JP2005218192A - Ultrasonic motor - Google Patents

Ultrasonic motor Download PDF

Info

Publication number
JP2005218192A
JP2005218192A JP2004019934A JP2004019934A JP2005218192A JP 2005218192 A JP2005218192 A JP 2005218192A JP 2004019934 A JP2004019934 A JP 2004019934A JP 2004019934 A JP2004019934 A JP 2004019934A JP 2005218192 A JP2005218192 A JP 2005218192A
Authority
JP
Japan
Prior art keywords
ultrasonic motor
vibrating body
aluminum oxide
treatment
movable body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004019934A
Other languages
Japanese (ja)
Inventor
Kazumi Ochi
和美 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2004019934A priority Critical patent/JP2005218192A/en
Publication of JP2005218192A publication Critical patent/JP2005218192A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic motor superior in durability and having a long life. <P>SOLUTION: The ultrasonic motor comprises a vibrating body 2 on the surface of which a progressive wave is generated by ultrasonic vibration generated by a piezoelectric body 1, and a movable body 3 that abuts on the vibrating body 2 and is driven by the progressive wave. The movable body 3 is constituted of an aluminum alloy, and an aluminum oxide coating having a Vickers hardness of not less than Hv800 and formed by anodic oxidation treatment is applied on at least a friction surface among surfaces of the movable body. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は超音波モータに関する。   The present invention relates to an ultrasonic motor.

従来、種々の超音波モータが知られており、例えば特許文献1には、圧電体に接合された振動体に生じる進行性振動波により、摩擦面を介して振動体に接触している移動体を摩擦駆動する超音波モータが開示されている。圧電体に高周波電圧を印加すると圧電体が超音波振動を発し、この超音波振動によって励振されて振動体が固有振動数で振動する。この振動波が振動体を連続的に進行させるため、振動体に加圧接触されている移動体は、波が物体を運ぶように推力を受けて回転する。   Conventionally, various ultrasonic motors are known. For example, Patent Document 1 discloses a moving body that is in contact with a vibrating body through a friction surface due to a progressive vibration wave generated in the vibrating body bonded to the piezoelectric body. An ultrasonic motor that frictionally drives the motor is disclosed. When a high-frequency voltage is applied to the piezoelectric body, the piezoelectric body emits ultrasonic vibration, and is excited by the ultrasonic vibration to vibrate the vibration body at the natural frequency. Since this vibration wave continuously travels through the vibrating body, the moving body that is in pressure contact with the vibrating body rotates by receiving a thrust so that the wave carries the object.

このような進行波方式による超音波モータは、振動体に圧電体を装着してなる超音波振動体(振動体)と移動体とが加圧接触された構成とされており、移動体と振動体との摩擦力によって移動体が駆動されるようになっている。このような機構を有する超音波モータにおいては、移動体の駆動力を向上させるためには、移動体と振動体との摩擦力が大きいこと、及び、加圧接触力が大きいことが必要となる。   Such a traveling wave type ultrasonic motor has a configuration in which an ultrasonic vibrating body (vibrating body) in which a piezoelectric body is mounted on a vibrating body and a moving body are in pressure contact with each other. The moving body is driven by the frictional force with the body. In the ultrasonic motor having such a mechanism, in order to improve the driving force of the moving body, it is necessary that the frictional force between the moving body and the vibrating body is large and the pressure contact force is large. .

ただし、加圧接触力が大きすぎると振動が抑圧され、かえって駆動力が低下することになる。また、移動体が加圧接触力により変形して、振動体から伝わる振動波の周期がずれると、駆動力は大幅に低下してしまう。よって、加圧接触力をあまり大きくすることは適当ではないので、駆動力の向上のためには、移動体及び振動体の材料の組み合わせを大きな摩擦力が発生するものとする必要がある。   However, if the pressure contact force is too large, the vibration is suppressed and the driving force is reduced. In addition, when the moving body is deformed by the pressing contact force and the period of the vibration wave transmitted from the vibrating body is shifted, the driving force is greatly reduced. Therefore, since it is not appropriate to increase the pressure contact force, it is necessary to generate a large frictional force for the combination of the moving body and the vibrating body material in order to improve the driving force.

