JP2005219162A - Diamond machining method - Google Patents

Diamond machining method Download PDF

Info

Publication number
JP2005219162A
JP2005219162A JP2004029444A JP2004029444A JP2005219162A JP 2005219162 A JP2005219162 A JP 2005219162A JP 2004029444 A JP2004029444 A JP 2004029444A JP 2004029444 A JP2004029444 A JP 2004029444A JP 2005219162 A JP2005219162 A JP 2005219162A
Authority
JP
Japan
Prior art keywords
diamond
processing
sheet
workpiece
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004029444A
Other languages
Japanese (ja)
Other versions
JP4126377B2 (en
Inventor
Hiromichi Yoshikawa
博道 吉川
Naoharu Fujimori
直治 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004029444A priority Critical patent/JP4126377B2/en
Publication of JP2005219162A publication Critical patent/JP2005219162A/en
Application granted granted Critical
Publication of JP4126377B2 publication Critical patent/JP4126377B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diamond machining method, and more particularly a diamond ultrasonic machining method, according to which three-dimensional machining of a diamond is enabled, the machining speed is significantly larger than that of grinding by means of a grindstone, and machining precision of 100 μm or less is achieved. <P>SOLUTION: According to the diamond machining method, reciprocation generated by ultrasonic waves at an oscillation frequency of 10 to 100 kHz is transmitted to a machining strip sheet having a thickness of 1,000 μm or less, and a workpiece is machined by collisions of diamond abrasive grains present between the machining sheet and the workpiece. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ダイヤモンドの加工方法、特にダイヤモンドウエハを高精度で切断等の超音波加工ができるダイヤモンドの加工方法に関する。   The present invention relates to a diamond processing method, and more particularly to a diamond processing method capable of ultrasonic processing such as cutting a diamond wafer with high accuracy.

ダイヤモンドは、その優れた材料特性、すなわち高硬度、高い磨耗耐性、低い摩擦係数、高い光透過特性、高い熱伝導性、耐薬品性などの特性を有するため、多くの利用が考えられている。
ダイヤモンド自体は非常に硬く脆い物質であるため、従来ダイヤモンドの切断や研磨等の加工に際しては、砥石に同質のダイヤモンドの粉末を混ぜ合わせて使用するのが一般的であった。
最近では、ダイヤモンドの局所加工、特定領域の加工の要求があるが、砥石形状に制限があることから、単純な形状のみの研削又は研磨加工を、時間をかけて行う必要があった。例えば溝形状を作製するには、非常に強度の高い砥石が必要で、深く掘り進むと砥石自体が熱によって変形する恐れがあった。したがって、従来の砥石による研削又は研磨方法は、加工効率が著しく悪いという問題があった。
Since diamond has such excellent material properties, that is, high hardness, high wear resistance, low coefficient of friction, high light transmission property, high thermal conductivity, chemical resistance, etc., it is considered to be used in many ways.
Since diamond itself is a very hard and brittle substance, conventionally, when processing such as cutting or polishing of diamond, it has been common to mix a diamond powder of the same quality with a grindstone.
Recently, there has been a demand for local processing of diamond and processing of a specific region, but since there is a limitation on the shape of the grindstone, it has been necessary to perform grinding or polishing of only a simple shape over time. For example, in order to produce a groove shape, a grindstone with very high strength is required, and when grinded deeply, the grindstone itself may be deformed by heat. Therefore, the conventional grinding or polishing method using a grindstone has a problem that the processing efficiency is remarkably poor.

近年、上記のダイヤモンドの局所加工又は特定領域の加工の要求に対して、従前のダイヤモンド砥石を使用した研削加工に替え、レーザーによる加工が行われ、切断や表面の加工が可能になっている。また、微小領域に集光させたレーザーによる加工も行われている。
しかしながら、レーザー加工によって表面に炭素化した黒い層が残り、この部分がダイヤモンドとしての利用の妨げになる場合もあった。さらに、気相合成技術の発展により10mmを越えるような大型ダイヤモンドにおいては、レーザー光を通すための切り代が大きくなるために適用が難しかった。さらに、ブロックや薄片に切り出す場合又は微細な部品を作成する場合には、ダイヤモンド深部への加工自体が大きな課題となっている。
In recent years, in response to the above-mentioned demand for local processing of diamond or processing of a specific region, processing by laser is performed instead of conventional grinding processing using a diamond grindstone, and cutting and surface processing are possible. In addition, processing using a laser focused on a minute region is also performed.
However, a black layer carbonized on the surface by laser processing remains, and this portion sometimes hinders use as diamond. Furthermore, it has been difficult to apply large diamonds exceeding 10 mm due to the development of vapor phase synthesis technology because the cutting allowance for passing laser light becomes large. Furthermore, when cutting out into blocks or thin pieces, or when creating fine parts, processing to the deep part of the diamond is a major issue.

