PTC element 14 positioned on the rupture plate side so as to be positioned in the space in the ring of the PTC element 14. Seal the disc-shaped glass fiber nonwoven fabric layer 32 in the space in the ring of the PTC element 14 so that the outer peripheral surface thereof is in close contact with the inner surface of the ring of the PTC element 14 and supported by the support member 29 A cylindrical non-aqueous electrolyte secondary battery having the same configuration as in Example 1 was assembled except that it was incorporated in the lid group.

(比較例1)
リング状PTC素子を封口蓋群に組み込んだ以外、実施例1と同様な構成の円筒形非水電解液二次電池を組み立てた。
(Comparative Example 1)
A cylindrical nonaqueous electrolyte secondary battery having the same configuration as in Example 1 was assembled except that the ring-shaped PTC element was incorporated in the sealing lid group.

(比較例2)
無穴の円板状PTC素子を封口蓋群に組み込んだ以外、実施例1と同様な構成の円筒形非水電解液二次電池を組み立てた。
(Comparative Example 2)
A cylindrical non-aqueous electrolyte secondary battery having the same configuration as in Example 1 was assembled except that a non-holed disk-shaped PTC element was incorporated in the sealing lid group.

得られた実施例1〜7および比較例1、2の円筒形非水電解液二次電池について以下に示す2つの評価試験を行った。   The cylindrical nonaqueous electrolyte secondary batteries of Examples 1 to 7 and Comparative Examples 1 and 2 thus obtained were subjected to the following two evaluation tests.

2)評価試験1
各二次電池について20℃において充電電流1600mA(1C)、4.2Vの定電圧で保持する充電を計3時間行った。その後、各二次電池を3.0m上からコンクリート板に対して落下試験を行った。電池の落下方向は、3方向、つまり上部、底、横とし、これらの方向での落下をそれぞれ10回繰り返し、1回目および10回目の各電池100個の漏洩した割合(百分率)を下記表1に示す。
2) Evaluation test 1
Each secondary battery was charged at 20 ° C. with a charging current of 1600 mA (1C) and a constant voltage of 4.2 V for a total of 3 hours. Thereafter, a drop test was performed on each secondary battery with respect to the concrete plate from 3.0 m above. The battery drop direction is three directions, that is, the top, bottom, and side. The drop in these directions is repeated 10 times, and the leakage rate (percentage) of 100 batteries for the first time and the 10th time is shown in Table 1 below. Shown in

3)評価試験2
各二次電池について20℃において充電電流1600mA(1C)、4.4Vの定電圧で保持する充電を計5時間行った。その後、各二次電池を250℃のホットプレート上に保持し、破裂に至るか否かを試験した。試験に供した二次電池の個数は、各100個とし、破裂した割合(百分率)を下記表1に示す。

Figure 2005222923
3) Evaluation test 2
Each secondary battery was charged at 20 ° C. with a charging current of 1600 mA (1C) and a constant voltage of 4.4 V for a total of 5 hours. Then, each secondary battery was hold | maintained on the hotplate of 250 degreeC, and it was tested whether it reached explosion. The number of secondary batteries used in the test is 100, and the ratio (percentage) of rupture is shown in Table 1 below.
Figure 2005222923

前記表1から明らかなように実施例1〜7および比較例2の二次電池は評価試験1(落下試験)において、いずれも非水電解液の漏洩がなく、高い信頼性を有することがわかる。   As can be seen from Table 1, the secondary batteries of Examples 1 to 7 and Comparative Example 2 have no reliability in the evaluation test 1 (drop test), and have high reliability. .

これに対し、リング状PTC素子を組み込んだ比較例1の二次電池は、落下試験を10回繰り返した場合に70%の電池で非水電解液の漏洩を生じた。   On the other hand, in the secondary battery of Comparative Example 1 incorporating the ring-shaped PTC element, non-aqueous electrolyte leakage occurred in 70% of the batteries when the drop test was repeated 10 times.