ところが、従来の超音波モータは、高トルクを得るために移動体と振動体を比較的高圧接触となるように圧接しているので、移動体と振動体の摩擦面は過酷な環境下におかれることとなり、摩擦面の摩耗が大きく、長寿命化の障害となっている。摩耗が生じると超音波モータの駆動条件が大幅に変化するためモータ特性が劣化し、移動体の回転が停止する場合もある。   However, since the conventional ultrasonic motor presses the moving body and the vibrating body in a relatively high pressure contact in order to obtain a high torque, the friction surface between the moving body and the vibrating body is in a harsh environment. As a result, wear on the friction surface is large, which is an obstacle to extending the service life. When wear occurs, the driving conditions of the ultrasonic motor change significantly, so that the motor characteristics deteriorate and the rotation of the moving body may stop.

摩耗を皆無とすることは現状では困難であるので、実用に耐え得る長寿命の超音波モータを実現するためには、移動体及び振動体を構成する材料の組み合わせを摩耗量が少なくなるようにし、且つ、摩擦面の粗さを最適化する必要がある。
また、電磁モータはロータとステータが非接触であるのに対して、超音波モータは移動体と振動体が高い圧接力で接触している。そのため、起動トルクが大きいという特徴と、摺動による発熱で移動体と振動体の摺動部分の劣化が生じ摩耗が増加するという問題点とを有している。
Since it is difficult to eliminate wear at present, in order to realize a long-life ultrasonic motor that can withstand practical use, a combination of materials constituting the moving body and the vibrating body should be made to reduce the amount of wear. In addition, it is necessary to optimize the roughness of the friction surface.
In the electromagnetic motor, the rotor and the stator are not in contact with each other, whereas in the ultrasonic motor, the moving body and the vibrating body are in contact with each other with a high pressure contact force. For this reason, it has the characteristics that the starting torque is large and the problem that the sliding portion between the moving body and the vibrating body deteriorates due to the heat generated by sliding, resulting in increased wear.

このような問題を解決するため、例えば特許文献2に記載の超音波モータは、アルミニウム合金からなる振動体及び移動体のいずれか一方の摺動面に、アルマイト処理が施された上に硬質非晶質炭素膜(DLC膜)が形成されている。また、特許文献3に記載の超音波モータは、振動体及び移動体のいずれか一方の接触面に、底部まで水和物で充填された多数の微細孔を有するアルマイト被膜が形成されている。
特開平1−283072号公報 特開平5−328761号公報 特開平5−344757号公報
In order to solve such a problem, for example, an ultrasonic motor described in Patent Document 2 has an alumite treatment on a sliding surface of one of an oscillating body and a moving body made of an aluminum alloy. A crystalline carbon film (DLC film) is formed. Further, in the ultrasonic motor described in Patent Document 3, an alumite film having a large number of fine holes filled with hydrate up to the bottom is formed on one of the contact surfaces of the vibrating body and the moving body.
Japanese Patent Laid-Open No. 1-283072 JP-A-5-328761 JP-A-5-344757

しかしながら、前述の特許文献3の例では、アルミニウム合金の表面に形成されたアルマイト被膜が多孔質であるため封孔処理を施さなければならないが、封孔処理を施してアルマイト被膜の摩耗特性を向上させてもアルマイト被膜全体の硬さは低く、そのため摩耗量が多い。また、アルマイト被膜と母材との密着性が弱いため、アルマイト被膜が剥離するおそれがあり、寿命低下への影響が大きかった。特に、アルマイト被膜の硬さはビッカース硬さHv700が上限であるため、耐摩耗性の向上には、より硬い被膜の形成が必要であった。   However, in the example of Patent Document 3 described above, the alumite film formed on the surface of the aluminum alloy is porous and must be sealed. Even if it is made, the hardness of the whole alumite film is low, and therefore the amount of wear is large. In addition, since the adhesion between the alumite coating and the base material is weak, the alumite coating may be peeled off, which greatly affects the life reduction. In particular, since the upper limit of the hardness of the alumite film is Vickers hardness Hv700, it is necessary to form a harder film in order to improve the wear resistance.

また、前述の特許文献2の例では、DLC膜の硬さはHv800〜1000で耐摩耗性は高いが、摩擦係数が低いため振動体と移動体の間に滑りが生じ、振動体の振動にロスを生じさせてしまう。そして、前記振動のロスはエネルギー効率を低下させたり、トルクを低下させるという問題を生じさせる。
そこで、本発明は、前述のような従来の超音波モータが有する問題点を解決し、摩耗が生じにくく長寿命な超音波モータを提供することを課題とする。
In the example of Patent Document 2 described above, the hardness of the DLC film is Hv 800 to 1000 and the wear resistance is high. However, since the friction coefficient is low, slipping occurs between the vibrating body and the moving body, which causes vibration of the vibrating body. It will cause a loss. The loss of vibration causes problems such as a reduction in energy efficiency and a reduction in torque.
Therefore, an object of the present invention is to solve the problems of the conventional ultrasonic motor as described above, and to provide an ultrasonic motor that does not easily wear and has a long life.