レーザーは長波長領域の光に対して高い透過性を有することから、レーザーを用いる場合でも、表面から短波長のレーザーを用いて加工する必要がある。しかし、レーザー光が深度のある加工先端部にまで十分に届かないという問題が発生している。
このため、レーザー加工装置を用いる場合、ビーム特性を向上させることが必要となるが、そのためには高価なレーザー装置の部品が必要となり、そのような機器にかかる費用が莫大になるという問題があった。
Since a laser has high transparency with respect to light in a long wavelength region, even when a laser is used, it is necessary to process from the surface using a short wavelength laser. However, there is a problem that the laser beam does not reach the processing tip having a depth.
For this reason, when using a laser processing apparatus, it is necessary to improve the beam characteristics. However, for that purpose, expensive parts of the laser apparatus are required, and there is a problem that the cost of such equipment becomes enormous. It was.

このように、現在エキシマレーザーなどの短波長光を集光させ内部まで加工する手法が考案されているが、レーザー光の集光が難しいことから切り代を小さくすることが困難である。さらに、レーザー光の処理に特別な光学部品が必要であって、その加工コストは非常に高価であった。
このように、レーザー加工はダイヤモンドの加工方法としては十分な発達を遂げておらず、非能率的手段であり、加工精度も十分と言えなかった。
As described above, a technique for condensing short-wavelength light such as an excimer laser and processing it to the inside has been devised, but it is difficult to reduce the cutting allowance because it is difficult to condense the laser light. Furthermore, special optical components are necessary for the processing of the laser beam, and the processing cost is very high.
Thus, laser processing has not been sufficiently developed as a diamond processing method, is an inefficient means, and the processing accuracy cannot be said to be sufficient.

一方、従来の砥石を利用したダイヤモンドの切断等の加工を改良し、加工具に超音波を併用した技術が提案されている。超音波は、軸振動、捻り振動、たわみ振動等に、振動モードを使い分けることが可能である。
このような振動モードを利用することにより、ダイヤモンドの加工を行う提案がなされている。
On the other hand, a technique has been proposed in which processing such as diamond cutting using a conventional grindstone is improved and ultrasonic waves are used in combination with a processing tool. Ultrasonic waves can use different vibration modes for axial vibration, torsional vibration, flexural vibration, and the like.
Proposals have been made to process diamond by utilizing such vibration modes.

その例を挙げると、超音波による振動を付与しながら加工を行う小型の加工工具を配設して、大形の被加工材を加工する超音波振動複合加工具(特許文献1参照)、超音波振動を被加工物に付加した機械加工において、球形等の自由工具を被加工物に押しつけるために、工具に遠隔から磁力や遠心力等の外力を与える超音波振動加工法(特許文献2参照)、ダイヤモンド研削用砥石を用いて研削することにより焼結ダイヤモンド材を工具に加工する方法において、前記ダイヤモンド研削用砥石に超音波ねじり振動を作用させる焼結ダイヤモンド製工具加工方法(特許文献3参照)、超音波専用軸付一体型のダイヤモンド電着工具(特許文献4参照)、圧縮機の回転環に設けられるスパイラル溝を精度良く超音波加工する方法(特許文献5参照)がある。
しかし、このような技術は、必ずしも高精度のダイヤモンドの加工ができるとはいえず、また加工速度も十分ではないという問題があった。
特開平11−123365号公報 特開平2002−239879号公報 特開2001−239428号公報 特開平11−33885号公報 特開平7−132449号公報
For example, an ultrasonic vibration composite processing tool for processing a large workpiece by disposing a small processing tool that performs processing while applying ultrasonic vibration (see Patent Document 1), In machining with application of sonic vibration to a workpiece, an ultrasonic vibration machining method for applying external force such as magnetic force or centrifugal force to a tool from a distance to press a free tool such as a sphere on the workpiece (see Patent Document 2) ), In a method of processing a sintered diamond material into a tool by grinding with a diamond grinding wheel, a method for processing a sintered diamond tool in which ultrasonic torsional vibration is applied to the diamond grinding wheel (see Patent Document 3) ), An integrated diamond electrodeposition tool with an ultrasonic dedicated shaft (see Patent Document 4), and a method for accurately ultrasonically processing a spiral groove provided in a rotary ring of a compressor (see Patent Document 5) There is.
However, such a technique is not necessarily capable of processing diamond with high accuracy, and has a problem that the processing speed is not sufficient.
Japanese Patent Laid-Open No. 11-123365 Japanese Patent Laid-Open No. 2002-239879 JP 2001-239428 A JP 11-33885 A Japanese Patent Laid-Open No. 7-132449

本発明は、セラミックスや宝石などの加工に用いられてきた従来の超音波加工をさらに改良し、研磨条件を最適化することにより、極端に難加工材料であるダイヤモンドに対して、従来では難しかった3次元形状に加工することを可能とし、その加工速度が砥石による研削に比べて有意に大きく、100μm以下の加工精度を実現する加工技術を課題とする。 The present invention has been difficult for diamond, which is extremely difficult to process, by further improving the conventional ultrasonic processing that has been used for processing ceramics and gemstones and optimizing the polishing conditions. An object of the present invention is a processing technique that enables processing into a three-dimensional shape, the processing speed is significantly greater than grinding with a grindstone, and realizes processing accuracy of 100 μm or less.