さらに、実施例1〜7および比較例1の二次電池は評価試験2(強制加熱試験)において、いずれも破裂がなく、高い安全性を有することがわかる。   Furthermore, it can be seen that the secondary batteries of Examples 1 to 7 and Comparative Example 1 have no safety in the evaluation test 2 (forced heating test) and have high safety.

これに対し、円板状PTC素子を組み込んだ比較例2の二次電池は、80%の電池で破裂を生じた。   On the other hand, the secondary battery of Comparative Example 2 in which the disk-like PTC element was incorporated was ruptured in 80% of the batteries.

なお、前述した実施例においては、1600mAhの円筒形非水電解液二次電池に適用した例を説明したが、さらに高容量、高出力の大型電池についても十分適用できる。   In the above-described embodiment, an example in which the present invention is applied to a 1600 mAh cylindrical non-aqueous electrolyte secondary battery has been described. However, the present invention can be sufficiently applied to a large battery having a higher capacity and a higher output.

本発明によれば、極めて高い信頼性および安全性を有する非水電解液二次電池を提供することができる。   According to the present invention, it is possible to provide a nonaqueous electrolyte secondary battery having extremely high reliability and safety.

本発明の第1実施形態に係る非水電解液二次電池(円筒形非水電解液二次電池)を示す部分断面図。1 is a partial cross-sectional view showing a nonaqueous electrolyte secondary battery (cylindrical nonaqueous electrolyte secondary battery) according to a first embodiment of the present invention. 図1の円筒形非水電解質二次電池の要部分解斜視図。The principal part disassembled perspective view of the cylindrical nonaqueous electrolyte secondary battery of FIG. 本発明の第1実施形態に係る非水電解質二次電池に組み込まれるPTC素子の他の形態を示す断面図。Sectional drawing which shows the other form of the PTC element integrated in the nonaqueous electrolyte secondary battery which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る非水電解質二次電池に組み込まれるPTC素子の他の形態を示す断面図。Sectional drawing which shows the other form of the PTC element integrated in the nonaqueous electrolyte secondary battery which concerns on 1st Embodiment of this invention. 本発明に係る円筒形非水電解質二次電池に組み込まれる封口蓋群の他の形態を示す要部分解斜視図。The principal part disassembled perspective view which shows the other form of the sealing lid group integrated in the cylindrical nonaqueous electrolyte secondary battery which concerns on this invention. 本発明に係る円筒形非水電解質二次電池に組み込まれる封口蓋群の他の形態を示す要部分解斜視図。The principal part disassembled perspective view which shows the other form of the sealing lid group integrated in the cylindrical nonaqueous electrolyte secondary battery which concerns on this invention. 本発明に係る円筒形非水電解質二次電池に組み込まれる封口蓋群の他の形態を示す要部分解斜視図。The principal part disassembled perspective view which shows the other form of the sealing lid group integrated in the cylindrical nonaqueous electrolyte secondary battery which concerns on this invention. 本発明に係る円筒形非水電解質二次電池に組み込まれる封口蓋群の他の形態を示す要部分解斜視図。The principal part disassembled perspective view which shows the other form of the sealing lid group integrated in the cylindrical nonaqueous electrolyte secondary battery which concerns on this invention. 本発明の第2実施形態に係る非水電解質二次電池に組み込まれるPTC素子を示す断面図。Sectional drawing which shows the PTC element integrated in the nonaqueous electrolyte secondary battery which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る非水電解質二次電池に組み込まれるPTC素子の他の形態を示す断面図。Sectional drawing which shows the other form of the PTC element integrated in the nonaqueous electrolyte secondary battery which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る非水電解質二次電池に組み込まれるPTC素子の他の形態を示す断面図。Sectional drawing which shows the other form of the PTC element integrated in the nonaqueous electrolyte secondary battery which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る非水電解質二次電池に組み込まれるPTC素子の他の形態を示す断面図。Sectional drawing which shows the other form of the PTC element integrated in the nonaqueous electrolyte secondary battery which concerns on 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1…外装缶、2…電極群、3…正極、4…負極、5…セパレータ、9…封口蓋群、10…絶縁ガスケット、11…ストリッパー、13…ラプチャ−板、14…PTC素子、16…端子板、21…電流伝達・遮断部、24…円板状高分子樹脂層、25a,25b…リング状ニッケル薄板、26…リング状樹脂シート、27…リング状鍔部、28…金属メッシュ、31…円板状多孔質体(円板状電解液保持部材)、32…円板状不織布層(円板状電解液保持部材)、41,46,51…導電性支持板。   DESCRIPTION OF SYMBOLS 1 ... Exterior can, 2 ... Electrode group, 3 ... Positive electrode, 4 ... Negative electrode, 5 ... Separator, 9 ... Sealing lid group, 10 ... Insulating gasket, 11 ... Stripper, 13 ... Rupture plate, 14 ... PTC element, 16 ... Terminal plate, 21 ... current transmission / interruption part, 24 ... disk-shaped polymer resin layer, 25a, 25b ... ring-shaped nickel thin plate, 26 ... ring-shaped resin sheet, 27 ... ring-shaped collar part, 28 ... metal mesh, 31 ... disk-shaped porous body (disk-shaped electrolyte solution holding member), 32 ... disk-shaped nonwoven fabric layer (disk-shaped electrolyte solution holding member), 41, 46, 51 ... conductive support plate.

