JP2005215027A - Liquid crystal optical element and optical head device - Google Patents

Liquid crystal optical element and optical head device Download PDF

Info

Publication number
JP2005215027A
JP2005215027A JP2004018197A JP2004018197A JP2005215027A JP 2005215027 A JP2005215027 A JP 2005215027A JP 2004018197 A JP2004018197 A JP 2004018197A JP 2004018197 A JP2004018197 A JP 2004018197A JP 2005215027 A JP2005215027 A JP 2005215027A
Authority
JP
Japan
Prior art keywords
liquid crystal
optical element
film
crystal optical
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004018197A
Other languages
Japanese (ja)
Inventor
Ryuichiro Shimizu
龍一郎 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2004018197A priority Critical patent/JP2005215027A/en
Publication of JP2005215027A publication Critical patent/JP2005215027A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal optical element and an optical head device that can reduce an optical reflection coefficient at an interface between a transparent electrode film and a substrate. <P>SOLUTION: The liquid crystal optical element 100 obtained by arranging two substrates 101 and 102, where transparent electrode films 103 and 104, 1st intermediate films 105 and 106, and alignment films 107 and 108 are laminated in order, opposite each other so that the alignment films 107 and 108 face each other and charging a liquid crystal material between the two substrates 101 and 102 is characterized in that new 2nd intermediate films 109 and 110 are interposed on interfaces where the transparent electrode films 103 and 104 and substrates 101 and 102 come into contact with each other so that the optical reflection coefficient at the interfaces is nearly ≤1% in the wavelength of the light in use. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、液晶光学素子および光ヘッド装置に関する。   The present invention relates to a liquid crystal optical element and an optical head device.

図5は、従来の液晶光学素子の概略の断面構成を示す図である。図5において、ガラス基板501、502上に、In、Snの混合酸化膜(以下、ITO膜という。)からなる厚さ200nm程度の透明導電膜503、504が成膜されている。そして、透明導電膜503、504には、所定の形状になるように配線加工が施されている。ITO膜からなる透明導電膜503、504上には、厚さ約50nmのゾルゲル膜が中間膜505、506として塗布形成され、その上に厚さ約50nmのポリイミド膜が液晶の配向膜507、508として塗布形成されている。ガラス基板501、502は、図示しないスペーサおよびシール材511を用いてガラス基板501とガラス基板502の間隔が所定範囲内になるように張り合わされ、密閉空間を形成している。この密閉空間に液晶512が注入され、封止されることによって液晶光学素子500が構成される。   FIG. 5 is a diagram showing a schematic cross-sectional configuration of a conventional liquid crystal optical element. In FIG. 5, transparent conductive films 503 and 504 having a thickness of about 200 nm made of a mixed oxide film of In and Sn (hereinafter referred to as ITO film) are formed on glass substrates 501 and 502. The transparent conductive films 503 and 504 are subjected to wiring processing so as to have a predetermined shape. On the transparent conductive films 503 and 504 made of an ITO film, a sol-gel film having a thickness of about 50 nm is applied and formed as an intermediate film 505 and 506, and a polyimide film having a thickness of about 50 nm is formed thereon on a liquid crystal alignment film 507 and 508. It is formed as a coating. The glass substrates 501 and 502 are bonded together using a spacer and a sealing material 511 (not shown) so that the distance between the glass substrate 501 and the glass substrate 502 is within a predetermined range, thereby forming a sealed space. The liquid crystal 512 is injected into the sealed space and sealed to form the liquid crystal optical element 500.

ここで、これらの各構成材料の屈折率は、他の構成材料の屈折率と異なっており、特に、透明導電膜503、504が大きく異なることが知られている。例えば、青色レーザが使用される400nm付近の波長で比較すると、ガラス基板501、502、透明導電膜503、504、中間膜505、506、配向膜507、508、および液晶512の屈折率は、それぞれ、1.55、2.20、1.55、1.60、および1.55程度である。   Here, the refractive indexes of these constituent materials are different from those of other constituent materials, and it is known that the transparent conductive films 503 and 504 are particularly different. For example, when compared at a wavelength near 400 nm where a blue laser is used, the refractive indexes of the glass substrates 501, 502, transparent conductive films 503, 504, intermediate films 505, 506, alignment films 507, 508, and liquid crystal 512 are respectively 1.55, 2.20, 1.55, 1.60, and 1.55.

