TWI847680B - Display panel - Google Patents

Display panel Download PDF

Info

Publication number
TWI847680B
TWI847680B TW112116968A TW112116968A TWI847680B TW I847680 B TWI847680 B TW I847680B TW 112116968 A TW112116968 A TW 112116968A TW 112116968 A TW112116968 A TW 112116968A TW I847680 B TWI847680 B TW I847680B
Authority
TW
Taiwan
Prior art keywords
layer
metal layer
auxiliary
transparent conductive
conductive layer
Prior art date
Application number
TW112116968A
Other languages
Chinese (zh)
Other versions
TW202417951A (en
Inventor
李懿庭
許正隆
Original Assignee
瀚宇彩晶股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瀚宇彩晶股份有限公司 filed Critical 瀚宇彩晶股份有限公司
Publication of TW202417951A publication Critical patent/TW202417951A/en
Application granted granted Critical
Publication of TWI847680B publication Critical patent/TWI847680B/en

Links

Images

Abstract

A display panel including a first substrate, a second substrate, a plurality of pixel structures and a display medium layer is provided. The second substrate overlaps the first substrate. The display medium layer is sandwiched between the first substrate and the second substrate. The pixel structures each include a transparent conductive layer, a reflective metal layer and at least one optical auxiliary layer. The transparent conductive layer is disposed on the first substrate. The reflective metal layer is disposed between the first substrate and the transparent conductive layer, and overlaps the transparent conductive layer. The at least one optical auxiliary layer overlap the transparent conductive layer and the reflective metal layer, and contact at least one of the transparent conductive layer and the reflective metal layer. The refractive index of the at least one optical auxiliary layer is greater than 1.85 or less than 1.65.

Description

顯示面板Display Panel

本發明是有關於一種顯示技術,且特別是有關於一種顯示面板。The present invention relates to a display technology, and in particular to a display panel.

一般的液晶顯示面板可分為穿透式、反射式以及半穿半反式三大類,其分類的依據在於使用光源的差異。其中,反射式液晶顯示面板(reflective LCD panel)主要是利用自然光、環境光或前光(front light)作為照明光源。因此,具有低功耗及戶外可視性高等優點,在閱讀器與商業顯示器(例如廣告看板、電子標籤、運動手錶等)的應用逐年拓展。現行的反射式顯示面板中,為了有效利用環境光,反射層大多是選用具有高反射率的金屬(例如銀或鋁)來製作,並且利用透明導電層將反射金屬包覆起來以避免反射金屬氧化而造成反射率的下降。General liquid crystal display panels can be divided into three categories: transmissive, reflective, and semi-transmissive. The classification is based on the difference in the light source used. Among them, reflective LCD panels mainly use natural light, ambient light, or front light as the lighting source. Therefore, it has the advantages of low power consumption and high outdoor visibility, and its application in readers and commercial displays (such as billboards, electronic labels, sports watches, etc.) is expanding year by year. In the current reflective display panels, in order to effectively utilize ambient light, the reflective layer is mostly made of metal with high reflectivity (such as silver or aluminum), and the reflective metal is coated with a transparent conductive layer to prevent the reflective metal from oxidizing and causing a decrease in reflectivity.

雖然銀金屬在可見光與紅外光波段具有極佳的反射率,但在短波段(例如藍光波段或紫外光波段)的反射率則較差。因此,容易讓反射光在CIELAB色彩空間中的b*偏大而造成色偏的問題。一種將設置在反射金屬層的入光側的透明導電層的厚度減薄來提升反射率的方法被提出。然而,過於薄化的透明導電層會失去對於反射金屬層的保護效果,使反射金屬容易受外部物質的影響而變色,造成反射光的色偏。Although silver metal has excellent reflectivity in the visible and infrared bands, its reflectivity in short-wave bands (such as the blue band or the ultraviolet band) is relatively poor. Therefore, it is easy for the b* of the reflected light in the CIELAB color space to be large, causing the problem of color cast. A method of reducing the thickness of the transparent conductive layer disposed on the light-incident side of the reflective metal layer to increase the reflectivity has been proposed. However, an overly thin transparent conductive layer will lose its protective effect on the reflective metal layer, making the reflective metal easily affected by external substances and discolored, causing the color cast of the reflected light.

本發明提供一種顯示面板,其反射率較高且白畫面的顯色性較佳。The present invention provides a display panel having high reflectivity and good color rendering of white screen.

本發明的顯示面板包括第一基板、第二基板、多個畫素結構及顯示介質層。第二基板與第一基板重疊設置,且顯示介質層夾設在第一基板與第二基板之間。多個畫素結構各自包括透明導電層、反射金屬層以及至少一光學輔助層。透明導電層設置在第一基板上。反射金屬層設置在第一基板與透明導電層之間,且重疊於透明導電層。至少一光學輔助層重疊透明導電層與反射金屬層,且接觸透明導電層與反射金屬層的至少一個。至少一光學輔助層的折射率大於1.85或小於1.65。The display panel of the present invention includes a first substrate, a second substrate, a plurality of pixel structures and a display medium layer. The second substrate is overlapped with the first substrate, and the display medium layer is sandwiched between the first substrate and the second substrate. The plurality of pixel structures each include a transparent conductive layer, a reflective metal layer and at least one optical auxiliary layer. The transparent conductive layer is disposed on the first substrate. The reflective metal layer is disposed between the first substrate and the transparent conductive layer and overlaps the transparent conductive layer. At least one optical auxiliary layer overlaps the transparent conductive layer and the reflective metal layer and contacts at least one of the transparent conductive layer and the reflective metal layer. The refractive index of at least one optical auxiliary layer is greater than 1.85 or less than 1.65.

在本發明的一實施例中,上述的顯示面板的多個畫素結構各自還包括另一透明導電層,設置在第一基板與反射金屬層之間。另一透明導電層重疊反射金屬層,且接觸反射金屬層。In an embodiment of the present invention, each of the plurality of pixel structures of the display panel further includes another transparent conductive layer disposed between the first substrate and the reflective metal layer. The other transparent conductive layer overlaps the reflective metal layer and contacts the reflective metal layer.

在本發明的一實施例中,上述的顯示面板的透明導電層位於至少一光學輔助層與反射金屬層之間,且接觸至少一光學輔助層與反射金屬層。In an embodiment of the present invention, the transparent conductive layer of the display panel is located between at least one optical auxiliary layer and the reflective metal layer, and contacts at least one optical auxiliary layer and the reflective metal layer.

在本發明的一實施例中,上述的顯示面板的多個畫素結構各自還包括主動元件,且透明導電層與反射金屬層電性連接主動元件。In an embodiment of the present invention, each of the plurality of pixel structures of the display panel further includes an active element, and the transparent conductive layer and the reflective metal layer are electrically connected to the active element.

在本發明的一實施例中,上述的顯示面板的多個畫素結構各自還包括主動元件及畫素電極。畫素電極電性連接主動元件,且重疊透明導電層設置。至少一光學輔助層夾設在畫素電極與透明導電層之間,且畫素電極電性獨立於透明導電層與反射金屬層。In one embodiment of the present invention, each of the plurality of pixel structures of the display panel further includes an active element and a pixel electrode. The pixel electrode is electrically connected to the active element and overlaps the transparent conductive layer. At least one optical auxiliary layer is sandwiched between the pixel electrode and the transparent conductive layer, and the pixel electrode is electrically independent of the transparent conductive layer and the reflective metal layer.

在本發明的一實施例中,上述的顯示面板的透明導電層與反射金屬層電容耦合於畫素電極。In one embodiment of the present invention, the transparent conductive layer and the reflective metal layer of the display panel are capacitively coupled to the pixel electrode.

在本發明的一實施例中,上述的顯示面板的透明導電層的折射率大於1.85,且至少一光學輔助層為折射率小於1.65的光學輔助層。In an embodiment of the present invention, the refractive index of the transparent conductive layer of the display panel is greater than 1.85, and at least one optical auxiliary layer is an optical auxiliary layer with a refractive index less than 1.65.

在本發明的一實施例中,上述的顯示面板的至少一光學輔助層包括交替堆疊的多個第一光學輔助層與多個第二光學輔助層。這些第一光學輔助層各自的折射率大於1.85,且這些第二光學輔助層各自的折射率小於1.65。In one embodiment of the present invention, at least one optical auxiliary layer of the display panel comprises a plurality of first optical auxiliary layers and a plurality of second optical auxiliary layers stacked alternately, wherein the refractive index of each of the first optical auxiliary layers is greater than 1.85, and the refractive index of each of the second optical auxiliary layers is less than 1.65.

在本發明的一實施例中,上述的顯示面板的至少一光學輔助層包括至少一輔助金屬層。至少一輔助金屬層設置在反射金屬層與透明導電層之間,且電性接觸反射金屬層與透明導電層。至少一輔助金屬層和反射金屬層各自的折射率小於透明導電層的折射率。In one embodiment of the present invention, the at least one optical auxiliary layer of the display panel includes at least one auxiliary metal layer. The at least one auxiliary metal layer is disposed between the reflective metal layer and the transparent conductive layer and electrically contacts the reflective metal layer and the transparent conductive layer. The refractive index of each of the at least one auxiliary metal layer and the reflective metal layer is less than the refractive index of the transparent conductive layer.

在本發明的一實施例中,上述的顯示面板的至少一輔助金屬層和反射金屬層各自的膜厚小於150奈米。In one embodiment of the present invention, the thickness of at least one auxiliary metal layer and the reflective metal layer of the display panel is less than 150 nanometers.

在本發明的一實施例中,上述的顯示面板的至少一輔助金屬層包括第一輔助金屬層。第一輔助金屬層接觸反射金屬層。第一輔助金屬層的折射率不同於反射金屬層的折射率。In an embodiment of the present invention, the at least one auxiliary metal layer of the display panel includes a first auxiliary metal layer, the first auxiliary metal layer contacts the reflective metal layer, and the refractive index of the first auxiliary metal layer is different from the refractive index of the reflective metal layer.

在本發明的一實施例中,上述的顯示面板的至少一輔助金屬層還包括第二輔助金屬層。第二輔助金屬層設置在第一輔助金屬層上且接觸第一輔助金屬層。第二輔助金屬層與反射金屬層各自的折射率大於或小於第一輔助金屬層的折射率。In one embodiment of the present invention, the at least one auxiliary metal layer of the display panel further includes a second auxiliary metal layer. The second auxiliary metal layer is disposed on and contacts the first auxiliary metal layer. The refractive index of the second auxiliary metal layer and the reflective metal layer is greater than or less than the refractive index of the first auxiliary metal layer.

在本發明的一實施例中,上述的顯示面板的反射金屬層的膜厚大於第一輔助金屬層的膜厚,且第一輔助金屬層的膜厚大於第二輔助金屬層的膜厚。In an embodiment of the present invention, the thickness of the reflective metal layer of the display panel is greater than the thickness of the first auxiliary metal layer, and the thickness of the first auxiliary metal layer is greater than the thickness of the second auxiliary metal layer.

在本發明的一實施例中,上述的顯示面板的至少一光學輔助層還包括至少一輔助絕緣層,且透明導電層設置在至少一輔助金屬層與至少一輔助絕緣層之間。In an embodiment of the present invention, the at least one optical auxiliary layer of the display panel further includes at least one auxiliary insulating layer, and the transparent conductive layer is disposed between the at least one auxiliary metal layer and the at least one auxiliary insulating layer.

在本發明的一實施例中,上述的顯示面板的多個畫素結構各自還包括設置在第二基板上的主動元件及畫素電極。畫素電極電性連接主動元件。顯示介質層與第一基板間設有共電極層。主動元件與畫素電極設置在顯示介質層與第二基板之間,且透明導電層、反射金屬層與至少一光學輔助層設置在顯示介質層與第一基板之間。In one embodiment of the present invention, each of the plurality of pixel structures of the display panel further includes an active element and a pixel electrode disposed on the second substrate. The pixel electrode is electrically connected to the active element. A common electrode layer is disposed between the display medium layer and the first substrate. The active element and the pixel electrode are disposed between the display medium layer and the second substrate, and a transparent conductive layer, a reflective metal layer and at least one optical auxiliary layer are disposed between the display medium layer and the first substrate.

基於上述,在本發明的一實施例的顯示面板中,設置在兩個透明導電層間的反射金屬層,其反射率可透過光學輔助層的設置並且讓所述光學輔助層接觸反射金屬層或位於入光側的透明導電層的至少一個而獲得提升,其中所述光學輔助層的折射率大於1.85或小於1.65。此外,這樣的配置方式還能增加顯示面板的顯色性。Based on the above, in a display panel of an embodiment of the present invention, the reflectivity of the reflective metal layer disposed between two transparent conductive layers can be improved by disposing an optical auxiliary layer and allowing the optical auxiliary layer to contact at least one of the reflective metal layer or the transparent conductive layer located on the light incident side, wherein the refractive index of the optical auxiliary layer is greater than 1.85 or less than 1.65. In addition, such a configuration can also increase the color rendering of the display panel.

現將詳細地參考本發明的示範性實施例,示範性實施例的實例說明於圖式中。只要有可能,相同元件符號在圖式和描述中用來表示相同或相似部分。Reference will now be made in detail to exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numerals are used in the drawings and description to represent the same or similar parts.

圖1是依照本發明的第一實施例的顯示面板的剖視示意圖。圖2是本發明的第一實施例的入射光與反射光的示意圖。圖3是圖1的顯示面板在不同膜厚的光學輔助層下的反射率對波長的曲線圖。圖4是圖1的顯示面板的反射率與CIELAB色彩空間中的b*對不同膜厚的光學輔助層的分佈圖。圖5是圖1的顯示面板在不同種類的光學輔助層下的反射率對波長的曲線圖。圖6是圖1的顯示面板的反射率與CIELAB色彩空間中的b*對不同種類的光學輔助層的分佈圖。圖7是圖1的光學輔助層的另一變形實施例的剖視示意圖。Fig. 1 is a schematic cross-sectional view of a display panel according to the first embodiment of the present invention. Fig. 2 is a schematic diagram of incident light and reflected light of the first embodiment of the present invention. Fig. 3 is a graph of reflectivity versus wavelength of the display panel of Fig. 1 with optical auxiliary layers of different film thicknesses. Fig. 4 is a distribution graph of reflectivity of the display panel of Fig. 1 and b* in the CIELAB color space for optical auxiliary layers of different film thicknesses. Fig. 5 is a graph of reflectivity versus wavelength of the display panel of Fig. 1 with different types of optical auxiliary layers. Fig. 6 is a distribution graph of reflectivity of the display panel of Fig. 1 and b* in the CIELAB color space for different types of optical auxiliary layers. Fig. 7 is a schematic cross-sectional view of another modified embodiment of the optical auxiliary layer of Fig. 1.

請參照圖1,顯示面板10包括第一基板101、第二基板102、多個畫素結構PX及顯示介質層150。第一基板101與第二基板102重疊設置。顯示介質層150夾設在第一基板101與第二基板102之間。在本實施例中,顯示介質層150例如是液晶層、或其他具有光調變能力的材料。1 , the display panel 10 includes a first substrate 101, a second substrate 102, a plurality of pixel structures PX, and a display medium layer 150. The first substrate 101 and the second substrate 102 are overlapped. The display medium layer 150 is sandwiched between the first substrate 101 and the second substrate 102. In this embodiment, the display medium layer 150 is, for example, a liquid crystal layer or other materials having light modulation capability.