Claims (26)

一端が開口された外装缶と、
前記外装缶に収納され、負極、セパレータおよび正極からなる電極群と、
前記外装缶に収容された非水系電解液と
前記外装缶の開口部に絶縁部材を介して密閉封口する封口蓋群と
を具備し、
前記封口蓋群は、リング状をなし、かつそのリング内の空間にリング内周面に密着して配置された円板状高分子樹脂層を有するPTC素子を備えたことを特徴とする非水電解質二次電池。
An outer can opened at one end;
An electrode group housed in the outer can and comprising a negative electrode, a separator and a positive electrode;
A non-aqueous electrolyte contained in the outer can, and a sealing lid group that hermetically seals the opening of the outer can via an insulating member,
The sealing lid group comprises a non-water-containing PTC element having a ring shape and having a disk-shaped polymer resin layer disposed in close contact with the inner peripheral surface of the ring in a space within the ring. Electrolyte secondary battery.
前記PTC素子は、2枚のリング状金属薄板間に導電材を含有したリング状樹脂シートからなり、かつ前記電極群側のリング状金属薄板はその内周がリング内の空間に延出してリング状の鍔部を形成し、さらに前記円板状高分子樹脂層は前記PTC素子のリング内の空間にそのリング内面に密着すると共に、前記鍔部に支持されて配置されていることを特徴とする請求項1記載の非水電解質二次電池。   The PTC element is formed of a ring-shaped resin sheet containing a conductive material between two ring-shaped metal thin plates, and the ring-shaped metal thin plate on the electrode group side has an inner periphery extending into a space in the ring. In addition, the disc-shaped polymer resin layer is closely attached to the inner surface of the ring in the space of the ring of the PTC element and is supported by the collar portion. The nonaqueous electrolyte secondary battery according to claim 1. 前記PTC素子は、2枚のリング状金属薄板間に導電材を含有したリング状樹脂シートからなり、かつ金属メッシュは前記電極群側のリング状金属薄板にそのリング内空間に位置するように一体的に取り付けられ、さらに前記円板状高分子樹脂層は前記PTC素子のリング内の空間にそのリング内面に密着すると共に、前記金属メッシュに支持されて配置されていることを特徴とする請求項1記載の非水電解質二次電池。   The PTC element is composed of a ring-shaped resin sheet containing a conductive material between two ring-shaped metal thin plates, and the metal mesh is integrated with the ring-shaped metal thin plate on the electrode group side so as to be positioned in the space inside the ring. The disk-shaped polymer resin layer is further attached to the inner surface of the ring of the PTC element and supported by the metal mesh. The nonaqueous electrolyte secondary battery according to 1. 前記封口蓋群は、前記絶縁部材に外縁部が固定され、ガス発生に伴う内圧上昇で破断可能な易破断部を有するラプチャー板をさらに備えることを特徴とする請求項1〜3いずれか記載の非水電解質二次電池。   The said sealing lid group is further equipped with the rupture board which has an easily broken part which an outer edge part is fixed to the said insulating member, and can be fractured | ruptured by the internal pressure rise accompanying gas generation | occurrence | production. Non-aqueous electrolyte secondary battery. 前記易破断部は、前記ラプチャー板の少なくとも一方の面に形成された切込部であることを特徴とする請求項4記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 4, wherein the easily breakable portion is a cut portion formed in at least one surface of the rupture plate. 前記封口蓋群は、電流遮断部材をさらに備えることを特徴とする請求項1〜5いずれか記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the sealing lid group further includes a current blocking member. 前記封口蓋群は、前記PTC素子の一方の面側に位置して前記絶縁部材に外縁部が固定される導電性支持板をさらに備えることを特徴とする請求項1〜6いずれか記載の非水電解質二次電池。   The said sealing lid group is further equipped with the electroconductive support plate which is located in the one surface side of the said PTC element, and an outer edge part is fixed to the said insulating member, The non-constitution of any one of Claims 1-6 characterized by the above-mentioned. Water electrolyte secondary battery. 