JP2005300245A - Radiation measuring instrument - Google Patents

Radiation measuring instrument Download PDF

Info

Publication number
JP2005300245A
JP2005300245A JP2004113814A JP2004113814A JP2005300245A JP 2005300245 A JP2005300245 A JP 2005300245A JP 2004113814 A JP2004113814 A JP 2004113814A JP 2004113814 A JP2004113814 A JP 2004113814A JP 2005300245 A JP2005300245 A JP 2005300245A
Authority
JP
Japan
Prior art keywords
radiation
filter
measuring apparatus
detection unit
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004113814A
Other languages
Japanese (ja)
Inventor
Yoshio Mito
美生 三戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004113814A priority Critical patent/JP2005300245A/en
Publication of JP2005300245A publication Critical patent/JP2005300245A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiation measuring instrument for flattening the directional characteristics of a detected radiation independently of the angle of incidence. <P>SOLUTION: A plurality of sensors are used. At least one sensor is given uniformed β-ray incident windows. At least one sensor is provided with β-ray incident windows being thinner at its middle part as compared with its periphery so as to enhance its response in the front direction of the incident windows while lowering the response in its wide angle direction. An angle correction coefficient is determined by comparing respective responses with each other in a CPU. A response from a sensor with uniformed β-ray incident windows is multiplied by the correction coefficient, thereby reducing an over response problem. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、原子力発電所、放射線利用施設及び加速器施設等において使用される個人被ばく管理用ポケット線量計や環境測定用サーベイメータやエリアモニタ等の放射線測定装置に関する。   The present invention relates to a radiation measurement apparatus such as a personal dose management pocket dosimeter, an environmental measurement survey meter, an area monitor, and the like used in nuclear power plants, radiation utilization facilities, accelerator facilities, and the like.

図6に従来の放射線測定装置の放射線検出部を説明するための検出部構成図を示す。図6において、放射線の一例であるβ線は遮光や電磁シールドの機能を兼ねたフィルタ11を介して放射線検出器13に入射する。なお、このフィルタ11としては、厚みが20mg/cm2程度のアルミニウム、または、銅とPETの張合わせシートを使用し、フィルタ11の中心部にはフィルタ12として厚み0.5mmの鉛を付加して使用する。そして、フィルタ11はフィルタ支持部14によって支えられておりプリント基板15に取り付けられている。β線は物質中の透過力がX線、γ線に対して非常に小さく、例えば、0.5MeVのβ線は0.6mm厚アルミニウム(160mg/cm2)で止まってしまう。方向特性を良くするために通常60°方向まで正面方向(0°)と同程度の感度を持たせるようにフィルタ12を設け、正面方向での感度を落とすことによって相対的に60°方向での感度を上げ、方向特性が通常60°方向まで0°(正面)方向と同程度の感度を持たせるようにしていた(例えば、特許文献1参照)。
特開2003−4852号公報
FIG. 6 shows a configuration diagram of a detection unit for explaining a radiation detection unit of a conventional radiation measurement apparatus. In FIG. 6, β rays, which are an example of radiation, are incident on the radiation detector 13 through a filter 11 that also functions as light shielding and electromagnetic shielding. The filter 11 is made of aluminum having a thickness of about 20 mg / cm 2 or a laminated sheet of copper and PET. Lead having a thickness of 0.5 mm is added as a filter 12 to the center of the filter 11. To use. The filter 11 is supported by the filter support portion 14 and attached to the printed board 15. β-rays have a very low permeability in X-rays and γ-rays. For example, 0.5 MeV β-rays stop at 0.6 mm thick aluminum (160 mg / cm 2 ). In order to improve the directional characteristics, a filter 12 is provided so as to have sensitivity equivalent to the front direction (0 °) up to the normal 60 ° direction, and the sensitivity in the front direction is reduced by reducing the sensitivity in the front direction. Sensitivity was increased so that the directional characteristics normally have the same sensitivity as the 0 ° (front) direction up to the 60 ° direction (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 2003-4852