畫素結構PX包括主動元件T、第一透明導電層TCL1、第二透明導電層TCL2與反射金屬層RML。第一透明導電層TCL1設置在第一基板101上。第二透明導電層TCL2設置在第一透明導電層TCL1上,且重疊於第一透明導電層TCL1。反射金屬層RML設置在第一透明導電層TCL1與第二透明導電層TCL2之間,且重疊於第一透明導電層TCL1與第二透明導電層TCL2。在本實施例中,反射金屬層RML可同時接觸第一透明導電層TCL1與第二透明導電層TCL2。亦即,反射金屬層RML夾設在第一透明導電層TCL1與第二透明導電層TCL2之間,但不以此為限。在本實施例中,因為反射金屬層RML與絕緣層110的附著性不佳,因此於反射金屬層RML與絕緣層110之間設置第一透明導電層TCL1以增加附著性而避免反射金屬層RML剝離。此外,為了保護反射金屬層RML以避免反射金屬層RML與外界物質產生化學反應導致反射金屬層RML變色而造成反射率下降與b*值改變,本發明於反射金屬層RML上設置第二透明導電層TCL2以保護反射金屬層RML。The pixel structure PX includes an active element T, a first transparent conductive layer TCL1, a second transparent conductive layer TCL2 and a reflective metal layer RML. The first transparent conductive layer TCL1 is disposed on the first substrate 101. The second transparent conductive layer TCL2 is disposed on the first transparent conductive layer TCL1 and overlaps the first transparent conductive layer TCL1. The reflective metal layer RML is disposed between the first transparent conductive layer TCL1 and the second transparent conductive layer TCL2 and overlaps the first transparent conductive layer TCL1 and the second transparent conductive layer TCL2. In this embodiment, the reflective metal layer RML can contact the first transparent conductive layer TCL1 and the second transparent conductive layer TCL2 at the same time. That is, the reflective metal layer RML is sandwiched between the first transparent conductive layer TCL1 and the second transparent conductive layer TCL2, but the present invention is not limited thereto. In the present embodiment, because the reflective metal layer RML has poor adhesion to the insulating layer 110, the first transparent conductive layer TCL1 is disposed between the reflective metal layer RML and the insulating layer 110 to increase adhesion and prevent the reflective metal layer RML from peeling off. In addition, in order to protect the reflective metal layer RML and prevent the reflective metal layer RML from chemically reacting with external substances to cause the reflective metal layer RML to change color, thereby causing a decrease in reflectivity and a change in b* value, the present invention disposes the second transparent conductive layer TCL2 on the reflective metal layer RML to protect the reflective metal layer RML.

舉例來說,在本實施例中,顯示面板10的第二基板102的背對顯示介質層150的一側可為環境光EB或前光FB的入光側。顯示面板10可還包括多條資料線(未繪示)及多條掃描線(未繪示),其中每一個主動元件T可電性連接一條資料線以及一條掃描線。主動元件T例如是薄膜電晶體或其他具有三端子的開關元件。也就是說,本實施例的顯示面板10的畫素陣列基板包括第一基板101和設置於第一基板101上的多個畫素結構PX。For example, in this embodiment, the side of the second substrate 102 of the display panel 10 that is opposite to the display medium layer 150 can be the light incident side of the ambient light EB or the front light FB. The display panel 10 may further include a plurality of data lines (not shown) and a plurality of scan lines (not shown), wherein each active element T can be electrically connected to a data line and a scan line. The active element T is, for example, a thin film transistor or other switching element with three terminals. That is, the pixel array substrate of the display panel 10 of this embodiment includes a first substrate 101 and a plurality of pixel structures PX disposed on the first substrate 101.

在本實施例中,設置在第一基板101上的第一透明導電層TCL1、第二透明導電層TCL2與反射金屬層RML彼此電性連接且可構成畫素結構PX的反射電極RE,並且電性連接對應的一個主動元件T,但不以此為限。舉例來說,主動元件T的閘極、源極與汲極(未繪示)可分別電性連接掃描線(未繪示)、資料線(未繪示)與反射電極RE。在本實施例中,顯示面板10可為反射式(reflective type)面板或是半穿半反式(transflective type)面板,反射電極RE設置於顯示面板10的反射區中,且用於將環境光EB或前光FB反射形成反射光RB以顯示對應的畫面。在圖1示出反射電極RE透過絕緣層110的穿孔TH電性連接反射電極RE,但不以此為限。在一些實施例中,顯示面板10可還包括至少一連接電極,位於主動元件T與反射電極RE之間,且反射電極RE透過所述至少一連接電極電性連接主動元件T。在本實施例中,第一透明導電層TCL1與第二透明導電層TCL2的材料例如是金屬氧化物,其可包括銦錫氧化物、銦鋅氧化物、鋁錫氧化物、鋁鋅氧化物、或其它合適的氧化物、或者是上述至少兩者的堆疊層。反射金屬層RML的材料可包括銀、鋁、或其他具有高反射率的金屬材料。In the present embodiment, the first transparent conductive layer TCL1, the second transparent conductive layer TCL2 and the reflective metal layer RML disposed on the first substrate 101 are electrically connected to each other and can constitute a reflective electrode RE of the pixel structure PX, and are electrically connected to a corresponding active element T, but not limited thereto. For example, the gate, source and drain (not shown) of the active element T can be electrically connected to a scanning line (not shown), a data line (not shown) and the reflective electrode RE, respectively. In the present embodiment, the display panel 10 can be a reflective type panel or a transflective type panel, and the reflective electrode RE is disposed in the reflective area of the display panel 10, and is used to reflect the ambient light EB or the front light FB to form a reflected light RB to display the corresponding picture. FIG1 shows that the reflective electrode RE is electrically connected to the reflective electrode RE through the through hole TH of the insulating layer 110, but the present invention is not limited thereto. In some embodiments, the display panel 10 may further include at least one connecting electrode, which is located between the active element T and the reflective electrode RE, and the reflective electrode RE is electrically connected to the active element T through the at least one connecting electrode. In this embodiment, the material of the first transparent conductive layer TCL1 and the second transparent conductive layer TCL2 is, for example, a metal oxide, which may include indium tin oxide, indium zinc oxide, aluminum tin oxide, aluminum zinc oxide, or other suitable oxides, or a stacked layer of at least two of the above. The material of the reflective metal layer RML may include silver, aluminum, or other metal materials with high reflectivity.

特別說明的是,較靠近入光側的第二透明導電層TCL2的膜厚t1可小於較遠離入光側的第一透明導電層TCL1的膜厚t2,以改善反射電極RE的反射率以及CIELAB色彩空間中的b*值。在本發明的實驗中,當第二透明導電層TCL2的膜厚t1由80埃降為50埃時,反射率提升0.6%,且b*值可降低0.5。舉例來說,在本實施例中,第二透明導電層TCL2的膜厚t1例如是50埃,而第一透明導電層TCL1的膜厚t2例如是80埃。即第一透明導電層TCL1和第二透明導電層TCL2的膜厚都小於10奈米。此處的第一透明導電層TCL1和第二透明導電層TCL2的膜厚例如是第一透明導電層TCL1和第二透明導電層TCL2在垂直於第一基板101的上表面(即第一基板101面對第一透明導電層TCL1和第二透明導電層TCL2的表面)的方向(即方向Z)上的膜厚。以下若未特別提及,則膜層的膜厚都是以相同的方式來定義,便不再贅述。It is particularly noted that the film thickness t1 of the second transparent conductive layer TCL2 closer to the light incident side can be smaller than the film thickness t2 of the first transparent conductive layer TCL1 farther from the light incident side, so as to improve the reflectivity of the reflective electrode RE and the b* value in the CIELAB color space. In the experiment of the present invention, when the film thickness t1 of the second transparent conductive layer TCL2 is reduced from 80 angstroms to 50 angstroms, the reflectivity is increased by 0.6%, and the b* value can be reduced by 0.5. For example, in this embodiment, the film thickness t1 of the second transparent conductive layer TCL2 is, for example, 50 angstroms, and the film thickness t2 of the first transparent conductive layer TCL1 is, for example, 80 angstroms. That is, the film thicknesses of the first transparent conductive layer TCL1 and the second transparent conductive layer TCL2 are both less than 10 nanometers. Here, the film thickness of the first transparent conductive layer TCL1 and the second transparent conductive layer TCL2 is, for example, the film thickness of the first transparent conductive layer TCL1 and the second transparent conductive layer TCL2 in a direction perpendicular to the upper surface of the first substrate 101 (i.e., the surface of the first substrate 101 facing the first transparent conductive layer TCL1 and the second transparent conductive layer TCL2) (i.e., direction Z). Unless otherwise specified below, the film thickness of the film layer is defined in the same manner and will not be repeated.

另一方面,第二基板102上可設有彩色濾光層170,但不以此為限。在顯示面板10為黑白顯示面板的實施例中,顯示面板10可不具有彩色濾光層170。更具體地,彩色濾光層170設置在第二基板102上,且位於顯示介質層150與第二基板102之間。舉例來說,彩色濾光層170可具有分別對應多個畫素結構PX設置的多個彩色濾光圖案(未繪示),且這些彩色濾光圖案適於讓不同顏色的光線(例如紅光、綠光和藍光)通過,但不以此為限。On the other hand, a color filter layer 170 may be disposed on the second substrate 102, but the present invention is not limited thereto. In an embodiment where the display panel 10 is a black and white display panel, the display panel 10 may not have a color filter layer 170. More specifically, the color filter layer 170 is disposed on the second substrate 102 and is located between the display medium layer 150 and the second substrate 102. For example, the color filter layer 170 may have a plurality of color filter patterns (not shown) disposed respectively corresponding to a plurality of pixel structures PX, and these color filter patterns are suitable for allowing light of different colors (e.g., red light, green light, and blue light) to pass through, but the present invention is not limited thereto.

在本實施例中,第二基板102上還可設有共電極層180。也就是說,本實施例的顯示面板10的彩膜基板包括第二基板102、彩色濾光層170和共電極層180。在本實施例中,反射電極RE電性連接對應的主動元件T的汲極以接收資料線提供的畫素資料,因此反射電極RE可同時做為畫素電極,且共電極層180與第一基板101上的反射電極RE適於產生用來驅動顯示介質層150(例如液晶層的液晶分子)的電場,但不以此為限。共電極層180的材料例如是金屬氧化物,其可包括銦錫氧化物、銦鋅氧化物、鋁錫氧化物、鋁鋅氧化物、或其它合適的氧化物、或者是上述至少兩者的堆疊層。In this embodiment, a common electrode layer 180 may also be provided on the second substrate 102. That is, the color filter substrate of the display panel 10 of this embodiment includes the second substrate 102, the color filter layer 170 and the common electrode layer 180. In this embodiment, the reflective electrode RE is electrically connected to the drain of the corresponding active element T to receive the pixel data provided by the data line, so the reflective electrode RE can also serve as a pixel electrode, and the common electrode layer 180 and the reflective electrode RE on the first substrate 101 are suitable for generating an electric field for driving the display medium layer 150 (such as liquid crystal molecules of the liquid crystal layer), but not limited thereto. The material of the common electrode layer 180 is, for example, a metal oxide, which may include indium tin oxide, indium zinc oxide, aluminum tin oxide, aluminum zinc oxide, or other suitable oxides, or a stacked layer of at least two of the above.

如之前所述,當第二透明導電層TCL2的膜厚t1降低時,可提升反射率且降低b*值。但第二透明導電層TCL2的膜厚t1過低時則保護反射金屬層RML的效果會下降。因此在本實施例中,為了提升對環境光EB的反射率以及降低b*值,且維持對反射金屬層RML的保護效果,顯示面板10的畫素結構PX還包括光學輔助層130,設置在第二透明導電層TCL2上,且光學輔助層130的材料不同於第二透明導電層TCL2。As described above, when the film thickness t1 of the second transparent conductive layer TCL2 is reduced, the reflectivity can be improved and the b* value can be reduced. However, when the film thickness t1 of the second transparent conductive layer TCL2 is too low, the effect of protecting the reflective metal layer RML will be reduced. Therefore, in this embodiment, in order to improve the reflectivity of the ambient light EB and reduce the b* value, and maintain the protective effect on the reflective metal layer RML, the pixel structure PX of the display panel 10 further includes an optical auxiliary layer 130, which is disposed on the second transparent conductive layer TCL2, and the material of the optical auxiliary layer 130 is different from that of the second transparent conductive layer TCL2.

請參照圖2,本實施例利用光學薄膜干涉的原理,在反射電極RE上方形成光學輔助層130,光學輔助層130的折射率不同於第二透明導電層TCL2的折射率,入射光IL於光學輔助層130與第二透明導電層TCL2的界面以及第二透明導電層TCL2與反射金屬層RML的界面產生反射,因此可透過調整膜厚來提升對環境光EB或前光FB的反射率以及調整b*值。具體來說,在本實施例中,第二透明導電層TCL2與光學輔助層130的疊層結構可稱為光學調整膜,其設置於反射金屬層RML上且用以調整反射率以及b*值。此外,本實施例中的第二透明導電層TCL2與光學輔助層130的疊層結構進一步提升保護反射金屬層RML的能力,以避免反射金屬層RML與外界物質反應而造成變色。光學輔助層130重疊第一透明導電層TCL1、第二透明導電層TCL2與反射金屬層RML設置,並且接觸第二透明導電層TCL2。此處的重疊關係例如是沿著第一透明導電層TCL1、第二透明導電層TCL2與反射金屬層RML的堆疊方向(例如圖1的方向Z)。以下若未特別提及,則兩構件的重疊關係都是以相同的方式來定義,便不再贅述。Please refer to FIG. 2 . This embodiment utilizes the principle of optical thin film interference to form an optical auxiliary layer 130 on the reflective electrode RE. The refractive index of the optical auxiliary layer 130 is different from the refractive index of the second transparent conductive layer TCL2. The incident light IL is reflected at the interface between the optical auxiliary layer 130 and the second transparent conductive layer TCL2 and the interface between the second transparent conductive layer TCL2 and the reflective metal layer RML. Therefore, the reflectivity of the ambient light EB or the front light FB and the b* value can be increased by adjusting the film thickness. Specifically, in this embodiment, the stacked structure of the second transparent conductive layer TCL2 and the optical auxiliary layer 130 can be called an optical adjustment film, which is disposed on the reflective metal layer RML and is used to adjust the reflectivity and the b* value. In addition, the stacking structure of the second transparent conductive layer TCL2 and the optical auxiliary layer 130 in this embodiment further enhances the ability to protect the reflective metal layer RML to prevent the reflective metal layer RML from reacting with external substances and causing discoloration. The optical auxiliary layer 130 overlaps the first transparent conductive layer TCL1, the second transparent conductive layer TCL2 and the reflective metal layer RML, and contacts the second transparent conductive layer TCL2. The overlapping relationship here is, for example, along the stacking direction of the first transparent conductive layer TCL1, the second transparent conductive layer TCL2 and the reflective metal layer RML (for example, the direction Z of FIG. 1). If not specifically mentioned below, the overlapping relationship of the two components is defined in the same way and will not be repeated.

在本實施例中,光學輔助層130可為低折射率層。在本文中的低折射率層是指折射率例如小於1.65的膜層。例如:光學輔助層130可選用折射率約為1.45的二氧化矽(SiO 2)來製作,但不以此為限。請參照圖3,曲線C1示出未設有光學輔助層130(即膜厚條件為TK0)的比較例的顯示面板的反射率對波長的變化,而曲線E1至曲線E4分別示出顯示面板10的光學輔助層130為二氧化矽且具有膜厚500埃(即膜厚條件為TK1)、1000埃(即膜厚條件為TK2)、1200埃(即膜厚條件為TK3)及1500埃(即膜厚條件為TK4)時的反射率對波長的變化,其中反射金屬層RML的材料例如是銀,且其膜厚為1500埃,第一透明導電層TCL1和第二透明導電層TCL2的材料例如是銦錫氧化物(ITO),且其膜厚分別是80埃與50埃。 In the present embodiment, the optical auxiliary layer 130 may be a low refractive index layer. The low refractive index layer in this article refers to a film layer with a refractive index of, for example, less than 1.65. For example, the optical auxiliary layer 130 may be made of silicon dioxide (SiO 2 ) with a refractive index of about 1.45, but is not limited thereto. Referring to FIG. 3 , curve C1 shows the variation of the reflectivity of the display panel of the comparative example without the optical auxiliary layer 130 (i.e., the film thickness condition is TK0) to the wavelength, and curves E1 to E4 respectively show that the optical auxiliary layer 130 of the display panel 10 is silicon dioxide and has a film thickness of 500 angstroms (i.e., the film thickness condition is TK1), 1000 angstroms (i.e., the film thickness condition is TK2), 1 The variation of reflectivity with wavelength at 200 angstroms (i.e., film thickness condition is TK3) and 1500 angstroms (i.e., film thickness condition is TK4), wherein the material of the reflective metal layer RML is, for example, silver, and its film thickness is 1500 angstroms, and the material of the first transparent conductive layer TCL1 and the second transparent conductive layer TCL2 is, for example, indium tin oxide (ITO), and their film thicknesses are 80 angstroms and 50 angstroms, respectively.