そのため、透明導電膜503、504とガラス基板501、502との界面、および透明導電膜503、504と中間膜505、506との界面において、使用波長での反射率や透過率の差異が生じていた。そして、これによって、素子内に透過率の変動である透過率リップルが生じていた。このような透過率リップルを軽減すべく、従来は、透明導電膜503、504の屈折率を下げる試みや、透明導電膜503、504、中間膜505、506、配向膜507、508の膜厚および屈折率を調整することが行なわれていた(例えば、特許文献1または特許文献2参照。)。
特開2001−208914号公報 特開2002−208158号公報
Therefore, there is a difference in reflectance and transmittance at the used wavelength at the interfaces between the transparent conductive films 503 and 504 and the glass substrates 501 and 502 and at the interfaces between the transparent conductive films 503 and 504 and the intermediate films 505 and 506. It was. As a result, a transmittance ripple, which is a variation in transmittance, occurs in the element. In order to reduce such transmittance ripple, conventionally, attempts have been made to lower the refractive index of the transparent conductive films 503 and 504, and the film thicknesses of the transparent conductive films 503 and 504, the intermediate films 505 and 506, and the alignment films 507 and 508 The refractive index has been adjusted (see, for example, Patent Document 1 or Patent Document 2).
JP 2001-208914 A JP 2002-208158 A

しかし、このような従来の液晶光学素子では、液晶光学素子に使用される透明導電膜の屈折率が材料固有の値であるため、成膜条件を変えて膜の緻密性を調整し屈折率を下げようとしても、素子の信頼性の変動や、光学特性または電気特性の変動などの不具合が生じる問題があった。   However, in such a conventional liquid crystal optical element, since the refractive index of the transparent conductive film used in the liquid crystal optical element is a value specific to the material, the film density is changed to adjust the refractive index by changing the film forming conditions. Even if it is attempted to lower, there are problems such as fluctuations in the reliability of the elements and fluctuations in optical characteristics or electrical characteristics.

また、透明導電膜と配向膜に挟まれた構成のみに注目して膜厚および屈折率を制御する試みでは、界面における反射の低減が不十分であった。   Further, in an attempt to control the film thickness and the refractive index while paying attention only to the configuration sandwiched between the transparent conductive film and the alignment film, the reduction of reflection at the interface is insufficient.

本発明はこのような問題を解決するためになされたもので、透明電極膜と基板との界面における光の反射率を低減できる液晶光学素子および光ヘッド装置を提供する。   The present invention has been made to solve such problems, and provides a liquid crystal optical element and an optical head device that can reduce the reflectance of light at the interface between a transparent electrode film and a substrate.

以上の点を考慮して、請求項1に係る発明は、透明電極膜、第1中間膜、および配向膜を順次積層した2枚の基板を前記配向膜が向き合うように対向させて配置し、2つの前記基板間に液晶材料を封入して得られる液晶光学素子において、前記透明電極膜と前記基板との界面における光の反射率が、使用光の波長に対して略1パーセント以下になるよう、前記透明電極膜と前記基板との各前記界面に新たな第2中間膜を挿入した構成を有している。   In view of the above points, the invention according to claim 1 is arranged such that two substrates in which a transparent electrode film, a first intermediate film, and an alignment film are sequentially laminated are opposed to each other so that the alignment films face each other. In a liquid crystal optical element obtained by enclosing a liquid crystal material between two substrates, the reflectance of light at the interface between the transparent electrode film and the substrate is approximately 1% or less with respect to the wavelength of the used light. In addition, a new second intermediate film is inserted into each interface between the transparent electrode film and the substrate.

この構成により、透明電極膜と基板との間に第2中間膜を設けて光学特性を調整できるようにしたため、透明電極膜と基板により構成される界面における光の反射率を低減できる液晶光学素子を実現できる。   With this configuration, since the second intermediate film is provided between the transparent electrode film and the substrate so that the optical characteristics can be adjusted, the liquid crystal optical element that can reduce the reflectance of light at the interface constituted by the transparent electrode film and the substrate Can be realized.

また、請求項2に係る発明は、請求項1において、前記第2中間膜の屈折率を、前記透明電極膜の屈折率と前記基板の屈折率との間のいずれかの値にした構成を有している。   The invention according to claim 2 is the structure according to claim 1, wherein the refractive index of the second intermediate film is set to any value between the refractive index of the transparent electrode film and the refractive index of the substrate. Have.

この構成により、請求項1の効果に加え、第2中間膜の屈折率を、透明電極膜の屈折率と基板の屈折率との間のいずれかにしたため、滑らかに光路上の屈折率を変化でき、確実に反射率を低減できる液晶光学素子を実現できる。   With this configuration, in addition to the effect of the first aspect, the refractive index of the second intermediate film is set between the refractive index of the transparent electrode film and the refractive index of the substrate, so that the refractive index on the optical path can be changed smoothly. And a liquid crystal optical element capable of reliably reducing the reflectance can be realized.

