JP2005220715A - Prestressed concrete prefabrication construction method for wind power generation tower - Google Patents

Prestressed concrete prefabrication construction method for wind power generation tower Download PDF

Info

Publication number
JP2005220715A
JP2005220715A JP2004058154A JP2004058154A JP2005220715A JP 2005220715 A JP2005220715 A JP 2005220715A JP 2004058154 A JP2004058154 A JP 2004058154A JP 2004058154 A JP2004058154 A JP 2004058154A JP 2005220715 A JP2005220715 A JP 2005220715A
Authority
JP
Japan
Prior art keywords
construction
towers
wind power
power generation
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004058154A
Other languages
Japanese (ja)
Other versions
JP2005220715A5 (en
Inventor
Michio Sugawara
道夫 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAKKU KK
Original Assignee
MAKKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAKKU KK filed Critical MAKKU KK
Priority to JP2004058154A priority Critical patent/JP2005220715A/en
Publication of JP2005220715A publication Critical patent/JP2005220715A/en
Publication of JP2005220715A5 publication Critical patent/JP2005220715A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wind power generation tower having high strength and durability, recyclable, and maintenance-free for a long period. <P>SOLUTION: The skeleton of the wind power generation tower is prefabricated by concrete (RC). The weight of the skeleton is reduced by combining PC steel bars with a high strength concrete (PC), and high tension bolts and external wall embedded plugs are used as skeleton joints. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は風力発電タワー等の躯体を新工法でRCプレファブ化することで、鋼製や現場打ちコンクリート製及び既存RCプレファブ製にある諸問題を解決する。The present invention solves various problems in steel, cast-in-place concrete, and existing RC prefabs by converting a prefabricated body such as a wind power generation tower into an RC prefab by a new construction method.

従来の鋼製風力発電タワー工法は工場プレファブ化が進み、品質管理面や現場施工面に優れるが耐久性や剛性に問題があり、風力ブレードの接触による損壊や台風等による倒壊被害が発生したり、腐食や外部塗装の劣化によりメンテナンス費用がかさむ等の問題が数多く発生している。
また、現場打ちコンクリート工法は耐久性はあるが付帯工事を含めすべて現場作業になるから工期も必然的に長く、厳しい作業環境での施工精度と品質確保が難しく、部材のリサイクルもほとんど出来ない等の問題がある。
なお、既存RCプレファブ工法も接合部に現場打ちコンクリート作業等が必要だから、付帯設備現場工事も併せ折角のプレファブ効果も限定的になる。
また、施工精度も現場環境に左右され、部材リサイクルが難しい等の問題もある。
よって、それぞれ一長一短があり決定的となる工法がないのが現状である。
The conventional steel wind power generation tower construction method has been prefabricated and is excellent in quality control and on-site construction, but there are problems with durability and rigidity, causing damage due to contact with wind blades and damage due to typhoons, etc. Many problems such as increased maintenance costs due to corrosion and deterioration of external coating have occurred.
In addition, the on-site concrete method is durable, but all work including incidental work is on-site work, so the construction period is inevitably long, it is difficult to ensure construction accuracy and quality in harsh working environments, and materials can hardly be recycled, etc. There is a problem.
In addition, since the existing RC prefabrication method requires a cast-in-place concrete work at the joint, the prefab effect at the corner is also limited in addition to the onsite construction of the incidental equipment.
In addition, the construction accuracy depends on the site environment, and there are problems such as difficulty in recycling materials.
Therefore, the current situation is that there is no definitive construction method, each with advantages and disadvantages.

まず、最初に現状の各種風力発電タワー工法のもつ問題点を洗い出す。
(a)鋼製タワー工法は剛性・強度や耐久性に問題があり倒壊の危険すら存在し、腐食や外装劣化によるメンテナンス費用も長期的には膨大となる。
(b)現場打ちコンクリート工法は付帯設備工事等も総て現場作業であり、厳しい作業環境において施工精度や品質確保が難しくリサイクルも出来ない。
(c)既存RCプレファブ工法はプレファブ部材接合に現場打ちコンクリート等があるため効果が限定され施工が難しい。また、部材リサイクルも難しい。
First of all, we will identify the problems of the current wind power tower construction methods.
(A) The steel tower method has problems in rigidity, strength and durability, and there is even a danger of collapse, and maintenance costs due to corrosion and exterior deterioration will be enormous in the long term.
(B) In the on-site concrete method, incidental equipment construction and the like are all on-site work, and it is difficult to ensure construction accuracy and quality in a harsh working environment and cannot be recycled.
(C) The existing RC prefabrication method has a cast-in-place concrete for joining prefabricated members, so that the effect is limited and construction is difficult. Also, it is difficult to recycle components.

鋼製タワーの欠点である剛性・強度や耐久性を確保するにはコンクリート製にすれば良いし、コンクリート製の欠点である施工精度と品質確保は鋼製同様、付帯設備も含め全量工場プレファブ化により解決すると考える。
また、部材寸法はトレーラー輸送が可能なサイズに収め、高強度コンクリートとPC鋼の組合せで強度を確保しつつ総重量を軽減すれば良い。
新工法では接合部は高強度ボルトで充分な強度を確保できるから、外部足場も不要となり現場施工の簡素化が達成される。
何よりも、新工法は現場据え付けと撤去解体工事が容易で部材も傷めないため、プレファブ部材のリサイクル活用が容易になることが特に重要である。
In order to ensure the rigidity, strength and durability that are the disadvantages of steel towers, concrete can be used, and the accuracy and quality of construction, which are the disadvantages of concrete, are prefabricated for all factories, including incidental equipment, as well as steel. I think it will be solved.
Also, the dimensions of the members should be stored in a size that allows for trailer transportation, and the total weight may be reduced while ensuring strength with a combination of high-strength concrete and PC steel.
In the new construction method, sufficient strength can be secured with high-strength bolts in the joint method, so that no external scaffold is required, and simplification of on-site construction is achieved.
Above all, it is especially important that the prefabricated material can be easily recycled because the new method is easy to install, remove and dismantle, and does not damage the components.