圖4示出圖3中具有不同膜厚的光學輔助層130的顯示面板10對於波長550奈米的光線反射率以及CIELAB色彩空間中的b*值。需說明的是,圖4還示出顯示面板10在其光學輔助層130為二氧化矽且膜厚為800埃(即膜厚條件為TK5)時對波長550奈米的光線反射率以及CIELAB色彩空間中的b*值。由圖4可知,顯示面板10對於波長550奈米的光線反射率會隨著光學輔助層130的膜厚增加而漸增。FIG4 shows the reflectivity of the display panel 10 with different film thicknesses of the optical auxiliary layer 130 in FIG3 for light with a wavelength of 550 nanometers and the b* value in the CIELAB color space. It should be noted that FIG4 also shows the reflectivity of the display panel 10 with a wavelength of 550 nanometers and the b* value in the CIELAB color space when the optical auxiliary layer 130 is silicon dioxide and has a film thickness of 800 angstroms (i.e., the film thickness condition is TK5). As can be seen from FIG4, the reflectivity of the display panel 10 with a wavelength of 550 nanometers gradually increases as the film thickness of the optical auxiliary layer 130 increases.

特別注意的是,雖然未設有光學輔助層130(TK0)的比較例的顯示面板,其對於波長550奈米的光線反射率接近顯示面板10在光學輔助層130的膜厚為1500埃(TK4)時對波長550奈米的光線反射率,但這兩者都會造成顯示面板在CIELAB色彩空間中產生較大的b*值而產生較明顯的色偏。由圖4可知,當顯示面板10的光學輔助層130的膜厚為1200埃(即膜厚條件為TK3)時,雖然其對於波長550奈米的光線反射率稍低於光學輔助層130的膜厚條件為TK0和TK4的顯示面板,但其在CIELAB色彩空間中的b*值明顯較小。也就是說,光學輔助層130的膜厚條件TK3(即膜厚為1200埃)可以是顯示面板10的較佳選擇。It is particularly noteworthy that, although the reflectivity of the display panel of the comparative example without the optical auxiliary layer 130 (TK0) for light with a wavelength of 550 nanometers is close to the reflectivity of the display panel 10 for light with a wavelength of 550 nanometers when the film thickness of the optical auxiliary layer 130 is 1500 angstroms (TK4), both of them will cause the display panel to produce a larger b* value in the CIELAB color space and produce a more obvious color shift. As shown in FIG. 4 , when the film thickness of the optical auxiliary layer 130 of the display panel 10 is 1200 angstroms (i.e., the film thickness condition is TK3), although its reflectivity for light with a wavelength of 550 nanometers is slightly lower than that of the display panels with the film thickness conditions of the optical auxiliary layer 130 being TK0 and TK4, its b* value in the CIELAB color space is significantly smaller. In other words, the film thickness condition TK3 of the optical auxiliary layer 130 (i.e., the film thickness is 1200 angstroms) may be a better choice for the display panel 10.

然而,本發明不限於此。在顯示面板10的另一變形實施例中,光學輔助層130可為高折射率層。在本文中的高折射率層是指折射率例如大於1.85的膜層。例如:光學輔助層130可選用折射率約為2.4的二氧化鈦(TiO 2)來製作,但不以此為限。請參照圖5,曲線C1示出未設有光學輔助層130(即膜厚條件為TK0)的比較例的顯示面板的反射率對波長的變化,曲線E3示出顯示面板10的光學輔助層130是選用SiO 2製作且其膜厚為1200埃(即膜厚條件為TK3)時的反射率對波長的變化,而曲線E5示出顯示面板10的光學輔助層130是選用TiO 2製作且其膜厚為500埃(即膜厚條件為TK1)時的反射率對波長的變化,其中反射金屬層RML的材料例如是銀,且其膜厚為1500埃,第一透明導電層TCL1和第二透明導電層TCL2的材料例如是銦錫氧化物(ITO),且其膜厚分別是80埃與50埃。 However, the present invention is not limited thereto. In another variant embodiment of the display panel 10, the optical auxiliary layer 130 may be a high refractive index layer. The high refractive index layer herein refers to a film layer having a refractive index greater than 1.85, for example. For example, the optical auxiliary layer 130 may be made of titanium dioxide (TiO 2 ) having a refractive index of about 2.4, but is not limited thereto. Referring to FIG. 5 , curve C1 shows the variation of the reflectivity of the display panel of the comparative example without the optical auxiliary layer 130 (i.e., the film thickness condition is TK0) to the wavelength, curve E3 shows the variation of the reflectivity to the wavelength when the optical auxiliary layer 130 of the display panel 10 is made of SiO 2 and its film thickness is 1200 angstroms (i.e., the film thickness condition is TK3), and curve E5 shows the variation of the reflectivity of the display panel 10 when the optical auxiliary layer 130 is made of TiO 2 and the film thickness is 500 angstroms (i.e., the film thickness condition is TK1), wherein the material of the reflective metal layer RML is, for example, silver, and its film thickness is 1500 angstroms, and the materials of the first transparent conductive layer TCL1 and the second transparent conductive layer TCL2 are, for example, indium tin oxide (ITO), and their film thicknesses are 80 angstroms and 50 angstroms, respectively.

圖6示出圖5中各條曲線在波長550奈米的反射率。由圖6可知,相較於選用SiO 2製作而成的光學輔助層130,選用TiO 2製作而成的光學輔助層130,其顯示面板對於波長550奈米的光線反射率可獲得進一步的提升,且在CIELAB色彩空間中的b*值也可明顯降低(例如:b*可由3降低至1),進而提升顯示面板的畫面品質。 FIG6 shows the reflectivity of each curve in FIG5 at a wavelength of 550 nanometers. As can be seen from FIG6, compared with the optical auxiliary layer 130 made of SiO2 , the optical auxiliary layer 130 made of TiO2 can further improve the reflectivity of the display panel for light with a wavelength of 550 nanometers, and the b* value in the CIELAB color space can also be significantly reduced (for example: b* can be reduced from 3 to 1), thereby improving the image quality of the display panel.

相較於未設有光學輔助層130(即膜厚條件為TK0)的顯示面板來說,無論光學輔助層130是選用SiO 2或TiO 2(即光學輔助層130是選用低折射率層或高折射率層)來製作,對於在CIELAB色彩空間中的b*值都有明顯的改善效果(即降低b*值)。特別說明的是,由銦錫氧化物製作而成的第一透明導電層TCL1和第二透明導電層TCL2,其折射率約為1.85,而覆蓋在第二透明導電層TCL2上並且與其接觸的光學輔助層130(如圖1所示),其與第二透明導電層TCL2的折射率差異若越大,對於反射率和在CIELAB色彩空間中的b*值的調整都能有較明顯的效果。 Compared with a display panel without an optical auxiliary layer 130 (i.e., the film thickness condition is TK0), regardless of whether the optical auxiliary layer 130 is made of SiO2 or TiO2 (i.e., whether the optical auxiliary layer 130 is made of a low refractive index layer or a high refractive index layer), there is a significant improvement effect (i.e., reducing the b* value) on the b* value in the CIELAB color space. It is particularly noted that the first transparent conductive layer TCL1 and the second transparent conductive layer TCL2 made of indium tin oxide have a refractive index of about 1.85, and the optical auxiliary layer 130 (as shown in FIG. 1 ) covering and contacting the second transparent conductive layer TCL2 has a greater difference in refractive index with the second transparent conductive layer TCL2, which has a more obvious effect on the adjustment of the reflectivity and the b* value in the CIELAB color space.

例如:選用TiO 2製作而成的光學輔助層130與銦錫氧化物製作而成的第二透明導電層TCL2的折射率差異大於選用SiO 2製作而成的光學輔助層130與銦錫氧化物製作而成的第二透明導電層TCL2的折射率差異。因此,當第二透明導電層TCL2選用銦錫氧化物來製作時,光學輔助層130選用折射率與銦錫氧化物差異較大的材料(例如TiO 2)來製作,對於反射率和在CIELAB色彩空間中的b*值都能產生較為明顯的改善效果。 For example, the difference in refractive index between the optical auxiliary layer 130 made of TiO 2 and the second transparent conductive layer TCL2 made of indium tin oxide is greater than the difference in refractive index between the optical auxiliary layer 130 made of SiO 2 and the second transparent conductive layer TCL2 made of indium tin oxide. Therefore, when the second transparent conductive layer TCL2 is made of indium tin oxide, the optical auxiliary layer 130 is made of a material having a large difference in refractive index from indium tin oxide (such as TiO 2 ), which can produce a more obvious improvement effect on the reflectivity and the b* value in the CIELAB color space.

在上述實施例中是以第二透明導電層TCL2為銦錫氧化物為例示。另一方面,在其他實施例中,第二透明導電層TCL2可選用折射率大於銦錫氧化物的折射率(銦錫氧化物的折射率約為1.85)的材料,且光學輔助層130採用低折射率層(即折射率小於1.65的膜層),以增加光學輔助層130與第二透明導電層TCL2的折射率差異,進而改善反射率和在CIELAB色彩空間中的b*值。例如:第二透明導電層TCL2可為銦鋅氧化物(IZO),銦鋅氧化物的折射率約為2.3,且光學輔助層130可採用SiO 2(折射率約為1.45),因此相較於光學輔助層130與第二透明導電層TCL2分別為SiO 2和銦錫氧化物的堆疊結構,上述的光學輔助層130與第二透明導電層TCL2分別為SiO 2和銦鋅氧化物的堆疊結構可增加光學輔助層130與第二透明導電層TCL2的折射率差,且進一步改善反射率和在CIELAB色彩空間中的b*值。 In the above embodiment, the second transparent conductive layer TCL2 is indium tin oxide as an example. On the other hand, in other embodiments, the second transparent conductive layer TCL2 can be made of a material having a refractive index greater than that of indium tin oxide (the refractive index of indium tin oxide is about 1.85), and the optical auxiliary layer 130 is a low refractive index layer (i.e., a film layer having a refractive index less than 1.65) to increase the refractive index difference between the optical auxiliary layer 130 and the second transparent conductive layer TCL2, thereby improving the reflectivity and the b* value in the CIELAB color space. For example, the second transparent conductive layer TCL2 may be indium zinc oxide (IZO), the refractive index of which is approximately 2.3, and the optical auxiliary layer 130 may be SiO 2 (refractive index is approximately 1.45). Therefore, compared with a stacked structure in which the optical auxiliary layer 130 and the second transparent conductive layer TCL2 are respectively SiO 2 and indium tin oxide, the stacked structure in which the optical auxiliary layer 130 and the second transparent conductive layer TCL2 are respectively SiO 2 and indium zinc oxide can increase the refractive index difference between the optical auxiliary layer 130 and the second transparent conductive layer TCL2, and further improve the reflectivity and the b* value in the CIELAB color space.

請參照圖7,在圖1的顯示面板10的另一變形實施例中,光學輔助層130”也可選用兩種不同的材料來製作。舉例來說,光學輔助層130”可包括多個第一光學輔助層131和多個第二光學輔助層132。這些第一光學輔助層131與這些第二光學輔助層132沿著垂直於第一基板101的上表面的方向(如圖1的方向Z)交替堆疊。特別注意的是,第一光學輔助層131的折射率可大於第二光學輔助層132的折射率,但不以此為限。舉例來說,第一光學輔助層131可為前面所述的高折射率層,且第二光學輔助層132可為前面所述的低折射率層,也就是這些第一光學輔助層131各自的折射率可大於1.85,而這些第二光學輔助層132各自的折射率可小於1.65。舉例來說,第一光學輔助層131可選用TiO 2來製作,而第二光學輔助層132可選用SiO 2來製作,但不以此為限。在圖7中是以三個第一光學輔助層131和兩個第二光學輔助層132交替堆疊形成光學輔助層130”為例示,但不以此為限。在本發明中,光學輔助層130”可為((第一光學輔助層131/第二光學輔助層132)*迴圈數)/第一光學輔助層131的疊層結構,其中迴圈數為大於或等於1的正整數。在圖7中,迴圈數為2,因此光學輔助層130”由沿著方向Z依序設置的第一光學輔助層131/第二光學輔助層132/第一光學輔助層131/第二光學輔助層132/第一光學輔助層131形成。本發明不限制迴圈數的數目。 Please refer to Figure 7, in another variant embodiment of the display panel 10 of Figure 1, the optical auxiliary layer 130" can also be made of two different materials. For example, the optical auxiliary layer 130" may include a plurality of first optical auxiliary layers 131 and a plurality of second optical auxiliary layers 132. These first optical auxiliary layers 131 and these second optical auxiliary layers 132 are alternately stacked along a direction perpendicular to the upper surface of the first substrate 101 (such as direction Z in Figure 1). It is particularly noteworthy that the refractive index of the first optical auxiliary layer 131 may be greater than the refractive index of the second optical auxiliary layer 132, but is not limited to this. For example, the first optical auxiliary layer 131 can be the high refractive index layer mentioned above, and the second optical auxiliary layer 132 can be the low refractive index layer mentioned above, that is, the refractive index of each of the first optical auxiliary layers 131 can be greater than 1.85, and the refractive index of each of the second optical auxiliary layers 132 can be less than 1.65. For example, the first optical auxiliary layer 131 can be made of TiO2 , and the second optical auxiliary layer 132 can be made of SiO2 , but it is not limited thereto. In FIG. 7 , three first optical auxiliary layers 131 and two second optical auxiliary layers 132 are alternately stacked to form an optical auxiliary layer 130″ as an example, but the present invention is not limited to this. In the present invention, the optical auxiliary layer 130″ may be a stacked structure of ((first optical auxiliary layer 131/second optical auxiliary layer 132)*number of loops)/first optical auxiliary layer 131, wherein the number of loops is a positive integer greater than or equal to 1. In FIG. 7 , the number of loops is 2, and thus the optical auxiliary layer 130 ″ is formed by the first optical auxiliary layer 131 / the second optical auxiliary layer 132 / the first optical auxiliary layer 131 / the second optical auxiliary layer 132 / the first optical auxiliary layer 131 arranged in sequence along the direction Z. The present invention does not limit the number of loops.

在一些實施例中,顯示面板10還可包括兩配向膜(未繪示),分別設置於顯示介質層150的相對兩側,其中一配向膜設置於光學輔助層130或光學輔助層130”上(即位於光學輔助層130與顯示介質層150之間,或是位於光學輔助層130”與顯示介質層150之間),另一配向膜則設置於共電極層180與顯示介質層150之間。例如:顯示介質層150可為液晶層,且配向膜可包括任何適合對液晶分子配向的材料(例如但不限於聚醯亞胺)。In some embodiments, the display panel 10 may further include two alignment films (not shown), which are respectively disposed on opposite sides of the display medium layer 150, wherein one alignment film is disposed on the optical auxiliary layer 130 or the optical auxiliary layer 130″ (i.e., between the optical auxiliary layer 130 and the display medium layer 150, or between the optical auxiliary layer 130″ and the display medium layer 150), and the other alignment film is disposed between the common electrode layer 180 and the display medium layer 150. For example, the display medium layer 150 may be a liquid crystal layer, and the alignment film may include any material suitable for aligning liquid crystal molecules (such as but not limited to polyimide).

以下將列舉另一些實施例以詳細說明本揭示,其中相同的構件將標示相同的符號,並且省略相同技術內容的說明,省略部分請參考前述實施例,以下不再贅述。Other embodiments are listed below to illustrate the present disclosure in detail, wherein the same components are marked with the same symbols, and the description of the same technical content is omitted. For the omitted parts, please refer to the aforementioned embodiments, which will not be described in detail below.