上記従来の方法では、β線に対する方向特性は入射窓部の厚みが均等な場合には広角になるほどレスポンスが小さくなるため窓中央部を厚くしたフィルタ構造としており、このフィルタ構造により60°で0°と同等のレスポンスが得られるようにフィルタ形状を決定した場合、その中間の角度において0°に対してオーバレスポンスになることがあった。即ち、60°の各角度までの0°に対してのレスポンスが通常バラツキの規格である±30%を外れることがあった。   In the above-described conventional method, the directional characteristic with respect to β rays has a filter structure in which the central portion of the window is thickened because the response becomes smaller as the angle of the incident window is uniform, and the window becomes thicker. When the filter shape is determined so that a response equivalent to ° can be obtained, an over-response may occur with respect to 0 ° at an intermediate angle. That is, the response to 0 ° up to each angle of 60 ° may deviate from ± 30%, which is a standard for variation.

上記課題を解決するために、本発明の放射線測定装置は、複数の放射線検出部を使用し、少なくとも1つの放射線検出部へ入射するβ線のβ線入射部を均一とし、少なくとも1つの放射線検出部へ入射するβ線のβ線入射部の正面方向にレスポンスを高くし、広角方向ではレスポンスを低くするために周囲に比べ中央部の厚みが薄いβ線入射部を設け、それぞれのレスポンスをCPU(Central Processing Unit)などの処理部内で比較することによって、レスポンスに対する補正係数を決め、β線入射部を均一とした放射線検出部からのレスポンスに対して補正係数を乗算して補正を行うものである。   In order to solve the above-described problem, the radiation measurement apparatus of the present invention uses a plurality of radiation detection units, uniforms the β-ray incident part of β-rays incident on at least one radiation detection part, and detects at least one radiation. In order to increase the response in the front direction of the β-ray incident part of the β-ray incident on the part and to reduce the response in the wide-angle direction, a β-ray incident part with a thinner central part than the surroundings is provided, and each response is sent to the CPU. A correction coefficient for the response is determined by comparison in a processing unit such as (Central Processing Unit), and the correction is performed by multiplying the response from the radiation detection unit having a uniform β-ray incident part by the correction coefficient. is there.

本発明の放射線測定装置によれば、検出する放射線の方向特性を、入射の角度によらずフラットにすることができる。   According to the radiation measuring apparatus of the present invention, the direction characteristic of the radiation to be detected can be made flat regardless of the incident angle.

以下、本発明の一実施の形態について、図1から図5を用いて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

図1は本実施の形態の放射線測定装置における放射線検出部分を説明するための検出部概略構成図である。1および4は遮光及び電磁シールドの機能を兼ねた厚みが均一なβ線入射窓としてのフィルタであり、2はファイル1およびフィルタ4を支持するフィルタ支持部であり、3はフィルタ1を通過した放射線を検出するための放射線検出器であり、5はフィルタ4の略中央部以外の箇所に設けられた穴あきフィルタであり、6はフィルタ4を通過した放射線を検出するための放射線検出器であり、7は放射線検出器3および放射線検出器6やフィルタ支持部2を取り付けるためのプリント基板である。   FIG. 1 is a schematic configuration diagram of a detection unit for explaining a radiation detection portion in the radiation measurement apparatus of the present embodiment. 1 and 4 are filters serving as a β-ray incident window having a uniform thickness that also functions as a light shielding and electromagnetic shield, 2 is a filter support for supporting the file 1 and the filter 4, and 3 is passed through the filter 1. A radiation detector for detecting radiation, 5 is a perforated filter provided at a location other than the substantially central portion of the filter 4, and 6 is a radiation detector for detecting radiation that has passed through the filter 4. And 7 is a printed circuit board for mounting the radiation detector 3, the radiation detector 6 and the filter support 2.

なお、フィルタ1およびフィルタ4としては、厚みが20mg/cm2程度アルミニウム、または、銅とPETとを張合わせたシートを使用する。 In addition, as the filter 1 and the filter 4, the sheet | seat which laminated | stacked aluminum or copper and PET about 20 mg / cm < 2 > in thickness is used.