上記課題を解決するために、本発明は、1)10-100kHzの発信周波数の超音波で生じさせた往復運動を厚さ1000μm以下の短冊状の加工用シートに伝え、該加工用シートと被加工材の間に存在するダイヤモンド砥粒の衝突によって加工することを特徴とするダイヤモンドの加工法、2)ダイヤモンド砥粒の平均粒径が30μm〜200μmであることを特徴とする1記載のダイヤモンドの加工方法、3)加工用シートに張力を与えて補強することを特徴とする1又は2記載のダイヤモンドの加工方法、4) ダイヤモンドの加工方向に対して、加工方向と該加工方向に垂直なシート端面方向の二方向の振動を与えることを特徴とする1〜3のいずれかに記載のダイヤモンドの加工方法を提供する。   In order to solve the above-mentioned problems, the present invention provides 1) a reciprocating motion generated by ultrasonic waves having a transmission frequency of 10-100 kHz to a strip-shaped processing sheet having a thickness of 1000 μm or less, and 2. A diamond processing method characterized in that processing is performed by collision of diamond abrasive grains existing between workpieces; 2) an average particle diameter of diamond abrasive grains is 30 μm to 200 μm; 3. A processing method, 3) a method for processing diamond according to 1 or 2, wherein the processing sheet is reinforced by applying tension, and 4) a sheet perpendicular to the processing direction with respect to the processing direction of diamond. The diamond processing method according to any one of 1 to 3, wherein vibrations in two directions in an end face direction are applied.

また、本発明は、5)ダイヤモンドと加工シートが接する部分に進行波が形成されるように加工することを特徴とする1〜4のいずれかに記載のダイヤモンドの加工方法、6)加工速度及び超音波振動子の投入パワーを調節して進行波を形成することを特徴とする5記載のダイヤモンドの加工方法、7)ダイヤモンドと加工シートが接する部分に投入された古いダイヤモンド砥粒を、加工シート若しくは被加工材に加えられた超音波振動による進行波により強制的に排出させることを特徴とする1〜6のいずれかに記載のダイヤモンドの加工方法、8)被加工材が気相合成ダイヤモンドであることを特徴とする1〜7のいずれかに記載のダイヤモンドの加工法、9)被加工材が単結晶ダイヤモンドであることを特徴とする請求項1〜7のいずれかに記載のダイヤモンドの加工法を提供するものである。   Further, the present invention relates to 5) a diamond processing method according to any one of 1 to 4, wherein the processing is performed so that a traveling wave is formed at a portion where the diamond and the processed sheet are in contact, and 6) the processing speed and 6. The diamond processing method according to 5, wherein the traveling wave is formed by adjusting the input power of the ultrasonic vibrator, and 7) the old diamond abrasive grains introduced into the portion where the diamond and the processed sheet are in contact with each other. Alternatively, the diamond processing method according to any one of 1 to 6, wherein the processing material is forcibly discharged by a traveling wave generated by ultrasonic vibration applied to the processing material. 8) The processing material is vapor-phase synthetic diamond. 9. The diamond processing method according to any one of claims 1 to 7, wherein 9) the workpiece is a single crystal diamond. There is provided a processing method of diamond crab according.

本発明によれば、上記の加工条件でダイヤモンドを研削することにより、加工が著しく困難であったダイヤモンドウエハを100μm/min.以上という、高速での加工ができ、さらに比較的出力の弱い50W以下の超音波振動素子を用いて高精度加工が可能となった。すなわち、極端に難加工材料であるダイヤモンドに対して、従来では難しかった3次元形状に加工することを可能とし、その加工速度が砥石による研削に比べて有意に大きく、100μm以下の加工精度を実現することができるという著しい効果を有する。
これによって、本発明は、加工コストと加工精度の、両者の問題を一挙に解決することが可能となるという優れた効果を有する。
According to the present invention, by grinding diamond under the above processing conditions, a diamond wafer that has been extremely difficult to process can be processed at a high speed of 100 μm / min. High-accuracy machining is possible using the ultrasonic vibration element. In other words, diamond, which is extremely difficult to process, can be processed into a three-dimensional shape, which was difficult in the past, and its processing speed is significantly higher than grinding with a grindstone, realizing processing accuracy of 100 μm or less. It has a remarkable effect that it can be done.
Thus, the present invention has an excellent effect that it is possible to solve both problems of processing cost and processing accuracy at once.