圖8是依照本發明的第二實施例的顯示面板的剖視示意圖。請參照圖8,不同於圖1的顯示面板10,本實施例的顯示面板10A的反射電極RE’與主動元件T’是分別位於彼此相對的第一基板101與第二基板102上且是分別位於顯示介質層150的不同側,且光學輔助層130’位於第一基板101上且位於反射電極RE’與顯示介質層150之間。在本實施例中,彩色濾光層170’與共電極層180’是設置在第一基板101上,而畫素結構PX’的畫素電極PE’與主動元件T’是設置在第二基板102上,且畫素電極PE’與主動元件T’是透過絕緣層110’的穿孔TH’彼此電性連接。也就是說,本實施例的顯示面板10A的畫素陣列基板包括第二基板102、主動元件T’和畫素電極PE’,而顯示面板10A的彩膜基板包括第一基板101、共電極層180’、彩色濾光層170’、反射電極RE’和光學輔助層130’。FIG8 is a cross-sectional schematic diagram of a display panel according to a second embodiment of the present invention. Referring to FIG8, unlike the display panel 10 of FIG1, the reflective electrode RE' and the active element T' of the display panel 10A of this embodiment are respectively located on the first substrate 101 and the second substrate 102 facing each other and are respectively located on different sides of the display medium layer 150, and the optical auxiliary layer 130' is located on the first substrate 101 and between the reflective electrode RE' and the display medium layer 150. In this embodiment, the color filter layer 170' and the common electrode layer 180' are disposed on the first substrate 101, and the pixel electrode PE' and the active element T' of the pixel structure PX' are disposed on the second substrate 102, and the pixel electrode PE' and the active element T' are electrically connected to each other through the through hole TH' of the insulating layer 110'. That is, the pixel array substrate of the display panel 10A of this embodiment includes the second substrate 102, the active element T' and the pixel electrode PE', and the color filter substrate of the display panel 10A includes the first substrate 101, the common electrode layer 180', the color filter layer 170', the reflective electrode RE' and the optical auxiliary layer 130'.

特別注意的是,不同於圖1的第一透明導電層TCL1、第二透明導電層TCL2、反射金屬層RML與光學輔助層130是設置在畫素陣列基板上,本實施例的第一透明導電層TCL1’、第二透明導電層TCL2’、反射金屬層RML’與光學輔助層130’是設置在彩膜基板上。由於畫素電極PE’設置在第二基板102上,本實施例的共電極層180’對應地改設置在第一基板101上,使其與畫素電極PE’能產生用於驅動顯示介質層150的電場,但不以此為限。It is particularly noted that, unlike FIG. 1 in which the first transparent conductive layer TCL1, the second transparent conductive layer TCL2, the reflective metal layer RML and the optical auxiliary layer 130 are disposed on the pixel array substrate, the first transparent conductive layer TCL1', the second transparent conductive layer TCL2', the reflective metal layer RML' and the optical auxiliary layer 130' of this embodiment are disposed on the color filter substrate. Since the pixel electrode PE' is disposed on the second substrate 102, the common electrode layer 180' of this embodiment is correspondingly changed to be disposed on the first substrate 101, so that it and the pixel electrode PE' can generate an electric field for driving the display medium layer 150, but the present invention is not limited thereto.

在本實施例中,顯示面板10A的第二基板102的背對顯示介質層150的一側可為環境光EB或前光FB的入光側,顯示面板10A可為反射式面板或是半穿半反式面板,反射電極RE’設置於顯示面板10A的反射區中,且用於將環境光EB或前光FB反射形成反射光RB以顯示對應的畫面。In this embodiment, the side of the second substrate 102 of the display panel 10A facing away from the display medium layer 150 can be the light incident side of the ambient light EB or the front light FB. The display panel 10A can be a reflective panel or a semi-transmissive and semi-reflective panel. The reflective electrode RE' is arranged in the reflective area of the display panel 10A and is used to reflect the ambient light EB or the front light FB to form reflected light RB to display the corresponding picture.

本實施例中的第一透明導電層TCL1’、第二透明導電層TCL2’、反射金屬層RML’與光學輔助層130’分別相似於第一實施例的第一透明導電層TCL1、第二透明導電層TCL2、反射金屬層RML與光學輔助層130,第二透明導電層TCL2’與光學輔助層130’的材料與折射率選擇以改善顯示面板的反射率和CIELAB色彩空間中的b*值亦相似於第一實施例的第二透明導電層TCL2與光學輔助層130的材料與折射率選擇,因此省略相同技術內容的說明,省略部分請參考前述實施例,於此不再贅述。此外,本實施例中的光學輔助層130’亦可置換為第一實施例的另一變形實施例中的光學輔助層130”。The first transparent conductive layer TCL1′, the second transparent conductive layer TCL2′, the reflective metal layer RML′ and the optical auxiliary layer 130′ in this embodiment are respectively similar to the first transparent conductive layer TCL1, the second transparent conductive layer TCL2, the reflective metal layer RML and the optical auxiliary layer 130 in the first embodiment. The material and refractive index selection of the second transparent conductive layer TCL2′ and the optical auxiliary layer 130′ to improve the reflectivity of the display panel and the b* value in the CIELAB color space are also similar to the material and refractive index selection of the second transparent conductive layer TCL2 and the optical auxiliary layer 130 in the first embodiment. Therefore, the description of the same technical content is omitted. Please refer to the aforementioned embodiments for the omitted parts, which will not be repeated here. In addition, the optical auxiliary layer 130' in this embodiment can also be replaced by the optical auxiliary layer 130" in another modified embodiment of the first embodiment.

在一些實施例中,顯示面板10A還可包括兩配向膜(未繪示),分別設置於顯示介質層150的相對兩側,其中一配向膜設置於共電極層180’上(即位於共電極層180’與顯示介質層150之間),另一配向膜則設置於畫素電極PE’與顯示介質層150之間。In some embodiments, the display panel 10A may further include two alignment films (not shown), which are respectively disposed on opposite sides of the display medium layer 150, one of which is disposed on the common electrode layer 180' (i.e., between the common electrode layer 180' and the display medium layer 150), and the other alignment film is disposed between the pixel electrode PE' and the display medium layer 150.

圖9是依照本發明的第三實施例的顯示面板的剖視示意圖。圖10是本發明的第三實施例的入射光與反射光的示意圖。圖11是圖9的顯示面板的反射率與CIELAB色彩空間中的b*對不同膜厚的畫素電極的分佈圖。請參照圖9,本實施例的顯示面板20與圖1的顯示面板10的差異在於:本實施例的第一透明導電層TCL1-A、第二透明導電層TCL2-A與反射金屬層RML-A未電性連接主動元件T,即反射電極RE-A未電性連接主動元件T。FIG9 is a schematic cross-sectional view of a display panel according to the third embodiment of the present invention. FIG10 is a schematic diagram of incident light and reflected light of the third embodiment of the present invention. FIG11 is a distribution diagram of the reflectivity of the display panel of FIG9 and b* in the CIELAB color space for pixel electrodes of different film thicknesses. Referring to FIG9 , the difference between the display panel 20 of this embodiment and the display panel 10 of FIG1 is that the first transparent conductive layer TCL1-A, the second transparent conductive layer TCL2-A and the reflective metal layer RML-A of this embodiment are not electrically connected to the active element T, that is, the reflective electrode RE-A is not electrically connected to the active element T.

更具體地說,在本實施例中,顯示面板20的畫素結構PX-A還包括畫素電極PE,也就是本實施例的反射電極RE-A與畫素電極PE彼此電性絕緣。畫素電極PE設置在光學輔助層130A上,且重疊第二透明導電層TCL2-A設置。亦即,光學輔助層130A夾設在畫素電極PE與第二透明導電層TCL2-A之間。畫素電極PE電性連接對應的主動元件T的汲極以接收資料線提供的畫素資料。舉例來說,畫素電極PE可貫穿絕緣層110與主動元件T電性連接。More specifically, in the present embodiment, the pixel structure PX-A of the display panel 20 further includes a pixel electrode PE, that is, the reflective electrode RE-A and the pixel electrode PE of the present embodiment are electrically insulated from each other. The pixel electrode PE is disposed on the optical auxiliary layer 130A and overlaps the second transparent conductive layer TCL2-A. That is, the optical auxiliary layer 130A is sandwiched between the pixel electrode PE and the second transparent conductive layer TCL2-A. The pixel electrode PE is electrically connected to the drain of the corresponding active element T to receive the pixel data provided by the data line. For example, the pixel electrode PE can penetrate the insulating layer 110 and be electrically connected to the active element T.

在一些實施例中,顯示面板20還可包括兩配向膜(未繪示),分別設置於顯示介質層150的相對兩側,其中一配向膜設置於畫素電極PE上(即位於畫素電極PE與顯示介質層150之間),另一配向膜則設置於共電極層180與顯示介質層150之間。In some embodiments, the display panel 20 may further include two alignment films (not shown), which are respectively disposed on opposite sides of the display medium layer 150, one of which is disposed on the pixel electrode PE (i.e., between the pixel electrode PE and the display medium layer 150), and the other alignment film is disposed between the common electrode layer 180 and the display medium layer 150.

在本實施例中,畫素電極PE電性獨立於反射電極RE-A(即電性獨立於第一透明導電層TCL1-A、第二透明導電層TCL2-A與反射金屬層RML-A)。反射電極RE-A可為浮接,或是反射電極RE-A的電位不同於畫素電極PE的電位。此外,光學輔助層130A還可作為畫素電極PE與第二透明導電層TCL2-A的絕緣層,第一透明導電層TCL1-A、第二透明導電層TCL2-A與反射金屬層RML-A可重疊於畫素電極PE,並且與畫素電極PE電容耦合。即,本實施例的反射電極RE-A可與畫素電極PE以及設置於上述兩者間的光學輔助層130A形成儲存電容器SC。舉例來說,本實施例的畫素結構PX-A的反射電極RE-A可具有接地電位或固定電位(例如但不限於共電位),但不以此為限。In this embodiment, the pixel electrode PE is electrically independent of the reflective electrode RE-A (i.e., electrically independent of the first transparent conductive layer TCL1-A, the second transparent conductive layer TCL2-A, and the reflective metal layer RML-A). The reflective electrode RE-A may be floating, or the potential of the reflective electrode RE-A may be different from the potential of the pixel electrode PE. In addition, the optical auxiliary layer 130A may also serve as an insulating layer between the pixel electrode PE and the second transparent conductive layer TCL2-A, and the first transparent conductive layer TCL1-A, the second transparent conductive layer TCL2-A, and the reflective metal layer RML-A may overlap the pixel electrode PE and be capacitively coupled with the pixel electrode PE. That is, the reflective electrode RE-A of the present embodiment may form a storage capacitor SC with the pixel electrode PE and the optical auxiliary layer 130A disposed therebetween. For example, the reflective electrode RE-A of the pixel structure PX-A of the present embodiment may have a ground potential or a fixed potential (for example but not limited to a common potential), but is not limited thereto.

在本實施例中,畫素電極PE例如是選用銦錫氧化物(ITO)來製作,而光學輔助層130A例如是選用之前所述的高折射率層或低折射率層來製作。由於本實施例的第一透明導電層TCL1-A、第二透明導電層TCL2-A與反射金屬層RML-A的材料及膜厚配置都相似於圖1的第一透明導電層TCL1、第二透明導電層TCL2與反射金屬層RML,詳細的說明請參見前述實施例的相關段落,於此不再重述。In this embodiment, the pixel electrode PE is made of, for example, indium tin oxide (ITO), and the optical auxiliary layer 130A is made of, for example, the high refractive index layer or the low refractive index layer mentioned above. Since the materials and film thickness configurations of the first transparent conductive layer TCL1-A, the second transparent conductive layer TCL2-A and the reflective metal layer RML-A in this embodiment are similar to the first transparent conductive layer TCL1, the second transparent conductive layer TCL2 and the reflective metal layer RML in FIG. 1 , please refer to the relevant paragraphs of the aforementioned embodiment for detailed description, which will not be repeated here.

請參照圖10,本實施例利用光學薄膜干涉的原理,在反射電極RE-A上方形成光學輔助層130A,此外,畫素電極PE設置於光學輔助層130A上,且光學輔助層130A的折射率不同於第二透明導電層TCL2-A與畫素電極PE的任一個的折射率。入射光IL於畫素電極PE與光學輔助層130A的界面、光學輔助層130A與第二透明導電層TCL2-A的界面以及第二透明導電層TCL2-A與反射金屬層RML-A的界面產生反射,因此可透過調整膜厚來提升對環境光EB的反射率以及調整b*值。具體來說,在本實施例中,第二透明導電層TCL2-A、光學輔助層130A與畫素電極PE的疊層結構可稱為光學調整膜,其設置於反射金屬層RML-A上且用以調整反射率以及b*值。Referring to FIG. 10 , the present embodiment utilizes the principle of optical thin film interference to form an optical auxiliary layer 130A on the reflective electrode RE-A. In addition, the pixel electrode PE is disposed on the optical auxiliary layer 130A, and the refractive index of the optical auxiliary layer 130A is different from the refractive index of any of the second transparent conductive layer TCL2-A and the pixel electrode PE. The incident light IL is reflected at the interface between the pixel electrode PE and the optical auxiliary layer 130A, the interface between the optical auxiliary layer 130A and the second transparent conductive layer TCL2-A, and the interface between the second transparent conductive layer TCL2-A and the reflective metal layer RML-A. Therefore, the reflectivity of the ambient light EB and the b* value can be improved by adjusting the film thickness. Specifically, in this embodiment, the stacked structure of the second transparent conductive layer TCL2-A, the optical auxiliary layer 130A and the pixel electrode PE can be called an optical adjustment film, which is disposed on the reflective metal layer RML-A and is used to adjust the reflectivity and the b* value.

特別說明的是,顯示面板20對於波長550奈米的光線反射率和在CIELAB色彩空間中的b*值可經由畫素電極PE的膜厚調整來改變。圖11示出反射率和b*值對畫素電極PE的不同膜厚的分佈。在圖11中,反射金屬層RML-A的材料例如是銀,且其膜厚為1500埃,第一透明導電層TCL1和第二透明導電層TCL2的材料例如是銦錫氧化物(ITO),且其膜厚分別是80埃與50埃,光學輔助層130A的材料例如是二氧化矽,且其膜厚是1000埃,而畫素電極PE的材料例如是銦錫氧化物(ITO),且其膜厚分別是50埃、100埃、300埃與500埃。由圖11可知,當畫素電極PE的膜厚小於或等於300埃時,在CIELAB色彩空間中的b*值可明顯改善。In particular, the reflectivity of the display panel 20 for light with a wavelength of 550 nm and the b* value in the CIELAB color space can be changed by adjusting the film thickness of the pixel electrode PE. FIG11 shows the distribution of the reflectivity and the b* value for different film thicknesses of the pixel electrode PE. In FIG11 , the material of the reflective metal layer RML-A is, for example, silver, and its film thickness is 1500 angstroms, the material of the first transparent conductive layer TCL1 and the second transparent conductive layer TCL2 is, for example, indium tin oxide (ITO), and its film thickness is 80 angstroms and 50 angstroms respectively, the material of the optical auxiliary layer 130A is, for example, silicon dioxide, and its film thickness is 1000 angstroms, and the material of the pixel electrode PE is, for example, indium tin oxide (ITO), and its film thickness is 50 angstroms, 100 angstroms, 300 angstroms, and 500 angstroms respectively. As can be seen from FIG11 , when the film thickness of the pixel electrode PE is less than or equal to 300 angstroms, the b* value in the CIELAB color space can be significantly improved.

然而,本發明不限於此。根據其他未繪示的實施例,畫素電極PE與第二透明導電層TCL2-A之間的光學輔助層也可選用兩種不同的材料來製作。例如本實施例的光學輔助層130A可置換為圖7的光學輔助層130”。舉例來說,光學輔助層130A可由折射率大於1.85的第一光學輔助層131和折射率小於1.65的第二光學輔助層132多層交替堆疊而成,但不以此為限。據此,可進一步增加顯示面板的反射率和在CIELAB色彩空間中的b*值的調整彈性。However, the present invention is not limited to this. According to other embodiments not shown, the optical auxiliary layer between the pixel electrode PE and the second transparent conductive layer TCL2-A can also be made of two different materials. For example, the optical auxiliary layer 130A of the present embodiment can be replaced with the optical auxiliary layer 130" of Figure 7. For example, the optical auxiliary layer 130A can be composed of a first optical auxiliary layer 131 with a refractive index greater than 1.85 and a second optical auxiliary layer 132 with a refractive index less than 1.65, which are alternately stacked, but not limited to this. Accordingly, the reflectivity of the display panel and the adjustment flexibility of the b* value in the CIELAB color space can be further increased.