また、請求項3に係る発明は、請求項1または2において、前記透明電極膜の厚さが1nmから50nmまでの範囲にあると共に、前記第2中間膜の厚さが使用波長の0.2倍から0.3倍までの範囲にある構成を有している。   According to a third aspect of the present invention, in the first or second aspect, the thickness of the transparent electrode film is in the range from 1 nm to 50 nm, and the thickness of the second intermediate film is 0.2 of the working wavelength. It has a configuration in the range from double to 0.3 times.

この構成により、請求項1または2の効果に加え、透明電極膜の厚さを1nmから50nmのいずれかにすると共に、第2中間膜の厚さを使用波長の(0.25±0.05)×λ(λはnm単位で記述された入射光の波長)にして適正化を図ったため、さらに反射率を低減できる液晶光学素子を実現できる。   According to this configuration, in addition to the effect of the first or second aspect, the thickness of the transparent electrode film is set to any one of 1 nm to 50 nm, and the thickness of the second intermediate film is set to (0.25 ± 0.05 ± 0.05). ) × λ (λ is the wavelength of incident light described in nm unit), and the liquid crystal optical element capable of further reducing the reflectance can be realized.

また、請求項4に係る発明は、光源と、前記光源からの出射光を光記録媒体へ集光する対物レンズと、集光されて前記光記録媒体により反射された出射光を検出する光検出器とを備える光ヘッド装置において、前記対物レンズと前記光源との間の光路中、または、前記対物レンズと前記光検出器との間の光路中に、請求項1から3までのいずれか1項に記載の前記液晶光学素子が配置されている構成を有している。   According to a fourth aspect of the present invention, there is provided a light source, an objective lens for condensing the light emitted from the light source onto an optical recording medium, and light detection for detecting the emitted light that is collected and reflected by the optical recording medium. In the optical head apparatus provided with an optical device, either in the optical path between the objective lens and the light source or in the optical path between the objective lens and the photodetector. The liquid crystal optical element according to the item is arranged.

この構成により、請求項1から3までのいずれか1項の効果を有していて、光利用効率の高い光ヘッド装置を実現できる。   With this configuration, an optical head device having the effect of any one of claims 1 to 3 and having high light utilization efficiency can be realized.

本発明は、透明電極膜と基板との間に第2中間膜を設けて光学特性を調整できるようにしたため、透明電極膜と基板との界面における光の反射率を低減できる液晶光学素子および光ヘッド装置を提供できる。   In the present invention, since the second intermediate film is provided between the transparent electrode film and the substrate so that the optical characteristics can be adjusted, the liquid crystal optical element and the light that can reduce the reflectance of light at the interface between the transparent electrode film and the substrate A head device can be provided.

以下、本発明の実施の形態について、図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る液晶光学素子の概念的な構成を示す断面図である。図1において、液晶光学素子100は、以下のように構成される。まず、液晶光学素子100の外側は、ガラスまたはポリカーボネートなどのプラスティック材料によって構成された基板101、102によって構成される。
(First embodiment)
FIG. 1 is a cross-sectional view showing a conceptual configuration of the liquid crystal optical element according to the first embodiment of the present invention. In FIG. 1, the liquid crystal optical element 100 is configured as follows. First, the outside of the liquid crystal optical element 100 is constituted by substrates 101 and 102 made of a plastic material such as glass or polycarbonate.

次に、基板101、102上には、真空蒸着などによって第2中間膜109、110が成膜され、第2中間膜109、110上には、ITO等からなる透明導電膜103、104が形成されている。ここで、透明導電膜103、104は、フォトリソグラフィーおよびウェットエッチング等の技術を用いて、所定の素子形状ならびに電極形状に加工されている。ここで、透明導電膜103、104は、液晶光学素子の透過率を高くするために薄い方が望ましく、特に1nmから50nmまでの間にすることが望ましい。   Next, second intermediate films 109 and 110 are formed on the substrates 101 and 102 by vacuum deposition or the like, and transparent conductive films 103 and 104 made of ITO or the like are formed on the second intermediate films 109 and 110. Has been. Here, the transparent conductive films 103 and 104 are processed into a predetermined element shape and electrode shape using techniques such as photolithography and wet etching. Here, it is desirable that the transparent conductive films 103 and 104 are thin in order to increase the transmittance of the liquid crystal optical element, and it is particularly desirable that the thickness be between 1 nm and 50 nm.