前記課題を解決するため、本発明は次のような構成からなる。すなわち、本発明に係る請求項1の超音波モータは、圧電体が発する超音波振動により表面に進行波が生じる振動体と、該振動体に当接し前記進行波により駆動される可動体と、を備えた超音波モータにおいて、前記可動体をアルミニウム合金で構成し、その表面のうち前記振動体との当接部分に、ビッカース硬さHv800以上の表面硬さを有する陽極酸化処理による酸化アルミニウム被膜を設けたことを特徴とする。   In order to solve the above problems, the present invention has the following configuration. That is, an ultrasonic motor according to claim 1 of the present invention includes a vibrating body in which a traveling wave is generated on a surface by ultrasonic vibration generated by a piezoelectric body, a movable body that contacts the vibrating body and is driven by the traveling wave, An aluminum oxide film formed by an anodizing treatment in which the movable body is made of an aluminum alloy, and the surface of the movable body is in contact with the vibrating body and has a surface hardness of Vickers hardness Hv 800 or more. Is provided.

また、本発明に係る請求項2の超音波モータは、請求項1に記載の超音波モータにおいて、前記酸化アルミニウム被膜はα−Al2 3 及びβ−Al2 3 の少なくとも一方で構成されていることを特徴とする。
このような酸化アルミニウム被膜は非常に硬く耐摩耗性が優れているので、可動体の耐久性が優れており、その結果、超音波モータは長寿命となる。
The ultrasonic motor according to claim 2 of the present invention is the ultrasonic motor according to claim 1, wherein the aluminum oxide film is composed of at least one of α-Al 2 O 3 and β-Al 2 O 3. It is characterized by.
Since such an aluminum oxide film is very hard and has excellent wear resistance, the durability of the movable body is excellent. As a result, the ultrasonic motor has a long life.

本発明の超音波モータは、摩耗が生じにくく長寿命である。   The ultrasonic motor of the present invention has a long life with little wear.

本発明に係る超音波モータの実施の形態を、図1を参照しながら詳細に説明する。
図1の超音波モータは、複数の圧電体1が接合された振動体2と、この振動体2に摩擦面を介して接触している可動体3と、を備えている。振動体2及び可動体3は、ほぼ同一形状の環状部材で、周方向に垂直な断面が長方形をなしており、それぞれが有する平行な2つの平面のうち一方を摩擦面として対向させ接触させている。そして、振動体2が有する平行な2つの平面のうち摩擦面ではない平面に、複数の圧電体1が周方向にわたってほぼ等配に取り付けられている。
An embodiment of an ultrasonic motor according to the present invention will be described in detail with reference to FIG.
The ultrasonic motor of FIG. 1 includes a vibrating body 2 to which a plurality of piezoelectric bodies 1 are bonded, and a movable body 3 that is in contact with the vibrating body 2 via a friction surface. The vibrating body 2 and the movable body 3 are annular members having substantially the same shape, and the cross section perpendicular to the circumferential direction is a rectangle. One of two parallel planes of each of the vibrating body 2 and the movable body 3 is opposed to and brought into contact as a friction surface. Yes. Then, a plurality of piezoelectric bodies 1 are attached substantially equally over the circumferential direction on a plane that is not a friction surface among two parallel planes of the vibrating body 2.

圧電体1に高周波電圧を印加すると圧電体1が超音波振動を発し、この超音波振動により振動体2の表面(摩擦面)に固有振動数の進行性振動波(進行波)が生じる。この進行波が振動体2を連続的に進行させるため、振動体2に加圧接触されている可動体3は、波が物体を運ぶように推力を受けて回転する。
この可動体3は、アルミニウム合金で構成されている。そして、その表面のうち少なくとも摩擦面には、陽極酸化処理による酸化アルミニウム被膜(図示せず)が設けられており、この酸化アルミニウム被膜の表面硬さはビッカース硬さHv800以上である。陽極酸化処理としては、例えばマイクロアークオキシデーション(Micro Arc Oxidation 。以降はMAO処理と記す)が好ましい。
When a high frequency voltage is applied to the piezoelectric body 1, the piezoelectric body 1 emits ultrasonic vibration, and a traveling vibration wave (traveling wave) having a natural frequency is generated on the surface (friction surface) of the vibration body 2 by this ultrasonic vibration. Since this traveling wave advances the vibrating body 2 continuously, the movable body 3 that is in pressure contact with the vibrating body 2 rotates by receiving a thrust so that the wave carries the object.
The movable body 3 is made of an aluminum alloy. At least the friction surface of the surface is provided with an anodized aluminum oxide film (not shown), and the aluminum oxide film has a surface hardness of Vickers hardness Hv800 or more. As the anodizing treatment, for example, micro arc oxidation (hereinafter referred to as MAO treatment) is preferable.