次に、図及び表等を用いて具体的に説明する。しかし、本発明は以下の説明に拘束され、限定されるものでない。すなわち、本発明の技術思想の範囲での改変、他の実施例又は態様は全て本発明に含まれるものである。
本発明のダイヤモンドの超音波加工方法は、10-100kHzの発信周波数で生じさせた往復運動を、厚さ1000μm以下の短冊状の加工用シートに伝え、該加工用シートによりダイヤモンドを加工するものである。
図1と図2にダイヤモンドウエハ1と加工用シート材(ツール)2を示す。符号3は砥粒を、符号4は超音波振動を示す。
図1は研削加工開始直前の概念説明図であり、図2は研削加工がある程度進行した状況を示す概念説明図である。
加工用シート材としては、軟鋼、普通鋼、ステンレス鋼、焼き入れ鋼、ばね鋼、特殊鋼など、その他非鉄金属などの普通の金属材料を使用することができ、特にこれらの材料に制限されるものではない。
Next, it will be specifically described with reference to figures and tables. However, this invention is restrained by the following description and is not limited. That is, all modifications and other examples or embodiments within the scope of the technical idea of the present invention are included in the present invention.
The diamond ultrasonic processing method of the present invention is to process the reciprocating motion generated at a transmission frequency of 10-100 kHz to a strip-shaped processing sheet having a thickness of 1000 μm or less, and process the diamond by the processing sheet. is there.
1 and 2 show a diamond wafer 1 and a processing sheet material (tool) 2. Reference numeral 3 indicates abrasive grains, and reference numeral 4 indicates ultrasonic vibration.
FIG. 1 is a conceptual explanatory diagram immediately before the start of grinding, and FIG. 2 is a conceptual explanatory diagram showing a situation where the grinding has progressed to some extent.
As processing sheet materials, ordinary metal materials such as mild steel, ordinary steel, stainless steel, hardened steel, spring steel, special steel, and other non-ferrous metals can be used, and are limited to these materials in particular. It is not a thing.

超音波加工では、この厚さ1000μm以下の短冊状の加工用シートを使用することにより、加工領域を十分小さくすることができ、精密加工が可能となる。ダイヤモンドは非常に高価な材料であることから、切り代をできるだけ小さくすることが必要である。本発明は、このような要求に適合するものである。
発信周波数10kHz未満では、ダイヤモンドを研削できる程度の効果的な超音波を得ることができず、また発信周波数1000kHzを超えるとダイヤモンドに過度な衝撃を与えることになり、チッピングや割れが発生し易くなるので、好適な範囲は10-100kHzの発信周波数である。通常、20〜100kHz程度を使用する。
In ultrasonic processing, by using a strip-shaped processing sheet having a thickness of 1000 μm or less, the processing area can be made sufficiently small, and precise processing becomes possible. Since diamond is a very expensive material, it is necessary to make the cutting margin as small as possible. The present invention meets these requirements.
If the transmission frequency is less than 10 kHz, it is not possible to obtain an effective ultrasonic wave that can grind the diamond. If the transmission frequency exceeds 1000 kHz, the diamond will be excessively impacted, and chipping and cracking are likely to occur. So the preferred range is 10-100kHz transmission frequency. Usually, about 20-100kHz is used.

短冊状の加工用シートを単なる保持のみでは、剛性の高い、例えば超硬を用いたとしても不十分である場合がある。その例を、図3及び図4に示す。この図3及び図4では、短冊状シートにブレ又はシートの面方向のゆれが生じ、シートスキャン時に直線状に加工することができず、十分な加工精度が得られないという問題がある。
このため、加工領域に干渉しない構造、例えば被加工材であるダイヤモンドよりも大きいサイズの補強を取り付け、超音波振動時にブレが生じないように工夫を凝らした。これによって、加工用シートの歪みを防止し、加工精度を維持することができる。
短冊状の加工用シートの補強手段として、該加工用シートに張力を与えて補強することも有効な手段である。図5に短冊状の加工用シートに補強を設けた例を示す。本発明は、これらを包含する。
Simply holding the strip-shaped processing sheet may not be sufficient even when using high rigidity, for example, cemented carbide. Examples thereof are shown in FIGS. 3 and 4, there is a problem that the strip-like sheet is shaken or shaken in the surface direction of the sheet, and cannot be processed into a straight line during sheet scanning, and sufficient processing accuracy cannot be obtained.
For this reason, a structure that does not interfere with the processing region, for example, a reinforcement larger in size than diamond that is a workpiece, is attached, and devised to prevent blurring during ultrasonic vibration. Thereby, distortion of the sheet for processing can be prevented and processing accuracy can be maintained.
As a means for reinforcing the strip-shaped processing sheet, it is also effective to reinforce the processing sheet by applying a tension. FIG. 5 shows an example in which reinforcement is provided on a strip-shaped processing sheet. The present invention includes these.