また、放射線検出器3および放射線検出器6は、一例として、シリコン半導体検出器からなる。   Moreover, the radiation detector 3 and the radiation detector 6 consist of a silicon semiconductor detector as an example.

以上のように構成された放射線検出部分について、その動作を説明する。   The operation of the radiation detection part configured as described above will be described.

β線は遮光及び電磁シールドの機能を兼ねた厚みが均一なβ線入射窓としてのフィルタ1を通して放射線検出器3に入射する。放射線検出器3内では電離作用が起こり、電流が発生する。次にアンプ回路(図示せず)にて電流−電圧変換されて増幅される。この増幅されたアナログ信号はコンパレータ回路(図示せず)に送られてしきい値との比較が行われる。なお、このコンパレータ回路はノイズ信号をカットしたりするものである。そして、しきい値を超えた信号は、処理部であるCPU(図示せず)において、放射線の単位である線量D1(シーベルト)または線量率DR1(シーベルト/時間)に換算される。
一方、放射線検出器3内と同様に、β線はフィルタ1と同材料のフィルタ4及び中央部に放射線検出器6の放射線有感面積の1/5程度の面積の空孔を設けた厚み1mmの鉛を使用した穴あきフィルタ5を通して放射線検出器6にも入射する。この放射線検出器6内でも電離作用が起こり、電流が発生する。そして、アンプ回路(図示せず)にて電流−電圧変換されて増幅される。このアナログ信号はコンパレータ回路(図示せず)に送られてしきい値との比較が行われる。しきい値を超えた信号は、処理部であるCPU(図示せず)で放射線の単位である線量D2(シーベルト)または線量率DR2(シーベルト/時間)に換算される。
β-rays enter the radiation detector 3 through the filter 1 as a β-ray incident window having a uniform thickness that also functions as a light shield and an electromagnetic shield. An ionizing action occurs in the radiation detector 3 and a current is generated. Next, it is amplified by current-voltage conversion by an amplifier circuit (not shown). This amplified analog signal is sent to a comparator circuit (not shown) to be compared with a threshold value. This comparator circuit cuts a noise signal. Then, a signal exceeding the threshold value is converted into a dose D1 (sievert) or a dose rate DR1 (sievert / hour) which is a unit of radiation in a CPU (not shown) as a processing unit.
On the other hand, as in the radiation detector 3, the β-ray has a thickness of 1 mm in which a filter 4 made of the same material as the filter 1 and a hole having an area about 1/5 of the radiation sensitive area of the radiation detector 6 are provided in the center. The light enters the radiation detector 6 through the perforated filter 5 using the lead. An ionizing action also occurs in the radiation detector 6 to generate a current. Then, current-voltage conversion is performed and amplified by an amplifier circuit (not shown). This analog signal is sent to a comparator circuit (not shown) for comparison with a threshold value. A signal exceeding the threshold value is converted into a dose D2 (sievert) or a dose rate DR2 (sievert / time) which is a unit of radiation by a CPU (not shown) as a processing unit.

次に、測定した線量を補正するための補正係数について、図2を用いて説明する。   Next, the correction coefficient for correcting the measured dose will be described with reference to FIG.

図2は、放射線測定装置の一例であるポケット線量計において、放射線検出器3と放射線検出器6の2つの放射線検出器を使って入射した放射線の方向特性を補正するための補正係数を示す図である。この図2については、D2/D1(線量D2と線量D1との比)を予め実験によって各角度で取得しておき、補正係数(K)を割り出しておく。なお、この図2に示す特性は、記憶部(図示せず)に記憶しておく。そして、測定したD1とD2と、図2に示す特性とに基づいて、処理部(図示せず)において、K(補正係数)×D1(放射線検出器3により検出した線量)を演算して補正を行う。なお、放射線の入射方向が正面(0°)に比べて広角となるとD2/D1が小さくなるものである。そして、これをD2/D1を角度情報としてその比に対応する補正係数Kを乗算することで補正を行うものである。   FIG. 2 is a diagram showing a correction coefficient for correcting the direction characteristics of incident radiation using two radiation detectors of the radiation detector 3 and the radiation detector 6 in a pocket dosimeter which is an example of a radiation measuring apparatus. It is. As for FIG. 2, D2 / D1 (ratio of dose D2 and dose D1) is acquired in advance at each angle by experiment, and a correction coefficient (K) is calculated. The characteristics shown in FIG. 2 are stored in a storage unit (not shown). Then, based on the measured D1 and D2 and the characteristics shown in FIG. 2, in the processing unit (not shown), K (correction coefficient) × D1 (dose detected by the radiation detector 3) is calculated and corrected. I do. Note that D2 / D1 becomes smaller when the incident direction of radiation becomes wider than the front (0 °). Then, this is corrected by multiplying a correction coefficient K corresponding to the ratio by using D2 / D1 as angle information.