新工法によるRCプレファブ化により高精度で高品質な風力発電タワーを大量生産できるから、需要に合わせ速やかな施設建設が可能になる。
風力発電タワー規模の大小に関わらず、新工法によるRCプレファブ化はリサイクルが可能なだけでなく、同じ手法を通信鉄塔や送電鉄塔にも応用できる。
また、台風や突風あるいは酸性雨や塩害の多い地域においては、長期的にメンテナンス費用が膨大になる鋼製タワーに代わり得るものである。
耐久性に優れ高強度なRCプレファブ化は、台風通過や沿岸部の多い日本列島の厳しい自然環境の中でこそ効果を発揮する。
The RC prefabrication by the new construction method enables mass production of high-accuracy and high-quality wind power generation towers, enabling rapid construction of facilities according to demand.
Regardless of the size of the wind power generation tower, RC prefabrication by the new method is not only recyclable, but the same method can be applied to communication towers and transmission towers.
Moreover, in areas where there are many typhoons, gusts, acid rain and salt damage, it can be replaced with a steel tower that has a long-term maintenance cost.
RC prefabrication with high durability and high strength is effective only in the harsh natural environment of the Japanese archipelago where many typhoons pass and coastal areas.

新工法によるRCプレファブタワーは台風が通過する地域や沿岸部で塩害の多い地域でも鋼製タワーにない耐候性と耐久性を発揮する。
また、施工にあたり鋼製タワー以上に据え付けや解体が容易であるから、緊急な需要にも速やかに対応できるのである。
近年は発電効率面から風力発電タワーの大型化が進行しているが、この新工法は現場工事の不確定さがなくなるので技術的にも大型化を図りやすい。
施工精度を高めるため工場で仮組みしてから現場搬入を行なうから、現場作業が簡潔な点や大量生産によるコスト削減と部材リサイクルにも効果的である。
そこで、RCプレファブ化で需要に速やかに対応できる特長も生かしたい。
The RC Prefab Tower by the new construction method exhibits weather resistance and durability not found in steel towers even in areas where typhoons pass or coastal areas where there is a lot of salt damage.
In addition, it is easier to install and dismantle than a steel tower for construction, so it can respond quickly to urgent demand.
In recent years, the size of wind power generation towers has been increasing from the viewpoint of power generation efficiency, but this new method is easy to increase in size technically because there is no uncertainty in on-site construction.
In order to improve construction accuracy, temporary assembly is performed at the factory and then on-site delivery is carried out. This is effective for concise on-site work and cost reduction and mass recycling due to mass production.
Therefore, we would like to take advantage of the features that can respond to demand promptly with the RC prefabrication.

(1)台風の多い地域への設置
環境負荷の少ないエネルギー源として脚光を浴びるなかで、台風の通過しやすい地域に建設された鋼製発電タワーが突風により根元から倒壊した例もある。
しかし、剛性や強度が大きく耐久性の高いRCプレファブタワーは施工も容易で、そのような懸念が解消されるのである。
(2)海上及び沿岸地域への設置
海上や沿岸地域に設置される鋼製発電タワーには塩害等による劣化や風化に伴う外装材の維持管理に膨大な費用が必要であり、錆びに強く、耐久性の高いRCプレファブタワーならメンテナンスフリーが可能である。
(3)小規模な離島地域への設置
離島での発電施設は小規模な割りには建設費用が割高になるが、RCプレファブタワーなら付帯設備込みで大量生産により高品質のものが割安に建設できる。
(1) Installation in areas with many typhoons In the limelight as an energy source with a low environmental burden, there is an example in which a steel power generation tower built in an area where typhoons easily pass has collapsed from the base due to a gust of wind.
However, RC prefabricated towers with high rigidity and strength and high durability are easy to construct, and such concerns are resolved.
(2) Installation on the sea and coastal areas Steel power generation towers installed on the sea and coastal areas require enormous costs for maintenance of exterior materials due to deterioration due to salt damage and weathering, and are resistant to rust. Maintenance-free is possible with a highly durable RC prefab tower.
(3) Installation in small remote islands The power generation facilities on the remote islands are relatively expensive to construct, but the RC prefab tower is built with high-quality ones by mass production with incidental facilities. it can.

本件の設計技術はタワー状構造物に限らず、例えば、高層建築の外壁や大スパン床等の接合部にも応用可能なのではないか。
現場でコンクリート接続部にモルタル等を使用せず、コンクリート同士の噛み合わせと高強度ボルト接合で充分な強度が確保出来る。また、埋め込みプラグにより外部足場が不要となり、内部から外壁取り付けが可能だからである。
The design technology in this case is not limited to tower-like structures, but can be applied to joints such as outer walls and large span floors of high-rise buildings.
Sufficient strength can be secured by engaging concrete with high-strength bolts without using mortar or the like for the concrete connection part on site. In addition, the embedded plug eliminates the need for an external scaffold, and the outer wall can be attached from the inside.

風力発電塔の概要とタワー内部がわかる断面図である。    It is sectional drawing which understands the outline | summary of a wind power generation tower, and the inside of a tower. RCプレファブ接合部の様子がわかる詳細図である。    It is a detailed figure which understands the mode of RC prefabricated junction. RCプレファブタワー脚部の様子がわかる詳細図である。    It is detail drawing which understands the mode of the RC prefab tower leg.

符号の説明Explanation of symbols

1. 風力発電機 11. 高強度コンクリート
2. 回転ブレード 12. 基礎ボルト
3. ナセル 13. ベースプレート
4. タワー躯体 14. ねじ込み式高強度ボルト
5. マンドア 15. ボルト受け埋め込みプラグ
6. 操作ステージ 16. PC鋼受けエンドプレート
7. 昇降ラダー 17. クリアランス
8. 風力発電塔基礎 18. ボルト座金
9. スパイラル鉄筋 19. 亜鉛メッキ塗装
10. PC鋼
1. Wind generator 11. High-strength concrete Rotating blade 12. Foundation bolt 3. Nasser 13. Base plate 4. Tower enclosure 14. 4. Screw-in type high strength bolt Mandore 15. 5. Bolt receiving embedded plug Operation stage 16. PC steel receiving end plate 7. Lifting ladder 17. Clearance 8. Wind turbine tower foundation 18. Bolt washer 9. Spiral rebar 19. Galvanized coating 10. PC steel

本発明は風力発電タワ−躯体を全量RCプレファブ化する新工法により、既存工法のもつ諸問題を一挙に解決できる。  The present invention can solve all the problems of the existing construction method at once by the new construction method of converting the wind power generator tower into the RC prefabrication of the entire amount.