短冊状の加工用シートに複合振動を与えることは、研削等の加工効率を上げるための、さらに有効な手段である。具体的には、ダイヤモンドの加工方向に対して、加工方向(Z軸方向振動)と該加工方向に垂直なシート端面方向(X軸方向振動)の二方向の振動を与えることが有効である。
これによって、ダイヤモンドと加工シートが接する部分の加工シートに、加工溝の長さ方向に対して進行波が形成される。この概念図を図6に示す。
図6に示すように、主としてX軸振動方向に凹凸のある波形状となる。この進行波はダイヤモンド研削に有効である。この進行波は、加工速度及び超音波振動子の投入パワーを調節することにより効果的に形成することができる。
Giving composite vibration to the strip-shaped processing sheet is a more effective means for increasing processing efficiency such as grinding. Specifically, it is effective to give two directions of vibration to the diamond processing direction: the processing direction (Z-axis direction vibration) and the sheet end surface direction (X-axis direction vibration) perpendicular to the processing direction.
As a result, a traveling wave is formed in the processed sheet at the portion where the diamond and the processed sheet are in contact with each other in the length direction of the processed groove. This conceptual diagram is shown in FIG.
As shown in FIG. 6, the wave shape is mainly uneven in the X-axis vibration direction. This traveling wave is effective for diamond grinding. This traveling wave can be effectively formed by adjusting the processing speed and the input power of the ultrasonic transducer.

ダイヤモンドと加工シートが接する部分にダイヤモンド砥粒を投入することが、加工能率を上げるために、さらに有効である。
加工に用いられるダイヤモンド砥粒の選定については、30μm−200μmのダイヤモンド粉が望ましい。一般に、サブミクロン(1/2-1/4μm)の微細なダイヤモンド粉末のほうが加工面粗度は良くなるが、本発明の条件下では、加工速度の著しい低下が観察された。
加工速度を上げるために、振動子への投入パワーを上昇させることも考えられる。しかし、過度な超音波振動子へのパワーの供給は、衝撃に弱いダイヤモンドにとって苛酷な環境となり、多くのチッピングや割れが生じることが観察された。したがって、加工速度の無制限な上昇は避けなければならない。この実験結果を表1に示す。
表1に示すように、砥粒と加工速度、加工負荷のバランスは実験の結果から、30μm−200μmのダイヤモンドを用いるのが適切であることが分かった。
It is more effective to insert diamond abrasive grains in the portion where the diamond and the processed sheet come into contact in order to increase the processing efficiency.
About selection of the diamond abrasive grain used for a process, 30 micrometers-200 micrometers diamond powder are desirable. In general, finer diamond powder of submicron (1 / 2-1 / 4 μm) has a better surface roughness, but under the conditions of the present invention, a significant decrease in processing speed was observed.
In order to increase the processing speed, it is conceivable to increase the input power to the vibrator. However, it has been observed that excessive power supply to the ultrasonic transducer becomes a harsh environment for diamonds that are vulnerable to shock and that many chippings and cracks occur. Therefore, an unlimited increase in processing speed must be avoided. The experimental results are shown in Table 1.
As shown in Table 1, it was found from the results of the experiment that the balance between the abrasive grains, the processing speed, and the processing load is appropriate to use 30 μm-200 μm diamond.

図6に示すように、ダイヤモンドと加工シートが接する部分の加工シートには、加工溝の長さ方向に対して進行波が形成されるが、この進行波の凹部にダイヤモンド粉末からなる砥粒が一時的に滞留し、ダイヤモンドウエハを研削する効果を高める。
超音波加工において早い加工速度が継続される理由は、常に新しい砥粒が加工領域に供給され、かつダイヤモンドと加工シートが接する部分に投入した古いダイヤモンド砥粒が排出されることも大きな要因である。
本発明においては、上記の通り加工に用いられる振動子のモードを加工方向の縦軸振動に加えて、平面方向に進行波が生じるように加わるので、加工が進行し、溝が深くなっても積極的に砥粒の供給が行われる。また、古いダイヤモンド砥粒は加工シートの進行波の端より排出される。
As shown in FIG. 6, a traveling wave is formed in the processed sheet at the portion where the diamond and the processed sheet are in contact with each other along the length direction of the processed groove. Temporarily stays and enhances the effect of grinding the diamond wafer.
The reason why the high machining speed is continued in ultrasonic machining is that new abrasive grains are always supplied to the machining area and old diamond grains that are put into the part where the diamond and the machining sheet are in contact are discharged. .
In the present invention, the mode of the vibrator used for machining as described above is added to the longitudinal vibration in the machining direction so that a traveling wave is generated in the plane direction. Abrasive grains are actively supplied. Also, old diamond abrasive grains are discharged from the end of the traveling wave of the processed sheet.