前記支持板は、無穴で、ガス発生に伴う内圧上昇で破断可能な易破断部を有することを特徴とする請求項7記載の非水電解質二次電池。   8. The non-aqueous electrolyte secondary battery according to claim 7, wherein the support plate has no holes and has an easily breakable portion that can be broken by an increase in internal pressure accompanying gas generation. 前記支持板は、リング状であることを特徴とする請求項7記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 7, wherein the support plate has a ring shape. 前記支持板は、前記絶縁部材で固定される導電性のリング板と、前記絶縁部材による固定部を除く前記リング板の少なくとも一方の面にその中空部を覆ように固定された薄板と、この薄板に形成されたガス発生に伴う内圧上昇で破断可能な易破断部とから構成されることを特徴とする請求項7記載の非水電解質二次電池。   The support plate includes a conductive ring plate fixed by the insulating member, a thin plate fixed so as to cover the hollow portion on at least one surface of the ring plate excluding the fixing portion by the insulating member, and 8. The non-aqueous electrolyte secondary battery according to claim 7, wherein the non-aqueous electrolyte secondary battery is composed of an easily breakable portion that can be broken by an increase in internal pressure accompanying gas generation formed on a thin plate. 前記支持板は、リング板と、このリング板の中空部内面に密着して配置された円板状高分子樹脂層とから構成されることを特徴とする請求項7記載の非水電解質二次電池。   The non-aqueous electrolyte secondary according to claim 7, wherein the support plate includes a ring plate and a disc-shaped polymer resin layer disposed in close contact with the inner surface of the hollow portion of the ring plate. battery. 一端が開口された外装缶と、
前記外装缶に収納され、負極、セパレータおよび正極からなる電極群と、
前記外装缶に収容された非水系電解液と
前記外装缶の開口部に絶縁部材を介して密閉封口する封口蓋群と
を具備し、
前記封口蓋群は、リング状をなし、かつそのリング内の空間にリング内周面に密着して配置された円板状電解液保持部材を有するPTC素子を備えたことを特徴とする非水電解質二次電池。
An outer can opened at one end;
An electrode group housed in the outer can and comprising a negative electrode, a separator and a positive electrode;
A non-aqueous electrolyte contained in the outer can, and a sealing lid group that hermetically seals the opening of the outer can via an insulating member,
The sealing lid group includes a non-water-containing PTC element having a ring shape and having a disk-like electrolyte solution holding member disposed in close contact with the inner peripheral surface of the ring in a space in the ring. Electrolyte secondary battery.
前記円板状電解液保持部材は、連通気孔を有する円板状多孔質体であることを特徴とする請求項12記載の非水電解質二次電池。   13. The nonaqueous electrolyte secondary battery according to claim 12, wherein the disk-shaped electrolyte solution holding member is a disk-shaped porous body having continuous air holes. 前記円板状電解液保持部材は、円板状不織布層であることを特徴とする請求項12記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 12, wherein the disk-shaped electrolyte solution holding member is a disk-shaped nonwoven fabric layer. 前記PTC素子は、2枚のリング状金属薄板間に導電材を含有したリング状樹脂シートからなり、かつ前記電極群側のリング状金属薄板はその内周がリング内の空間に延出してリング状の鍔部を形成し、さらに前記円板状高分子樹脂層は前記PTC素子のリング内の空間にそのリング内面に密着すると共に、前記鍔部に支持されて配置されていることを特徴とする請求項12〜14いずれか記載の非水電解質二次電池。   The PTC element is formed of a ring-shaped resin sheet containing a conductive material between two ring-shaped metal thin plates, and the ring-shaped metal thin plate on the electrode group side has an inner periphery extending into a space in the ring. In addition, the disc-shaped polymer resin layer is closely attached to the inner surface of the ring in the space of the ring of the PTC element and is supported by the collar portion. The nonaqueous electrolyte secondary battery according to any one of claims 12 to 14. 