JP2005214449A - Cogeneration system - Google Patents

Cogeneration system Download PDF

Info

Publication number
JP2005214449A
JP2005214449A JP2004018614A JP2004018614A JP2005214449A JP 2005214449 A JP2005214449 A JP 2005214449A JP 2004018614 A JP2004018614 A JP 2004018614A JP 2004018614 A JP2004018614 A JP 2004018614A JP 2005214449 A JP2005214449 A JP 2005214449A
Authority
JP
Japan
Prior art keywords
heat
heat storage
exhaust
storage tank
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004018614A
Other languages
Japanese (ja)
Other versions
JP4119851B2 (en
Inventor
Takashi Yamagami
俊 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2004018614A priority Critical patent/JP4119851B2/en
Publication of JP2005214449A publication Critical patent/JP2005214449A/en
Application granted granted Critical
Publication of JP4119851B2 publication Critical patent/JP4119851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cogeneration system capable of changing timing for taking out electricity and heat and achieving efficient operation without wasting either of energy. <P>SOLUTION: This cogeneration system drives a motor 1 such as an engine, a turbine or the like to generate power by a generator 2 and recovers and utilizes waste heat of exhaust gas of the motor 1. Exhaust gas of the motor 1 is exhausted by passing through a heat reserve tank 5 to reserve waste heat in the heat reserve tank 5 and recover waste heat. Preheated air obtained by flowing the air in the heat reserve tank 5 in a time zone when there is heat demand irrespective of driving the motor 1 is supplied to a boiler 3 to obtain steam or hot water. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、エンジン、タービン等の原動機を駆動させて発電機により発電すると共に該原動機の排気の排熱を回収して利用するコジェネレーションシステムに関するものである。   The present invention relates to a cogeneration system in which a prime mover such as an engine or a turbine is driven and power is generated by a generator, and exhaust heat from the exhaust of the prime mover is recovered and used.

一般に、コジェネレーションシステムは、エンジンやタービン等の原動機を駆動させて発電機により発電すると共に、当該エンジン、タービン等の排熱により水を加熱して蒸気や温度を取り出し、電気と熱エネルギーを得るシステムである。このようなシステムでは総合効率は最終的に排出される排気温度と残存酸素濃度で決まる。   In general, a cogeneration system drives a prime mover such as an engine or a turbine to generate electricity, and heats water by exhaust heat from the engine or turbine to extract steam and temperature to obtain electricity and thermal energy. System. In such a system, the overall efficiency is determined by the exhaust gas temperature and the residual oxygen concentration finally exhausted.

(1)原動機としてタービン若しくは希薄燃焼エンジンを用いるシステムでは、図10に示すように原動機1で発電機2を駆動して発電し、原動機1の排気を排熱ボイラー3aに通して排出すると共に排熱ボイラー3aで蒸気を得るようになっており、最終的な排気温度は140℃程度となっている。そのときの残存酸素濃度は、タービンの場合、約15%であり、希薄燃焼エンジンの場合は約12%となる。ところが、残存酸素濃度が高い状態で排出するということは排気の空気比が高くて排気の持ち去る熱量が多くなり、上記総合効率が悪くなる(総合効率は80〜85%程度である)問題がある。   (1) In a system using a turbine or a lean combustion engine as a prime mover, as shown in FIG. 10, the prime mover 2 drives the generator 2 to generate power, and the exhaust of the prime mover 1 is exhausted through the exhaust heat boiler 3a and exhausted. Steam is obtained by the thermal boiler 3a, and the final exhaust temperature is about 140 ° C. The residual oxygen concentration at that time is about 15% for the turbine and about 12% for the lean combustion engine. However, exhausting in a state where the residual oxygen concentration is high has a problem that the exhaust air ratio is high and the amount of heat taken away by the exhaust gas increases, so that the overall efficiency is deteriorated (the overall efficiency is about 80 to 85%). .