その結果、加工速度は10%ほど向上し、加えて切断に至るまでの加工速度の低下は5%以下に抑制された。さらに、砥粒補給のための加工シートを一時適に取り除く必要が無くなり、シートの再挿入に際して生じるチッピングなどの事故が回避可能となった。
本発明の超音波加工方法は、主としてダイヤモンドについて説明したが、他の硬質の金属若しくはセラミックス材料やガラス等に適用できることは言うまでもない。しかし、特にダイヤモンドウエハの加工に有用である。
As a result, the processing speed was improved by about 10%, and the decrease in the processing speed until cutting was further suppressed to 5% or less. Furthermore, it is no longer necessary to remove the processed sheet for replenishing abrasive grains, and accidents such as chipping that occur when the sheet is reinserted can be avoided.
Although the ultrasonic processing method of the present invention has been described mainly for diamond, it goes without saying that it can be applied to other hard metals or ceramic materials, glass, and the like. However, it is particularly useful for processing diamond wafers.

本発明は、超音波素子に結合させた1000μm以下の短冊状の加工用シートを使用し、特に補強されたシートを組み合わせ、振動モードを最適に制御することで、極めて短時間(厚さ1mm程度の 多結晶ダイヤモンドウエハを10分以内)に切断することが可能となった。
したがって、ダイヤモンド加工製品の製造コストの50%近くを占める加工費の大幅な低減が可能となり、また従来加工が困難であったアスペクト比の高い溝・穴も容易に加工できるようになった。以上に示す通り、本発明はダイヤモンドウエハの加工に極めて有用である。
In the present invention, a strip-shaped processing sheet of 1000 μm or less bonded to an ultrasonic element is used, and in particular, a reinforced sheet is combined and the vibration mode is optimally controlled, so that the vibration mode is optimally controlled (about 1 mm in thickness). The polycrystalline diamond wafer can be cut within 10 minutes).
Therefore, it is possible to greatly reduce the processing cost that accounts for nearly 50% of the manufacturing cost of the diamond processed product, and it is also possible to easily process a groove / hole having a high aspect ratio that has been difficult to process conventionally. As described above, the present invention is extremely useful for processing a diamond wafer.

本発明の研削加工開始直前の説明図である。It is explanatory drawing just before the grinding process start of this invention. 本発明の研削加工がある程度進行した状況を示す説明図である。It is explanatory drawing which shows the condition which the grinding process of this invention advanced to some extent. 短冊状シートにブレ又はシートの面方向のゆれが生じた例を示す説明図である(短冊状シートが小幅の例)。It is explanatory drawing which shows the example which the blurring or the fluctuation | variation of the surface direction of the sheet | seat produced in the strip-shaped sheet (a strip-shaped sheet is an example with a small width). 短冊状シートにブレ又はシートの面方向のゆれが生じ生じた例を示す説明図である(短冊状シートが広幅の例)。It is explanatory drawing which shows the example which the blurring or the fluctuation | variation of the surface direction of the sheet | seat arisen in the strip-shaped sheet (The strip-shaped sheet is a wide example). 短冊状の加工用シートに補強を設けた例を示す説明図である。It is explanatory drawing which shows the example which provided the reinforcement in the strip-shaped process sheet | seat. ダイヤモンドと加工シートが接する部分の加工シートに、加工溝の長さ方向に対して進行波が形成された説明図である。It is explanatory drawing in which the traveling wave was formed with respect to the length direction of a process groove | channel on the process sheet of the part which a diamond and a process sheet contact.

符号の説明Explanation of symbols

1.ダイヤモンドウエハ
2.加工用シート
3.ダイヤモンド砥粒(パウダー)
4.超音波振動
1. 1. Diamond wafer 2. Sheet for processing Diamond abrasive (powder)
4). Ultrasonic vibration

Claims (9)