前記PTC素子は、2枚のリング状金属薄板間に導電材を含有したリング状樹脂シートからなり、かつ金属メッシュは前記電極群側のリング状金属薄板にそのリング内空間に位置するように一体的に取り付けられ、さらに前記円板状高分子樹脂層は前記PTC素子のリング内の空間にそのリング内面に密着すると共に、前記金属メッシュに支持されて配置されていることを特徴とする請求項12〜14いずれか記載の非水電解質二次電池。   The PTC element is composed of a ring-shaped resin sheet containing a conductive material between two ring-shaped metal thin plates, and the metal mesh is integrated with the ring-shaped metal thin plate on the electrode group side so as to be positioned in the space inside the ring. The disk-shaped polymer resin layer is further attached to the inner surface of the ring of the PTC element and supported by the metal mesh. The nonaqueous electrolyte secondary battery according to any one of 12 to 14. 前記封口蓋群は、前記絶縁部材に外縁部が固定され、ガス発生に伴う内圧上昇で破断可能な易破断部を有するラプチャー板をさらに備えることを特徴とする請求項12〜16いずれか記載の非水電解質二次電池。   The said sealing lid group is further equipped with the rupture board which an outer edge part is being fixed to the said insulation member, and has an easily fracture part which can be fractured | ruptured by the internal pressure rise accompanying gas generation, It is characterized by the above-mentioned. Non-aqueous electrolyte secondary battery. 前記易破断部は、前記ラプチャー板の少なくとも一方の面に形成された切込部であることを特徴とする請求項17記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 17, wherein the easily breakable portion is a cut portion formed in at least one surface of the rupture plate. 前記封口蓋群は、電流遮断部材をさらに備えることを特徴とする請求項12〜18いずれか記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 12, wherein the sealing lid group further includes a current blocking member. 前記封口蓋群は、前記PTC素子の一方の面側に位置して前記絶縁部材に外縁部が固定される導電性支持板をさらに備えることを特徴とする請求項12〜19いずれか記載の非水電解質二次電池。   The said sealing lid group is further equipped with the electroconductive support plate which is located in the one surface side of the said PTC element, and an outer edge part is fixed to the said insulating member. Water electrolyte secondary battery. 前記支持板は、無穴で、ガス発生に伴う内圧上昇で破断可能な易破断部を有することを特徴とする請求項20記載の非水電解質二次電池。   21. The nonaqueous electrolyte secondary battery according to claim 20, wherein the support plate has no holes and has an easily breakable portion that can be broken by an increase in internal pressure accompanying gas generation. 前記支持板は、リング状であることを特徴とする請求項20記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 20, wherein the support plate has a ring shape. 前記支持板は、前記絶縁部材で固定される導電性のリング板と、前記絶縁部材による固定部を除く前記リング板の少なくとも一方の面にその中空部を覆ように固定された薄板と、この薄板に形成されたガス発生に伴う内圧上昇で破断可能な易破断部とから構成されることを特徴とする請求項20記載の非水電解質二次電池。   The support plate includes a conductive ring plate fixed by the insulating member, a thin plate fixed so as to cover the hollow portion on at least one surface of the ring plate excluding the fixing portion by the insulating member, and 21. The non-aqueous electrolyte secondary battery according to claim 20, wherein the non-aqueous electrolyte secondary battery is formed of an easily breakable portion that can be broken by an increase in internal pressure accompanying gas generation formed on a thin plate. 前記支持板は、リング板と、このリング板の中空部内面に密着して配置された円板状高分子樹脂層とから構成されることを特徴とする請求項20記載の非水電解質二次電池。   21. The non-aqueous electrolyte secondary according to claim 20, wherein the support plate includes a ring plate and a disk-shaped polymer resin layer disposed in close contact with the inner surface of the hollow portion of the ring plate. battery. 一端が開口された一極性端子を兼ねる外装缶と、