(2)この総合効率を向上するため図11に示すように原動機1の排気の残存酸素を利用して排気再燃バーナ4′を用いて排熱ボイラー3aの蒸気量を増量するシステム(例えば、特許文献1参照)も提供されており、このシステムでは、残存酸素濃度をさらに数%低減することができ、排熱ボイラーで単に熱交換するものに比べて総合効率を向上する(総合効率は90%前後である)ことができる。   (2) In order to improve the overall efficiency, as shown in FIG. 11, a system for increasing the amount of steam in the exhaust heat boiler 3a using the exhaust reburning burner 4 'using residual oxygen in the exhaust of the prime mover 1 (for example, a patent Reference 1) is also provided, and in this system, the residual oxygen concentration can be further reduced by several percent, and the overall efficiency is improved as compared with a simple heat exchange with an exhaust heat boiler (the overall efficiency is 90%). Back and forth).

(3)また原動機として三元触媒方式でNOx対策を行うエンジンを用いる場合は、排気の残存酸素濃度はほぼ0%であり、エンジンの排気は排熱ボイラーを通して排出して蒸気または温水として熱回収する場合が多い。このシステムの総合効率は90%前後である。   (3) When using a three-way catalyst engine with NOx countermeasures as the prime mover, the residual oxygen concentration in the exhaust is almost 0%, and the exhaust from the engine is exhausted through an exhaust heat boiler to recover heat as steam or hot water. There are many cases to do. The overall efficiency of this system is around 90%.

なお、先に述べた総合効率はいずれも最適な運転状態時の値であって、実際には常時この効率を保つのは困難である。
特開2002−5412号公報
Note that the overall efficiency described above is a value in an optimum operating state, and in practice, it is difficult to always maintain this efficiency.
JP 2002-5412 A

ところが、上記のようなコジェネレーションシステムでは、電気と熱(蒸気)を運転時に同時に取り出す構造であるため、電気と熱の需要の比率が変化したときどちらかの需要の多い方に合わせて運転し、需要が少ない方は利用せずに捨てるしかなく、結果的に総合効率の低下を招くことが多々あった。つまり、熱の需要が少ないのに電気の需要が多いときには発生した蒸気を利用することなく、放散せざるを得ないことがある。   However, the cogeneration system as described above has a structure that takes out electricity and heat (steam) at the same time during operation. Therefore, when the ratio of demand for electricity and heat changes, it operates according to whichever demand is greater. However, those who have less demand can only throw away without using them, resulting in a decrease in overall efficiency. In other words, when the demand for electricity is large even though the demand for heat is small, the generated steam may not be used without being dissipated.

本発明は上記の従来の問題点に鑑みて発明したものであって、電気と熱を取り出すタイミングを変化させることができるため、どちらかのエネルギーを捨てることなく効率のよい運転ができるコジェネレーションシステムを提供することを課題とする。   The present invention was invented in view of the above-described conventional problems, and can change the timing of taking out electricity and heat, so that a cogeneration system capable of efficient operation without discarding either energy It is an issue to provide.

上記課題を解決するために本発明に係るコジェネレーションシステムは、エンジン、タービン等の原動機1を駆動させて発電機2により発電すると共に該原動機1の排気の排熱を回収して利用するコジェネレーションシステムであって、原動機1の排気を蓄熱槽5に通して排出することで排熱を蓄熱槽5に蓄熱して排熱を回収すると共に原動機1の駆動とは関係なく熱需要のある時間帯に蓄熱槽5に空気を通して得た予熱空気をボイラー3に供給して蒸気または温水を得るようにしたことを特徴とする。このようにすることで、発電時の排熱を回収して蓄熱槽5に蓄熱しておき、熱の需要のある時間帯に蓄熱槽5から取り出した熱をボイラー3に供給して蒸気または温水を得ることができる。このために電気と熱の取り出すタイミングを変化させることができ、電気と熱のどちらかのエネルギーを捨てることなく、効率のよい運転ができる。   In order to solve the above-described problems, a cogeneration system according to the present invention drives a prime mover 1 such as an engine or a turbine to generate power by a generator 2 and collects and uses exhaust heat from the exhaust of the prime mover 1 It is a system, and the exhaust heat of the prime mover 1 is exhausted through the heat storage tank 5 to be exhausted, and the exhaust heat is stored in the heat storage tank 5 to recover the exhaust heat, and the time zone in which there is a heat demand irrespective of the drive of the prime mover 1 The preheated air obtained by passing air through the heat storage tank 5 is supplied to the boiler 3 to obtain steam or hot water. By doing in this way, the exhaust heat at the time of power generation is collected and stored in the heat storage tank 5, and the heat taken out from the heat storage tank 5 is supplied to the boiler 3 in a time zone where there is a demand for heat to supply steam or hot water. Can be obtained. For this reason, the timing of taking out electricity and heat can be changed, and efficient operation can be performed without discarding either energy of electricity or heat.