従来の鋼製風力発電タワ−は工場プレファブ化が進み、品質管理や現場施工面に優れる反面、根本的な耐久性や剛性に難点があり、ブレ−ド接触による損壊や台風等による倒壊被害が発生したり、腐食や劣化によりメンテナンス費用がかさんでしまうなどの問題が多く発生している。
次に、現場打ちコンクリ−トタワ−は耐久性はあるが、付帯工事を含め全て現場作業になり工期が必然的に長く、厳しい作業環境での施工精度と品質確保も難しく部材リサイクルがほとんど出来ないのが課題である。
また、RCプレファブ工法は接合部の現場打ちコンクリ−ト工事等や設備工事も多く、プレファブ効果が限定される。更に、部材リサイクルが難しい等の問題もある為、それぞれの工法に一長一短があり決定的な工法がないのが現状である。
Conventional steel wind power generator towers have become prefabricated and have excellent quality control and on-site construction. However, they have fundamental durability and rigidity, and damage due to blade contact or collapse damage due to typhoons, etc. There are many problems such as the occurrence of maintenance costs due to corrosion and deterioration.
Next, on-site concrete towers are durable, but all work, including incidental work, is inevitably long, and the construction period is inevitably long, making it difficult to ensure construction accuracy and quality in harsh working environments, and almost no material recycling is possible. Is the problem.
In addition, the RC prefabrication method has many on-site concrete constructions and equipment constructions for joints, and the prefabrication effect is limited. Furthermore, because there are problems such as difficulty in recycling the materials, there are merits and demerits in each method, and there is no definitive method at present.

まず、最初に現状の各種風力発電タワ−工法のもつ問題点を洗い出す。
(a)鋼製タワ−工法は根本的に剛性・強度や耐久性が問題で倒壊の危険もある。
また、腐食や劣化によるメンテナンス費用も膨大となる。
(b)現場打ちコンクリ−ト工法は付帯設備工事も含め現場作業であり、施工精度や品質 確保が難しく使用部材のリサイクルが出来ない等の課題がある。
(c)既存RCプレファブ工法は部材接合に現場打ちコンクリ−ト等や設備工事が必要と なり効果が限定される。また、部材のリサイクルも難しい。
First, we will identify the problems of the current wind power tower construction methods.
(A) The steel tower method is fundamentally a problem of rigidity, strength and durability, and there is a risk of collapse.
In addition, maintenance costs due to corrosion and deterioration are enormous.
(B) The on-site concrete method is an on-site work including incidental equipment work, and it is difficult to ensure construction accuracy and quality, and there are problems such as the inability to recycle the materials used.
(C) The existing RC prefabrication method requires on-site concrete and equipment construction for joining the members, and the effect is limited. Also, recycling of the members is difficult.

鋼製タワ−の短所である剛性・強度や耐久性を確保するにはコンクリ−ト製がベストであり、また、コンクリ−ト製の欠点である施工精度と品質確保は付帯設備も含めて全量の工場プレファブ化により解決する。
なお、トレ−ラ−輸送が可能な部材サイズに収め高強度コンクリ−トとPC鋼を組合せれば、強度を確保しつつ総重量を軽減できる。
本発明の接合部はねじ込み式高強度ボルトを使用する為、外部足場が不要となり現場工程も大幅に短縮される。
特に、本発明は現場据え付けや撤去解体工事が容易であり、部材も傷めないため使用部材のリサイクルが容易になるのが重要である。
In order to ensure the rigidity, strength and durability that are the disadvantages of steel towers, concrete is the best, and the accuracy and quality assurance, which are disadvantages of concrete, are all, including incidental facilities. This will be solved by making the factory prefabricated.
If the high strength concrete and the PC steel are combined in a member size that can be transported by the trailer, the total weight can be reduced while securing the strength.
Since the joint portion of the present invention uses a screw-in type high-strength bolt, an external scaffold is not required and the on-site process is greatly reduced.
In particular, the present invention is easy to install and remove and dismantle, and it is important that the used members can be easily recycled because the members are not damaged.

本発明により高精度で高品質な風力発電タワ−躯体の大量生産が可能になる。また、標準化により緊急な需要にも速やかに対応できる特長がある。
なお、新工法のRCプレファブ化は部材リサイクルが容易になり、同じ工法を転用すれば通信鉄塔や送電鉄塔の代替も可能になる。
また、台風や突風或いは酸性雨や塩害の多い地域では、メンテナンス費用が膨大な鋼製タワ−に代わり得るものである。
耐久性に優れ高強度な新工法は、台風通過や沿岸部の多い日本列島の厳しい自然環境の中でこそ効果を発揮する。
The present invention enables mass production of high-precision and high-quality wind power towers. In addition, standardization has the advantage of being able to respond quickly to urgent demand.
The RC prefabrication of the new construction method makes it easy to recycle parts, and if the same construction method is diverted, it is possible to replace the communication tower and power transmission tower.
Also, in areas where there are many typhoons, gusts, acid rain and salt damage, the steel tower can be replaced with a huge maintenance cost.
The new construction method with excellent durability and high strength is effective in the harsh natural environment of the Japanese archipelago where many typhoons pass and coastal areas.

本発明は台風が通過する地域や沿岸部で塩害の多い地域でも既存タワ−にない耐候性と耐久性を発揮する。
また、施工面では鋼製タワ−以上に据え付けや解体が容易であるから、緊急な需要にも速やかに対応できる。
近年は発電効率面から風力発電タワ−の大型化が進行中であるが、この新工法は不確実な現場工事が省かれるので技術的にも大型化が図りやすい。
なお、施工精度を高めるため工場で仮組み後に現場搬入を行なうから、現場処理が容易であり、大量生産によるコスト削減や部材リサイクル効果も大きい。
そこで、本発明により廉価で高品質な風力発電タワ−が容易に普及できる。
The present invention exhibits weather resistance and durability not found in existing towers even in areas where typhoons pass or coastal areas where there is a lot of salt damage.
Moreover, since installation and dismantling are easier than the steel tower in terms of construction, it is possible to respond quickly to urgent demand.
In recent years, wind power generator towers have been increasing in size in terms of power generation efficiency, but this new method is easy to increase in size technically because uncertain on-site work is omitted.
In addition, since on-site delivery is performed after temporary assembly at a factory in order to increase construction accuracy, on-site processing is easy, and cost reduction and material recycling effects due to mass production are large.
Therefore, an inexpensive and high-quality wind power generator tower can be easily spread by the present invention.

