JP2005214869A - Equivalent dose type radiation detector - Google Patents

Equivalent dose type radiation detector Download PDF

Info

Publication number
JP2005214869A
JP2005214869A JP2004024004A JP2004024004A JP2005214869A JP 2005214869 A JP2005214869 A JP 2005214869A JP 2004024004 A JP2004024004 A JP 2004024004A JP 2004024004 A JP2004024004 A JP 2004024004A JP 2005214869 A JP2005214869 A JP 2005214869A
Authority
JP
Japan
Prior art keywords
radiation
radiation detector
semiconductor
signal
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004024004A
Other languages
Japanese (ja)
Inventor
Yoshio Kita
好夫 北
Shigehiro Kono
繁宏 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004024004A priority Critical patent/JP2005214869A/en
Publication of JP2005214869A publication Critical patent/JP2005214869A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein a perforated filter or the like is provided to satisfy a specification by one detector since efficiency for energy is specified in an equivalent dose type radiation detector, wherein a material of the perforated filter, a numerical aperture of a hole therein and the like are required to be optimized and regulation therefor is troublesome, and wherein measuring precision is low because one portion of a radiation is shielded by the perforated filter. <P>SOLUTION: This semiconductor radiation detector is constituted of plurality of layers of semiconductor radiation detectors 2a-2c, and detects the radiation of low energy by the first layer of the radiation detector 2a, the radiation of middle energy by the second layer of the radiation detector 2b, and the radiation of high energy by the third of the radiation detector 2c, respective radiation detection signals are multiplied with weighting factors by multiplying factor multiplexing parts 31, 32, 33, and values therein are summed up to obtain a proper energy characteristic. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、放射線防護の観点から、原子力施設の周囲環境の放射線量を監視する当量線量型放射線検出器に関する。   The present invention relates to an equivalent dose type radiation detector that monitors the radiation dose in the surrounding environment of a nuclear facility from the viewpoint of radiation protection.

原子力発電所などの原子力施設においては、平常運転時、発電所周辺の一般公衆および発電所従業員に対して放射線防護の観点から、安全設計の基本指針に定められた線量目標値を超える放射線被ばくを与えないようにしなければならない。   In a nuclear power plant such as a nuclear power plant, during normal operation, the radiation exposure exceeding the dose target value stipulated in the basic guidelines for safety design is considered from the viewpoint of radiation protection for the general public and employees of the power plant. Must not be given.

原子力発電所からの気体および液体廃棄物中に含まれる放射性物質の環境への放出については、発電所の周辺監視区域外で許容被ばく線量として1年間に定められた量を超えないようにしなければならない。   The release of radioactive materials contained in gaseous and liquid waste from nuclear power plants to the environment must not exceed the amount specified for one year as the allowable exposure dose outside the power station's surrounding monitoring area. Don't be.

さらに、指針に基づいて一般公衆への被ばく線量の努力目標値をさだめて放射線防護を図っている。
これら被ばく線量の評価方法の一つとして、従来より当量線量型放射線検出器が用いられている。
Furthermore, based on the guidelines, radiation protection is aimed at by determining the target effort for the exposure dose to the general public.
As one of methods for evaluating these exposure doses, an equivalent dose type radiation detector has been conventionally used.

図5は従来の当量線量型放射線検出器を概略的に示す図で、1はX線、γ線などの放射線、2は前記放射線1の入射方向に対峙して設けられた半導体放射線検出器、3は信号増幅器である。   FIG. 5 is a diagram schematically showing a conventional equivalent dose radiation detector, wherein 1 is radiation such as X-rays and γ-rays, 2 is a semiconductor radiation detector provided facing the incident direction of the radiation 1, 3 is a signal amplifier.