10-100kHzの発信周波数の超音波で生じさせた往復運動を厚さ1000μm以下の短冊状の加工用シートに伝え、該加工用シートと被加工材の間に存在するダイヤモンド砥粒の衝突によって加工することを特徴とするダイヤモンドの加工法。 Reciprocating motion generated by ultrasonic waves with a transmission frequency of 10-100 kHz is transmitted to a strip-shaped processing sheet with a thickness of 1000 μm or less, and processed by collision of diamond abrasive grains existing between the processing sheet and the workpiece A processing method of diamond characterized by: ダイヤモンド砥粒の平均粒径が30μm〜200μmであることを特徴とする請求項1記載のダイヤモンドの加工方法。 2. The diamond processing method according to claim 1, wherein an average particle diameter of the diamond abrasive grains is 30 [mu] m to 200 [mu] m. 加工用シートに張力を与えて補強することを特徴とする請求項1又は2記載のダイヤモンドの加工方法。   3. The diamond processing method according to claim 1, wherein the processing sheet is reinforced by applying tension. ダイヤモンドの加工方向に対して、加工方向と該加工方向に垂直なシート端面方向の二方向の振動を与えることを特徴とする請求項1〜3のいずれかに記載のダイヤモンドの加工方法。   The diamond processing method according to any one of claims 1 to 3, wherein vibrations in two directions of a processing direction and a sheet end surface direction perpendicular to the processing direction are applied to the processing direction of the diamond. ダイヤモンドと加工シートが接する部分に対して進行波が形成されるように加工することを特徴とする請求項1〜4のいずれかに記載のダイヤモンドの加工方法。   The diamond processing method according to any one of claims 1 to 4, wherein the diamond is processed so that a traveling wave is formed on a portion where the diamond and the processing sheet are in contact with each other. 加工速度及び超音波振動子の投入パワーを調節して進行波を形成することを特徴とする請求項5記載のダイヤモンドの加工方法。   6. The diamond processing method according to claim 5, wherein a traveling wave is formed by adjusting a processing speed and an input power of an ultrasonic vibrator. ダイヤモンドと加工シートが接する部分に投入された古いダイヤモンド砥粒を、加工シート若しくは被加工材に加えられた超音波振動による進行波により強制的に排出させることを特徴とする請求項1〜6のいずれかに記載のダイヤモンドの加工方法。   The old diamond abrasive grains introduced into a portion where the diamond and the processed sheet are in contact are forcibly discharged by a traveling wave due to ultrasonic vibration applied to the processed sheet or workpiece. The diamond processing method according to any one of the above. 被加工材が気相合成ダイヤモンドであることを特徴とする請求項1〜7のいずれかに記載のダイヤモンドの加工法。 The method for processing diamond according to any one of claims 1 to 7, wherein the workpiece is vapor phase synthetic diamond. 被加工材が単結晶ダイヤモンドであることを特徴とする請求項1〜7のいずれかに記載のダイヤモンドの加工法。
The method for processing diamond according to any one of claims 1 to 7, wherein the workpiece is single crystal diamond.
JP2004029444A 2004-02-05 2004-02-05 Diamond processing method Expired - Lifetime JP4126377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004029444A JP4126377B2 (en) 2004-02-05 2004-02-05 Diamond processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004029444A JP4126377B2 (en) 2004-02-05 2004-02-05 Diamond processing method

Publications (2)

Publication Number Publication Date
JP2005219162A true JP2005219162A (en) 2005-08-18
JP4126377B2 JP4126377B2 (en) 2008-07-30

Family

ID=34995204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004029444A Expired - Lifetime JP4126377B2 (en) 2004-02-05 2004-02-05 Diamond processing method

Country Status (1)

Country Link
JP (1) JP4126377B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179394A (en) * 2009-02-04 2010-08-19 Tokyo Metropolitan Industrial Technology Research Institute Diamond polishing apparatus and method
CN114199610A (en) * 2021-12-13 2022-03-18 郑州磨料磨具磨削研究所有限公司 Diamond strength testing device and method
WO2022095456A1 (en) * 2020-11-06 2022-05-12 华侨大学 Method for grinding diamond substrate

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367062U (en) * 1986-10-22 1988-05-06
JPH031798U (en) * 1989-05-31 1991-01-09
JPH0640797A (en) * 1992-04-23 1994-02-15 Sumitomo Electric Ind Ltd Method for machining diamond
JPH07240392A (en) * 1994-03-01 1995-09-12 Fuji Electric Co Ltd Dividing method of semiconductor substrate
JPH08150544A (en) * 1994-11-25 1996-06-11 Mitsubishi Materials Corp Hard roll for rolling knotted bar steel and manufacture thereof
JPH08290353A (en) * 1995-04-19 1996-11-05 Komatsu Electron Metals Co Ltd Cutting jig for mono-crystal ingot of semi-conductor
JPH0911482A (en) * 1995-06-30 1997-01-14 Brother Ind Ltd Manufacture of ink jet head
JPH0920072A (en) * 1995-07-05 1997-01-21 Shin Etsu Chem Co Ltd Optical recording medium
JPH09207072A (en) * 1996-02-02 1997-08-12 Kumakura:Kk Ultrasonic elliptic vibration electrodeposited grinding wheel
JPH1148140A (en) * 1997-08-07 1999-02-23 Goei Seisakusho:Kk Blade grinding device of porous diamond cutting blade and its method
JPH11347894A (en) * 1998-06-02 1999-12-21 Mikuni Adec Corp Die grinding device using ultrasonic wave
WO2000036648A1 (en) * 1998-12-16 2000-06-22 Toyo Kohan Co., Ltd. Method of manufacturing diamond heat sink
JP2001287153A (en) * 2000-04-05 2001-10-16 Asahi Optical Co Ltd Polisher and controlling method therefor
JP2002144197A (en) * 2000-11-10 2002-05-21 National Institute Of Advanced Industrial & Technology Numerically controlled polishing method, and polished body obtained by the polishing method
JP2004001225A (en) * 2003-07-28 2004-01-08 Arutekusu:Kk Ultrasonic vibration cutting tool and its manufacturing method