(1)台風の多い地域への設置
風力発電は環境負荷の少ないエネルギ−源として脚光を浴びるなかで、台風の通過地域に建設された鋼製発電タワ−が突風により根元から倒壊した例もある。しかし、剛性や強度が大きく耐久性の高い本発明は施工も容易であり、そのような懸念も解消される。
(2)海上及び沿岸地域への設置
海上や沿岸地域に設置される鋼製発電タワ−の塩害等による劣化や風化に伴う維持管理費は膨大になるが、本発明ならメンテナンスフリ−も可能になる。
(3)小規模及び離島地域への設置
離島での発電施設は小規模な割りに建設費用が割高になり易いが、本発明なら付帯設備を含めた大量生産により廉価で高品質な施設が速やかに建設できる。
(1) Installation in areas with many typhoons While wind power generation is in the limelight as an energy source with low environmental impact, there are cases where steel power towers built in areas where typhoons pass have collapsed from the roots due to gusty winds. . However, the present invention having high rigidity and strength and high durability is easy to construct, and such a concern is solved.
(2) Installation on the sea and coastal areas Although the maintenance costs associated with deterioration and weathering of steel power generator towers installed on the sea and coastal areas due to salt damage, etc. become enormous, maintenance free is also possible with the present invention. Become.
(3) Installation on small and remote islands Although power generation facilities on remote islands tend to be expensive for construction on a small scale, in the case of the present invention, inexpensive and high-quality facilities can be quickly produced by mass production including incidental facilities. Can be built.

本発明の接合部はタワ−状構造物に限らず、例えば高層建築の外壁や大スパン構造物等にも応用できるのではないか。
現場でコンクリ−ト接続部にモルタル等を使用せず、PCコンクリ−ト同士の噛み合わせとねじ込み式高強度ボルト接合であるのと、埋め込み式プラグにより外部足場が不要となり、部材取り付け等が容易だからである。
The joint portion of the present invention is not limited to tower-like structures, but can be applied to, for example, outer walls of high-rise buildings and large span structures.
The mortar is not used for the concrete connection part in the field, and the PC joints are engaged with each other and screwed high-strength bolts are joined. That's why.

60M級風力発電塔の概要がわかる断面図である。      It is sectional drawing which understands the outline | summary of a 60M class wind power generation tower. 本発明の部材接合部がわかる詳細図である。      It is detail drawing which understands the member junction part of this invention. 発電塔基礎と躯体の接合部がわかる詳細図である。      It is detail drawing which understands the junction part of a power generation tower foundation and a frame.

符号の説明Explanation of symbols

1. 風力発電機 11. 高強度コンクリ−ト
2. 回転ブレ−ド 12. 基礎ボルト
3. ナセル 13. ベ−スプレ−ト
4. タワ−躯体 14. ねじ込み式高強度ボルト
5. マンドア 15. ボルト受け埋め込みプラグ
6. 操作ステ−ジ 16. PC鋼受けエンドプレ−ト
7. 昇降ラダ− 17. クリアランス
8. 風力発電塔基礎 18. ボルト座金
9. スパイラル鉄筋 19. 亜鉛メッキ塗装
10. PC鋼
1. Wind generator 11. High strength concrete Rotating blade 12. Foundation bolt 3. Nasser 13. Base plate 4. Tower-14. 4. Screw-in type high strength bolt Mandore 15. 5. Bolt receiving embedded plug Operation stage 16. PC steel receiving end plate 7. Elevating ladder 17. Clearance 8. Wind turbine tower foundation 18. Bolt washer 9. Spiral rebar 19. Galvanized coating10. PC steel

本発明は風力発電タワ−及び付帯設備を新工法でRCプレファブ化し、既存工法の持つ問題点を一挙に解決した。  In the present invention, the wind power generator tower and the incidental facilities are RC prefabricated by a new construction method, and the problems of the existing construction method are solved at once.

従来の鋼製風力発電タワ−はプレファブ化が進み、品質管理や現場施工面には優れる反面、剛性強度や耐久性に難点がありブレ−ド接触による損壊や台風等による倒壊の恐れや、長期的なメンテナンス費用が膨大になる等の問題点を抱える。更に、鋼製タワ−の剛性不足はブレ−ドとの共振を発生させる要因となっている。
次に、現場打ちRC風力発電タワ−は付帯設備工事も含めて工期が長く、施工精度や品質確保が難しく、部材リサイクルは不可能に近い。
更に、既存RCプレファブ工法は現場コンクリ−ト打ちや付帯設備工事が多く、プレファブ効果が限定され部材リサイクルが難しいなどの問題がある。
つまり、いずれの工法も決定的工法とならず、RCプレファブを更に進化させて規格化する工法が剛性や耐久性に優れ、最も解決策に近いことがわかる。
While conventional steel wind power generator towers are becoming prefabricated and excellent in quality control and on-site construction, there are difficulties in rigidity and durability, which may cause damage due to blade contact, collapse due to typhoons, etc. Have problems such as large maintenance costs. Further, the lack of rigidity of the steel tower is a factor that causes resonance with the blade.
Next, the on-site RC wind power generator tower has a long construction period including incidental equipment construction, it is difficult to ensure construction accuracy and quality, and material recycling is almost impossible.
Furthermore, the existing RC prefabrication method has many problems such as on-site concrete hitting and incidental equipment construction, and the prefab effect is limited and it is difficult to recycle the members.
In other words, none of the construction methods is a definitive construction method, and it can be understood that the construction method for further standardizing the RC prefab is superior in rigidity and durability and is closest to the solution.