また熱需要のある時間帯に蓄熱槽5に空気を通して空気を予熱し、この予熱した空気を燃焼用空気としてボイラー3のバーナ4を燃焼させてボイラー5にて蒸気または温水を得るようにしたことを特徴とすることも好ましい。この場合、蓄熱槽5を通すことで予熱した空気を燃焼用の空気としてボイラー5で燃焼させることによりバーナ4に供給する空気量や燃料量を変えてバーナ4の燃焼量を変えることができ、蒸気または温水の発生量を可変できて電気と熱のバランスを大きく変化させることができる。   In addition, air is preheated through the heat storage tank 5 during a time when there is a demand for heat, and the burner 4 of the boiler 3 is burned using the preheated air as combustion air to obtain steam or hot water in the boiler 5. It is also preferable to characterize. In this case, the amount of combustion of the burner 4 can be changed by changing the amount of air and fuel supplied to the burner 4 by burning the preheated air as combustion air in the boiler 5 through the heat storage tank 5, The generation amount of steam or hot water can be varied to greatly change the balance between electricity and heat.

また複数の蓄熱槽5を有し、そのうち1つに原動機1の排気を流し、その蓄熱槽5から出る排気の温度が所定値以上になると次の蓄熱槽5に排気を流すようにしたことを特徴とすることも好ましい。この場合、複数の蓄熱槽5に順次排気を流して蓄熱することで蓄熱槽5の平均温度を下げると共に排気の流路抵抗を低減できるのに加え、一の蓄熱槽に蓄熱しながら他の蓄熱槽の空気を通して空気を予熱でき、発電しながら蒸気または温水の発生量を可変して取り出すことができる。   In addition, it has a plurality of heat storage tanks 5, one of which flows the exhaust of the prime mover 1, and when the temperature of the exhaust coming out of the heat storage tank 5 exceeds a predetermined value, the exhaust is flown to the next heat storage tank 5 It is also preferred to have a feature. In this case, in addition to lowering the average temperature of the heat storage tank 5 and reducing the flow path resistance of the exhaust by flowing exhaust gas sequentially to the plurality of heat storage tanks 5 and storing the other heat storage, The air can be preheated through the tank air, and the amount of steam or hot water generated can be varied and taken out while generating electricity.

本発明は叙述の如く発電時の排熱を回収して蓄熱槽に蓄熱しておき、熱の需要のある時間帯に蓄熱槽から取り出した熱をボイラーに供給して蒸気まはた温水を得ることができるものであって、電気と熱の取り出すタイミングを変化させることができるため、電気と熱のどちらかのエネルギーを捨てることなく、効率のよい運転ができるという効果を奏し得るものである。   As described above, the present invention collects exhaust heat during power generation and stores it in a heat storage tank, and supplies the boiler with the heat extracted from the heat storage tank in a time zone where there is a demand for heat to obtain steam or hot water. Since the timing of taking out electricity and heat can be changed, it is possible to achieve an effect that an efficient operation can be performed without discarding either energy of electricity or heat.

また蓄熱槽を通すことで予熱した空気を燃焼用の空気としてボイラーで燃焼させるようにすると、バーナに供給する空気量や燃料量を変えてバーナの燃焼量を変えることができ、蒸気または温水の発生量を可変できて電気と熱のバランスを大きく変化させることができるという効果を奏し得るものである。   Moreover, if the boiler preheats the air preheated by passing through the heat storage tank as the combustion air, the amount of fuel supplied to the burner and the amount of fuel can be changed to change the amount of combustion of the burner. It is possible to produce an effect that the generation amount can be varied and the balance between electricity and heat can be greatly changed.