透明導電膜103、104上には、第1中間膜105、106が形成され、第1中間膜105、106は、導電性異物の混入などによる上下電極間の短絡を防止する観点から、十分に強固な膜であることが望ましい。第1中間膜105、106は、SiO、ZrO、TiO、Alなど、または、これらの物質の混合組成の物質からなるのでもよい。第1中間膜105、106は、これらの物質を、ゾルゲル法を用いて塗布・焼成し、または、スパッタリング、真空蒸着などにより成膜するのでもよい。 The first intermediate films 105 and 106 are formed on the transparent conductive films 103 and 104. The first intermediate films 105 and 106 are sufficiently formed from the viewpoint of preventing a short circuit between the upper and lower electrodes due to contamination of conductive foreign matters. A strong film is desirable. The first intermediate films 105 and 106 may be made of SiO 2 , ZrO 2 , TiO 2 , Al 2 O 3 or the like, or a material having a mixed composition of these materials. The first intermediate films 105 and 106 may be formed by applying and baking these substances using a sol-gel method, or by sputtering or vacuum deposition.

第1中間膜105、106上には、液晶分子を配列させるための配向膜107、108が形成される。ここで、配向膜107、108を、フレキソ印刷やスピンコートなどの技術を用いてポリイミドを塗布、成膜するのでもよく、塗布後、焼成することで強固な結合を持つ配向膜107、108を形成できる。第2中間膜109、110、透明導電膜103、104、第1中間膜105、106、および配向膜107、108が構成されていない基板101、102の周辺部には、シール材111が設けられ、基板101と基板102との間に液晶112が封じ込められ、液晶光学素子100が得られる。   On the first intermediate films 105 and 106, alignment films 107 and 108 for aligning liquid crystal molecules are formed. Here, the alignment films 107 and 108 may be formed by applying polyimide using a technique such as flexographic printing or spin coating, and the alignment films 107 and 108 having a strong bond may be formed by baking after application. Can be formed. A sealing material 111 is provided on the periphery of the substrates 101 and 102 where the second intermediate films 109 and 110, the transparent conductive films 103 and 104, the first intermediate films 105 and 106, and the alignment films 107 and 108 are not formed. The liquid crystal 112 is enclosed between the substrate 101 and the substrate 102, and the liquid crystal optical element 100 is obtained.

液晶光学素子100は、第2中間膜109、110を設け、その屈折率および膜厚を調整することによって、基板101、102と透明導電膜103、104との界面で特定波長の光に対する反射率を低減できるようになっている。ここで、基板101、102と透明導電膜103、104との界面で特定波長の光に対する反射率を略1%以下にし、干渉を抑制するのが好適である。ここで略1%以下とは、0.2〜1.5%の値をいう。   The liquid crystal optical element 100 is provided with second intermediate films 109 and 110, and by adjusting the refractive index and film thickness thereof, the reflectance for light of a specific wavelength at the interface between the substrates 101 and 102 and the transparent conductive films 103 and 104 is adjusted. Can be reduced. Here, it is preferable that the reflectance with respect to light of a specific wavelength at the interface between the substrates 101 and 102 and the transparent conductive films 103 and 104 is approximately 1% or less to suppress interference. Here, approximately 1% or less means a value of 0.2 to 1.5%.

図2は、液晶光学素子100の一方の側から入射した光の透過率の電圧依存性を示すグラフである。図2において、グラフの縦軸は透過率であり、横軸は電圧であり、透過率は、波長をパラメータとして表した。ここで、横軸の電圧を変えることは、液晶の入射偏光に対する屈折率を変化させることとみなすことができる。パラメータとしての波長は、それぞれ、白抜きの丸(○)で表した線イについては400nm、黒丸(●)で表した線ロについては405nm、小さい白抜きの四角(□)で表した線ハについては410nm、そして、大きい白抜きの四角(△)で表した線ニについては420nmである。   FIG. 2 is a graph showing the voltage dependence of the transmittance of light incident from one side of the liquid crystal optical element 100. In FIG. 2, the vertical axis of the graph is the transmittance, the horizontal axis is the voltage, and the transmittance is expressed using the wavelength as a parameter. Here, changing the voltage on the horizontal axis can be regarded as changing the refractive index of the liquid crystal with respect to the incident polarized light. The wavelength as a parameter is 400 nm for the line a represented by a white circle (◯), 405 nm for the line b represented by a black circle (●), and a line h represented by a small white square (□). Is 410 nm, and is 420 nm for a large white square (Δ).