次に、放射線検出器3と放射線検出器6の2つの放射線検出器により線量D1,D2を測定し、その測定結果と記憶部に記憶している図2に示した補正係数とに基づいて測定した線量の補正を行った実例について、図3を用いて説明する。   Next, the doses D1 and D2 are measured by the two radiation detectors of the radiation detector 3 and the radiation detector 6, and measured based on the measurement result and the correction coefficient shown in FIG. 2 stored in the storage unit. An example in which the corrected dose is corrected will be described with reference to FIG.

図3はポケット線量計の垂直方向(正面)0°〜60°での各角度における線量の測定および補正の例を示す図である。放射線検出器3と放射線検出器6の2つの放射線検出器により線量D1,D2を測定し、処理部はこの線量D1とD2を用いて比率D2/D1を求める。処理部は、この比率に対応する補正係数Kを、図2に示した記憶部に記憶している値から選定し、この補正係数KをD1に乗算することにより補正を行う。なお、線量率の場合においても、線量の場合と同様に同じ補正係数Kを乗算することで補正を行うことができる。   FIG. 3 is a diagram showing an example of dose measurement and correction at each angle in the vertical direction (front) of the pocket dosimeter at 0 ° to 60 °. The doses D1 and D2 are measured by the two radiation detectors of the radiation detector 3 and the radiation detector 6, and the processing unit obtains the ratio D2 / D1 using the doses D1 and D2. The processing unit selects the correction coefficient K corresponding to this ratio from the values stored in the storage unit shown in FIG. 2, and performs correction by multiplying the correction coefficient K by D1. In the case of the dose rate, correction can be performed by multiplying the same correction coefficient K as in the case of the dose.

図4は、上述の補正の有り無しにおけるβ線方向特性を示す図である。図4に示すように、上記した補正を行うことにより、0°〜60°の全角度でバラツキの規格である±30%を外れることなく、過大または過小評価なく補正を実施することができる。   FIG. 4 is a diagram illustrating the β-ray direction characteristics with and without the above-described correction. As shown in FIG. 4, by performing the above-described correction, the correction can be performed without over or under evaluation without deviating from ± 30%, which is a variation standard, at all angles of 0 ° to 60 °.

以上はβ線方向特性補正のための補正係数であるが、低エネルギーβ線に対するレスポンスが高エネルギーβ線に対するレスポンスよりも低い場合にも、同様に2つの放射線検出器で測定した結果に基づいて補正係数を特定して補正を行うようにしてもよい。図5は、補正有り無しでのβ線エネルギー特性図である。この場合、穴あきフィルタ5の空孔の面積を調整することによって方向特性とエネルギー特性両方に対して放射線の入射方向及びエネルギーのエネルギーによらずレスポンスが一定の放射線測定器を実現できる。   The above is a correction coefficient for correcting the β-ray direction characteristics, but when the response to low energy β rays is lower than the response to high energy β rays, it is also based on the results measured with two radiation detectors. Correction may be performed by specifying a correction coefficient. FIG. 5 is a β-ray energy characteristic diagram with and without correction. In this case, by adjusting the hole area of the perforated filter 5, it is possible to realize a radiation measuring instrument having a constant response regardless of the incident direction of radiation and the energy of energy with respect to both direction characteristics and energy characteristics.