このような従来の当量線量型放射線検出器において、周囲環境から半導体放射線検出器2に入射した放射線1は、半導体放射線検出器2で放射線検出信号Sとして検出され、その放射線量に応じた電気信号4に変換され、信号増幅器3に入力される。   In such a conventional equivalent dose type radiation detector, the radiation 1 incident on the semiconductor radiation detector 2 from the ambient environment is detected as the radiation detection signal S by the semiconductor radiation detector 2 and an electric signal corresponding to the radiation dose. 4 is input to the signal amplifier 3.

そして、信号増幅器3により増幅された放射線検出信号から周囲環境の線量当量を監視し、線量当量が努力目標値を超えたような場合は警報を出すなどして放射線防護を図っている。   The dose equivalent of the surrounding environment is monitored from the radiation detection signal amplified by the signal amplifier 3, and if the dose equivalent exceeds the effort target value, an alarm is issued to protect the radiation.

しかしながら、従来の当量線量型放射線検出器においては、半導体放射線検出器2のエネルギーに対する効率が規定されているため、1個の半導体放射線検出器でその仕様を満足させるためには半導体放射線検出器2の前面に孔あきフィルター5を設け、この孔あきフィルター5を通して半導体放射線検出器2に放射線1を入射させるようにし、この孔あきフィルター5の材質、孔の開口率などを最適化させることにより適切なエネルギー特性を得ることが必要であった。   However, in the conventional equivalent dose type radiation detector, the efficiency with respect to the energy of the semiconductor radiation detector 2 is defined. Therefore, in order to satisfy the specification with one semiconductor radiation detector, the semiconductor radiation detector 2 is used. It is suitable by providing a perforated filter 5 on the front surface of the substrate and allowing the radiation 1 to enter the semiconductor radiation detector 2 through the perforated filter 5 and optimizing the material of the perforated filter 5, the aperture ratio of the holes, etc. It was necessary to obtain good energy characteristics.

しかしながら、孔あきフィルター5の材質、孔の開口率などを最適化するためには面倒な調整を必要とするため、半導体放射線検出器2のエネルギー感度特性を容易に設定することは困難であった。   However, in order to optimize the material of the perforated filter 5, the aperture ratio of the holes, etc., it is necessary to make troublesome adjustments, so it is difficult to easily set the energy sensitivity characteristics of the semiconductor radiation detector 2. .

また、半導体放射線検出器2の前面に孔あきフィルター5を設けると、孔あきフィルター5によって放射線の入射が一部遮られ、検出信号の遮断による測定精度の低下を来たしている。   Further, when the perforated filter 5 is provided on the front surface of the semiconductor radiation detector 2, the incidence of radiation is partially blocked by the perforated filter 5, and the measurement accuracy is lowered due to blocking of the detection signal.

本発明は以上の課題を解決するためになされたものであり、半導体放射線検出器のエネルギー感度特性の設定が容易に行え、測定精度を向上させた当量線量型放射線検出器を得ることを目的とする。   The present invention has been made to solve the above problems, and an object thereof is to obtain an equivalent dose type radiation detector that can easily set the energy sensitivity characteristic of a semiconductor radiation detector and has improved measurement accuracy. To do.

以上の目的を達成するために請求項1記載の発明は、放射線の入射方向に対峙して設けられ、それぞれ異なるエネルギー領域の放射線を吸収して放射線量に応じた放射線検出信号を出力する複数層の半導体放射線検出器と、前記各層の半導体放射線検出器からの放射線検出信号を電気信号として入力し、増幅する信号増幅器と、前記信号増幅器で増幅された各放射線検出信号に重率を乗じ、その演算結果を加算する信号演算部とからなることを特徴とする。   In order to achieve the above object, the invention according to claim 1 is provided with a plurality of layers provided opposite to the incident direction of radiation and absorbing radiation in different energy regions and outputting a radiation detection signal corresponding to the radiation dose. The semiconductor radiation detectors of the above, the radiation detection signals from the semiconductor radiation detectors of the respective layers are inputted as electric signals, amplified, and the radiation detection signals amplified by the signal amplifiers are multiplied by the weight, And a signal calculation unit for adding calculation results.