前記外装缶に収納され、負極、セパレータおよび正極から構成される電極群と、
前記外装缶に収容された非水電解液と、
前記外装缶の開口部に絶縁物を介して密閉封口された封口蓋群と
を具備し、
前記封口蓋群は、前記電極群と対向して配置され、電極群の正負極のうちの一方と電極接続タブを通して電気的に接続され、電流の伝達および遮断をなすと共にガス発生に伴う内圧上昇時に破断される開放弁を有する電流遮断機構と、外部側に配置された他極性端子となる端子部材と、前記電流遮断機構と前記端子部材の間に介在されたリング状のPTC素子と、このPTC素子のリング内の空間にそのリング内面に密着して配置された円板状高分子樹脂層とを備えること特徴とする非水電解質二次電池。
An outer can also serving as a unipolar terminal with one end open;
An electrode group housed in the outer can and composed of a negative electrode, a separator and a positive electrode;
A non-aqueous electrolyte contained in the outer can;
A sealing lid group hermetically sealed via an insulator at the opening of the outer can,
The sealing lid group is disposed to face the electrode group, and is electrically connected to one of the positive and negative electrodes of the electrode group through an electrode connection tab to transmit and cut off current and increase internal pressure accompanying gas generation. A current interrupting mechanism having an open valve that is sometimes broken, a terminal member that becomes an other polarity terminal arranged on the outside, a ring-shaped PTC element interposed between the current interrupting mechanism and the terminal member, A nonaqueous electrolyte secondary battery comprising: a disk-shaped polymer resin layer disposed in close contact with an inner surface of a ring in a space in a ring of a PTC element.
一端が開口された一極性端子を兼ねる外装缶と、
前記外装缶に収納され、負極、セパレータおよび正極から構成される電極群と、
前記外装缶に収容された非水電解液と、
前記外装缶の開口部に絶縁物を介して密閉封口された封口蓋群と
を具備し、
前記封口蓋群は、前記電極群と対向して配置され、電極群の正負極のうちの一方と電極接続タブを通して電気的に接続され、電流の伝達および遮断をなすと共にガス発生に伴う内圧上昇時に破断される開放弁を有する電流遮断機構と、外部側に配置される他極性端子となる端子部材と、前記電流遮断機構と前記端子部材の間に介在されたリング状のPTC素子と、このPTC素子のリング内の空間にそのリング内面に密着して配置された円板状電解液保持部材とを備えること特徴とする非水電解質二次電池。
An outer can also serving as a unipolar terminal with one end open;
An electrode group housed in the outer can and composed of a negative electrode, a separator and a positive electrode;
A non-aqueous electrolyte contained in the outer can;
A sealing lid group hermetically sealed via an insulator at the opening of the outer can,
The sealing lid group is disposed to face the electrode group, and is electrically connected to one of the positive and negative electrodes of the electrode group through an electrode connection tab to transmit and cut off current and increase internal pressure accompanying gas generation. A current interrupting mechanism having an open valve that is sometimes broken, a terminal member serving as an other polarity terminal disposed on the outside, a ring-shaped PTC element interposed between the current interrupting mechanism and the terminal member, A nonaqueous electrolyte secondary battery comprising: a disk-shaped electrolyte solution holding member disposed in close contact with an inner surface of a ring in a space in a ring of a PTC element.
JP2004185443A 2004-01-09 2004-06-23 Non-aqueous electrolyte secondary battery Pending JP2005222923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004185443A JP2005222923A (en) 2004-01-09 2004-06-23 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004004556 2004-01-09
JP2004185443A JP2005222923A (en) 2004-01-09 2004-06-23 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2005222923A true JP2005222923A (en) 2005-08-18