圖12是依照本發明的第四實施例的顯示面板的剖視示意圖。請參照圖12,不同於圖1的顯示面板10,本實施例的顯示面板30的反射電極RE-B與主動元件T”是分別位於彼此相對的第一基板101與第二基板102上且是分別位於顯示介質層150的不同側,且光學輔助層130B位於第一基板101上且位於反射電極RE-B與顯示介質層150之間。在本實施例中,彩色濾光層170A與共電極層180A是設置在第一基板101上,而畫素結構PX-B的畫素電極PE”與的主動元件T”是設置在第二基板102上,且透過絕緣層110A的穿孔TH-A彼此電性連接。也就是說,本實施例的顯示面板30的畫素陣列基板包括第二基板102、主動元件T”和畫素電極PE”,而顯示面板30的彩膜基板包括第一基板101、共電極層180A、彩色濾光層170A、反射電極RE-B和光學輔助層130B。在一些實施例中,顯示面板30還可包括兩配向膜(未繪示),分別設置於顯示介質層150的相對兩側,其中一配向膜設置於共電極層180A上(即位於共電極層180A與顯示介質層150之間),另一配向膜則設置於畫素電極PE”與顯示介質層150之間。FIG. 12 is a schematic cross-sectional view of a display panel according to a fourth embodiment of the present invention. Referring to FIG. 12 , unlike the display panel 10 of FIG. 1 , the reflective electrode RE-B and the active element T″ of the display panel 30 of the present embodiment are respectively located on the first substrate 101 and the second substrate 102 facing each other and are respectively located on different sides of the display medium layer 150, and the optical auxiliary layer 130B is located on the first substrate 101 and between the reflective electrode RE-B and the display medium layer 150. In the present embodiment, the color filter layer 170A and the common electrode layer 180A are disposed on the first substrate 101, and the pixel electrode PE″ of the pixel structure PX-B and the active element T″ are disposed on the second substrate 102 and are connected to each other through the through hole TH-A of the insulating layer 110A. That is, the pixel array substrate of the display panel 30 of the present embodiment includes a second substrate 102, an active element T″ and a pixel electrode PE″, and the color filter substrate of the display panel 30 includes a first substrate 101, a common electrode layer 180A, a color filter layer 170A, a reflective electrode RE-B and an optical auxiliary layer 130B. In some embodiments, the display panel 30 may further include two alignment films (not shown), which are respectively disposed on opposite sides of the display medium layer 150, one of which is disposed on the common electrode layer 180A (i.e., between the common electrode layer 180A and the display medium layer 150), and the other alignment film is disposed between the pixel electrode PE″ and the display medium layer 150.

特別注意的是,在本實施例中,第一透明導電層TCL1-B、第二透明導電層TCL2-B、反射金屬層RML-B與光學輔助層130B仍是設置在第一基板101上。亦即,不同於圖1的第一透明導電層TCL1、第二透明導電層TCL2、反射金屬層RML與光學輔助層130是設置在畫素陣列基板上,本實施例的第一透明導電層TCL1-B、第二透明導電層TCL2-B、反射金屬層RML-B與光學輔助層130B是設置在彩膜基板上。由於畫素電極PE”改設置在第二基板102上,基於與圖1的顯示介質層150相似的驅動方式,本實施例的共電極層180A對應地改設置在第一基板101上,使其與畫素電極PE”能產生用於驅動顯示介質層150的垂直電場,但不以此為限。It is particularly noted that in this embodiment, the first transparent conductive layer TCL1-B, the second transparent conductive layer TCL2-B, the reflective metal layer RML-B and the optical auxiliary layer 130B are still disposed on the first substrate 101. That is, unlike FIG. 1 where the first transparent conductive layer TCL1, the second transparent conductive layer TCL2, the reflective metal layer RML and the optical auxiliary layer 130 are disposed on the pixel array substrate, the first transparent conductive layer TCL1-B, the second transparent conductive layer TCL2-B, the reflective metal layer RML-B and the optical auxiliary layer 130B in this embodiment are disposed on the color filter substrate. Since the pixel electrode PE″ is relocated on the second substrate 102, based on a driving method similar to the display medium layer 150 of FIG. 1, the common electrode layer 180A of this embodiment is correspondingly relocated on the first substrate 101 so that it and the pixel electrode PE″ can generate a vertical electric field for driving the display medium layer 150, but not limited to this.

在本實施例中,顯示面板30還可選擇性地包括透明導電層190,設置在彩色濾光層170A與光學輔助層130B之間,並且接觸光學輔助層130B。舉例來說,透明導電層190可作為畫素結構PX-B的一部分,或者作為其他功能模組(例如防窺)的驅動電極,或者是用於調整顯示面板30的反射率和在CIELAB色彩空間中的b*值,本發明並不加以限制。In this embodiment, the display panel 30 may further optionally include a transparent conductive layer 190, which is disposed between the color filter layer 170A and the optical auxiliary layer 130B and contacts the optical auxiliary layer 130B. For example, the transparent conductive layer 190 may be used as a part of the pixel structure PX-B, or as a driving electrode of other functional modules (such as anti-penetration), or used to adjust the reflectivity of the display panel 30 and the b* value in the CIELAB color space, and the present invention is not limited thereto.

相似於第三實施例,透過在反射金屬層RML-B上依序堆疊第二透明導電層TCL2-B、光學輔助層130B與透明導電層190,可增加顯示面板30的反射率和在CIELAB色彩空間中的b*值的調整彈性。舉例來說,在本實施例中,光學輔助層130B可選用前面所述的高折射率層(例如折射率約為2.4的二氧化鈦)或是前面所述的低折射率層(例如折射率約為1.45的SiO 2)來製作,而第一透明導電層TCL1-B、第二透明導電層TCL2-B和透明導電層190可選用銦錫氧化物(例如折射率約為1.85)來製作,但不以此為限。 Similar to the third embodiment, by sequentially stacking the second transparent conductive layer TCL2-B, the optical auxiliary layer 130B and the transparent conductive layer 190 on the reflective metal layer RML-B, the reflectivity of the display panel 30 and the flexibility of adjusting the b* value in the CIELAB color space can be increased. For example, in this embodiment, the optical auxiliary layer 130B can be made of the high refractive index layer (e.g., titanium dioxide with a refractive index of about 2.4) or the low refractive index layer (e.g., SiO 2 with a refractive index of about 1.45) described above, and the first transparent conductive layer TCL1-B, the second transparent conductive layer TCL2-B and the transparent conductive layer 190 can be made of indium tin oxide (e.g., with a refractive index of about 1.85), but the present invention is not limited thereto.

然而,本發明不限於此。在另一變形實施例中,第二透明導電層TCL2-B和透明導電層190也可選用折射率大於銦錫氧化物的材料(例如折射率約為2.3的銦鋅氧化物)來製作。由於變形實施例中的第二透明導電層TCL2-B和透明導電層190的折射率與光學輔助層130B的折射率(例如SiO 2的1.45)差異更大,其對於入射光線的薄膜干涉效果更好。因此,除了能增加顯示面板30的反射率和在CIELAB色彩空間中的b*值的調整彈性外,還能進一步簡化光學薄膜架構。 However, the present invention is not limited thereto. In another variant embodiment, the second transparent conductive layer TCL2-B and the transparent conductive layer 190 may also be made of a material having a refractive index greater than that of indium tin oxide (e.g., indium zinc oxide having a refractive index of about 2.3). Since the refractive index of the second transparent conductive layer TCL2-B and the transparent conductive layer 190 in the variant embodiment is more different from the refractive index of the optical auxiliary layer 130B (e.g., 1.45 of SiO 2 ), the thin film interference effect on the incident light is better. Therefore, in addition to increasing the reflectivity of the display panel 30 and the flexibility of adjusting the b* value in the CIELAB color space, the optical film structure can also be further simplified.

然而,本發明不限於此。根據其他未繪示的實施例,本實施例的光學輔助層130B也可選用兩種不同的材料來製作。例如本實施例的光學輔助層130B可置換為圖7的光學輔助層130”。舉例來說,光學輔助層130B可由折射率大於1.85的第一光學輔助層131和折射率小於1.65的第二光學輔助層132多層交替堆疊而成,但不以此為限。據此,可進一步增加顯示面板的反射率和在CIELAB色彩空間中的b*值的調整彈性。However, the present invention is not limited to this. According to other embodiments not shown, the optical auxiliary layer 130B of this embodiment can also be made of two different materials. For example, the optical auxiliary layer 130B of this embodiment can be replaced by the optical auxiliary layer 130" of Figure 7. For example, the optical auxiliary layer 130B can be composed of a first optical auxiliary layer 131 with a refractive index greater than 1.85 and a second optical auxiliary layer 132 with a refractive index less than 1.65, which are alternately stacked, but not limited to this. Accordingly, the reflectivity of the display panel and the adjustment flexibility of the b* value in the CIELAB color space can be further increased.

圖13是依照本發明的第五實施例的顯示面板的剖視示意圖。圖14是圖13的顯示面板的反射率與CIELAB色彩空間中的b*對不同膜厚的輔助金屬層的分佈圖。請參照圖13,本實施例的顯示面板40與圖1的顯示面板10的差異在於:光學輔助層的設置位置不同。具體而言,顯示面板40的光學輔助層130C包括輔助金屬層AML。輔助金屬層AML設置在反射金屬層RML與第二透明導電層TCL2之間,且接觸反射金屬層RML與第二透明導電層TCL2。在本實施例中,第一透明導電層TCL1、第二透明導電層TCL2、反射金屬層RML與輔助金屬層AML彼此電性連接且可構成畫素結構PX-C的反射電極RE-C,並且反射電極RE-C電性連接對應的一個主動元件T,因此反射電極RE-C同時可作為畫素電極。FIG13 is a schematic cross-sectional view of a display panel according to a fifth embodiment of the present invention. FIG14 is a distribution diagram of the reflectivity of the display panel of FIG13 and b* in the CIELAB color space for auxiliary metal layers of different film thicknesses. Referring to FIG13 , the difference between the display panel 40 of this embodiment and the display panel 10 of FIG1 is that the optical auxiliary layer is disposed at a different position. Specifically, the optical auxiliary layer 130C of the display panel 40 includes an auxiliary metal layer AML. The auxiliary metal layer AML is disposed between the reflective metal layer RML and the second transparent conductive layer TCL2, and contacts the reflective metal layer RML and the second transparent conductive layer TCL2. In this embodiment, the first transparent conductive layer TCL1, the second transparent conductive layer TCL2, the reflective metal layer RML and the auxiliary metal layer AML are electrically connected to each other and can constitute a reflective electrode RE-C of the pixel structure PX-C, and the reflective electrode RE-C is electrically connected to a corresponding active element T, so the reflective electrode RE-C can also serve as a pixel electrode.

特別注意的是,輔助金屬層AML和反射金屬層RML的折射率互不相同,且各自的折射率都小於第二透明導電層TCL2的折射率。較佳地,輔助金屬層AML和反射金屬層RML各自的折射率小於1.65。舉例來說,在本實施例中,反射金屬層RML可選用鋁金屬(折射率例如約為1.3)來製作,輔助金屬層AML可選用銀金屬(折射率例如約為0.13)來製作,而第二透明導電層TCL2可選用銦錫氧化物(折射率例如約為1.85)來製作。另一方面,反射金屬層RML的膜厚t3和輔助金屬層AML的膜厚t4較佳為小於150奈米。It is particularly noted that the refractive indexes of the auxiliary metal layer AML and the reflective metal layer RML are different from each other, and each refractive index is less than the refractive index of the second transparent conductive layer TCL2. Preferably, the refractive index of the auxiliary metal layer AML and the reflective metal layer RML is less than 1.65. For example, in this embodiment, the reflective metal layer RML can be made of aluminum metal (refractive index is, for example, about 1.3), the auxiliary metal layer AML can be made of silver metal (refractive index is, for example, about 0.13), and the second transparent conductive layer TCL2 can be made of indium tin oxide (refractive index is, for example, about 1.85). On the other hand, the film thickness t3 of the reflective metal layer RML and the film thickness t4 of the auxiliary metal layer AML are preferably less than 150 nm.

透過輔助金屬層AML的設置,可增加顯示面板40的反射率和在CIELAB色彩空間中的b*值的調整彈性。具體來說,在本實施例中,光學輔助層130C與第二透明導電層TCL2的疊層結構可稱為光學調整膜,其設置於反射金屬層RML上且用以調整反射率以及b*值。圖14示出反射金屬層RML選用銀金屬來製作且膜厚t3為1500埃,且不具有輔助金屬層(即輔助金屬層AML的膜厚為0奈米)(標示為條件EA)、反射金屬層RML選用鋁金屬來製作且膜厚t3為500埃,且輔助金屬層AML選用銀金屬來製作且膜厚t4為250埃(標示為條件EB)和反射金屬層RML選用鋁金屬來製作且膜厚t3為500埃,且輔助金屬層AML選用銀金屬來製作且膜厚t4為500埃(標示為條件EC)時,顯示面板40對於波長550奈米的光線反射率和在CIELAB色彩空間中的b*值分佈,其中,第一透明導電層TCL1的膜厚為80埃,而第二透明導電層TCL2的膜厚為50埃。By providing the auxiliary metal layer AML, the reflectivity of the display panel 40 and the flexibility of adjusting the b* value in the CIELAB color space can be increased. Specifically, in this embodiment, the stacked structure of the optical auxiliary layer 130C and the second transparent conductive layer TCL2 can be called an optical adjustment film, which is provided on the reflective metal layer RML and is used to adjust the reflectivity and the b* value. FIG. 14 shows the reflective metal layer RML made of silver metal and having a film thickness t3 of 1500 angstroms, and having no auxiliary metal layer (i.e., the film thickness of the auxiliary metal layer AML is 0 nanometers) (labeled as condition EA), the reflective metal layer RML made of aluminum metal and having a film thickness t3 of 500 angstroms, and the auxiliary metal layer AML made of silver metal and having a film thickness t4 of 250 angstroms (labeled as condition EB), and the reflective metal layer RML made of aluminum metal and having a film thickness t3 of 500 angstroms. When L is made of aluminum metal and has a film thickness t3 of 500 angstroms, and the auxiliary metal layer AML is made of silver metal and has a film thickness t4 of 500 angstroms (marked as condition EC), the display panel 40 has a reflectivity of light with a wavelength of 550 nanometers and a b* value distribution in the CIELAB color space, wherein the film thickness of the first transparent conductive layer TCL1 is 80 angstroms, and the film thickness of the second transparent conductive layer TCL2 is 50 angstroms.

由圖14可知,當反射金屬層RML選用鋁金屬來製作且膜厚t3為500埃,且輔助金屬層AML選用銀金屬來製作且膜厚t4為250埃(即條件EB)時,顯示面板40在CIELAB色彩空間中的b*值較條件EA明顯降低,同時顯示面板的銀金屬的膜厚可大幅降低(由條件EA的1500埃降至條件EB的250埃),因此成本可大幅降低。此外,條件EB的b*值相較于條件EA時的b*值的降低的幅度明顯大於條件EC的b*值相較於條件EA的b*值的降低的幅度。也就是說,當輔助金屬層AML的膜厚t4減薄時,顯示面板40的顯色性能獲得較明顯的提升。As shown in FIG. 14 , when the reflective metal layer RML is made of aluminum metal and the film thickness t3 is 500 angstroms, and the auxiliary metal layer AML is made of silver metal and the film thickness t4 is 250 angstroms (i.e., condition EB), the b* value of the display panel 40 in the CIELAB color space is significantly lower than that of condition EA, and at the same time, the film thickness of the silver metal of the display panel can be greatly reduced (from 1500 angstroms of condition EA to 250 angstroms of condition EB), so the cost can be greatly reduced. In addition, the reduction in the b* value of condition EB compared to the b* value of condition EA is significantly greater than the reduction in the b* value of condition EC compared to the b* value of condition EA. That is, when the film thickness t4 of the auxiliary metal layer AML is reduced, the color rendering performance of the display panel 40 is significantly improved.