図2に示すグラフは、液晶光学素子を、透明導電膜103、104、第1中間膜105、106、配向膜107、108で構成した場合(以下、この構成の素子を「従来構成の液晶光学素子」という。)の透過率特性である。図2から明らかなように、半導体レーザ光源の波長を例えば410nmとしたとき、従来構成の液晶光学素子の透過率は、約91%となっている。また、波長または駆動電圧が変化した場合、透過率は2%以上変動することがわかる。   The graph shown in FIG. 2 shows that the liquid crystal optical element is composed of the transparent conductive films 103 and 104, the first intermediate films 105 and 106, and the alignment films 107 and 108. This is a transmittance characteristic of an “element”. As is apparent from FIG. 2, when the wavelength of the semiconductor laser light source is set to, for example, 410 nm, the transmittance of the liquid crystal optical element having the conventional configuration is about 91%. It can also be seen that the transmittance varies by 2% or more when the wavelength or the driving voltage is changed.

図3は、従来構成の液晶光学素子に、屈折率が約1.7、厚さが100nmのAl膜を第2中間膜109、110として付加した構成(以下、本発明の構成という。)の透過率の電圧依存性を示すグラフである。図3に示す特性から明らかなように、第2中間膜109、110を設けることにより、透過率は94%以上まで向上している。そして、波長または駆動電圧が変化した場合の透過率の変動は、0.3%以下に収まっていることがわかる。 FIG. 3 shows a configuration in which an Al 2 O 3 film having a refractive index of about 1.7 and a thickness of 100 nm is added as second intermediate films 109 and 110 to a liquid crystal optical element having a conventional configuration (hereinafter referred to as the configuration of the present invention). .) Is a graph showing the voltage dependency of the transmittance. As is apparent from the characteristics shown in FIG. 3, the transmittance is improved to 94% or more by providing the second intermediate films 109 and 110. And it turns out that the fluctuation | variation of the transmittance | permeability when wavelength or a drive voltage changes is settled in 0.3% or less.

図4は、本発明の構成の液晶光学素子を構成する第2中間膜109、110のAl膜を厚さ130nmにした場合の透過率の電圧依存性を示すグラフである。膜厚を130nmにした場合、透過率は約92.5%となり、透過率リップルは2%程度となっている。反射を生ずる透明導電膜との界面を有する液晶光学素子では、その界面で大きな干渉が生じるが、反射が減ればこの干渉の影響も小さくなる。 FIG. 4 is a graph showing the voltage dependence of the transmittance when the Al 2 O 3 films of the second intermediate films 109 and 110 constituting the liquid crystal optical element of the present invention have a thickness of 130 nm. When the film thickness is 130 nm, the transmittance is about 92.5%, and the transmittance ripple is about 2%. In a liquid crystal optical element having an interface with a transparent conductive film that generates reflection, large interference occurs at the interface. However, if the reflection is reduced, the influence of this interference is reduced.

図3は、第2中間膜109、110を有する本発明の構成の液晶光学素子における波長および電圧に対する干渉パターンを示し、図2は、本発明の構成の液晶光学素子と比較のため、上記従来構成の液晶光学素子の波長および電圧に対する干渉パターンを示す。図2および図3からわかるように、図3に示す第2中間膜109、110を有する本発明の構成の液晶光学素子100は、図2の第2中間膜を有しない従来構成の液晶光学素子に比べて顕著な干渉振幅の低減が見られる。この干渉振幅の低減により、光透過率が高く、広い波長範囲にわたって液晶光学素子の駆動電圧変化に起因する透過率のばらつきが少ない液晶光学素子を実現できる。   FIG. 3 shows an interference pattern with respect to wavelength and voltage in the liquid crystal optical element having the second intermediate films 109 and 110 according to the present invention, and FIG. 2 shows the above-described conventional pattern for comparison with the liquid crystal optical element having the structure according to the present invention. The interference pattern with respect to the wavelength and voltage of the liquid crystal optical element of a structure is shown. As can be seen from FIGS. 2 and 3, the liquid crystal optical element 100 having the configuration of the present invention having the second intermediate films 109 and 110 shown in FIG. 3 is the conventional liquid crystal optical element having no second intermediate film of FIG. As compared with the above, a significant reduction in interference amplitude is observed. By reducing the interference amplitude, it is possible to realize a liquid crystal optical element having a high light transmittance and a small variation in transmittance due to a change in driving voltage of the liquid crystal optical element over a wide wavelength range.