本発明の当量線量型放射線検出器によれば、半導体放射線検出器のエネルギー感度特性の設定が容易に行え、測定精度を向上することができる。   According to the equivalent dose type radiation detector of the present invention, the energy sensitivity characteristic of the semiconductor radiation detector can be easily set, and the measurement accuracy can be improved.

以下、本発明の実施の形態について図面を参照して説明する。なお、以下の実施の形態の説明において、図5に示す従来の当量線量型放射線検出器と同一部分には同一の符号を付して詳細な説明は省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description of the embodiment, the same parts as those in the conventional equivalent dose type radiation detector shown in FIG.

図1は本発明の第1の実施の形態を示す図で、図1において、1はX線、γ線などの放射線、2a、2b、2cは前記放射線1の入射方向に対峙して設けられ、互いに並べて配置された、例えば3層の半導体放射線検出器で、最も放射線1の入射側に配置された第1層の半導体放射線検出器2aは比較的エネルギーの低い放射線を吸収し、第2層の半導体放射線検出器2bは中間領域までのエネルギーの放射線を吸収し、第3層の半導体放射線検出器2cはX線、γ線のような高エネルギーまでの放射線を吸収するように設定されている。3は信号増幅器、6は信号演算部である。   FIG. 1 is a diagram showing a first embodiment of the present invention. In FIG. 1, 1 is radiation such as X-rays and γ-rays, 2a, 2b and 2c are provided opposite to the incident direction of the radiation 1. FIG. The first layer semiconductor radiation detector 2a, which is arranged next to each other, for example, three layers of semiconductor radiation detectors, which is disposed closest to the radiation 1 incident side, absorbs radiation having a relatively low energy, and the second layer The semiconductor radiation detector 2b absorbs radiation with energy up to an intermediate region, and the semiconductor radiation detector 2c of the third layer is set so as to absorb radiation up to high energy such as X-rays and γ-rays. . 3 is a signal amplifier, and 6 is a signal calculation unit.

このような本発明の第1の実施の形態による当量線量型放射線検出器によれば、周囲環境から半導体放射線検出器2に入射した放射線1は、比較的低エネルギー領域の放射線は第1層の半導体放射線検出器2aに吸収され、放射線検出信号S1として検出される。
同じく中間エネルギー領域の放射線は第1層、第2層の半導体放射線検出器2a、2bに吸収され、放射線検出信号S2として検出される。
According to the equivalent dose type radiation detector according to the first embodiment of the present invention, the radiation 1 incident on the semiconductor radiation detector 2 from the surrounding environment has a relatively low energy region of the first layer. It is absorbed by the semiconductor radiation detector 2a and detected as a radiation detection signal S1.
Similarly, the radiation in the intermediate energy region is absorbed by the semiconductor radiation detectors 2a and 2b in the first layer and the second layer, and is detected as a radiation detection signal S2.

さらにX線、γ線のような高エネルギー領域の放射線は第1層、第2層、第3層の半導体放射線検出器2a、2b、2cに吸収され、放射線検出信号S3として検出される。
各層の半導体放射線検出器2a、2b、2cで検出された放射線検出信号S1〜S3は、その放射線量に応じた電気信号4に変換して出力され、信号増幅器3に送られる。
Furthermore, radiation in a high energy region such as X-rays and γ-rays is absorbed by the semiconductor radiation detectors 2a, 2b, and 2c of the first layer, the second layer, and the third layer, and is detected as a radiation detection signal S3.
The radiation detection signals S <b> 1 to S <b> 3 detected by the semiconductor radiation detectors 2 a, 2 b, and 2 c of each layer are converted into electrical signals 4 corresponding to the radiation doses, output, and sent to the signal amplifier 3.