以上のように、本実施の形態の放射線測定装置によれば、複数の放射線検出器を使用し、少なくとも1つの放射線検出器はβ線入射窓を均一とし、少なくとも他の1つの放射線検出器は、β線入射窓に正面方向にレスポンスを高くし、広角方向ではレスポンスを低くするために周囲に比べ中央部の厚みが薄いβ線入射窓を設けて部分的に通過特性が異なる構成とし、これら2つの放射線検出器を用いて放射線を測定し、それぞれの測定結果から放射線の入射角度を推定してそれに対応する補正係数を特定し、測定結果にこの補正係数を乗算して補正を行うようにすることで、放射線の入射角度によらず感度特性をフラットとして放射線の測定を行うことができる。   As described above, according to the radiation measuring apparatus of the present embodiment, a plurality of radiation detectors are used, at least one radiation detector has a uniform β-ray incident window, and at least one other radiation detector has In order to increase the response in the front direction in the β-ray incident window and to reduce the response in the wide-angle direction, a β-ray incident window with a thinner central part than the surroundings is provided, and the transmission characteristics are partially different. Radiation is measured using two radiation detectors, the incident angle of the radiation is estimated from each measurement result, a corresponding correction coefficient is specified, and the measurement result is multiplied by this correction coefficient to perform correction. By doing so, it is possible to measure the radiation with the sensitivity characteristic being flat regardless of the incident angle of the radiation.

なお、本実施の形態において、穴あきフィルタ5を構成する材料として鉛を使用した例について説明したが、これに限るものではなく、鉛の代わりにタングステンを使用しても同様の結果を得ることができる。   In the present embodiment, the example in which lead is used as the material constituting the perforated filter 5 has been described. However, the present invention is not limited to this, and similar results can be obtained even if tungsten is used instead of lead. Can do.

また、本実施の形態において、放射検出器3および6をシリコン検出器とした例について説明したが、これに限るものではなく、この代わりに、ガリウムヒ素検出器またはテルル化カドミウム検出器またはCsI(ヨウ化セシウム)シンチレータ検出器とシリコンフォト検出器の組み合わせとしても同様の結果を得ることができる。   In the present embodiment, an example in which the radiation detectors 3 and 6 are silicon detectors has been described. However, the present invention is not limited to this. Instead, a gallium arsenide detector, a cadmium telluride detector, or CsI ( Similar results can be obtained by combining a (cesium iodide) scintillator detector and a silicon photo detector.

また、本実施の形態においては、ポケット線量計を例として説明したが、ポケット線量計と同様の検出器を使用するサーベイメータやエリアモニタでも同様の結果を得ることができる。   In the present embodiment, the pocket dosimeter has been described as an example, but a similar result can be obtained by a survey meter or an area monitor using a detector similar to the pocket dosimeter.

また、放射線検出部は2つに限らず2つ以上としてもよい。そして、これらの放射検出器は出来るだけ近付けて配置するようにしてもよい。   Further, the number of radiation detection units is not limited to two and may be two or more. These radiation detectors may be arranged as close as possible.

本発明の放射線測定装置によれば、β線の方向特性及びエネルギー特性を精度よく補正することができるので、原子力発電所、放射線利用施設及び加速器施設等において使用される個人被ばく管理用ポケット線量計や環境測定用サーベイメータ、エリアモニタ等として有用である。   According to the radiation measuring apparatus of the present invention, the direction characteristics and energy characteristics of β rays can be corrected with high accuracy, so that personal dose management pocket dosimeters used in nuclear power plants, radiation utilization facilities, accelerator facilities, etc. It is useful as an environmental measurement survey meter, area monitor, etc.

実施の形態における放射線検出部の概略構成を示す図The figure which shows schematic structure of the radiation detection part in embodiment 実施の形態における補正係数を示す図The figure which shows the correction coefficient in embodiment 実施の形態におけるβ線方向特性の補正の実例を示す図The figure which shows the actual example of correction | amendment of the beta ray direction characteristic in embodiment 実施の形態におけるβ線方向特性の補正の実例を示す図The figure which shows the actual example of correction | amendment of the beta ray direction characteristic in embodiment 実施の形態におけるβ線エネルギー特性を示す図The figure which shows the beta ray energy characteristic in embodiment 従来の放射線検出部の概略構成を示す図The figure which shows schematic structure of the conventional radiation detection part.