また複数の蓄熱槽5を有すると、複数の蓄熱槽に順次排気を流して蓄熱することで排気の流路抵抗を低減できるのは勿論、一の蓄熱槽に蓄熱しながら他の蓄熱槽の空気を通して空気を予熱でき、発電しながら蒸気または温水の発生量を可変して取り出すことができるという効果を奏し得るものである。   Moreover, when it has the some heat storage tank 5, it can reduce the flow path resistance of exhaust by flowing exhaust_gas | exhaustion one by one to a plurality of heat storage tanks, and it can reduce the airflow of another heat storage tank while storing heat in one heat storage tank. The air can be preheated through, and the effect that the generation amount of steam or hot water can be taken out while generating electricity can be obtained.

以下、本発明を添付図面に示す実施形態に基いて説明する。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings.

図1に示すコジェネレーションシステムの例から述べる。原動機1はタービンまたはエンジンであって、都市ガスのような燃料と空気とを供給することで駆動されるようになっている。この原動機1には発電機2を付設してあり、原動機1で発電機2を駆動することにより電気を発生することができるようになっている。蓄熱槽5は、側壁に断熱材を貼って放熱を抑えた槽に、耐火レンガやアルミナのボール、セラミック若しくはメタルのハニカム等を充填して構成されている。原動機1の排気を排出する経路6は開閉弁7を介して蓄熱槽5の入口に連通させてあり、外気をブロア8にて取り入れる経路9は開閉弁10を介して蓄熱槽5の入口に連通させてある。排熱ボイラーのようなボイラー3には熱を回収する熱交換器11を有すると共に燃焼するバーナ4を有している。蓄熱槽5の出口とボイラー3のバーナ4とは経路12にて連通している。   An example of the cogeneration system shown in FIG. 1 will be described. The prime mover 1 is a turbine or an engine, and is driven by supplying fuel such as city gas and air. A power generator 2 is attached to the prime mover 1, and electricity can be generated by driving the generator 2 with the prime mover 1. The heat storage tank 5 is configured by filling a side wall with a heat insulating material to suppress heat dissipation, and filling a refractory brick, an alumina ball, a ceramic or metal honeycomb or the like. A path 6 for discharging the exhaust gas of the prime mover 1 communicates with the inlet of the heat storage tank 5 via the on-off valve 7, and a path 9 for taking outside air through the blower 8 communicates with the inlet of the heat storage tank 5 via the on-off valve 10. I'm allowed. A boiler 3 such as an exhaust heat boiler has a heat exchanger 11 that recovers heat and a burner 4 that burns. The outlet of the heat storage tank 5 and the burner 4 of the boiler 3 communicate with each other through a path 12.