雖然輔助金屬層AML的設置對於顯示面板40的反射率調整並不明顯,但確實能明顯改變顯示面板40在CIELAB色彩空間中的b*值,有助於提升顯示面板40的顯色性。Although the provision of the auxiliary metal layer AML does not significantly adjust the reflectivity of the display panel 40 , it can indeed significantly change the b* value of the display panel 40 in the CIELAB color space, which helps to improve the color rendering of the display panel 40 .

圖15是依照本發明的第六實施例的顯示面板的剖視示意圖。請參照圖15,本實施例的顯示面板40’與圖13的顯示面板40的差異在於:本實施例的光學輔助層130C’除了包括輔助金屬層AML外,還包括輔助絕緣層INS。輔助絕緣層INS設置在第二透明導電層TCL2上且接觸第二透明導電層TCL2。本實施例中的第二透明導電層TCL2與輔助絕緣層INS分別相似於第一實施例的第二透明導電層TCL2與光學輔助層130或是分別相似於第一實施例的另一變形實施例的第二透明導電層TCL2與光學輔助層130”,第二透明導電層TCL2與輔助絕緣層INS的材料與折射率選擇以改善顯示面板40’的反射率和CIELAB色彩空間中的b*值亦分別相似於第一實施例的第二透明導電層TCL2與光學輔助層130的材料與折射率選擇或是分別相似於第一實施例的另一變形實施例的第二透明導電層TCL2與光學輔助層130” 的材料與折射率選擇,因此省略相同技術內容的說明,省略部分請參考前述實施例,於此不再贅述。舉例來說,光學輔助層130C’中的輔助絕緣層INS可為折射率大於1.85或小於1.65的單層膜層結構,或是由折射率大於1.85的膜層與折射率小於1.65的膜層交替堆疊形成的多層膜層結構。具體來說,本實施例中的光學輔助層130C’中的輔助絕緣層INS相同於第一實施例中的光學輔助層130或是第一實施例的另一變形實施例中的光學輔助層130”。 在本實施例中,光學輔助層130C’中的輔助絕緣層INS、第二透明導電層TCL2與光學輔助層130C’中的輔助金屬層AML的疊層結構可稱為光學調整膜,其設置於反射金屬層RML上且用以調整反射率以及b*值。FIG15 is a schematic cross-sectional view of a display panel according to a sixth embodiment of the present invention. Referring to FIG15 , the difference between the display panel 40′ of this embodiment and the display panel 40 of FIG13 is that the optical auxiliary layer 130C′ of this embodiment includes an auxiliary insulating layer INS in addition to the auxiliary metal layer AML. The auxiliary insulating layer INS is disposed on the second transparent conductive layer TCL2 and contacts the second transparent conductive layer TCL2. The second transparent conductive layer TCL2 and the auxiliary insulating layer INS in this embodiment are respectively similar to the second transparent conductive layer TCL2 and the optical auxiliary layer 130 in the first embodiment, or respectively similar to the second transparent conductive layer TCL2 and the optical auxiliary layer 130' in another modified embodiment of the first embodiment. The materials and refractive indexes of the second transparent conductive layer TCL2 and the auxiliary insulating layer INS are selected to improve the reflectivity of the display panel 40' and the b* value in the CIELAB color space. The materials and refractive indexes of the second transparent conductive layer TCL2 and the optical auxiliary layer 130 in the first embodiment are also selected, or respectively similar to the second transparent conductive layer TCL2 and the optical auxiliary layer 130' in another modified embodiment of the first embodiment. For example, the auxiliary insulating layer INS in the optical auxiliary layer 130C' can be a single-layer film structure with a refractive index greater than 1.85 or less than 1.65, or a multi-layer film structure formed by alternately stacking a film layer with a refractive index greater than 1.85 and a film layer with a refractive index less than 1.65. Specifically, the auxiliary insulating layer INS in the optical auxiliary layer 130C’ in this embodiment is the same as the optical auxiliary layer 130 in the first embodiment or the optical auxiliary layer 130” in another variant embodiment of the first embodiment. In this embodiment, the stacked structure of the auxiliary insulating layer INS in the optical auxiliary layer 130C’, the second transparent conductive layer TCL2 and the auxiliary metal layer AML in the optical auxiliary layer 130C’ can be called an optical adjustment film, which is arranged on the reflective metal layer RML and is used to adjust the reflectivity and b* value.

在一些實施例中,顯示面板40’還可包括兩配向膜(未繪示),分別設置於顯示介質層150的相對兩側,其中一配向膜設置於輔助絕緣層INS上(即位於輔助絕緣層INS與顯示介質層150之間),另一配向膜則設置於共電極層180與顯示介質層150之間。In some embodiments, the display panel 40' may further include two alignment films (not shown), which are respectively disposed on opposite sides of the display medium layer 150, one of which is disposed on the auxiliary insulating layer INS (i.e., between the auxiliary insulating layer INS and the display medium layer 150), and the other alignment film is disposed between the common electrode layer 180 and the display medium layer 150.

圖16是依照本發明的第七實施例的顯示面板的剖視示意圖。圖17是圖16的光學輔助層的另一變形實施例的剖視示意圖。請參照圖16,本實施例的顯示面板40A與圖13的顯示面板40的差異在於:輔助金屬層的數量不同,且各個金屬層間的膜厚關係也不同。具體而言,在本實施例的畫素結構PX-D中,設置在第二透明導電層TCL2與反射金屬層RML間的光學輔助層130D可包括第一輔助金屬層AML-1和第二輔助金屬層AML-2。第一輔助金屬層AML-1接觸反射金屬層RML。第二輔助金屬層AML-2設置在第一輔助金屬層AML-1與第二透明導電層TCL2之間,且接觸第一輔助金屬層AML-1與第二透明導電層TCL2。在本實施例中,第一透明導電層TCL1、第二透明導電層TCL2、反射金屬層RML、第一輔助金屬層AML-1和第二輔助金屬層AML-2彼此電性連接且可構成畫素結構PX-D的反射電極RE-D,並且反射電極RE-D電性連接對應的一個主動元件T,因此反射電極RE-D同時可作為畫素電極。在本實施例中,光學輔助層130D與第二透明導電層TCL2的疊層結構可稱為光學調整膜,其設置於反射金屬層RML上且用以調整反射率以及b*值。FIG16 is a schematic cross-sectional view of a display panel according to the seventh embodiment of the present invention. FIG17 is a schematic cross-sectional view of another modified embodiment of the optical auxiliary layer of FIG16. Referring to FIG16, the difference between the display panel 40A of this embodiment and the display panel 40 of FIG13 is that the number of auxiliary metal layers is different, and the film thickness relationship between each metal layer is also different. Specifically, in the pixel structure PX-D of this embodiment, the optical auxiliary layer 130D disposed between the second transparent conductive layer TCL2 and the reflective metal layer RML may include a first auxiliary metal layer AML-1 and a second auxiliary metal layer AML-2. The first auxiliary metal layer AML-1 contacts the reflective metal layer RML. The second auxiliary metal layer AML-2 is disposed between the first auxiliary metal layer AML-1 and the second transparent conductive layer TCL2, and contacts the first auxiliary metal layer AML-1 and the second transparent conductive layer TCL2. In this embodiment, the first transparent conductive layer TCL1, the second transparent conductive layer TCL2, the reflective metal layer RML, the first auxiliary metal layer AML-1 and the second auxiliary metal layer AML-2 are electrically connected to each other and can constitute a reflective electrode RE-D of the pixel structure PX-D, and the reflective electrode RE-D is electrically connected to a corresponding active element T, so the reflective electrode RE-D can also serve as a pixel electrode. In this embodiment, the stacked structure of the optical auxiliary layer 130D and the second transparent conductive layer TCL2 can be referred to as an optical adjustment film, which is disposed on the reflective metal layer RML and is used to adjust the reflectivity and the b* value.

特別注意的是,在本實施例中,第二輔助金屬層AML-2和反射金屬層RML各自的折射率大於或小於第一輔助金屬層AML-1的折射率。舉例來說,在第二輔助金屬層AML-2和反射金屬層RML各自的折射率大於第一輔助金屬層AML-1的折射率的實施例中,第二輔助金屬層AML-2和反射金屬層RML可選用鋁金屬(折射率例如約為1.3)來製作,而第一輔助金屬層AML-1可選用銀金屬(折射率例如約為0.13)來製作,但不以此為限。在一些實施例中,第二輔助金屬層AML-2和反射金屬層RML可包括不同材料,且第二輔助金屬層AML-2和反射金屬層RML各自的折射率大於第一輔助金屬層AML-1的折射率。由於反射金屬層RML、第一輔助金屬層AML-1和第二輔助金屬層AML-2是依序堆疊於第一透明導電層TCL1上,因此可形成折射率分佈為高-低-高的金屬薄膜干涉結構(即為高折射率與低折射率依序交錯的金屬薄膜干涉結構),有助於增加顯示面板40A在CIELAB色彩空間中的b*的調整彈性。It is particularly noted that, in this embodiment, the refractive index of each of the second auxiliary metal layer AML-2 and the reflective metal layer RML is greater than or less than the refractive index of the first auxiliary metal layer AML-1. For example, in an embodiment in which the refractive index of each of the second auxiliary metal layer AML-2 and the reflective metal layer RML is greater than the refractive index of the first auxiliary metal layer AML-1, the second auxiliary metal layer AML-2 and the reflective metal layer RML can be made of aluminum metal (refractive index, for example, about 1.3), and the first auxiliary metal layer AML-1 can be made of silver metal (refractive index, for example, about 0.13), but the present invention is not limited thereto. In some embodiments, the second auxiliary metal layer AML-2 and the reflective metal layer RML may include different materials, and the refractive index of each of the second auxiliary metal layer AML-2 and the reflective metal layer RML is greater than the refractive index of the first auxiliary metal layer AML-1. Since the reflective metal layer RML, the first auxiliary metal layer AML-1, and the second auxiliary metal layer AML-2 are sequentially stacked on the first transparent conductive layer TCL1, a metal thin film interference structure with a refractive index distribution of high-low-high (i.e., a metal thin film interference structure with high refractive index and low refractive index alternated in sequence) can be formed, which helps to increase the adjustment flexibility of b* of the display panel 40A in the CIELAB color space.

然而,本發明不限於此。在另一變形實施例(即第二輔助金屬層AML-2和反射金屬層RML各自的折射率小於第一輔助金屬層AML-1的折射率的實施例)中,第二輔助金屬層AML-2和反射金屬層RML可選用銀金屬(折射率例如約為0.13)來製作,而第一輔助金屬層AML-1可選用鋁金屬(折射率例如約為1.3)來製作,但不以此為限。在一些實施例中,第二輔助金屬層AML-2和反射金屬層RML可包括不同材料,且第二輔助金屬層AML-2和反射金屬層RML各自的折射率小於第一輔助金屬層AML-1的折射率。由於反射金屬層RML、第一輔助金屬層AML-1和第二輔助金屬層AML-2是依序堆疊於第一透明導電層TCL1上,進而形成折射率分佈為低-高-低的金屬薄膜干涉結構(即為低折射率與高折射率依序交錯的金屬薄膜干涉結構),但不以此為限。However, the present invention is not limited thereto. In another variant embodiment (i.e., an embodiment in which the refractive index of each of the second auxiliary metal layer AML-2 and the reflective metal layer RML is less than the refractive index of the first auxiliary metal layer AML-1), the second auxiliary metal layer AML-2 and the reflective metal layer RML may be made of silver metal (refractive index, for example, about 0.13), and the first auxiliary metal layer AML-1 may be made of aluminum metal (refractive index, for example, about 1.3), but the present invention is not limited thereto. In some embodiments, the second auxiliary metal layer AML-2 and the reflective metal layer RML may include different materials, and the refractive index of each of the second auxiliary metal layer AML-2 and the reflective metal layer RML is less than the refractive index of the first auxiliary metal layer AML-1. Since the reflective metal layer RML, the first auxiliary metal layer AML-1 and the second auxiliary metal layer AML-2 are stacked sequentially on the first transparent conductive layer TCL1, a metal thin film interference structure with a refractive index distribution of low-high-low is formed (that is, a metal thin film interference structure with low refractive index and high refractive index alternating in sequence), but not limited to this.

另一方面,在本實施例中,反射金屬層RML的膜厚t3可大於第一輔助金屬層AML-1的膜厚t4’,且第一輔助金屬層AML-1的膜厚t4’可大於第二輔助金屬層AML-2的膜厚t5。也就是說,堆疊於第一透明導電層TCL1上的各金屬層的膜厚隨著遠離第一透明導電層TCL1的方向(即方向Z)而漸減。據此,可進一步增加顯示面板40A在CIELAB色彩空間中的b*的調整彈性,有助於提升顯示面板40A在的顯色性。On the other hand, in this embodiment, the film thickness t3 of the reflective metal layer RML may be greater than the film thickness t4' of the first auxiliary metal layer AML-1, and the film thickness t4' of the first auxiliary metal layer AML-1 may be greater than the film thickness t5 of the second auxiliary metal layer AML-2. In other words, the film thickness of each metal layer stacked on the first transparent conductive layer TCL1 gradually decreases as it moves away from the first transparent conductive layer TCL1 (i.e., direction Z). Accordingly, the adjustment flexibility of b* of the display panel 40A in the CIELAB color space can be further increased, which helps to improve the color rendering of the display panel 40A.

在一些實施例中,光學輔助層130D除了包括第一輔助金屬層AML-1和第二輔助金屬層AML-2外,還可包括輔助絕緣層,設置在第二透明導電層TCL2上。上述的輔助絕緣層相似於第六實施例的光學輔助層130C’的輔助絕緣層INS,因此省略相同技術內容的說明,省略部分請參考前述實施例,於此不再贅述。In some embodiments, the optical auxiliary layer 130D may include an auxiliary insulating layer in addition to the first auxiliary metal layer AML-1 and the second auxiliary metal layer AML-2, and may be disposed on the second transparent conductive layer TCL2. The auxiliary insulating layer is similar to the auxiliary insulating layer INS of the optical auxiliary layer 130C' of the sixth embodiment, so the description of the same technical content is omitted, and the omitted part is referred to the aforementioned embodiment, which will not be repeated here.

在另一變形實施例中,光學輔助層也可包括數量大於2的多個輔助金屬層。如圖17所示,光學輔助層包括第一至第M輔助金屬層AML-1至AML-M,其中M為大於2的正整數。反射金屬層RML與第一至第M輔助金屬層AML-1至AML-M各自的折射率小於第二透明導電層TCL2的折射率,且反射金屬層RML與第一至第M輔助金屬層AML-1至AML-M各自的折射率較佳為小於1.65。反射金屬層RML與第一至第M輔助金屬層AML-1至AML-M隨著遠離第一透明導電層TCL1的方向(即方向Z)形成折射率分佈為高折射率與低折射率依序交錯的金屬薄膜干涉結構,或是形成折射率分佈為低折射率與高折射率依序交錯的金屬薄膜干涉結構。反射金屬層RML與第一至第M輔助金屬層AML-1至AML-M各自的膜厚小於150奈米。第一輔助金屬層AML-1的膜厚小於反射金屬層RML的膜厚,且第一至第M輔助金屬層AML-1至AML-M各自的膜厚隨著遠離反射金屬層RML的方向而漸減(即沿著方向Z依序遞減)。也就是說,在所述變形實施例的光學輔助層中,除了第一至第M輔助金屬層AML-1至AML-M的折射率的交替變化外第一至第M輔助金屬層AML-1至AML-M各自的膜厚還會朝向顯示面板的入光側遞減。In another variant embodiment, the optical auxiliary layer may also include a plurality of auxiliary metal layers greater than 2. As shown in FIG17 , the optical auxiliary layer includes first to Mth auxiliary metal layers AML-1 to AML-M, where M is a positive integer greater than 2. The refractive index of each of the reflective metal layer RML and the first to Mth auxiliary metal layers AML-1 to AML-M is less than the refractive index of the second transparent conductive layer TCL2, and the refractive index of each of the reflective metal layer RML and the first to Mth auxiliary metal layers AML-1 to AML-M is preferably less than 1.65. The reflective metal layer RML and the first to Mth auxiliary metal layers AML-1 to AML-M form a metal thin film interference structure with a refractive index distribution of high refractive index and low refractive index alternating in sequence along the direction away from the first transparent conductive layer TCL1 (i.e., direction Z), or form a metal thin film interference structure with a refractive index distribution of low refractive index and high refractive index alternating in sequence. The reflective metal layer RML and the first to Mth auxiliary metal layers AML-1 to AML-M each have a film thickness of less than 150 nanometers. The film thickness of the first auxiliary metal layer AML-1 is smaller than the film thickness of the reflective metal layer RML, and the film thicknesses of the first to Mth auxiliary metal layers AML-1 to AML-M decrease gradually in the direction away from the reflective metal layer RML (i.e., decrease in sequence along the direction Z). That is, in the optical auxiliary layer of the modified embodiment, in addition to the alternating change of the refractive index of the first to Mth auxiliary metal layers AML-1 to AML-M, the film thicknesses of the first to Mth auxiliary metal layers AML-1 to AML-M also decrease toward the light incident side of the display panel.