MAO処理による酸化アルミニウム被膜は、一般的な陽極酸化処理(以降はアルマイト処理と記す)による酸化アルミニウム被膜(以降はアルマイト被膜と記す)よりも硬いので、耐摩耗性が優れている。また、MAO処理による酸化アルミニウム被膜は高密度であるため、高強度である。さらに、母材であるアルミニウム合金との密着性が良好であるので、剥離が生じにくい。このような酸化アルミニウム被膜が可動体3に設けられているので、高い接触圧力で振動体2と接触しても、可動体3は耐久性が優れている。よって、超音波モータは長寿命となる。   The aluminum oxide coating by MAO treatment is harder than the aluminum oxide coating (hereinafter alumite coating) by a general anodizing treatment (hereinafter alumite treatment), and therefore has excellent wear resistance. Moreover, since the aluminum oxide film by MAO process is high-density, it is high intensity | strength. Furthermore, since the adhesiveness with the aluminum alloy which is a base material is good, peeling is hardly caused. Since such an aluminum oxide film is provided on the movable body 3, the movable body 3 is excellent in durability even when contacting the vibrating body 2 with a high contact pressure. Therefore, the ultrasonic motor has a long life.

ここで、MAO処理について説明する。MAO処理は陽極酸化処理の1種であるが、給電も電解質もアルマイト処理とは異なる。弱塩基性の水溶液中で水酸化物と酸化物の層が連続的に誘電破壊することにより、マイクロアークが被処理物の表面全体に生成する。被処理物と対極との間の印加電圧方法,電流密度,及び電解質の選び方により、2〜10μm/minの大きい速度で酸化層を成長させることができる。   Here, the MAO process will be described. The MAO treatment is one type of anodizing treatment, but the power supply and the electrolyte are different from the alumite treatment. A micro-arc is generated on the entire surface of the object to be processed by the dielectric breakdown of the hydroxide and oxide layers continuously in the weakly basic aqueous solution. The oxide layer can be grown at a large rate of 2 to 10 μm / min depending on the method of applying voltage between the workpiece and the counter electrode, the current density, and the way of selecting the electrolyte.

MAO処理による酸化アルミニウム被膜は結晶性であり、膜厚を数百μmに成長させることができ、アルマイト被膜よりも厚く形成できるという特徴がある。このような処理技術の特徴があるため、MAO処理による酸化アルミニウム被膜の表面硬さは、セラミックスのそれに等しく、アルマイト被膜に比べて耐摩耗性,耐食性,耐熱性が特段に優れている。   The aluminum oxide film formed by the MAO treatment is crystalline, and can be grown to a thickness of several hundreds μm, and can be formed thicker than the alumite film. Due to the characteristics of such treatment technology, the surface hardness of the aluminum oxide film by MAO treatment is equal to that of ceramics, and the wear resistance, corrosion resistance, and heat resistance are particularly excellent as compared with the alumite film.

次に、MAO処理の具体的な方法の一例を、処理装置の概略図である図2を参照しながら説明する。ステンレス容器11に満たされたアルカリ性の電解液12中に、アルミニウム合金製の被処理物13を浸漬する。被処理物13を陽極、ステンレス容器11を対極として、両者11,13をリード線14で接続するとともに、両者11,13の間に電流計15及び電力供給装置16を直列に設置し、電圧計17を並列に設置する。そして、電力供給装置16により陽極と対極との間に電流を流し、電解処理を行う。電解条件は、電圧が約600Vで、電流密度が約70A/dm2 である。 Next, an example of a specific method of MAO processing will be described with reference to FIG. 2 which is a schematic diagram of the processing apparatus. An aluminum alloy workpiece 13 is immersed in an alkaline electrolyte 12 filled in a stainless steel container 11. The workpiece 13 is an anode, the stainless steel container 11 is a counter electrode, both 11 and 13 are connected by a lead wire 14, and an ammeter 15 and a power supply device 16 are installed in series between the both 11 and 13, and a voltmeter 17 are installed in parallel. Then, a current is passed between the anode and the counter electrode by the power supply device 16 to perform electrolytic treatment. Electrolysis conditions, at a voltage of about 600V, the current density of about 70A / dm 2.