上記のコジェネレーションシステムで発電する場合は、図2(a)のように空気と燃料と供給して原動機1を駆動すると、発電機2が駆動されて発電される。原動機1からの排気は蓄熱槽5に通されて蓄熱槽5の蓄熱材に熱が回収され、蓄熱槽5に熱が回収されて温度が下がった排気はボイラー3を介して排出される。このとき、例えば、排気の残存酸素は15%で、排気の温度が60℃である場合、効率は90〜95%である。また蒸気を発生して熱を取り出す場合、図2(b)に示すように原動機1を駆動せずにブロア8を駆動して外気の空気を取り入れてこの空気を蓄熱槽5に通す。蓄熱槽5に空気を通すことで蓄熱材と熱交換して空気が予熱され、予熱された空気がバーナ4の燃焼用空気として供給されてバーナ4に供給された燃料がボイラー3で燃焼させられる。ボイラー3で燃焼させられることにより、熱交換器11に供給された水が加熱されて蒸気が発生させられる。この場合、ボイラー3から排出される排気は例えば残存酸素が3%で温度が140℃であると、効率は90〜95%である。本例の場合、ボイラー5の燃焼で蒸気を取り出しているが、温水を取り出すものでもよい。   When power is generated by the above-described cogeneration system, when the prime mover 1 is driven by supplying air and fuel as shown in FIG. 2A, the generator 2 is driven to generate power. The exhaust from the prime mover 1 is passed through the heat storage tank 5 and heat is collected in the heat storage material of the heat storage tank 5, and the exhaust gas whose temperature is reduced by collecting heat in the heat storage tank 5 is discharged through the boiler 3. At this time, for example, when the residual oxygen in the exhaust gas is 15% and the temperature of the exhaust gas is 60 ° C., the efficiency is 90 to 95%. Further, when heat is generated by generating steam, the blower 8 is driven without driving the prime mover 1 as shown in FIG. 2 (b) to take in air from the outside, and this air is passed through the heat storage tank 5. By passing air through the heat storage tank 5, the heat is exchanged with the heat storage material to preheat the air, the preheated air is supplied as combustion air for the burner 4, and the fuel supplied to the burner 4 is burned in the boiler 3. . By being burned in the boiler 3, the water supplied to the heat exchanger 11 is heated and steam is generated. In this case, the exhaust gas discharged from the boiler 3 has an efficiency of 90 to 95% when the residual oxygen is 3% and the temperature is 140 ° C., for example. In this example, steam is taken out by combustion of the boiler 5, but hot water may be taken out.

上記のように発電と蒸気の発生が行われるがこの状態をグラフに示すと図3のようなグラフのようになる。このように発電と蒸気の発生を行うようにすると、電気と熱を取り出すタイミングを変化させることができるので、どちらかのエネルギーを捨てることなくシステム運転ができ、高効率を保つことができる。蓄熱槽5から排出される排気は蓄熱槽5の設計を適正に行えば、常温付近まで低減させることができ、背景技術の(1)で述べた通常のコジュネレーションシステムの理想運転時の総合効率と比較しても総合効率の低下を数%に抑えることができる。さらに蓄熱槽5と熱交換した予熱空気をバーナ4の燃焼に利用することで蒸気量を可変できるので、電気と熱のバランスを大きく変化させることができる。また、従来、三元触媒方式のエンジンでは背景技術の(3)の通り排気の残存酸素濃度が低くて排気再燃方式で熱を得ることができず、背景技術の(2)のような排気再燃方式では蒸気量を増加側で制御することができなかったが、上記のような本発明の方式では熱量をほぼ保ったまま排気と燃焼用空気との熱の変換ができるので、排気再燃方式のようにボイラー3で燃焼させるようにしても蒸気量を制御できる。また排気再燃方式の場合、ボイラーのバーナとしては低濃度(15%)の酸素で燃焼できるような特殊な形式のものが必要であるが、本発明では外気の空気を取り入れて燃焼する方式であるため、ボイラー3のバーナ4として大気で燃焼する通常の形式のものが使用可能である。   As described above, power generation and steam generation are performed. When this state is shown in a graph, a graph as shown in FIG. 3 is obtained. When power generation and steam generation are performed in this way, the timing for extracting electricity and heat can be changed, so that the system can be operated without discarding either energy, and high efficiency can be maintained. Exhaust gas discharged from the heat storage tank 5 can be reduced to near normal temperature if the heat storage tank 5 is properly designed, and the total during ideal operation of the normal cogeneration system described in the background art (1) Even if it compares with efficiency, the fall of total efficiency can be suppressed to several percent. Furthermore, since the amount of steam can be varied by using the preheated air exchanged with the heat storage tank 5 for the combustion of the burner 4, the balance between electricity and heat can be changed greatly. In addition, in the conventional three-way catalyst type engine, the residual oxygen concentration in the exhaust gas is low as in the background art (3) and heat cannot be obtained by the exhaust gas reburning system. In the method, the amount of steam could not be controlled on the increase side, but in the method of the present invention as described above, the heat can be converted between the exhaust air and the combustion air while maintaining the heat amount substantially. As described above, the amount of steam can be controlled even if the boiler 3 is made to burn. In the case of the exhaust gas reburning system, a boiler burner of a special type that can be burned with low concentration (15%) oxygen is required. In the present invention, however, the combustion is performed by taking in air from the outside. Therefore, a normal type that burns in the atmosphere can be used as the burner 4 of the boiler 3.