綜上所述,顯示面板的光學輔助層包括至少一輔助金屬層。所述至少一輔助金屬層設置在反射金屬層RML與第二透明導電層TCL2之間。反射金屬層RML與所述至少一輔助金屬層形成折射率分佈為高折射率與低折射率依序交錯的金屬薄膜干涉結構,或是形成折射率分佈為低折射率與高折射率依序交錯的金屬薄膜干涉結構。反射金屬層RML與所述至少一輔助金屬層的各輔助金屬層的的折射率小於第二透明導電層TCL2的折射率,且反射金屬層RML與所述至少一輔助金屬層的各輔助金屬層的的折射率較佳為小於1.65。反射金屬層RML與所述至少一輔助金屬層的各輔助金屬層的厚度小於150奈米。所述至少一輔助金屬層的各輔助金屬層的厚度小於反射金屬層RML的厚度,且所述至少一輔助金屬層的各輔助金屬層的厚度隨著遠離反射金屬層RML的方向而漸減。In summary, the optical auxiliary layer of the display panel includes at least one auxiliary metal layer. The at least one auxiliary metal layer is disposed between the reflective metal layer RML and the second transparent conductive layer TCL2. The reflective metal layer RML and the at least one auxiliary metal layer form a metal thin film interference structure in which the refractive index distribution is a high refractive index and a low refractive index alternating in sequence, or form a metal thin film interference structure in which the refractive index distribution is a low refractive index and a high refractive index alternating in sequence. The refractive index of the reflective metal layer RML and each auxiliary metal layer of the at least one auxiliary metal layer is less than the refractive index of the second transparent conductive layer TCL2, and the refractive index of the reflective metal layer RML and each auxiliary metal layer of the at least one auxiliary metal layer is preferably less than 1.65. The thickness of the reflective metal layer RML and each auxiliary metal layer of the at least one auxiliary metal layer is less than 150 nanometers. The thickness of each auxiliary metal layer of the at least one auxiliary metal layer is less than the thickness of the reflective metal layer RML, and the thickness of each auxiliary metal layer of the at least one auxiliary metal layer gradually decreases in a direction away from the reflective metal layer RML.

此外,在一些實施例中,光學輔助層除了包括至少一輔助金屬層外,還可包括輔助絕緣層,設置在第二透明導電層TCL2上。輔助絕緣層可為折射率大於1.85或小於1.65的單層膜層結構,或是由折射率大於1.85的膜層與折射率小於1.65的膜層交替堆疊形成的多層膜層結構。In addition, in some embodiments, the optical auxiliary layer may include an auxiliary insulating layer in addition to at least one auxiliary metal layer, and may be disposed on the second transparent conductive layer TCL2. The auxiliary insulating layer may be a single-layer film structure with a refractive index greater than 1.85 or less than 1.65, or a multi-layer film structure formed by alternately stacking a film layer with a refractive index greater than 1.85 and a film layer with a refractive index less than 1.65.

在光學輔助層包括單層輔助金屬層結構的實施例(例如圖13和圖15的實施例)中,輔助金屬層的下表面與上表面分別接觸反射金屬層RML與第二透明導電層TCL2。In the embodiment where the optical auxiliary layer includes a single auxiliary metal layer structure (such as the embodiments of FIG. 13 and FIG. 15 ), the lower surface and the upper surface of the auxiliary metal layer contact the reflective metal layer RML and the second transparent conductive layer TCL2 respectively.

在光學輔助層包括多層輔助金屬層結構的實施例(例如圖16和圖17的實施例)中,光學輔助層包括N個輔助金屬層,其中N為大於或等於2的正整數。所述N個輔助金屬層包括沿著遠離反射金屬層RML的方向依序堆疊的第一至第N輔助金屬層,第一輔助金屬層的下表面接觸反射金屬層RML,且第N輔助金屬層的上表面接觸第二透明導電層TCL2。反射金屬層RML與第一至第N輔助金屬層的折射率小於第二透明導電層TCL2的折射率,且反射金屬層RML與第一至第N輔助金屬層的折射率較佳為小於1.65。反射金屬層RML與第一至第N輔助金屬層沿著遠離反射金屬層RML的方向形成折射率分佈為高折射率與低折射率依序交錯的金屬薄膜干涉結構,或是形成折射率分佈為低折射率與高折射率依序交錯的金屬薄膜干涉結構。反射金屬層RML與第一至第N輔助金屬層各自的厚度小於150奈米。第一輔助金屬層的厚度小於反射金屬層RML的厚度,且第一至第N輔助金屬層的厚度沿著遠離反射金屬層RML的方向依序遞減。In an embodiment where the optical auxiliary layer includes a multi-layer auxiliary metal layer structure (e.g., the embodiment of FIG. 16 and FIG. 17 ), the optical auxiliary layer includes N auxiliary metal layers, where N is a positive integer greater than or equal to 2. The N auxiliary metal layers include first to Nth auxiliary metal layers stacked in sequence along a direction away from the reflective metal layer RML, a lower surface of the first auxiliary metal layer contacts the reflective metal layer RML, and an upper surface of the Nth auxiliary metal layer contacts the second transparent conductive layer TCL2. The refractive index of the reflective metal layer RML and the first to Nth auxiliary metal layers is less than the refractive index of the second transparent conductive layer TCL2, and the refractive index of the reflective metal layer RML and the first to Nth auxiliary metal layers is preferably less than 1.65. The reflective metal layer RML and the first to Nth auxiliary metal layers form a metal thin film interference structure with a refractive index distribution of high refractive index and low refractive index alternating in sequence along a direction away from the reflective metal layer RML, or form a metal thin film interference structure with a refractive index distribution of low refractive index and high refractive index alternating in sequence. The thickness of each of the reflective metal layer RML and the first to Nth auxiliary metal layers is less than 150 nanometers. The thickness of the first auxiliary metal layer is smaller than the thickness of the reflective metal layer RML, and the thicknesses of the first to Nth auxiliary metal layers decrease in sequence along a direction away from the reflective metal layer RML.

圖18是依照本發明的第八實施例的顯示面板的剖視示意圖。請參照圖18,不同於圖16的顯示面板40A,本實施例的顯示面板50的反射電極RE-E與主動元件T”是分別位於彼此相對的第一基板101與第二基板102上且是分別位於顯示介質層150的不同側,且光學輔助層130E位於第一基板101上且位於反射金屬層RML-B與顯示介質層150之間。彩色濾光層170A與共電極層180A是設置在第一基板101上,而畫素結構PX-E的畫素電極PE”與主動元件T”是設置在第二基板102上且彼此電性連接。也就是說,本實施例的顯示面板50的畫素陣列基板包括第二基板102、主動元件T”及畫素電極PE”,而顯示面板50的彩膜基板包括第一基板101、共電極層180A、第一透明導電層TCL1-B、第二透明導電層TCL2-B、反射金屬層RML-B、光學輔助層130E和彩色濾光層170A。在一些實施例中,顯示面板50還可包括兩配向膜(未繪示),分別設置於顯示介質層150的相對兩側,其中一配向膜設置於共電極層180A上(即位於共電極層180A與顯示介質層150之間),另一配向膜則設置於畫素電極PE”與顯示介質層150之間。FIG. 18 is a schematic cross-sectional view of a display panel according to an eighth embodiment of the present invention. Referring to FIG. 18 , unlike the display panel 40A of FIG. 16 , the reflective electrode RE-E and the active element T″ of the display panel 50 of the present embodiment are respectively located on the first substrate 101 and the second substrate 102 facing each other and are respectively located on different sides of the display medium layer 150, and the optical auxiliary layer 130E is located on the first substrate 101 and between the reflective metal layer RML-B and the display medium layer 150. The color filter layer 170A and the common electrode layer 180A are disposed on the first substrate 101, and the pixel electrode PE″ and the active element T″ of the pixel structure PX-E are disposed on the second substrate 102 and are electrically connected to each other. In other words, the pixel array of the display panel 50 of the present embodiment The substrate includes a second substrate 102, an active element T″ and a pixel electrode PE″, and the color filter substrate of the display panel 50 includes a first substrate 101, a common electrode layer 180A, a first transparent conductive layer TCL1-B, a second transparent conductive layer TCL2-B, a reflective metal layer RML-B, an optical auxiliary layer 130E and a color filter layer 170A. In some embodiments, the display panel 50 may further include two alignment films (not shown), which are respectively disposed on opposite sides of the display medium layer 150, one of which is disposed on the common electrode layer 180A (i.e., between the common electrode layer 180A and the display medium layer 150), and the other alignment film is disposed between the pixel electrode PE″ and the display medium layer 150.

特別注意的是,在本實施例中,第一透明導電層TCL1-B、第二透明導電層TCL2-B、反射金屬層RML-B以及光學輔助層130E的第一輔助金屬層AML-1”和第二輔助金屬層AML-2”仍是設置在第一基板101上。亦即,不同於圖16的第一透明導電層TCL1、第二透明導電層TCL2、反射金屬層RML與光學輔助層130D是設置在畫素陣列基板上,本實施例的第一透明導電層TCL1-B、第二透明導電層TCL2-B、反射金屬層RML-B與光學輔助層130E是設置在彩膜基板上。由於畫素電極PE”改設置在第二基板102上,基於與圖1的顯示介質層150相似的驅動方式,本實施例的共電極層180A對應地改設置在第一基板101上,使其與畫素電極PE”能產生用於驅動顯示介質層150的垂直電場,但不以此為限。It is particularly noted that in the present embodiment, the first transparent conductive layer TCL1-B, the second transparent conductive layer TCL2-B, the reflective metal layer RML-B, and the first auxiliary metal layer AML-1″ and the second auxiliary metal layer AML-2″ of the optical auxiliary layer 130E are still disposed on the first substrate 101. That is, unlike the first transparent conductive layer TCL1, the second transparent conductive layer TCL2, the reflective metal layer RML and the optical auxiliary layer 130D in FIG. 16 , which are disposed on the pixel array substrate, the first transparent conductive layer TCL1-B, the second transparent conductive layer TCL2-B, the reflective metal layer RML-B and the optical auxiliary layer 130E in the present embodiment are disposed on the color filter substrate. Since the pixel electrode PE″ is relocated on the second substrate 102, based on a driving method similar to the display medium layer 150 of FIG. 1, the common electrode layer 180A of this embodiment is correspondingly relocated on the first substrate 101 so that it and the pixel electrode PE″ can generate a vertical electric field for driving the display medium layer 150, but not limited to this.

在本實施例中,光學輔助層130E還可包括設置在第二透明導電層TCL2-B上的輔助絕緣層INS-A,其中第二透明導電層TCL2-B設置在第二輔助金屬層AML-2”與輔助絕緣層INS-A之間。In this embodiment, the optical auxiliary layer 130E may further include an auxiliary insulating layer INS-A disposed on the second transparent conductive layer TCL2-B, wherein the second transparent conductive layer TCL2-B is disposed between the second auxiliary metal layer AML-2″ and the auxiliary insulating layer INS-A.

透過在反射金屬層RML-B上依序堆疊第一輔助金屬層AML-1”、第二輔助金屬層AML-2”、第二透明導電層TCL2-B與輔助絕緣層INS-A,可增加顯示面板50的反射率和在CIELAB色彩空間中的b*值的調整彈性。By sequentially stacking the first auxiliary metal layer AML-1", the second auxiliary metal layer AML-2", the second transparent conductive layer TCL2-B and the auxiliary insulating layer INS-A on the reflective metal layer RML-B, the reflectivity of the display panel 50 and the adjustment flexibility of the b* value in the CIELAB color space can be increased.

舉例來說,在本實施例中,輔助絕緣層INS-A可選用折射率小於1.65的材料(例如折射率約為1.45的SiO 2)來製作,而第二透明導電層TCL2-B可選用折射率約為1.85的銦錫氧化物來製作。然而,本發明不限於此。在另一未繪示的變形實施例中,第二透明導電層TCL2-B也可選用折射率大於1.85的材料(例如折射率約為2.3的銦鋅氧化物)來製作。由於變形實施例中的第二透明導電層TCL2-B的折射率與輔助絕緣層INS-A的折射率(例如SiO 2的1.45)差異更大,其對於入射光線的薄膜干涉效果會更好。因此,除了能增加顯示面板50的反射率和在CIELAB色彩空間中的b*值的調整彈性外,還能進一步簡化光學薄膜架構。 For example, in this embodiment, the auxiliary insulating layer INS-A can be made of a material with a refractive index less than 1.65 (e.g., SiO 2 with a refractive index of about 1.45), and the second transparent conductive layer TCL2-B can be made of indium tin oxide with a refractive index of about 1.85. However, the present invention is not limited thereto. In another variant embodiment not shown, the second transparent conductive layer TCL2-B can also be made of a material with a refractive index greater than 1.85 (e.g., indium zinc oxide with a refractive index of about 2.3). Since the refractive index of the second transparent conductive layer TCL2-B in the variant embodiment is more different from the refractive index of the auxiliary insulating layer INS-A (e.g., 1.45 of SiO 2 ), its thin film interference effect on incident light will be better. Therefore, in addition to increasing the reflectivity of the display panel 50 and the flexibility of adjusting the b* value in the CIELAB color space, the optical film structure can also be further simplified.

在又一未繪示的變形實施例中,光學輔助層的輔助絕緣層也可以選用兩種不同的材料來製作,例如由折射率大於1.85的第一輔助絕緣層和折射率小於1.65的第二輔助絕緣層多層交替堆疊而成,但不以此為限。In another variant embodiment not shown, the auxiliary insulating layer of the optical auxiliary layer can also be made of two different materials, for example, a first auxiliary insulating layer with a refractive index greater than 1.85 and a second auxiliary insulating layer with a refractive index less than 1.65 are alternately stacked, but not limited to this.

由於本實施例的第一輔助金屬層AML-1”、第二輔助金屬層AML-2”和反射金屬層RML-B的材料選用及折射率的配置關係相似於圖16的第一輔助金屬層AML-1、第二輔助金屬層AML-2和反射金屬層RML,詳細的說明請參見前述實施例的相關段落,於此不再重述。Since the material selection and refractive index configuration relationship of the first auxiliary metal layer AML-1", the second auxiliary metal layer AML-2" and the reflective metal layer RML-B in this embodiment are similar to the first auxiliary metal layer AML-1, the second auxiliary metal layer AML-2 and the reflective metal layer RML in Figure 16, please refer to the relevant paragraphs of the aforementioned embodiments for detailed description, which will not be repeated here.

進一步而言,在本實施例中,反射金屬層RML-B的膜厚t3”、第一輔助金屬層AML-1”的膜厚t4”和第二輔助金屬層AML-2”的膜厚t5”也可如圖16中各個金屬層的膜厚以漸變的方式進行配置。Furthermore, in this embodiment, the film thickness t3" of the reflective metal layer RML-B, the film thickness t4" of the first auxiliary metal layer AML-1" and the film thickness t5" of the second auxiliary metal layer AML-2" can also be configured in a gradual manner as the film thickness of each metal layer in Figure 16.