(a)鋼製タワ−工法は剛性強度や耐久性の面で問題があり倒壊する危険性がある事、そのうえ、長期的なメンテナンス費用が膨大になる等の問題点を抱える。
また、剛性不足はブレ−ドとの危険な共振を発生させる要因ともなっている。
(b)現場打ちRC工法は付帯設備工事も含め現場作業であり、施工精度や品質確保が難しくリサイクルも不可能に近い。
(c)既存RCプレファブ工法は現場RC打ちや設備工事等が必要な為、省力化効果が限定的であり資源リサイクルも難しい。
(A) The steel tower construction method has problems in terms of rigidity and durability and has a risk of collapsing, and also has problems such as long-term maintenance costs becoming enormous.
Also, the lack of rigidity is a factor causing dangerous resonance with the blade.
(B) The on-site RC method is an on-site work including incidental equipment construction, and it is difficult to ensure construction accuracy and quality, and it is almost impossible to recycle.
(C) Since the existing RC prefabrication method requires on-site RC driving and equipment construction, the labor saving effect is limited and resource recycling is difficult.

鋼製風力発電タワ−の剛性不足は躯体とブレ−ドの固有周期の一致を招き易く、危険な共振の発生要因ともなるが、RCプレファブなら剛性不足が解決する。
また、耐腐食や耐久性の確保も付帯設備も含めたRCプレファブ化で解決できる。つまり、PC棒鋼と高強度RCの組合せで躯体重量を大幅に削減し、40フィ−ト規格コンテナで輸送可能なサイズや重量に納める。
更に躯体継手も高張力ボルトと埋め込みプラグにより外部足場が不要になるので、工期も短縮され資源リサイクルを含め問題点が一挙に解決する。
特に、本発明は現場据え付けや解体撤去工事が容易になる事や部材を傷めないため資源リサイクル及び部材の再利用が可能になる等の特長がある。
Insufficient rigidity of the steel wind power generator tower tends to cause the natural period of the casing and blade to coincide with each other, which may cause dangerous resonance. However, the RC prefab solves the lack of rigidity.
In addition, ensuring corrosion resistance and durability can be solved by RC prefabrication including incidental facilities. In other words, the combination of PC bar and high-strength RC greatly reduces the weight of the chassis and fits it in a size and weight that can be transported in a 40-foot standard container.
In addition, since the external joint is not required for the frame joint due to the high-tensile bolt and the embedded plug, the construction period is shortened and the problems including resource recycling are solved all at once.
In particular, the present invention has features such as facilitating on-site installation and dismantling / removal work, and the ability to recycle resources and reuse the members because they do not damage the members.

高精度で高品質な風力発電タワ−のRCプレファブ化により、無公害かつ廉価に新エネルギ−施設の建設が可能になる。
なお、本発明は資源リサイクル面で優れるうえに、排気塔や煙突そして通信鉄塔や送電鉄塔など他分野へも応用可能な工法であり、特に台風や突風そして酸性雨や塩害の多い地域においては鋼製タワ−に代わり得る工法である。
つまり、台風通過や沿岸部が多い日本列島の自然環境では特に優れた性能を発揮するし、海外に目を向ければ地球温暖化防止に伴うCO2排出権取引(C&T)にも活用できる等の利点もある。
High-precision, high-quality wind power towers will be RC prefabricated, enabling construction of new energy facilities that are pollution-free and inexpensive.
The present invention is not only excellent in terms of resource recycling, but also applicable to other fields such as exhaust towers, chimneys, communication towers and power transmission towers, especially in areas where there are many typhoons, gusts, acid rain and salt damage. This is a construction method that can be used instead of a tower.
In other words, it exhibits particularly excellent performance in the natural environment of the Japanese archipelago where there are many typhoons and coastal areas, and it can be used for CO2 emissions trading (C & T) to prevent global warming if you look overseas. There is also.

この新技術工法は、よりコンパクトで高機能と耐久性に優れる特長を併せもつが、施工面でも据え付けや解体が容易なので需要に速やかに対応できる。
また、近年は発電効率面からタワ−本体の大型化が進行中であり、これらへの対応も容易であり施工精度が高いこと、更に廉価な規格コンテナでの現場搬入による建設コスト削減効果は何より大きい。
そこで、このプレファブ工法は国内に限らず、エネルギ−資源に乏しく社会資本に欠ける発展途上国においても廉価で高機能な無公害新エネルギ−施設建設を可能にする。
This new technology method has features that are more compact, highly functional, and superior in durability, but it can be quickly installed and dismantled on the construction side to meet demand quickly.
In recent years, the size of towers has been increasing from the viewpoint of power generation efficiency, and it is easy to respond to these, and the construction accuracy is high. large.
Therefore, this prefabricated construction method enables construction of a low-priced, high-function, pollution-free new energy facility not only in Japan but also in developing countries that lack energy resources and lack social capital.

(1)台風の多い地域への設置
近年台風通過地域の鋼製発電タワ−が突風により根元から倒壊する例もみられるが、剛性強度や耐久性にも優れるRCプレファブ工法にはその懸念がない。
(2)海上及び沿岸地域への設置
今後設置が見込まれる海上や沿岸地域において特に鋼製発電タワ−は塩害等による劣化や風化防止にあたり膨大な維持管理費が必要となる。
しかし、このRCプレファブ工法は躯体のメンテナンスフリ−を可能にする。
(3)小規模及び離島地域への設置
離島での発電施設は小規模な割りに建設費用が割高になるが、本発明なら付帯設備を含め規格コンテナ輸送による廉価な発電施設の設置が可能になる。
(4)発展途上国への設置
資源や社会資本に欠ける発展途上国においては、環境負荷の少ない新エネルギ−施設の建設で環境保全と社会資本整備の両立を図ることが可能である。
また、この発電施設建設はCO2排出権取引面(C&T)において特に有効である。
(1) Installation in areas with many typhoons In recent years, there are cases where steel power generator towers in areas where typhoons pass have collapsed from the roots due to gusts, but there is no concern for the RC prefabrication method, which has excellent rigidity and durability.
(2) Installation on the sea and coastal areas Especially in the sea and coastal areas where installation is expected in the future, especially steel power generation towers require huge maintenance costs to prevent deterioration and weathering due to salt damage.
However, this RC prefabrication method allows maintenance free of the housing.
(3) Installation on small and remote islands Although the construction costs of power generation facilities on remote islands are small, construction costs can be set up using standard container transport, including incidental facilities, if the present invention is used. Become.
(4) In developing countries lacking resources and social capital in developing countries, it is possible to achieve both environmental conservation and social capital development by constructing new energy facilities with low environmental impact.
This power generation facility construction is particularly effective in terms of CO2 emission trading (C & T).