なお、図2(a)のように原動機1を駆動して発電しているとき、蒸気も取り出したい場合は、蓄熱槽5を通った後の排気をボイラー3のバーナ4で再燃させることにより蒸気を得ることができる。このとき、原動機1がタービンのように残存酸素濃度が比較的高いことが条件である。このようにすると、電気と同時に蒸気を得ることができるが、効率が悪いと共にバーナ4として低濃度の酸素で燃焼し得る特殊なもの用いる必要がある。   When generating power by driving the prime mover 1 as shown in FIG. 2 (a), if it is desired to take out the steam, the exhaust gas after passing through the heat storage tank 5 is reburned by the burner 4 of the boiler 3 to generate steam. Can be obtained. At this time, it is a condition that the prime mover 1 has a relatively high residual oxygen concentration like a turbine. In this way, steam can be obtained simultaneously with electricity, but it is necessary to use a special one that is inefficient and can burn as the burner 4 with a low concentration of oxygen.

図4は蓄熱槽5を複数設置した例である(本例も上記例と基本的に同じであり、同じ箇所には同一の符号を付して詳しい説明は省略する)。本例の場合、複数個の蓄熱槽5を並設してある。本例の場合4個の蓄熱槽5a,5b,5c,5dを並設してある。原動機1の排気を排出する経路6は開閉弁7,13を介して各蓄熱槽5a,5b,5c,5dの入口に連通させてあり、外気をブロア8にて取り入れる経路9は開閉弁10,13を介して蓄熱槽5a,5b,5c,5dの入口に連通させてある。各蓄熱槽5a,5b,5c,5dの出口とボイラー3のバーナ4とは経路12にて連通させてあり、蓄熱槽5a,5b,5c,5dの出口には温度センサー14を設けてある。   FIG. 4 is an example in which a plurality of heat storage tanks 5 are installed (this example is basically the same as the above example, and the same portions are denoted by the same reference numerals and detailed description thereof is omitted). In the case of this example, a plurality of heat storage tanks 5 are arranged side by side. In the case of this example, four heat storage tanks 5a, 5b, 5c, 5d are arranged in parallel. A path 6 for discharging the exhaust gas of the prime mover 1 communicates with the inlets of the heat storage tanks 5a, 5b, 5c, and 5d via the on-off valves 7 and 13, and a path 9 for taking outside air by the blower 8 13 is connected to the inlets of the heat storage tanks 5a, 5b, 5c, 5d. The outlets of the respective heat storage tanks 5a, 5b, 5c and 5d and the burner 4 of the boiler 3 are communicated with each other through a path 12, and a temperature sensor 14 is provided at the outlets of the heat storage tanks 5a, 5b, 5c and 5d.