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367062U (en) * 1986-10-22 1988-05-06
JPH031798U (en) * 1989-05-31 1991-01-09
JPH0640797A (en) * 1992-04-23 1994-02-15 Sumitomo Electric Ind Ltd Method for machining diamond
JPH07240392A (en) * 1994-03-01 1995-09-12 Fuji Electric Co Ltd Dividing method of semiconductor substrate
JPH08150544A (en) * 1994-11-25 1996-06-11 Mitsubishi Materials Corp Hard roll for rolling knotted bar steel and manufacture thereof
JPH08290353A (en) * 1995-04-19 1996-11-05 Komatsu Electron Metals Co Ltd Cutting jig for mono-crystal ingot of semi-conductor
JPH0911482A (en) * 1995-06-30 1997-01-14 Brother Ind Ltd Manufacture of ink jet head
JPH0920072A (en) * 1995-07-05 1997-01-21 Shin Etsu Chem Co Ltd Optical recording medium
JPH09207072A (en) * 1996-02-02 1997-08-12 Kumakura:Kk Ultrasonic elliptic vibration electrodeposited grinding wheel
JPH1148140A (en) * 1997-08-07 1999-02-23 Goei Seisakusho:Kk Blade grinding device of porous diamond cutting blade and its method
JPH11347894A (en) * 1998-06-02 1999-12-21 Mikuni Adec Corp Die grinding device using ultrasonic wave
WO2000036648A1 (en) * 1998-12-16 2000-06-22 Toyo Kohan Co., Ltd. Method of manufacturing diamond heat sink
JP2001287153A (en) * 2000-04-05 2001-10-16 Asahi Optical Co Ltd Polisher and controlling method therefor
JP2002144197A (en) * 2000-11-10 2002-05-21 National Institute Of Advanced Industrial & Technology Numerically controlled polishing method, and polished body obtained by the polishing method
JP2004001225A (en) * 2003-07-28 2004-01-08 Arutekusu:Kk Ultrasonic vibration cutting tool and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179394A (en) * 2009-02-04 2010-08-19 Tokyo Metropolitan Industrial Technology Research Institute Diamond polishing apparatus and method
WO2022095456A1 (en) * 2020-11-06 2022-05-12 华侨大学 Method for grinding diamond substrate
CN114199610A (en) * 2021-12-13 2022-03-18 郑州磨料磨具磨削研究所有限公司 Diamond strength testing device and method

Also Published As

Publication number Publication date
JP4126377B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
Liang et al. Experimental study on brittle–ductile transition in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire using single diamond abrasive grain
Nath et al. Machinability study of tungsten carbide using PCD tools under ultrasonic elliptical vibration cutting
JP6282613B2 (en) Dicing blade
CN109333385B (en) Diamond grinding wheel with microstructure and preparation method thereof
Akbari et al. Study on ultrasonic vibration effects on grinding process of alumina ceramic (Al2O3)
JP2016196085A (en) Working grindstone
JP4126377B2 (en) Diamond processing method
JP6145548B1 (en) Chamfering grinding method and chamfering grinding apparatus
Neppiras Ultrasonic machining and forming
JP2007216372A (en) Ultrasonic excitation unit/ultrasonic excitation table unit/ultrasonic excitation basin unit/ultrasonic excitation horn unit
Tawakoli et al. Dressing of grinding wheels
JPH07232981A (en) Method for machining ceramics
JPH10235553A (en) Diamond lapping surface plate and manufacture therefor
JP2006088243A (en) Abrasive grain and grindstone
Vipindas et al. An insight on ultrasonic machining technology
KR100819850B1 (en) Diamond tools
Tawakoli et al. Advanced Grinding
Spur et al. Ultrasonic machining of ceramics
JP2018058198A (en) Chamfer grinding method and chamfer grinding device
Tawakoli et al. New developments in ultrasonic-assisted grinding and dressing
JPH04372358A (en) Honing stick and honing method
Xu et al. ELID Grinding and Polishing
JP2009056517A (en) Method and tool for truing diamond wheel
Liang et al. Grinding force characteristics in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire
Jiao et al. Research on Ultrasonic Aided Fixed-Abrasive Lapping Technology for Engineering Ceramics Cylindrical Part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4126377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term