上記の本発明の実施の形態に基づく具体的な実施例を以下に説明する。ここで、本実施例に係る液晶光学素子は、基板101、102として、図示しない低反射コートを施した屈折率1.46のガラス基板を用い、この上に屈折率が1.68、厚さが100nmのAlの第2中間膜109、110を、さらに、屈折率2.05、厚さ10nmのITOの透明導電膜103、104を第2中間膜109、110上に成膜した(図1)。第2中間膜109、110は真空蒸着法を用いて成膜し、透明導電膜103、104はシート抵抗が約300Ω/□であり液晶を駆動するのに十分な電気的特性を有している。 Specific examples based on the above-described embodiments of the present invention will be described below. Here, in the liquid crystal optical element according to the present example, a glass substrate having a refractive index of 1.46 with a low reflection coating (not shown) is used as the substrates 101 and 102, and a refractive index of 1.68 is formed thereon. The second intermediate films 109 and 110 made of Al 2 O 3 having a thickness of 100 nm and the ITO transparent conductive films 103 and 104 having a refractive index of 2.05 and a thickness of 10 nm were formed on the second intermediate films 109 and 110. (Figure 1). The second intermediate films 109 and 110 are formed using a vacuum deposition method, and the transparent conductive films 103 and 104 have a sheet resistance of about 300Ω / □ and sufficient electrical characteristics to drive a liquid crystal. .

フォトリソグラフィー法およびウェットエッチング法を用いて、この透明導電膜103、104を所定の電極パターンに加工した。その後、周辺の封止部分以外にSiOを主成分とするゾルゲル膜をフレキソ印刷し、低圧水銀ランプを用いて、UV光を4000mJ照射した後に、300℃で1時間焼成し、屈折率が1.49、厚さが50nmの第1中間膜105、106を形成した。 The transparent conductive films 103 and 104 were processed into a predetermined electrode pattern using a photolithography method and a wet etching method. Thereafter, a sol-gel film mainly composed of SiO 2 is flexographically printed in addition to the peripheral sealing portion, and irradiated with 4000 mJ of UV light using a low-pressure mercury lamp, followed by baking at 300 ° C. for 1 hour. 49. First intermediate films 105 and 106 having a thickness of 50 nm were formed.

第1中間膜105、106の形成後、屈折率1.55のポリイミド樹脂を第1中間膜105、106上に位置合わせし、フレキソ印刷した。フレキソ印刷したものを250℃で1時間焼成し、ラビング処理を施して厚さ50nmの液晶用の配向膜107、108とした。ガラスの基板101の第1中間膜105および液晶用の配向膜107の塗布されていない周辺部分に図示しないグラスファイバースペーサおよび導電ビーズを含むエポキシのシール材111を印刷し、2枚のガラスの基板101、102を重ね合わせた。これに、常光屈折率が1.51、異常光屈折率が1.61の液晶112を真空注入し、封止を行なって液晶光学素子100を構成した。   After the formation of the first intermediate films 105 and 106, a polyimide resin having a refractive index of 1.55 was aligned on the first intermediate films 105 and 106 and subjected to flexographic printing. The flexographically printed material was baked at 250 ° C. for 1 hour, and rubbed to give alignment films 107 and 108 for liquid crystal having a thickness of 50 nm. An epoxy sealant 111 containing glass fiber spacers and conductive beads (not shown) is printed on a peripheral portion of the glass substrate 101 where the first intermediate film 105 and the alignment film 107 for liquid crystal are not applied, and two glass substrates 101 and 102 were overlapped. A liquid crystal optical element 100 was configured by vacuum-injecting a liquid crystal 112 having an ordinary light refractive index of 1.51 and an extraordinary light refractive index of 1.61 and sealing it.

本実施例に係る液晶光学素子100は、波長410nmの半導体レーザ光を、異常光屈折率を感じる偏光方向で入射した際に、94%以上の高い透過率を示した。また、分光評価による干渉振幅の評価では、波長400nmから波長430nmまでの範囲で反射率が1.0%以下となり、半導体レーザの波長ばらつきに対しても十分に対応できるレベルであった。   The liquid crystal optical element 100 according to this example exhibited a high transmittance of 94% or more when semiconductor laser light having a wavelength of 410 nm was incident in a polarization direction that felt an extraordinary light refractive index. Further, in the evaluation of the interference amplitude by the spectral evaluation, the reflectance is 1.0% or less in the range from the wavelength of 400 nm to the wavelength of 430 nm, which is a level that can sufficiently cope with the wavelength variation of the semiconductor laser.