埋め込みプラグ工法で外部足場を不要にしたことや、部品総てを規格コンテナに搭載可能にする接合技術は他の大規模鉄骨等の製作や輸送にも転用できる。The joint plug technology that eliminates the need for external scaffolding and the joining technology that allows all parts to be mounted on standard containers can be used for the production and transportation of other large-scale steel frames.

60M級風力発電塔の概要がわかる断面図である。    It is sectional drawing which understands the outline | summary of a 60M class wind power generation tower. 発電塔躯体の継手要領がわかる詳細図である。    It is detail drawing which understands the joint point of a power generation tower housing. 発電塔基礎と発電塔躯体の継手要領がわかる詳細図である。    It is detail drawing which understands the joint point of a power generation tower foundation and a power generation tower frame.

符号の説明Explanation of symbols

1. 風力発電機 11. 高強度コンクリ−ト
2. 回転ブレ−ド 12. 基礎ボルト
3. ナセル 13. ベ−スプレ−ト
4. タワ−躯体 14. 高張力ボルト
5. マンドア 15. 埋め込みプラグ
6. 操作ステ−ジ 16. PC棒鋼受けエンドプレ−ト
7. 昇降ラダ− 17. リブプレ−ト
8. 風力発電塔基礎 18. 埋め込みプレ−ト
9. スパイラル鉄筋 19. ボルト座金
10. PC棒鋼 20. 亜鉛メッキ塗装
21. 脱着式避雷針
1. Wind generator 11. High strength concrete Rotating blade 12. Foundation bolt 3. Nasser 13. Base plate 4. Tower-14. 4. High tension bolt Mandore 15. Embedded plug 6. Operation stage 16. PC steel bar receiving end plate 7. Elevating ladder 17. Rib plate 8. Wind turbine tower foundation 18. 8. Embedding plate Spiral rebar 19. Bolt washer 10. PC bar 20. Galvanized paint
21. Removable lightning rod

本発明は風力発電タワ−のPCプレファブ化により、既存工法の持つ技術的ならびに経済的な問題を一挙に解決する。  The present invention solves the technical and economic problems of the existing method at once by making the wind power tower a PC prefab.

従来の鋼製風力発電タワ−はプレファブ化が進み、品質管理や施工面に優れる反面、剛性強度や耐久性に難点があり、ブレ−ド接触による損壊や台風等による倒壊の恐れ、そして長期的にメンテナンス費用が膨大になる等の問題点を持つ。更に、鋼製タワ−の剛性不足はブレ−ドとの共振を発生させる要因ともなる。
次に、現場打ちRC工法は付帯設備工事も含めて工期が長く、施工精度や品質確保が難しく、部材リサイクルも不可能に近い。
更に、既存RCプレファブ工法は現場コンクリ−ト打ちや付帯設備工事が多く、プレファブ効果が限定され部材リサイクルが難しい問題がある。
つまり、いずれも決定的工法とはならず、PCプレファブを進化させ、規格化する工法が剛性や耐久性に優れ、経済的にも解決策に近いのがわかる。
Conventional steel wind power generator towers have become prefabricated and are excellent in quality control and construction, but have difficulties in rigidity and durability, fear of damage due to blade contact, collapse due to typhoons, etc., and long-term However, there are problems such as huge maintenance costs. Further, the lack of rigidity of the steel tower also causes a resonance with the blade.
Next, the on-site RC construction method has a long construction period including incidental equipment construction, it is difficult to ensure construction accuracy and quality, and it is almost impossible to recycle parts.
Furthermore, the existing RC prefabrication method has many on-site concrete strikes and incidental equipment construction, and there is a problem that the prefab effect is limited and it is difficult to recycle the members.
That is, none of them is a definitive construction method, and it can be seen that the construction method that evolves and standardizes the PC prefab is excellent in rigidity and durability and is economically close to the solution.

(a)鋼製タワ−工法は剛性強度や耐久性の面で難点があり倒壊危険度も高い上に、長期的にはメンテナンス費用が膨大になる等の問題を抱える。
また、剛性不足はブレ−ドとの危険な共振を発生させる要因ともなっている。
(b)現場打ちRC工法は付帯設備工事も含め現場作業であり、施工精度や品質確保が難しくリサイクルも不可能に近い。
(c)既存RCプレファブ工法は現場RC打ちや設備工事等が必要な為、省力化効果が限定的でありリサイクルも難しい。
(A) The steel tower construction method has problems in terms of rigidity and durability, has a high risk of collapse, and has problems such as enormous maintenance costs in the long term.
Also, the lack of rigidity is a factor causing dangerous resonance with the blade.
(B) The on-site RC method is an on-site work including incidental equipment construction, and it is difficult to ensure construction accuracy and quality, and it is almost impossible to recycle.
(C) Since the existing RC prefabrication method requires on-site RC driving and equipment construction, the labor saving effect is limited and recycling is difficult.

鋼製風力発電タワ−の剛性や強度不足、そして耐腐食性や耐久性の確保などは、付帯設備も含めた規格化とPCプレファブ化で解決できる。
つまり、PC棒鋼と高強度コンクリ−ト(PC)を組合せ躯体重量を大幅に削減し、規格コンテナで輸送可能なサイズや重量に収める。
更に躯体継手も高張力ボルトと埋め込みプラグにより外部足場が不要になるから工期も短縮され資源リサイクルを含めた課題が一挙に解決する。
特に、本発明は現場据え付けや解体撤去工事が容易になり、部材も傷つけないため資源リサイクル及び部材の再利用も可能となる特長がある。
The lack of rigidity and strength of steel wind power towers, as well as ensuring corrosion resistance and durability can be solved by standardization including auxiliary equipment and PC prefabrication.
In other words, the combination of PC bar and high-strength concrete (PC) greatly reduces the weight of the housing and keeps it in a size and weight that can be transported with standard containers.
In addition, since the external joint is not required for the frame joint with high-tensile bolts and embedded plugs, the construction period is shortened and the problems including resource recycling are solved at once.
In particular, the present invention is advantageous in that on-site installation and dismantling / removal work can be facilitated, and the material can be recycled and reused because the member is not damaged.