特に、電解法は直流法,定電流法,定電圧法ではなく、不完全整流法,PR法(periodic reverse electroplating ),又はパルス法であって、高い電解効率が得られるものである。
この不完全整流法とは、整流波形の一部に非整流波形を加えた電流を用いて陽極酸化処理を行う方法であり、非対称な整流波形が電流密度を大きくする。また、PR法及びパルス法とは、周期的に電流又は電圧の極性を反転させるパルス波形を用いた電解方法であって、電流回復現象によって高い電流密度で電解が可能であることが特徴である。
In particular, the electrolysis method is not a direct current method, a constant current method, or a constant voltage method, but is an incomplete rectification method, a PR method (periodic reverse electroplating), or a pulse method, and high electrolysis efficiency can be obtained.
The incomplete rectification method is a method of performing anodization using a current obtained by adding a non-rectified waveform to a part of the rectified waveform, and the asymmetric rectified waveform increases the current density. The PR method and the pulse method are electrolysis methods using a pulse waveform that periodically inverts the polarity of current or voltage, and are characterized in that electrolysis can be performed at a high current density by a current recovery phenomenon. .

MAO処理における電解液は、pH8〜12のアルカリ電解液である。すなわち、シュウ酸水溶液,硫酸,クロム酸,リン酸,又はそれらの混酸を用いて陽極酸化処理を行うアルマイト処理とは全く異なり、ケイ素,アルミニウム等の水酸化物を混合した水溶液を用いる。このことにより、電解効率が向上する。また、アルカリ性の電解液の使用は、高電圧,高電流密度,及びパルス電解のような特殊な電解法と組み合わせることにより可能となるもので、これらの条件が全て揃うことにより、高硬度の酸化アルミニウム被膜が形成される。   The electrolyte in the MAO treatment is an alkaline electrolyte having a pH of 8-12. That is, unlike an alumite treatment in which an anodic oxidation treatment is performed using an oxalic acid aqueous solution, sulfuric acid, chromic acid, phosphoric acid, or a mixed acid thereof, an aqueous solution in which a hydroxide such as silicon or aluminum is mixed is used. This improves the electrolytic efficiency. Alkaline electrolytes can be used in combination with special electrolysis methods such as high voltage, high current density, and pulse electrolysis. An aluminum coating is formed.

アルマイト処理は、印加電圧が数Vで電流密度が数A/dm2 という電解条件で、直流電流により陽極酸化処理を行うものがほとんどであった。特に、シュウ酸水溶液,硫酸水溶液,クロム酸水溶液等の電解液中での処理が一般的であるが、このような陽極酸化処理により得られた酸化アルミニウム被膜は、多数の微細孔を有するとともに完全な結晶性ではなく、表面硬さはHv500〜700が上限であった。
これに対して、MAO処理は、被処理物と対極との間の印加電圧方法,電流密度,及び電解質の選び方により、結晶性の酸化アルミニウム被膜を、2〜10μm/minの大きい速度で成長させることができ、しかも数百μmの厚さに成長させることができる。
Most of the anodizing treatment is anodization treatment by direct current under an electrolytic condition in which the applied voltage is several volts and the current density is several A / dm 2 . In particular, treatment in an electrolytic solution such as an oxalic acid aqueous solution, a sulfuric acid aqueous solution, or a chromic acid aqueous solution is common, but the aluminum oxide film obtained by such anodizing treatment has many fine pores and is completely The upper limit of the surface hardness was Hv 500 to 700.
On the other hand, in the MAO treatment, a crystalline aluminum oxide film is grown at a large rate of 2 to 10 μm / min depending on the method of applied voltage between the workpiece and the counter electrode, the current density, and the way of selecting the electrolyte. Moreover, it can be grown to a thickness of several hundred μm.