また、本実施例に係る液晶光学素子100は、液晶特性を利用した光学素子に適用が可能であり、特に単一の波長での優れた特性が要求される光ヘッド装置部品などに適している。その例としては、CD、CD−ROM、DVD等の光ディスク、および光磁気ディスク、相変化型光ディスク等の集光特性を改善する液晶を用いた位相補正素子が挙げられる。本実施例の液晶光学素子を光ヘッド装置に用いる場合は、光源となる半導体レーザと、半導体レーザからの出射光を光記録媒体上に集光させる前記光ヘッド装置の対物レンズと、の間の光路中に設置させて用いる。   Further, the liquid crystal optical element 100 according to the present embodiment can be applied to an optical element utilizing liquid crystal characteristics, and is particularly suitable for an optical head device component that requires excellent characteristics at a single wavelength. . Examples thereof include phase correction elements using liquid crystals that improve light collection characteristics, such as optical disks such as CDs, CD-ROMs, and DVDs, and magneto-optical disks and phase-change optical disks. When the liquid crystal optical element of the present embodiment is used in an optical head device, a gap between a semiconductor laser serving as a light source and an objective lens of the optical head device that condenses emitted light from the semiconductor laser on an optical recording medium. Install and use in the optical path.

さらに、本実施例に係る液晶光学素子100は、上記のように特定の単一の波長に対して最適化を図ったとき特に大きな効果を有するが、単一の波長の場合のみならず、屈折率の異なる層をさらに付加し、特定の2つの波長や、特定の波長帯域について平均的に干渉を低減し、光学特性を改善することもできるため、設計の自由度がある。   Further, the liquid crystal optical element 100 according to the present embodiment is particularly effective when optimized for a specific single wavelength as described above. Since layers having different rates can be further added to reduce the average interference and improve the optical characteristics for two specific wavelengths and specific wavelength bands, there is a degree of freedom in design.

以上説明したように、本発明の第1の実施の形態に係る液晶光学素子および光ヘッド装置は、透明電極膜と基板との間に第2中間膜を設けて光学特性を調整できるようにしたため、透明電極膜と基板との界面における光の反射率を低減できる。   As described above, the liquid crystal optical element and the optical head device according to the first embodiment of the present invention can adjust the optical characteristics by providing the second intermediate film between the transparent electrode film and the substrate. The reflectance of light at the interface between the transparent electrode film and the substrate can be reduced.

本発明にかかる液晶光学素子および光ヘッド装置は、透明電極膜と基板との界面における光の反射率を低減できるという効果が有用な液晶光学素子および光ヘッド装置等の用途にも適用できる。   The liquid crystal optical element and the optical head device according to the present invention can also be applied to applications such as a liquid crystal optical element and an optical head device that are useful for reducing the light reflectance at the interface between the transparent electrode film and the substrate.

本発明の実施の形態に係る液晶光学素子の概念的構成を示す図The figure which shows the notional structure of the liquid crystal optical element which concerns on embodiment of this invention 第2中間膜を設けない従来構成の液晶光学素子で得られる屈折率の電圧依存性を示すグラフThe graph which shows the voltage dependence of the refractive index obtained with the liquid crystal optical element of the conventional structure which does not provide a 2nd intermediate film 第2中間膜を設けた本発明の液晶光学素子で得られる屈折率の電圧依存性を示すグラフThe graph which shows the voltage dependence of the refractive index obtained with the liquid crystal optical element of this invention which provided the 2nd intermediate film 第2中間膜の膜厚を変えた図3に示す構成の液晶光学素子で得られる屈折率の電圧依存性を示すグラフ3 is a graph showing the voltage dependence of the refractive index obtained by the liquid crystal optical element having the configuration shown in FIG. 3 in which the thickness of the second intermediate film is changed. 従来の液晶光学素子の概念的構成を示す図The figure which shows the notional structure of the conventional liquid crystal optical element.

符号の説明Explanation of symbols

100、500 液晶光学素子
101、102 基板
501、502 ガラス基板
103、104、503、504 透明導電膜
105、106、505、506 第1中間膜
107、108、507、508 配向膜
109、110、509、510 第2中間膜
111、511 シール材
112、512 液晶
100, 500 Liquid crystal optical element 101, 102 Substrate 501, 502 Glass substrate 103, 104, 503, 504 Transparent conductive film 105, 106, 505, 506 First intermediate film 107, 108, 507, 508 Alignment film 109, 110, 509 , 510 Second intermediate film 111, 511 Sealing material 112, 512 Liquid crystal

Claims (4)