高精度で高品質な風力発電タワ−のPCプレファブ化により、廉価で無公害なエネルギ−施設の建設が可能になる。
なお、本発明は資源リサイクル面で優れるうえに、排気塔や煙突そして通信鉄塔や送電鉄塔など他分野へも応用可能な工法であり、特に台風や突風そして酸性雨や塩害の多い地域においては鋼製タワ−に代わり得る工法である。
つまり、台風通過や沿岸部が多い日本列島の自然環境では特に優れた性能を発揮するし、海外に目を向ければ地球温暖化防止に伴う京都議定書CO2排出権取引(C&T)にも活用できる。
PC prefabrication of high-precision and high-quality wind power generator towers enables construction of inexpensive and pollution-free energy facilities.
The present invention is not only excellent in terms of resource recycling, but is also applicable to other fields such as exhaust towers, chimneys, communication towers and power transmission towers, especially in areas where typhoons, gusts, acid rain and salt damage are frequent. This is a construction method that can be used instead of a tower.
In other words, it exhibits particularly excellent performance in the natural environment of the Japanese archipelago where there are many typhoons and coastal areas, and it can also be used for the Kyoto Protocol CO2 emissions trading (C & T) to prevent global warming if you look overseas.

このPC工法はコンパクトで高機能と耐久性に優れる特長があり、据え付けや解体工事が容易なので緊急の需要にも速やかに対応できる。
なお、近年は発電効率面で風力発電施設の大型化が進行中であるが、本発明により狭小地域での大型化への対応も容易である。
何よりも廉価な規格コンテナ輸送が可能になる事で、工期及びコスト削減面での効果も最大限に発揮できる。
また、規格コンテナによる輸送システムなら国内海外を問わず活用できる。
従って、エネルギ−資源が乏しく、社会資本整備や工場設備に欠ける発展途上国においてもCO2排出権を伴う廉価な無公害エネルギ−施設の建設が可能になる。
This PC method is compact and has the features of high performance and durability, and it can be easily installed and dismantled, so it can respond quickly to urgent demand.
In recent years, an increase in the size of wind power generation facilities is ongoing in terms of power generation efficiency, but it is also easy to cope with an increase in size in a narrow area by the present invention.
By enabling standard container transportation at a lower price than anything else, the effects of construction period and cost reduction can be maximized.
In addition, a transport system using standard containers can be used regardless of whether domestic or overseas.
Therefore, it is possible to construct an inexpensive pollution-free energy facility with a CO2 emission right even in a developing country that lacks energy resources and lacks social capital and factory facilities.

(1)台風の多い地域への設置
近年台風通過地域の鋼製発電タワ−が突風により根元から倒壊する例もみられるが、剛性強度や耐久性にも優れるPCプレファブ工法にはその懸念がない。
(2)海上及び沿岸地域への設置
今後設置が見込まれる海上や沿岸地域において、鋼製発電タワ−は塩害等による劣化や風化防止については膨大な維持管理費が必要と見込まれる。
しかし、このPCプレファブ工法は躯体のメンテナンスフリ−化を実現する。
(3)小規模及び離島地域への設置
離島での発電施設は小規模な割りに建設費用が割高になるが、本発明なら付帯設備を含め規格コンテナ輸送による廉価な発電施設の設置が可能になる。
(4)発展途上国への設置
資源や社会資本に欠ける発展途上国においては、環境負荷の少ない新エネルギ−施設が工場設備なしでも出来るので社会資本整備の充実が可能となる。
なお、この無公害発電施設建設は京都議定書CO2排出権取引(C&T)において特に有効である。
(1) Installation in areas with many typhoons In recent years, there are cases where steel power generator towers in areas where typhoons pass have collapsed from the roots due to gusts, but there is no concern for the PC prefabrication method, which has excellent rigidity and durability.
(2) Installation at sea and coastal areas In the sea and coastal areas where installation is expected in the future, steel power generation towers are expected to require enormous maintenance costs to prevent deterioration and weathering due to salt damage.
However, this PC prefabrication method realizes maintenance free of the housing.
(3) Installation on small and remote islands Although the construction costs of power generation facilities on remote islands are small, construction costs can be set up using standard container transport, including incidental facilities, if the present invention is used. Become.
(4) In developing countries lacking resources and social capital in developing countries, new energy facilities with less environmental impact can be created without factory equipment, so it is possible to enhance social capital development.
This pollution-free power generation facility construction is particularly effective in the Kyoto Protocol CO2 emissions trading (C & T).

埋め込みプラグ工法で外部足場を不要にしたことや、部材総てを規格コンテナに搭載可能にする技術手法は他の大規模構造物等の加工や輸送にも活用できる。The use of the embedded plug method eliminates the need for an external scaffold, and the technical technique that enables all members to be mounted on a standard container can be used for processing and transporting other large-scale structures.

60M級風力発電塔の概要がわかる断面図である。    It is sectional drawing which understands the outline | summary of a 60M class wind power generation tower. 発電塔躯体の継手要領がわかる詳細図である。    It is detail drawing which understands the joint point of a power generation tower housing. 発電塔基礎と発電塔躯体の継手要領がわかる詳細図である。    It is detail drawing which understands the joint point of a power generation tower foundation and a power generation tower frame.