また、MAO処理によって生じる酸化アルミニウム被膜は、α−Al2 3 及びβ−Al2 3 の少なくとも一方からなる結晶性物質で形成されている。そして、その組成をパルス電流及び電解液の条件によって制御できるので、硬質なα−Al2 3 を主成分とする酸化アルミニウム被膜を形成可能である。よって、MAO処理によって得られる酸化アルミニウム被膜はアルマイト被膜よりも硬く、セラミックに相当する硬さ(Hv800〜1200)を有し、耐摩耗性,耐食性,耐熱性が格段に優れている。さらに、酸化アルミニウムは耐摩耗性に優れ摩擦係数が高いので、MAO処理による酸化アルミニウム被膜を形成した可動体を用いれば、超音波モータのエネルギー効率やトルクを低下させることなく、超音波モータの寿命を向上させることができる。 In addition, the aluminum oxide film generated by the MAO treatment is formed of a crystalline material composed of at least one of α-Al 2 O 3 and β-Al 2 O 3 . And since the composition can be controlled by the conditions of the pulse current and the electrolytic solution, it is possible to form an aluminum oxide film mainly composed of hard α-Al 2 O 3 . Therefore, the aluminum oxide film obtained by the MAO treatment is harder than the alumite film, has a hardness (Hv 800 to 1200) equivalent to ceramic, and has excellent wear resistance, corrosion resistance, and heat resistance. Furthermore, since aluminum oxide has excellent wear resistance and a high coefficient of friction, the life of an ultrasonic motor can be reduced without reducing the energy efficiency and torque of the ultrasonic motor by using a movable body on which an aluminum oxide film is formed by MAO treatment. Can be improved.

なお、MAO処理において陽極として使用し得る合金は、アルミニウム合金,チタン合金,マグネシウム合金等であるが、使用可能なアルミニウム合金としては、Al−Mn系(3000系),Al−Si系(4000系) ,Al−Mg系(5000系) ,Al−Mg−Si系(6000系) ,Al−Zn−Mg系(7000系) 等が好適である。ただし、Al−Cu系(2000系) ,純アルミニウム(1000系) 等も、電解質中にマンガン,ケイ素,マグネシウム等を添加すれば、使用可能である。   Alloys that can be used as an anode in the MAO treatment are aluminum alloys, titanium alloys, magnesium alloys, and the like, but usable aluminum alloys are Al-Mn (3000), Al-Si (4000). ), Al-Mg-based (5000-based), Al-Mg-Si-based (6000-based), Al-Zn-Mg-based (7000-based), and the like are suitable. However, Al-Cu (2000 series), pure aluminum (1000 series), etc. can also be used if manganese, silicon, magnesium or the like is added to the electrolyte.

〔実施例〕
以下に実施例を示して、本発明をさらに具体的に説明する。
表1に示すようなアルミニウム合金で構成され且つ陽極酸化処理による酸化アルミニウム被膜を表面に形成した可動体を用いて、前述した図1の超音波モータと同様の構成の超音波モータを製造した。
〔Example〕
The present invention will be described more specifically with reference to the following examples.
An ultrasonic motor having the same configuration as the ultrasonic motor of FIG. 1 described above was manufactured using a movable body made of an aluminum alloy as shown in Table 1 and having an anodized aluminum oxide film formed on the surface thereof.

Figure 2005218192
Figure 2005218192

実施例1〜5の場合の陽極酸化処理は、図2の処理装置を用いた前述のMAO処理である。電解液は、ケイ素,アルミニウム等の水酸化物の水溶液とメタリン酸とを混合して、pH10〜11に調整したアルカリ溶液であり、液温は50℃に保持した。そして、電圧400V、電流密度50A/dm2 という電解条件のパルス電解法で、40分間(実施例2のみ10分間)電解処理を行い、表面に厚さ20μmの酸化アルミニウム被膜を形成させた。 The anodic oxidation process in Examples 1 to 5 is the above-described MAO process using the processing apparatus of FIG. The electrolytic solution was an alkaline solution adjusted to pH 10-11 by mixing an aqueous solution of hydroxide such as silicon and aluminum and metaphosphoric acid, and the liquid temperature was kept at 50 ° C. Then, an electrolytic treatment was performed for 40 minutes (10 minutes only in Example 2) by a pulse electrolysis method with a voltage of 400 V and a current density of 50 A / dm 2 to form an aluminum oxide film having a thickness of 20 μm on the surface.