透明電極膜、第1中間膜、および配向膜を順次積層した2枚の基板を前記配向膜が向き合うように対向させて配置し、2つの前記基板間に液晶材料を封入して得られる液晶光学素子において、前記透明電極膜と前記基板との界面における光の反射率が、使用光の波長に対して略1パーセント以下になるよう、前記透明電極膜と前記基板との各前記界面に新たな第2中間膜を挿入したことを特徴とする液晶光学素子。   Liquid crystal optics obtained by placing two substrates, in which a transparent electrode film, a first intermediate film, and an alignment film are sequentially stacked, facing each other so that the alignment films face each other, and enclosing a liquid crystal material between the two substrates In the element, a new reflectance is added to each interface between the transparent electrode film and the substrate so that the reflectance of light at the interface between the transparent electrode film and the substrate is approximately 1% or less with respect to the wavelength of the used light. A liquid crystal optical element, wherein a second intermediate film is inserted. 前記第2中間膜の屈折率を、前記透明電極膜の屈折率と前記基板の屈折率との間のいずれかの値にした請求項1に記載の液晶光学素子。   The liquid crystal optical element according to claim 1, wherein a refractive index of the second intermediate film is set to any value between a refractive index of the transparent electrode film and a refractive index of the substrate. 前記透明電極膜の厚さが1nmから50nmまでの範囲にあると共に、前記第2中間膜の厚さが使用波長の0.2倍から0.3倍までの範囲にある請求項1または2に記載の液晶光学素子。   The thickness of the transparent electrode film is in the range from 1 nm to 50 nm, and the thickness of the second intermediate film is in the range from 0.2 times to 0.3 times the operating wavelength. The liquid crystal optical element described. 光源と、前記光源からの出射光を光記録媒体へ集光する対物レンズと、集光されて前記光記録媒体により反射された出射光を検出する光検出器とを備える光ヘッド装置において、前記対物レンズと前記光源との間の光路中、または、前記対物レンズと前記光検出器との間の光路中に、請求項1から3までのいずれか1項に記載の前記液晶光学素子が配置されていることを特徴とする光ヘッド装置。   In the optical head device comprising: a light source; an objective lens that condenses the light emitted from the light source onto an optical recording medium; and a photodetector that detects the emitted light that is collected and reflected by the optical recording medium. 4. The liquid crystal optical element according to claim 1, wherein the liquid crystal optical element according to claim 1 is disposed in an optical path between the objective lens and the light source or in an optical path between the objective lens and the photodetector. An optical head device, characterized in that
JP2004018197A 2004-01-27 2004-01-27 Liquid crystal optical element and optical head device Withdrawn JP2005215027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004018197A JP2005215027A (en) 2004-01-27 2004-01-27 Liquid crystal optical element and optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004018197A JP2005215027A (en) 2004-01-27 2004-01-27 Liquid crystal optical element and optical head device

Publications (1)

Publication Number Publication Date
JP2005215027A true JP2005215027A (en) 2005-08-11

Family

ID=34902778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004018197A Withdrawn JP2005215027A (en) 2004-01-27 2004-01-27 Liquid crystal optical element and optical head device

Country Status (1)

Country Link
JP (1) JP2005215027A (en)

Similar Documents

Publication Publication Date Title
US7710536B2 (en) Liquid crystal diffraction lens element and optical head device
JP4866703B2 (en) Liquid crystal display
KR100710532B1 (en) Liquid crystal display and fabricating the same
US7623291B2 (en) Polarized diffractive filter and layered polarized diffractive filter
KR20070035043A (en) Liquid Crystal Lens Element and Optical Head Device
JP2006127707A (en) Aperture controlling element and optical head device
JP2007073088A (en) Liquid crystal lens and optical head unit
JP4552556B2 (en) Liquid crystal lens element and optical head device
JP2004212943A (en) Structure for reducing optical diffraction effect due to circulative arrangement of electrode and liquid crystal display device having the structure
JP2005215027A (en) Liquid crystal optical element and optical head device
JPH06230410A (en) Spatial optical modulation element
KR0161371B1 (en) Liquid crystal light valve and its fabrication method
JP2004334031A (en) Liquid crystal optical element and optical device
JP2848741B2 (en) Liquid crystal spatial light modulator
JP2004334028A (en) Liquid crystal optical element and optical device
KR100748904B1 (en) Electro-optical device, method of manufacturing the same, and electronic apparatus
JP2001208914A (en) Liquid crystal optical device and optical head device
JP4370804B2 (en) Electro-optical device substrate, electro-optical device, electro-optical device manufacturing method, and electronic apparatus
TWI847680B (en) Display panel
CN117784486B (en) Bistable display unit and reflective display device comprising same
JP4479134B2 (en) Optical head device
JP2952610B2 (en) Optical writing liquid crystal light valve
JPH03107824A (en) Optical writing type liquid crystal light valve
KR940009156B1 (en) Lcd light valve
JP2007157235A (en) Phase correction element and optical head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100722