符号の説明Explanation of symbols

1 フィルタ
2 フィルタ支持部
3 放射線検出器
4 フィルタ
5 穴あきフィルタ
6 放射線検出器
7 プリント基板
11 フィルタ
12 フィルタ
13 放射線検出器
14 フィルタ支持部
15 プリント基板
DESCRIPTION OF SYMBOLS 1 Filter 2 Filter support part 3 Radiation detector 4 Filter 5 Perforated filter 6 Radiation detector 7 Printed circuit board 11 Filter 12 Filter 13 Radiation detector 14 Filter support part 15 Printed circuit board

Claims (17)

放射線の通過特性が均一な第1のフィルタと、前記第1のフィルタを通過した放射線を検出する第1の放射線検出部と、前記放射線の通過特性が部分的に異なる第2のフィルタと、前記第2のフィルタを通過した放射線を検出する第2の放射線検出部とを備えた放射線測定装置。 A first filter having a uniform radiation pass characteristic; a first radiation detecting unit for detecting radiation that has passed through the first filter; a second filter having a partially different pass characteristic of the radiation; A radiation measurement apparatus comprising: a second radiation detection unit that detects radiation that has passed through the second filter. 放射線の通過特性が均一な第1のフィルタと、前記第1のフィルタを通過した放射線を検出する第1の放射線検出部と、前記放射線の通過特性が部分的に異なる第2のフィルタと、前記第2のフィルタを通過した放射線を検出する第2の放射線検出部と、前記第1の放射線検出部の検出結果と前記第2の放射線検出部の検出結果とに基づく演算結果に対応付けられて予め求められた補正係数を記憶する記憶部と、前記第1の放射線検出部の検出結果と前記第2の放射線検出部の検出結果と前記記憶部に記憶されている補正係数とに基づいて前記第1の放射線検出部の検出結果を補正する処理部とを備えた放射線測定装置。 A first filter having a uniform radiation pass characteristic; a first radiation detecting unit for detecting radiation that has passed through the first filter; a second filter having a partially different pass characteristic of the radiation; Corresponding to a calculation result based on a second radiation detection unit that detects radiation that has passed through the second filter, a detection result of the first radiation detection unit, and a detection result of the second radiation detection unit Based on the storage unit that stores the correction coefficient obtained in advance, the detection result of the first radiation detection unit, the detection result of the second radiation detection unit, and the correction coefficient stored in the storage unit A radiation measurement apparatus comprising: a processing unit that corrects a detection result of the first radiation detection unit. 放射線の通過特性が均一な第1のフィルタと、前記第1のフィルタを通過した放射線を検出する第1の放射線検出部と、前記放射線の通過特性が部分的に異なる第2のフィルタと、前記第2のフィルタを通過した放射線を検出する第2の放射線検出部と、前記第1の放射線検出部の検出結果と前記第2の放射線検出部との比率に対応付けられて予め求められた補正係数を記憶する記憶部と、前記第1の放射線検出部の検出結果と前記第2の放射線検出部の検出結果と前記記憶部に記憶されている補正係数とに基づいて前記第1の放射線検出部の検出結果を補正する処理部とを備えた放射線測定装置。 A first filter having a uniform radiation pass characteristic; a first radiation detecting unit for detecting radiation that has passed through the first filter; a second filter having a partially different pass characteristic of the radiation; Correction obtained in advance in association with the ratio between the second radiation detection unit that detects the radiation that has passed through the second filter, the detection result of the first radiation detection unit, and the second radiation detection unit The first radiation detection based on a storage unit that stores a coefficient, a detection result of the first radiation detection unit, a detection result of the second radiation detection unit, and a correction coefficient stored in the storage unit A radiation measurement apparatus comprising: a processing unit that corrects a detection result of the unit. 第1の放射線検出部の検出結果の補正を放射線の方向特性に対して行うことを特徴とする請求項2または3記載の放射線測定装置。 The radiation measurement apparatus according to claim 2 or 3, wherein correction of the detection result of the first radiation detection unit is performed on the radiation direction characteristic. 