電気信号4として入力された放射線検出信号S1〜S3は、信号増幅器3で増幅され、信号演算部6に送られる。
信号演算部6では、図2に示すように各々の放射線検出信号S1〜S3に重率乗算部31、32、33で乗率21、22、23を乗じ、その演算結果を加算演算部7で加算する。
The radiation detection signals S <b> 1 to S <b> 3 input as the electric signal 4 are amplified by the signal amplifier 3 and sent to the signal calculation unit 6.
In the signal calculation unit 6, as shown in FIG. 2, the radiation detection signals S <b> 1 to S <b> 3 are multiplied by multiplication factors 21, 22, and 23 in the weight multiplication units 31, 32, and 33, and the calculation results are added in the addition calculation unit 7. to add.

例えばエネルギー感度が低い場合は、第1層の半導体放射線検出器2aに吸収されて、検出された放射線検出信号S1に高めの重率21を乗算する。
このようにして各層の半導体放射線検出器2a、2b、2cで検出された放射線検出信号S1〜S3に重率21〜23を乗算し、その値を加算して検出出力8とすることによりエネルギー感度特性の補正を行い、加算された放射線検出出力8から周囲環境の線量当量を監視し、努力目標値を超えたような場合は警報を出すなどして放射線防護を図る。
For example, when the energy sensitivity is low, it is absorbed by the semiconductor radiation detector 2a of the first layer, and the detected radiation detection signal S1 is multiplied by a higher weight factor 21.
Energy sensitivity is obtained by multiplying the radiation detection signals S1 to S3 detected by the semiconductor radiation detectors 2a, 2b, and 2c of each layer in this way by the weights 21 to 23 and adding the values to obtain the detection output 8. The characteristics are corrected, the dose equivalent of the surrounding environment is monitored from the added radiation detection output 8, and if the effort target value is exceeded, an alarm is issued to protect the radiation.

本実施の形態によれば、各層の半導体放射線検出器2a、2b、2cで検出された放射線検出信号S1〜S3に重率21〜23を乗算し、各層の加算重率を調整することによりエネルギー感度特性を容易に設定することができる。
また、従来のように、孔あきフィルターを用いていないので、放射線の入射を遮るものがなくなり、検出信号量を多く取ることができて測定精度が向上する。
According to the present embodiment, energy is obtained by multiplying the radiation detection signals S1 to S3 detected by the semiconductor radiation detectors 2a, 2b, and 2c of each layer by the weights 21 to 23 and adjusting the added weight of each layer. Sensitivity characteristics can be set easily.
Further, since a perforated filter is not used as in the prior art, there is no blockage of radiation incidence, and a large amount of detection signal can be obtained, thereby improving measurement accuracy.

次に本発明の第2の実施の形態について図面を参照して説明する。図3は本発明の第2の実施の形態における信号演算部を示すブロック図で、図3において、9は放射線検出信号S1〜S3が入力され、放射線検出信号の出力の比率を計算する信号比率演算部、10は被測定核種に対して放射線検出信号の比をあらかじめ測定しておき、そのテーブルを記憶している核種推定演算部である。   Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a block diagram showing a signal calculation unit according to the second embodiment of the present invention. In FIG. 3, 9 is a signal ratio for inputting the radiation detection signals S1 to S3 and calculating the output ratio of the radiation detection signals. The calculation unit 10 is a nuclide estimation calculation unit that measures the ratio of the radiation detection signal to the measurement nuclide in advance and stores the table.

このような当量線量型放射線検出器であると、半導体放射線検出器2a、2b、2cで検出された放射線検出信号S1〜S3は信号比較演算部9に送られ、ここで各放射線検出信号S1〜S3の出力の比率(たとえば、S2/S1、S3/S1、S3/S2)が計算される。   In the case of such an equivalent dose type radiation detector, the radiation detection signals S1 to S3 detected by the semiconductor radiation detectors 2a, 2b and 2c are sent to the signal comparison calculation unit 9, where each radiation detection signal S1 to S1 is detected. The ratio of the output of S3 (eg, S2 / S1, S3 / S1, S3 / S2) is calculated.