Family

ID=34998371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004185443A Pending JP2005222923A (en) 2004-01-09 2004-06-23 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2005222923A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100914832B1 (en) * 2006-08-25 2009-09-02 주식회사 엘지화학 Structure for electrochemical device to improve safety and electrochemical device comprising the same
US20110104531A1 (en) * 2009-11-03 2011-05-05 Samsung Sdi Co., Ltd. Cap Assembly and Second Battery Including the Same
TWI384670B (en) * 2007-12-14 2013-02-01 Lg Chemical Ltd Secondary battery pack and ptc element having excellent production process property
CN110165094A (en) * 2015-01-12 2019-08-23 宁德新能源科技有限公司 Power battery top cover

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100914832B1 (en) * 2006-08-25 2009-09-02 주식회사 엘지화학 Structure for electrochemical device to improve safety and electrochemical device comprising the same
TWI384670B (en) * 2007-12-14 2013-02-01 Lg Chemical Ltd Secondary battery pack and ptc element having excellent production process property
US20110104531A1 (en) * 2009-11-03 2011-05-05 Samsung Sdi Co., Ltd. Cap Assembly and Second Battery Including the Same
CN110165094A (en) * 2015-01-12 2019-08-23 宁德新能源科技有限公司 Power battery top cover

Similar Documents

Publication Publication Date Title
JP4612321B2 (en) Nonaqueous electrolyte secondary battery
JP4915390B2 (en) Non-aqueous electrolyte battery
US8679670B2 (en) CID retention device for Li-ion cell
JP6490053B2 (en) Cylindrical sealed battery and battery pack
JP5737481B2 (en) Sealed non-aqueous electrolyte secondary battery
US20080008933A1 (en) Lithium-ion secondary battery
US20090291330A1 (en) Battery with enhanced safety
US20090297937A1 (en) Lithium-ion secondary battery
JPWO2015146077A1 (en) Cylindrical sealed battery
JP2010192438A (en) Cylindrical secondary battery
JPWO2009144919A1 (en) Cylindrical non-aqueous electrolyte secondary battery
JP2006147180A (en) Non-aqueous electrolyte secondary battery
JPWO2010125755A1 (en) Assembly sealing body and battery using the same
JP2005011540A (en) Nonaqueous electrolyte secondary battery
JP4580699B2 (en) Nonaqueous electrolyte secondary battery
WO2010116590A1 (en) Cylindrical battery
JP2005302382A (en) Nonaqueous electrolyte secondary battery pack
JP2009059571A (en) Current collector for battery, and battery using this
JPH11176478A (en) Organic electrolyte secondary battery
JP2009259749A (en) Nonaqueous electrolyte secondary battery
JP2004228019A (en) Nonaqueous electrolyte secondary battery
JP2005222923A (en) Non-aqueous electrolyte secondary battery
JP2005209395A (en) Nonaqueous electrolytic solution secondary battery
JP2007157538A (en) Battery
JP3798737B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308