第1の放射線検出部の検出結果の補正を放射線のエネルギー特性に対して行うことを特徴とする請求項2または3記載の放射線測定装置。 The radiation measurement apparatus according to claim 2 or 3, wherein the detection result of the first radiation detection unit is corrected for the energy characteristics of the radiation. 第1の放射線検出部の検出結果の補正を放射線の方向特性および放射線のエネルギー特性に対して行うことを特徴とする請求項2または記載の放射線測定装置。 The radiation measurement apparatus according to claim 2, wherein correction of the detection result of the first radiation detection unit is performed on the radiation direction characteristic and the radiation energy characteristic. 第2のフィルタは、厚みが異なることで通過特性が部分的に異なるものであり、略中央部分の厚さが他の部分の厚さより薄いものである請求項1から6のいずれか1項に記載の放射線測定装置。 The second filter according to any one of claims 1 to 6, wherein the second filter has a partially different pass characteristic due to a difference in thickness, and the thickness of the substantially central portion is thinner than the thickness of the other portions. The radiation measuring apparatus described. 第2のフィルタは、通過特性が均一なフィルタの一部に金属を取り付けることより通過特性が部分的に異なるものである請求項1から6のいずれか1項に記載の放射線測定装置。 The radiation measuring apparatus according to any one of claims 1 to 6, wherein the second filter has a partially different pass characteristic by attaching metal to a part of a filter having a uniform pass characteristic. 金属は鉛からなることを特徴とする請求項8記載の放射線測定装置。 The radiation measuring apparatus according to claim 8, wherein the metal is made of lead. 金属はタングステンからなることを特徴とする請求項8記載の放射線測定装置。 9. The radiation measuring apparatus according to claim 8, wherein the metal is made of tungsten. 第1および/または第2の放射線検出器はシリコン検出器である請求項1から10のいずれか1項に記載の放射線測定装置。 The radiation measuring apparatus according to any one of claims 1 to 10, wherein the first and / or second radiation detector is a silicon detector. 第1および/または第2の放射線検出器はテルル化カドミウム検出器である請求項1から10のいずれか1項に記載の放射線測定装置。 The radiation measuring apparatus according to any one of claims 1 to 10, wherein the first and / or second radiation detector is a cadmium telluride detector. 第1および/または第2の放射線検出器はガリウムヒ素検出器である請求項1から10のいずれか1項に記載の放射線測定装置。 The radiation measuring apparatus according to claim 1, wherein the first and / or second radiation detector is a gallium arsenide detector. 第1および/または第2の放射線検出器はCsIシンチレータ検出器とシリコンフォト検出器の組み合わせからなる請求項1から10のいずれか1項に記載の放射線測定装置。 The radiation measuring apparatus according to claim 1, wherein the first and / or second radiation detector is a combination of a CsI scintillator detector and a silicon photo detector. 放射線測定装置はポケット線量計であることを特徴とする請求項1から14のいずれか1項に記載の放射線測定装置。 The radiation measuring apparatus according to claim 1, wherein the radiation measuring apparatus is a pocket dosimeter. 放射線測定装置はサーベイメータであることを特徴とする請求項1から14のいずれか1項に記載の放射線測定装置。 The radiation measuring apparatus according to claim 1, wherein the radiation measuring apparatus is a survey meter. 放射線測定装置はエリアモニタであることを特徴とする請求項1から14のいずれか1項に記載の放射線測定装置。 The radiation measuring apparatus according to claim 1, wherein the radiation measuring apparatus is an area monitor.
JP2004113814A 2004-04-08 2004-04-08 Radiation measuring instrument Withdrawn JP2005300245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004113814A JP2005300245A (en) 2004-04-08 2004-04-08 Radiation measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004113814A JP2005300245A (en) 2004-04-08 2004-04-08 Radiation measuring instrument

Publications (1)

Publication Number Publication Date
JP2005300245A true JP2005300245A (en) 2005-10-27

Family

ID=35331959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004113814A Withdrawn JP2005300245A (en) 2004-04-08 2004-04-08 Radiation measuring instrument