計算された比率の値は核種推定演算部10に送られ、ここでテーブルに記憶されている被測定核種の比率と比較し、比率が一致した場合に核種を特定し、それを表示するか、あるいは上位の計算機に出力する。
本実施の形態によれば、被測定対象核種の推定が行え、被ばくの原因についての推定を容易に行うことができる。
The value of the calculated ratio is sent to the nuclide estimation calculation unit 10, where it is compared with the ratio of the measured nuclide stored in the table, and if the ratio matches, the nuclide is identified and displayed. Alternatively, it is output to a host computer.
According to the present embodiment, the measurement target nuclide can be estimated, and the cause of the exposure can be easily estimated.

次に本発明の第3の実施の形態について図面を参照して説明する。
図4において、2a〜2cは互いに並べて配置された3層の半導体放射線検出器で、最も放射線1の入射側に配置された第1層の半導体放射線検出器第2aはカラーCCD検出器のような色を判別する機能を有するカラーセンサ11で構成されている。
Next, a third embodiment of the present invention will be described with reference to the drawings.
In FIG. 4, 2a to 2c are three-layer semiconductor radiation detectors arranged side by side, and the first-layer semiconductor radiation detector 2a arranged closest to the radiation 1 incident side is a color CCD detector. The color sensor 11 has a function of discriminating colors.

12はカラーセンサ11の前面に配置されたシンチレータで、前面にα線に対して感度のあるシンチレータ(例えばZnS)を、その後面にβ線、γ線に対して感度のあるシンチレータ(例えばプラスチックシンチレータ)を配置している。   Reference numeral 12 denotes a scintillator disposed on the front surface of the color sensor 11. A scintillator sensitive to α rays (for example, ZnS) is provided on the front surface, and a scintillator sensitive to β rays and γ rays on the rear surface (for example, a plastic scintillator). ).

本実施の形態によれば、半導体放射線検出器に入射した放射線1の種類によってシンチレータ12の発光色が異なるため、この発光色をカラーセンサ11により検出することにより放射線1の線種を容易に特定することができる。   According to this embodiment, since the emission color of the scintillator 12 differs depending on the type of radiation 1 incident on the semiconductor radiation detector, the line type of the radiation 1 can be easily identified by detecting the emission color with the color sensor 11. can do.

本発明の第1の実施の形態による当量線量型放射線検出器の概略構成を示すブロック図。The block diagram which shows schematic structure of the equivalent dose type radiation detector by the 1st Embodiment of this invention. 本発明の第1の実施の形態における信号演算部の構成を示すブロック図。The block diagram which shows the structure of the signal calculating part in the 1st Embodiment of this invention. 本発明の第2の実施の形態による当量線量型放射線検出器の信号演算部の構成を示すブロック図。The block diagram which shows the structure of the signal calculating part of the equivalent dose type radiation detector by the 2nd Embodiment of this invention. 本発明の第3の実施の形態による当量線量型放射線検出器の概略構成を示すブロック図。The block diagram which shows schematic structure of the equivalent dose type | mold radiation detector by the 3rd Embodiment of this invention. 従来の当量線量型放射線検出器の概略構成を示すブロック図。The block diagram which shows schematic structure of the conventional equivalent dose type radiation detector.

符号の説明Explanation of symbols

1…放射線、2,2a,2b,2c…半導体放射線検出器、3…信号増幅器、4…電気信号、5…孔あきフィルター、6…信号演算部、7…加算演算部、8…検出出力、9…信号比較演算部、10…核種推定演算部、11…カラーセンサ、12…シンチレータ、21,22,23…重率、31,32,33…重率乗算部、S1,S2,S3…放射線検出信号。

DESCRIPTION OF SYMBOLS 1 ... Radiation, 2, 2a, 2b, 2c ... Semiconductor radiation detector, 3 ... Signal amplifier, 4 ... Electric signal, 5 ... Perforated filter, 6 ... Signal calculating part, 7 ... Addition calculating part, 8 ... Detection output, DESCRIPTION OF SYMBOLS 9 ... Signal comparison calculating part, 10 ... Nuclide estimation calculating part, 11 ... Color sensor, 12 ... Scintillator 21, 22, 23 ... Weight factor, 31, 32, 33 ... Weight factor multiplication part, S1, S2, S3 ... Radiation Detection signal.