比較例1〜4の場合の陽極酸化処理は、アルマイト処理である(処理装置は図2のものを用いた)。電解液は、pH1〜2に調整したシュウ酸溶液である。そして、電圧30V、電流密度5A/dm2 という電解条件の直流電解法で、40分間電解処理を行い、表面にアルマイト被膜を形成させた。
このようにして製造した超音波モータの耐摩耗性を調査するため、可動体と振動体とを70kPaの圧力で加圧接触させ回転速度350min-1で2時間回転させる回転試験を行った。そして、回転試験前後の可動体の質量変化を測定することにより摩耗量を評価するとともに、回転試験後の酸化アルミニウム被膜の剥離状態を目視により観察した。
The anodizing treatment in Comparative Examples 1 to 4 is an alumite treatment (the treatment apparatus shown in FIG. 2 was used). The electrolytic solution is an oxalic acid solution adjusted to pH 1-2. Then, electrolytic treatment was performed for 40 minutes by a direct current electrolysis method under an electrolysis condition of a voltage of 30 V and a current density of 5 A / dm 2 to form an alumite film on the surface.
In order to investigate the wear resistance of the ultrasonic motor thus manufactured, a rotation test was performed in which the movable body and the vibrating body were brought into pressure contact with a pressure of 70 kPa and rotated at a rotation speed of 350 min −1 for 2 hours. And while measuring the mass change of the movable body before and behind a rotation test, while evaluating the amount of wear, the peeling state of the aluminum oxide film after a rotation test was observed visually.

結果を表1に併せて示す。表1の摩耗量の数値は、比較例1の摩耗量を1とした場合の相対値で示してある。また、酸化アルミニウム被膜の剥離状態は、目視により剥離が確認されなかった場合は○印、剥離が確認された場合は×印で示してある。なお、酸化アルミニウム被膜の表面硬さを微少硬度計で測定した結果も、表1に併せて示す。
表1から分かるように、実施例1〜5は、MAO処理による酸化アルミニウム被膜のビッカース硬さがHv800以上であるので、ビッカース硬さがHv800に満たないアルマイト被膜を有する比較例1〜4と比べて、摩耗量が格段に少なかった。そして、ビッカース硬さが高いほど、摩耗量が少ないという傾向があった。また、実施例1〜5は酸化アルミニウム被膜の剥離が認められなかったが、比較例1〜4はアルマイト被膜の脱落による剥離が生じた。
The results are also shown in Table 1. The numerical values of the wear amount in Table 1 are shown as relative values when the wear amount of Comparative Example 1 is 1. Further, the peeled state of the aluminum oxide film is indicated by a mark “◯” when the peel is not visually confirmed, and a mark “x” when the peel is confirmed. The results of measuring the surface hardness of the aluminum oxide film with a microhardness meter are also shown in Table 1.
As can be seen from Table 1, in Examples 1 to 5, since the Vickers hardness of the aluminum oxide film by MAO treatment is Hv800 or higher, compared with Comparative Examples 1 to 4 having an alumite film whose Vickers hardness is less than Hv800. Therefore, the amount of wear was much less. And there was a tendency that the higher the Vickers hardness, the less the amount of wear. In Examples 1 to 5, peeling of the aluminum oxide film was not observed, but in Comparative Examples 1 to 4, peeling occurred due to dropping of the alumite film.

本発明に係る超音波モータの一実施形態を示す斜視図である。1 is a perspective view showing an embodiment of an ultrasonic motor according to the present invention. 陽極酸化処理装置の概略図である。It is the schematic of an anodizing apparatus.

符号の説明Explanation of symbols

1 圧電体
2 振動体
3 可動体
1 Piezoelectric body 2 Vibrating body 3 Movable body

Claims (2)

圧電体が発する超音波振動により表面に進行波が生じる振動体と、該振動体に当接し前記進行波により駆動される可動体と、を備えた超音波モータにおいて、前記可動体をアルミニウム合金で構成し、その表面のうち前記振動体との当接部分に、ビッカース硬さHv800以上の表面硬さを有する陽極酸化処理による酸化アルミニウム被膜を設けたことを特徴とする超音波モータ。   An ultrasonic motor comprising: a vibrating body in which traveling waves are generated on a surface by ultrasonic vibration generated by a piezoelectric body; and a movable body that is in contact with the vibrating body and is driven by the traveling waves, wherein the movable body is made of an aluminum alloy. An ultrasonic motor characterized in that an aluminum oxide coating by anodizing treatment having a surface hardness of Vickers hardness Hv800 or more is provided on a portion of the surface in contact with the vibrating body. 前記酸化アルミニウム被膜はα−Al2 3 及びβ−Al2 3 の少なくとも一方で構成されていることを特徴とする請求項1に記載の超音波モータ。 The ultrasonic motor according to claim 1, wherein the aluminum oxide film is formed of at least one of α-Al 2 O 3 and β-Al 2 O 3 .
JP2004019934A 2004-01-28 2004-01-28 Ultrasonic motor Pending JP2005218192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004019934A JP2005218192A (en) 2004-01-28 2004-01-28 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004019934A JP2005218192A (en) 2004-01-28 2004-01-28 Ultrasonic motor