Country Status (1)

Country Link
JP (1) JP2005300245A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202689A (en) * 2013-04-09 2014-10-27 Agcテクノグラス株式会社 Fluoroglass dosimeter measuring apparatus, and calibration method of fluoroglass dosimeter measuring apparatus
JP2015531052A (en) * 2012-06-01 2015-10-29 ランダウアー インコーポレイテッド Wireless, motion and position sensing integrated radiation sensor for occupational and environmental dosimetry
JP2016170179A (en) * 2016-06-28 2016-09-23 和浩 山本 Hybrid dose meter
JP2018066749A (en) * 2017-12-11 2018-04-26 和浩 山本 Hybrid dose meter
JP2018517897A (en) * 2015-04-24 2018-07-05 エスセーカー・セーエーエヌSck.Cen Personal dosimeter with at least two ionizing radiation detectors
JP2019197045A (en) * 2019-04-09 2019-11-14 和浩 山本 Hybrid dose meter
JP2021073472A (en) * 2021-02-11 2021-05-13 和浩 山本 Hybrid dose meter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531052A (en) * 2012-06-01 2015-10-29 ランダウアー インコーポレイテッド Wireless, motion and position sensing integrated radiation sensor for occupational and environmental dosimetry
JP2014202689A (en) * 2013-04-09 2014-10-27 Agcテクノグラス株式会社 Fluoroglass dosimeter measuring apparatus, and calibration method of fluoroglass dosimeter measuring apparatus
JP2018517897A (en) * 2015-04-24 2018-07-05 エスセーカー・セーエーエヌSck.Cen Personal dosimeter with at least two ionizing radiation detectors
JP2016170179A (en) * 2016-06-28 2016-09-23 和浩 山本 Hybrid dose meter
JP2018066749A (en) * 2017-12-11 2018-04-26 和浩 山本 Hybrid dose meter
JP2019197045A (en) * 2019-04-09 2019-11-14 和浩 山本 Hybrid dose meter
JP2021073472A (en) * 2021-02-11 2021-05-13 和浩 山本 Hybrid dose meter
JP2022132501A (en) * 2021-02-11 2022-09-08 和浩 山本 Hybrid dose meter

Similar Documents

Publication Publication Date Title
US7480362B2 (en) Method and apparatus for spectral computed tomography
US9513377B2 (en) Method for measuring radiation by means of an electronic terminal having a digital camera
JP5697982B2 (en) Radiation detector, X-ray detector and image forming system having a plurality of conversion layers
WO2007144624A2 (en) Apparatus, device and system
US9817135B2 (en) Performance stabilization for scintillator-based radiation detectors
US8927939B2 (en) Radiation measurement apparatus and nuclear medicine diagnosis apparatus
EP1840597A2 (en) Energy calibration method and radiation detecting and radiological imaging apparatus
WO2016063391A1 (en) Dosage rate measurement device
JP2005300245A (en) Radiation measuring instrument
Ueno et al. Development of a high sensitivity pinhole type gamma camera using semiconductors for low dose rate fields
Damulira et al. Application of Bpw34 photodiode and cold white LED as diagnostic X-ray detectors: A comparative analysis
JP3938146B2 (en) Radiation measurement equipment
JPH095445A (en) Radiological image pickup device
US20190056514A1 (en) Indirect photon-counting analytical x-ray detector
Ziock et al. A germanium-based coded aperture imager
US20040200968A1 (en) Apparatus and method for detecting alpha-ray
Budak et al. Measurements of the efficiency of a Si (Li) detector in the 5.5-60 keV energy region
JP3777909B2 (en) β-ray direct reading detector
JP2005214869A (en) Equivalent dose type radiation detector
JP3064218B2 (en) Radiation measurement device
WO2009111783A2 (en) Method and apparatus for radiation detection and imaging
JP2007024497A (en) Gamma-ray detection radiation detector
JP3960232B2 (en) Neutron detector
JP4643809B2 (en) Radiation measurement equipment
JP6583855B2 (en) Radiation detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070412

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080418