Claims (3)

放射線の入射方向に対峙して設けられ、それぞれ異なるエネルギー領域の放射線を吸収して放射線量に応じた放射線検出信号を出力する複数層の半導体放射線検出器と、前記各層の半導体放射線検出器からの放射線検出信号を電気信号として入力し、増幅する信号増幅器と、前記信号増幅器で増幅された各放射線検出信号に重率を乗じ、その演算結果を加算する信号演算部とからなることを特徴とする当量線量型放射線検出器。   A plurality of layers of semiconductor radiation detectors provided opposite to the direction of incidence of radiation and absorbing radiation in different energy regions and outputting radiation detection signals according to the radiation dose; and from the semiconductor radiation detectors of the respective layers A signal amplifier for inputting and amplifying a radiation detection signal as an electric signal, and a signal calculation unit for multiplying each radiation detection signal amplified by the signal amplifier by a weight and adding the calculation result. Equivalent dose type radiation detector. 前記各層の半導体放射線検出器からの放射線検出信号の出力の比率を計算する信号比率演算部と、前記信号比率演算部で計算された放射線検出信号の出力の比率から放射線の核種を特定する核種推定演算部とを有することを特徴とする請求項1記載の当量線量型放射線検出器。   A signal ratio calculation unit that calculates the ratio of the radiation detection signal output from the semiconductor radiation detector of each layer, and a nuclide estimation that identifies the radionuclide from the ratio of the radiation detection signal output calculated by the signal ratio calculation unit The equivalent dose type radiation detector according to claim 1, further comprising a calculation unit. 前記複数層の半導体放射線検出器の最も放射線の入射側に配置された半導体放射線検出器をカラーセンサで構成し、このカラーセンサの放射線の入射側の前面に異なる種類の放射線に対して感度のあるシンチレータを配置したことを特徴とする請求項1記載の当量線量型放射線検出器。

The semiconductor radiation detector arranged on the most radiation incident side of the multi-layer semiconductor radiation detector is constituted by a color sensor, and the front surface on the radiation incidence side of the color sensor is sensitive to different types of radiation. 2. The equivalent dose radiation detector according to claim 1, further comprising a scintillator.

JP2004024004A 2004-01-30 2004-01-30 Equivalent dose type radiation detector Pending JP2005214869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004024004A JP2005214869A (en) 2004-01-30 2004-01-30 Equivalent dose type radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004024004A JP2005214869A (en) 2004-01-30 2004-01-30 Equivalent dose type radiation detector

Publications (1)

Publication Number Publication Date
JP2005214869A true JP2005214869A (en) 2005-08-11

Family

ID=34906830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004024004A Pending JP2005214869A (en) 2004-01-30 2004-01-30 Equivalent dose type radiation detector

Country Status (1)

Country Link
JP (1) JP2005214869A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256630A (en) * 2007-04-09 2008-10-23 Fuji Electric Systems Co Ltd Energy compensation scintillation type photon dosimeter
JP2009524016A (en) * 2006-01-13 2009-06-25 アンフォース,トマス Apparatus and apparatus for sensing and displaying radiation
JP2012007888A (en) * 2010-06-22 2012-01-12 Hitachi Ltd Radiation measuring device
JP2013543592A (en) * 2010-10-07 2013-12-05 エイチ.リー モフィット キャンサー センター アンド リサーチ インスティテュート Method and apparatus for detecting radioisotopes
JP2015203602A (en) * 2014-04-11 2015-11-16 サイエナジー株式会社 Radiation-type-discrimination detector, and survey meter, radiation monitor, and personal dosimeter using the same
CN106469245A (en) * 2015-08-14 2017-03-01 中国辐射防护研究院 The Annul radiation dose computational methods of nuclear power plant's liquid radioactive substance and system
CN106646576A (en) * 2016-11-28 2017-05-10 中国科学院合肥物质科学研究院 High gain analog amplification device suitable for strong nuclear radiation environment
JP2021167846A (en) * 2012-02-14 2021-10-21 アメリカン サイエンス アンド エンジニアリング, インコーポレイテッドAmerican Science and Engineering, Inc. X-ray inspection using wavelength-shifting fiber-coupled scintillation detectors