Publications (1)

Publication Number Publication Date
JP2005218192A true JP2005218192A (en) 2005-08-11

Family

ID=34904009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004019934A Pending JP2005218192A (en) 2004-01-28 2004-01-28 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JP2005218192A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG132534A1 (en) * 2005-11-23 2007-06-28 Sony Corp Systems and methods for modelling radial contact of a micro-shaft
CN102230204A (en) * 2011-06-24 2011-11-02 中国船舶重工集团公司第七二五研究所 Method for preparing aluminum oxidation film by combination of ultrasonic waves and microarc oxidation
CN106191564A (en) * 2016-08-30 2016-12-07 福建省邦尚环保科技有限公司 House ornamentation dark DE Specular Lighting pool aluminium alloy and preparation technology thereof
CN106757252A (en) * 2016-12-13 2017-05-31 安徽省煜灿新型材料科技有限公司 One kind has ceramic film aluminum soleplate
CN108716016A (en) * 2018-06-16 2018-10-30 宁波明望汽车饰件有限公司 A kind of surface treatment method of auto parts machinery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG132534A1 (en) * 2005-11-23 2007-06-28 Sony Corp Systems and methods for modelling radial contact of a micro-shaft
CN102230204A (en) * 2011-06-24 2011-11-02 中国船舶重工集团公司第七二五研究所 Method for preparing aluminum oxidation film by combination of ultrasonic waves and microarc oxidation
CN106191564A (en) * 2016-08-30 2016-12-07 福建省邦尚环保科技有限公司 House ornamentation dark DE Specular Lighting pool aluminium alloy and preparation technology thereof
CN106757252A (en) * 2016-12-13 2017-05-31 安徽省煜灿新型材料科技有限公司 One kind has ceramic film aluminum soleplate
CN108716016A (en) * 2018-06-16 2018-10-30 宁波明望汽车饰件有限公司 A kind of surface treatment method of auto parts machinery

Similar Documents

Publication Publication Date Title
JP4269318B2 (en) Vibration agitator, treatment apparatus and treatment method using the same
JP4332297B2 (en) Method for applying a hard protective coating on an article made from an aluminum alloy
JP3847770B1 (en) Ceramic-coated metal material and method for producing the same
TWI564437B (en) Non-metallic coating and method of its production
JPWO2005118919A1 (en) Metal electrolytic ceramic coating method, electrolytic solution for metal electrolytic ceramic coating, and metal material
US20080253922A1 (en) Method for roughening metal surfaces and article manufactured thereby
CN1165493A (en) Method for electrochemical machining by bipolar pulses
KR101476235B1 (en) Method for surface treatment of magnesium material using plasma electrolytic oxidation, anodic films formed on magnesium thereby and solution for surface treatment of magnesium material used for plasma electrolytic oxidation
US20120000784A1 (en) Power supply for anodizing, anodizing method, and anodized film
JP2005218192A (en) Ultrasonic motor
KR100695999B1 (en) Anodizing method for matal surface using high-frequency pluse
JP5700235B2 (en) Method of forming alumite film
US12000497B2 (en) Gm type cryogenic refrigerator rotary valve
JP3062807B2 (en) Corrosion resistance test method for specimen consisting of metal material and coating film
JP2007154301A (en) Aluminum alloy anodic oxidation method and power source for aluminum alloy anodic oxidation
WO2021215962A1 (en) Method for applying a coating to items made from valve metal and alloy thereof
KR101191957B1 (en) Plasma electrolytic oxidation coating method
JP2011146112A (en) Method of manufacturing substrate for magnetic recording medium
JP6570168B2 (en) Surface-treated aluminum material and method for producing the same
WO2024140047A1 (en) Titanium-based wear-resistant coating with reticulate pattern structure, and preparation method therefor
JPH11100700A (en) Electrolytic polishing method for inside surface of hollow part of aluminum product
Kanagaraj et al. Effect of pulse frequency of pulse anodising of AA 1100 aluminium alloy in sulphamic acid
JP6612373B2 (en) Anodized film forming treatment agent and anodized film forming method
JP2011168809A (en) Anodically oxidized coating applied to titanium or titanium alloy and anodic-oxidation method
JP4333124B2 (en) Vibration wave motor