綜上所述,在本發明的一實施例的顯示面板中,設置在兩個透明導電層間的反射金屬層,其反射率可透過光學輔助層的設置並且讓所述光學輔助層接觸反射金屬層與位於入光側的透明導電層的至少一個而獲得提升,其中所述光學輔助層的折射率大於1.85或小於1.65。此外,這樣的配置方式還能增加顯示面板的顯色性。In summary, in a display panel of an embodiment of the present invention, the reflectivity of the reflective metal layer disposed between two transparent conductive layers can be improved by disposing an optical auxiliary layer and allowing the optical auxiliary layer to contact at least one of the reflective metal layer and the transparent conductive layer located on the light incident side, wherein the refractive index of the optical auxiliary layer is greater than 1.85 or less than 1.65. In addition, such a configuration can also increase the color rendering of the display panel.

最後應說明的是:以上各實施例僅用以說明本發明的技術方案,而非對其限制;儘管參照前述各實施例對本發明進行了詳細的說明,本領域的普通技術人員應當理解:其依然可以對前述各實施例所記載的技術方案進行修改,或者對其中部分或者全部技術特徵進行等同替換;而這些修改或者替換,並不使相應技術方案的本質脫離本發明各實施例技術方案的範圍。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit it. Although the present invention has been described in detail with reference to the above embodiments, ordinary technical personnel in this field should understand that they can still modify the technical solutions described in the above embodiments, or replace part or all of the technical features therein with equivalents. However, these modifications or replacements do not deviate the essence of the corresponding technical solutions from the scope of the technical solutions of the embodiments of the present invention.

10、10A、20、30、40、40’、40A、50:顯示面板 101:第一基板 102:第二基板 110、110’、110A:絕緣層 130、130’、130”、130A、130B、130C、130C’、130D、130E:光學輔助層 131:第一光學輔助層 132:第二光學輔助層 150:顯示介質層 170、170’、170A:彩色濾光層 180、180’、180A:共電極層 190:透明導電層 AML、AML-1、AML-2、AML-M、AML-1”、AML-2”:輔助金屬層 C1、E1、E2、E3、E4、E5:曲線 EB:環境光 FB:前光 INS、INS-A:輔助絕緣層 IL:入射光 PE、PE’、PE”:畫素電極 PX、PX’、PX-A、PX-B、PX-C、PX-D、PX-E:畫素結構 RB:反射光 RE、RE’、RE-A、RE-B、RE-C、RE-D、RE-E:反射電極 SC:儲存電容器 RML、RML’、RML-A、RML-B:反射金屬層 T、T’、T”:主動元件 t1、t2、t3、t4、t4’、t5、t3”、t4”、t5”:膜厚 TCL1、TCL1’、TCL1-A、TCL1-B:第一透明導電層 TCL2、TCL2’、TCL2-A、TCL2-B:第二透明導電層 TH、TH’、TH-A:穿孔 Z:方向 10, 10A, 20, 30, 40, 40', 40A, 50: display panel 101: first substrate 102: second substrate 110, 110', 110A: insulating layer 130, 130', 130", 130A, 130B, 130C, 130C', 130D, 130E: optical auxiliary layer 131: first optical auxiliary layer 132: second optical auxiliary layer 150: display medium layer 170, 170', 170A: color filter layer 180, 180', 180A: common electrode layer 190: transparent conductive layer AML, AML-1, AML-2, AML-M, AML-1”, AML-2”: auxiliary metal layer C1, E1, E2, E3, E4, E5: curve EB: ambient light FB: front light INS, INS-A: auxiliary insulating layer IL: incident light PE, PE’, PE”: pixel electrode PX, PX’, PX-A, PX-B, PX-C, PX-D, PX-E: pixel structure RB: reflected light RE, RE’, RE-A, RE-B, RE-C, RE-D, RE-E: reflective electrode SC: storage capacitor RML, RML’, RML-A, RML-B: reflective metal layer T, T’, T”: active element t1, t2, t3, t4, t4’, t5, t3”, t4”, t5”: film thickness TCL1, TCL1’, TCL1-A, TCL1-B: first transparent conductive layer TCL2, TCL2’, TCL2-A, TCL2-B: second transparent conductive layer TH, TH’, TH-A: perforation Z: direction

圖1是依照本發明的第一實施例的顯示面板的剖視示意圖。 圖2是本發明的第一實施例的入射光與反射光的示意圖。 圖3是圖1的顯示面板在不同膜厚的光學輔助層下的反射率對波長的曲線圖。 圖4是圖1的顯示面板的反射率與CIELAB色彩空間中的b*對不同膜厚的光學輔助層的分佈圖。 圖5是圖1的顯示面板在不同種類的光學輔助層下的反射率對波長的曲線圖。 圖6是圖1的顯示面板的反射率與CIELAB色彩空間中的b*對不同種類的光學輔助層的分佈圖。 圖7是圖1的光學輔助層的另一變形實施例的剖視示意圖。 圖8是依照本發明的第二實施例的顯示面板的剖視示意圖。 圖9是依照本發明的第三實施例的顯示面板的剖視示意圖。 圖10是本發明的第三實施例的入射光與反射光的示意圖。 圖11是圖9的顯示面板的反射率與CIELAB色彩空間中的b*對不同膜厚的畫素電極的分佈圖。 圖12是依照本發明的第四實施例的顯示面板的剖視示意圖。 圖13是依照本發明的第五實施例的顯示面板的剖視示意圖。 圖14是圖13的顯示面板的反射率與CIELAB色彩空間中的b*對不同膜厚的輔助金屬層的分佈圖。 圖15是依照本發明的第六實施例的顯示面板的剖視示意圖。 圖16是依照本發明的第七實施例的顯示面板的剖視示意圖。 圖17是圖16的光學輔助層的另一變形實施例的剖視示意圖。 圖18是依照本發明的第八實施例的顯示面板的剖視示意圖。 FIG. 1 is a schematic cross-sectional view of a display panel according to the first embodiment of the present invention. FIG. 2 is a schematic diagram of incident light and reflected light of the first embodiment of the present invention. FIG. 3 is a curve diagram of reflectivity versus wavelength of the display panel of FIG. 1 under optical auxiliary layers of different film thicknesses. FIG. 4 is a distribution diagram of reflectivity of the display panel of FIG. 1 and b* in the CIELAB color space for optical auxiliary layers of different film thicknesses. FIG. 5 is a curve diagram of reflectivity versus wavelength of the display panel of FIG. 1 under different types of optical auxiliary layers. FIG. 6 is a distribution diagram of reflectivity of the display panel of FIG. 1 and b* in the CIELAB color space for different types of optical auxiliary layers. FIG. 7 is a schematic cross-sectional view of another variant embodiment of the optical auxiliary layer of FIG. 1. FIG8 is a schematic cross-sectional view of a display panel according to the second embodiment of the present invention. FIG9 is a schematic cross-sectional view of a display panel according to the third embodiment of the present invention. FIG10 is a schematic diagram of incident light and reflected light according to the third embodiment of the present invention. FIG11 is a distribution diagram of the reflectivity of the display panel of FIG9 and b* in the CIELAB color space for pixel electrodes of different film thicknesses. FIG12 is a schematic cross-sectional view of a display panel according to the fourth embodiment of the present invention. FIG13 is a schematic cross-sectional view of a display panel according to the fifth embodiment of the present invention. FIG14 is a distribution diagram of the reflectivity of the display panel of FIG13 and b* in the CIELAB color space for auxiliary metal layers of different film thicknesses. FIG15 is a schematic cross-sectional view of a display panel according to the sixth embodiment of the present invention. FIG. 16 is a schematic cross-sectional view of a display panel according to the seventh embodiment of the present invention. FIG. 17 is a schematic cross-sectional view of another variant embodiment of the optical auxiliary layer of FIG. 16 . FIG. 18 is a schematic cross-sectional view of a display panel according to the eighth embodiment of the present invention.

10:顯示面板 101:第一基板 102:第二基板 110:絕緣層 130:光學輔助層 150:顯示介質層 170:彩色濾光層 180:共電極層 EB:環境光 FB:前光 PX:畫素結構 RB:反射光 RE:反射電極 RML:反射金屬層 T:主動元件 t1、t2:膜厚 TCL1:第一透明導電層 TCL2:第二透明導電層 TH:穿孔 Z:方向 10: Display panel 101: First substrate 102: Second substrate 110: Insulation layer 130: Optical auxiliary layer 150: Display medium layer 170: Color filter layer 180: Common electrode layer EB: Ambient light FB: Front light PX: Pixel structure RB: Reflected light RE: Reflective electrode RML: Reflective metal layer T: Active element t1, t2: Film thickness TCL1: First transparent conductive layer TCL2: Second transparent conductive layer TH: Perforation Z: Direction

Claims (7)

一種顯示面板,包括:第一基板;多個畫素結構,各自包括:透明導電層,設置在該第一基板上;反射金屬層,設置在該第一基板與該透明導電層之間,且重疊於該透明導電層;以及至少一光學輔助層,重疊該透明導電層與該反射金屬層,且接觸該透明導電層與該反射金屬層的至少一個,該至少一光學輔助層的折射率大於1.85或小於1.65;顯示介質層;以及第二基板,與該第一基板重疊設置,該顯示介質層夾設在該第一基板與該第二基板之間,其中該至少一光學輔助層包括至少一輔助金屬層,該至少一輔助金屬層設置在該反射金屬層與該透明導電層之間,且電性接觸該反射金屬層與該透明導電層,該至少一輔助金屬層和該反射金屬層各自的折射率小於該透明導電層的折射率。 A display panel comprises: a first substrate; a plurality of pixel structures, each comprising: a transparent conductive layer disposed on the first substrate; a reflective metal layer disposed between the first substrate and the transparent conductive layer and overlapping the transparent conductive layer; and at least one optical auxiliary layer overlapping the transparent conductive layer and the reflective metal layer and contacting at least one of the transparent conductive layer and the reflective metal layer, wherein the refractive index of the at least one optical auxiliary layer is greater than 1.85 or less than 1.65. ; a display medium layer; and a second substrate, which is overlapped with the first substrate, and the display medium layer is sandwiched between the first substrate and the second substrate, wherein the at least one optical auxiliary layer includes at least one auxiliary metal layer, and the at least one auxiliary metal layer is disposed between the reflective metal layer and the transparent conductive layer, and electrically contacts the reflective metal layer and the transparent conductive layer, and the refractive index of each of the at least one auxiliary metal layer and the reflective metal layer is less than the refractive index of the transparent conductive layer. 如請求項1所述的顯示面板,其中該些畫素結構各自還包括另一透明導電層,設置在該第一基板與該反射金屬層之間,其中該另一透明導電層重疊該反射金屬層,且接觸該反射金屬層。 The display panel as described in claim 1, wherein each of the pixel structures further comprises another transparent conductive layer disposed between the first substrate and the reflective metal layer, wherein the other transparent conductive layer overlaps the reflective metal layer and contacts the reflective metal layer. 如請求項1所述的顯示面板,其中該至少一輔助金屬層包括第一輔助金屬層,該第一輔助金屬層接觸該反射金屬層,該第一輔助金屬層的折射率不同於該反射金屬層的折射率。 The display panel as described in claim 1, wherein the at least one auxiliary metal layer includes a first auxiliary metal layer, the first auxiliary metal layer contacts the reflective metal layer, and the refractive index of the first auxiliary metal layer is different from the refractive index of the reflective metal layer. 如請求項3所述的顯示面板,其中該至少一輔助金屬層還包括第二輔助金屬層,該第二輔助金屬層設置在該第一輔助金屬層上且接觸該第一輔助金屬層,該第二輔助金屬層與該反射金屬層各自的折射率大於或小於該第一輔助金屬層的折射率。 The display panel as described in claim 3, wherein the at least one auxiliary metal layer further includes a second auxiliary metal layer, the second auxiliary metal layer is disposed on the first auxiliary metal layer and contacts the first auxiliary metal layer, and the refractive index of the second auxiliary metal layer and the reflective metal layer is greater than or less than the refractive index of the first auxiliary metal layer. 如請求項4所述的顯示面板,其中該反射金屬層的膜厚大於該第一輔助金屬層的膜厚,且該第一輔助金屬層的膜厚大於該第二輔助金屬層的膜厚。 A display panel as described in claim 4, wherein the film thickness of the reflective metal layer is greater than the film thickness of the first auxiliary metal layer, and the film thickness of the first auxiliary metal layer is greater than the film thickness of the second auxiliary metal layer. 如請求項1所述的顯示面板,其中該至少一光學輔助層還包括至少一輔助絕緣層,且該透明導電層設置在該至少一輔助金屬層與該至少一輔助絕緣層之間。 The display panel as described in claim 1, wherein the at least one optical auxiliary layer further includes at least one auxiliary insulating layer, and the transparent conductive layer is disposed between the at least one auxiliary metal layer and the at least one auxiliary insulating layer. 如請求項1所述的顯示面板,其中該些畫素結構各自還包括:主動元件,設置在該第二基板上;以及畫素電極,設置在該第二基板上,且電性連接該主動元件,其中該顯示介質層與該第一基板間設有共電極層,該主動元件與該畫素電極設置在該顯示介質層與該第二基板之間,且該透明導電層、該反射金屬層與該至少一光學輔助層設置在該顯示介質層與該第一基板之間。 The display panel as described in claim 1, wherein each of the pixel structures further comprises: an active element disposed on the second substrate; and a pixel electrode disposed on the second substrate and electrically connected to the active element, wherein a common electrode layer is disposed between the display medium layer and the first substrate, the active element and the pixel electrode are disposed between the display medium layer and the second substrate, and the transparent conductive layer, the reflective metal layer and the at least one optical auxiliary layer are disposed between the display medium layer and the first substrate.
TW112116968A 2022-10-26 2023-05-08 Display panel TWI847680B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2022113196039 2022-10-26

Publications (2)

Publication Number Publication Date
TW202417951A TW202417951A (en) 2024-05-01
TWI847680B true TWI847680B (en) 2024-07-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021022477A1 (en) 2019-08-06 2021-02-11 京东方科技集团股份有限公司 Reflective electrode and array substrate thereof, and display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021022477A1 (en) 2019-08-06 2021-02-11 京东方科技集团股份有限公司 Reflective electrode and array substrate thereof, and display device

Similar Documents

Publication Publication Date Title
CN107632453B (en) Display panel, manufacturing method thereof and display device
KR100680100B1 (en) Liquid crystal display and method of manufacturing the same
US7295269B2 (en) Liquid crystal device and electronic apparatus provided with the same
KR101256545B1 (en) In-plane switching mode transflective type liquid crystal display device
KR101888032B1 (en) Array substrate for In-Plane switching mode liquid crystal display device
CN109799641B (en) Array substrate, preparation method thereof and liquid crystal display panel
US11009743B2 (en) Display panel
WO2001033290A1 (en) Reflective lcd, semitransmitting reflective lcd and electronic device
JP4432056B2 (en) Liquid crystal display element and liquid crystal display device using the liquid crystal display element
TWI847680B (en) Display panel
WO2019007073A1 (en) Array substrate and manufacturing method therefor, and reflective liquid crystal display apparatus
CN115079463B (en) Liquid crystal display panel, liquid crystal display device and manufacturing method
TW202417951A (en) Display panel
CN117970687A (en) Display panel
JP6589964B2 (en) Display device and liquid crystal device
JP2004233959A (en) Liquid crystal display device
JP4292863B2 (en) Electro-optical device substrate, electro-optical device, electro-optical device manufacturing method, and electronic apparatus
TW201217872A (en) Projector and optical unit
JP5862201B2 (en) Liquid crystal device, method for manufacturing liquid crystal device, and electronic apparatus
CN220020052U (en) Double-sided display device
TWI782629B (en) Fingerprint sensing display apparatus
US11049910B2 (en) Pixel structure and display device
JP4370804B2 (en) Electro-optical device substrate, electro-optical device, electro-optical device manufacturing method, and electronic apparatus
US9252162B2 (en) Active matrix substrate
TWI683248B (en) Touch panel and manufacturing method thereof