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524016A (en) * 2006-01-13 2009-06-25 アンフォース,トマス Apparatus and apparatus for sensing and displaying radiation
JP2008256630A (en) * 2007-04-09 2008-10-23 Fuji Electric Systems Co Ltd Energy compensation scintillation type photon dosimeter
JP2012007888A (en) * 2010-06-22 2012-01-12 Hitachi Ltd Radiation measuring device
JP2013543592A (en) * 2010-10-07 2013-12-05 エイチ.リー モフィット キャンサー センター アンド リサーチ インスティテュート Method and apparatus for detecting radioisotopes
JP2021167846A (en) * 2012-02-14 2021-10-21 アメリカン サイエンス アンド エンジニアリング, インコーポレイテッドAmerican Science and Engineering, Inc. X-ray inspection using wavelength-shifting fiber-coupled scintillation detectors
JP7138751B2 (en) 2012-02-14 2022-09-16 アメリカン サイエンス アンド エンジニアリング,インコーポレイテッド X-ray examination using a wavelength-shifting fiber-coupled scintillation detector
JP2015203602A (en) * 2014-04-11 2015-11-16 サイエナジー株式会社 Radiation-type-discrimination detector, and survey meter, radiation monitor, and personal dosimeter using the same
CN106469245A (en) * 2015-08-14 2017-03-01 中国辐射防护研究院 The Annul radiation dose computational methods of nuclear power plant's liquid radioactive substance and system
CN106469245B (en) * 2015-08-14 2021-05-18 中国辐射防护研究院 Annual radiation dose calculation method and system for liquid radioactive substances of nuclear power plant
CN106646576A (en) * 2016-11-28 2017-05-10 中国科学院合肥物质科学研究院 High gain analog amplification device suitable for strong nuclear radiation environment

Similar Documents

Publication Publication Date Title
EP1917541B1 (en) Combined radiation dosimeter and rate meter
KR101051126B1 (en) Plastic Scintillator-based Radiation Detector and Radionuclide Detection Method Using the Same
JP3418800B2 (en) How to reduce annihilation gamma rays in radiation measurement
JP2008256630A (en) Energy compensation scintillation type photon dosimeter
JP6448466B2 (en) Radioactive gas monitoring device
JP6184608B2 (en) Dose rate measuring device
JP2005214869A (en) Equivalent dose type radiation detector
JP2007047066A (en) NEUTRON-gammaRAY NON-DISCRIMINATION TYPE CRITICAL DETECTOR
JP2018004398A (en) Device, method, and program for measuring radiation
JP5603919B2 (en) Radiation measuring instrument
JP4501523B2 (en) Dose detector and dosimeter
JP3938146B2 (en) Radiation measurement equipment
JPH0634763A (en) Radioactive ray detector
KR102564895B1 (en) A movable radiation detector having dual type detection modules
JP2005300245A (en) Radiation measuring instrument
JP2871523B2 (en) Radiation detector
JP3064218B2 (en) Radiation measurement device
JP2007024497A (en) Gamma-ray detection radiation detector
JPH0720246A (en) Beta-ray detector and dose measuring circuit of the same
JP2001311780A (en) Neutron ray measuring device
JP4380994B2 (en) Neutron measurement system and out-of-core detector system
JPH05232234A (en) Radiation detector
JP2735937B2 (en) Neutron detector for criticality accident monitoring
JP4643809B2 (en) Radiation measurement equipment
JP2001242251A (en) Radon restraining type dust radiation monitor