符号の説明Explanation of symbols

1. 風力発電機 12. 基礎ボルト
2. 回転ブレ−ド 13. ベ−スプレ−ト
3. ナセル 14. 高張力ボルト(HTB)
4. タワ−躯体 15. 埋め込みプラグ
5. マンドア 16. PC棒鋼受けエンドプレ−ト
6. 操作ステ−ジ 17. リブプレ−ト
7. 昇降ラダ− 18. 埋め込みプレ−ト
8. 風力発電塔基礎 19. ボルト座金
9. スパイラル鉄筋 20. 亜鉛メッキ塗装
10. PC棒鋼 21. 脱着式避雷針
11. 高強度コンクリ−ト(PC) 22. 継手プレ−ト
1. Wind generator 12. Foundation bolts 2. Rotating blade 13. 2. Base plate Nasser 14. High tension bolt (HTB)
4). Tower-body 15 Embedded plug 5. Mandore 16. PC steel bar receiving end plate 6. Operation stage 17. Rib plate 7. Elevating ladder 18. Embedded plate 8. Wind turbine tower foundation 19. Bolt washer 9. Spiral rebar 20. Galvanized coating10. PC bar 21. 10. Removable lightning rod High strength concrete (PC) 22. Joint plate

Claims (6)

風力発電タワー躯体のすべてをコンクリート(以下RC)プレファブ化する技術。Technology to convert all wind turbine towers into concrete (RC) prefabs. 風力発電タワーのRCプレファブ化工法で、高強度コンクリートとPC鋼材の組合せにより軽量化する技術。A technology that reduces the weight by combining high-strength concrete and PC steel using the RC prefabrication method for wind power generation towers. 風力発電タワー躯体のRCプレファブ部材接合に高強度ねじ込みボルトを使い、据え付け・解体を容易にする技術。A technology that uses high-strength screw bolts to join RC prefabricated members of wind power towers, making installation and disassembly easier. 風力発電タワー躯体のRCプレファブ接合部にボルト用埋め込みプラグを設け、外部足場を不要にする技術。A technology that eliminates the need for external scaffolding by providing embedded plugs for bolts at the RC prefabricated joints of wind turbine towers. 風力発電タワー建設工事(据え付け及び撤去解体)でRCプレファブ部材全量をリサイクル活用する技術。A technology that recycles and uses the entire RC prefabricated material for wind power tower construction (installation and demolition). 通信鉄塔や送電鉄塔等をRCプレファブ化によりメンテナンスフリーにする技術。Technology to make maintenance-free communication towers and transmission towers by using RC prefabs.
JP2004058154A 2004-02-03 2004-02-03 Prestressed concrete prefabrication construction method for wind power generation tower Pending JP2005220715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004058154A JP2005220715A (en) 2004-02-03 2004-02-03 Prestressed concrete prefabrication construction method for wind power generation tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004058154A JP2005220715A (en) 2004-02-03 2004-02-03 Prestressed concrete prefabrication construction method for wind power generation tower

Publications (2)

Publication Number Publication Date
JP2005220715A true JP2005220715A (en) 2005-08-18
JP2005220715A5 JP2005220715A5 (en) 2007-04-05

Family

ID=34996565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004058154A Pending JP2005220715A (en) 2004-02-03 2004-02-03 Prestressed concrete prefabrication construction method for wind power generation tower

Country Status (1)

Country Link
JP (1) JP2005220715A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009156039A3 (en) * 2008-06-24 2011-04-28 Repower Systems Ag Tower of a wind turbine
CN102877681A (en) * 2012-09-14 2013-01-16 陆宏之 Partially prestressed concrete electric pole
US8511044B2 (en) 2009-05-21 2013-08-20 Alstom Wind, S.L.U. Composite connection for a wind turbine tower structure
CN108775192A (en) * 2018-06-06 2018-11-09 中国航空规划设计研究总院有限公司 A kind of prestressed concrete tower rod structure and its construction method
CN111089035A (en) * 2020-01-17 2020-05-01 重庆大学 Wind turbine generator system internal prestress single-layer steel plate-concrete combined tower drum

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009156039A3 (en) * 2008-06-24 2011-04-28 Repower Systems Ag Tower of a wind turbine
US8511044B2 (en) 2009-05-21 2013-08-20 Alstom Wind, S.L.U. Composite connection for a wind turbine tower structure
CN102877681A (en) * 2012-09-14 2013-01-16 陆宏之 Partially prestressed concrete electric pole
CN108775192A (en) * 2018-06-06 2018-11-09 中国航空规划设计研究总院有限公司 A kind of prestressed concrete tower rod structure and its construction method
CN108775192B (en) * 2018-06-06 2019-12-17 中国航空规划设计研究总院有限公司 Prestressed concrete tower column structure and construction method thereof
CN111089035A (en) * 2020-01-17 2020-05-01 重庆大学 Wind turbine generator system internal prestress single-layer steel plate-concrete combined tower drum

Similar Documents

Publication Publication Date Title
EP2541047B1 (en) Wind turbine assembling method and wind turbine assembled according to said method
US9062662B1 (en) Hybrid pole structure and method of assembly
CN100545367C (en) The net-shell net-rack overhanging high altitude bulk construction method of bolted spherical node
JP2008537043A (en) Prefabricated modular tower
CN113175091B (en) Fully assembled prestressed frame cable system combined structure
CN108005099B (en) Prefabricated assembled concrete stepped foundation for pole tower and assembling method thereof
CN103741970A (en) Assembled machining shed for building construction and manufacture and installation method thereof
JP2005220715A (en) Prestressed concrete prefabrication construction method for wind power generation tower
CN201202181Y (en) Connection structure for precast concrete board and beam and construction including the same
CN101581113B (en) Connecting structure for precast concrete board and beam, construction method and building
CN206428805U (en) A kind of concrete prefabricated balcony of assembled steel
JP2005220715A5 (en)
CN201952899U (en) Beam column connecting node of detachable board house
CN107965170A (en) Distribution box protection canopy with assembling type base
CN211312582U (en) Tower structure and tower pile foundation adapter
CN103590419A (en) Assembled type adjustable high-voltage reactor foundation
CN211200710U (en) Assembled beam slab connection structure
CN107119800A (en) A kind of many high-rise assembled modularization Self-resetting steel construction square tube post frame systems
CN111088904A (en) Integral hoisting device and process for iron chimney steel frame with hectometer-height barrel
Adam et al. A modular TLP floating substructure to maximize the flexibility within the supply chain
CN211851170U (en) Whole hoist device of hectometer high barrel iron chimney steelframe
CN115059236B (en) Large-span steel structure decorating beam for roof outer vertical surface and construction method thereof
CN218597854U (en) Simple and easy steel construction brickmaking machine factory building of being suitable for
CN220377503U (en) Assembled grit material canopy steel frame construction
CN210563616U (en) Assembled cooling tower structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060221

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070201

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070920

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071029

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071122