上記のコジェネレーションシステムで発電する場合は、図5(a)のように空気と燃料と供給して原動機1を駆動すると、発電機2が駆動されて発電される。原動機1からの排気は蓄熱槽5に通されて蓄熱槽5の蓄熱材に熱が回収されるが、複数の蓄熱槽5a,5b,5c,5dに順に排気が通されて各蓄熱槽5a,5b,5c,5dに順次蓄熱される。つまり、各蓄熱槽5a,5b,5c,5dに順に排気を流して蓄熱するとき温度センサー14にて排気の温度を測定し、排気の温度が所定温度になると、排気を流す蓄熱槽5a,5b,5c,5dを切り替えるようになっている。図6は各蓄熱槽5a,5b,5c,5dに蓄熱するときの切り替えの状態を示し排気温度が160℃以上になると、蓄熱する蓄熱槽5a,5b,5c,5dを切り替えるようになっている。蓄熱槽5a,5b,5c,5dに蓄熱されることにより熱が回収されて温度が下がった排気はボイラー3を介して排出される。また蒸気を発生して熱を取り出す場合、図5(b)に示すように原動機1を駆動せずにブロア8を駆動して外気の空気を取り入れてこの空気を蓄熱槽5a,5b,5c,5dに通す。蓄熱槽5a.5b.5c,5dに空気を通すことで蓄熱材と熱交換して空気が予熱され、予熱された空気がバーナ4の燃焼用空気として供給されてバーナ4に供給された燃料がボイラー3で燃焼させられる。ボイラー3で燃焼させられることにより、熱交換器11に供給された水が加熱されて蒸気が発生させられる。本例の場合、ボイラー5の燃焼で蒸気を取り出しているが、温水を取り出すものでもよい。蓄熱槽5a,5b,5c,5dに空気を予熱するとき予熱空気の温度は図7のグラフのように変化する。   In the case of generating power with the above-mentioned cogeneration system, when the prime mover 1 is driven by supplying air and fuel as shown in FIG. 5A, the generator 2 is driven to generate power. The exhaust from the prime mover 1 is passed through the heat storage tank 5 to recover heat to the heat storage material of the heat storage tank 5, but the exhaust is sequentially passed through the plurality of heat storage tanks 5a, 5b, 5c, 5d, The heat is sequentially stored in 5b, 5c, and 5d. That is, when the exhaust gas is flowed through each of the heat storage tanks 5a, 5b, 5c, 5d in order to store heat, the temperature sensor 14 measures the temperature of the exhaust gas, and when the exhaust gas temperature reaches a predetermined temperature, the heat storage tanks 5a, 5b that flow the exhaust gas. , 5c, 5d. FIG. 6 shows the state of switching when heat is stored in each of the heat storage tanks 5a, 5b, 5c, 5d. When the exhaust temperature is 160 ° C. or higher, the heat storage tanks 5a, 5b, 5c, 5d for storing heat are switched. . Exhaust gas whose temperature has decreased due to heat being stored in the heat storage tanks 5a, 5b, 5c, 5d is discharged through the boiler 3. When steam is generated to extract heat, the blower 8 is driven without driving the prime mover 1 as shown in FIG. 5 (b) to take in the outside air, and this air is stored in the heat storage tanks 5a, 5b, 5c, Go through 5d. Thermal storage tank 5a. 5b. By passing air through 5c and 5d, heat is exchanged with the heat storage material to preheat the air, the preheated air is supplied as combustion air for the burner 4, and the fuel supplied to the burner 4 is burned in the boiler 3. . By being burned in the boiler 3, the water supplied to the heat exchanger 11 is heated and steam is generated. In this example, steam is taken out by combustion of the boiler 5, but hot water may be taken out. When the air is preheated in the heat storage tanks 5a, 5b, 5c, 5d, the temperature of the preheated air changes as shown in the graph of FIG.

上記のように発電と熱の取り出しを行う場合も、図1に示す例と同じように優れた性能がある上、複数の蓄熱槽5a,5b,5c,5dに順に排気を流して蓄熱することで蓄熱槽5a,5b,5c,5dの蓄熱材の平均温度が下がると共に排気の流れの流路抵抗を低減できる。   When performing power generation and heat extraction as described above, there is excellent performance as in the example shown in FIG. 1, and heat is stored by flowing exhaust gas in order to the plurality of heat storage tanks 5a, 5b, 5c, 5d. As a result, the average temperature of the heat storage materials in the heat storage tanks 5a, 5b, 5c, 5d can be lowered and the flow path resistance of the exhaust flow can be reduced.

また図8は複数の蓄熱槽5a,5b,5c,5dを備えたものにおいて、電気と熱を同時に取り出すことができるようにしたものである。各蓄熱槽5a,5b,5c,5dは2つの入口と2つの出口を有しており、原動機1の排気を排出する経路6は開閉弁7,13を介して各蓄熱槽5a,5b,5c,5dの一方の入口に連通させてあり、外気をブロア8にて取り入れる経路9は開閉弁10,15を介して蓄熱槽5a,5b,5c,5dの他方の入口に連通させてある。各蓄熱槽5a,5b,5c,5dの一方の出口とボイラー3のバーナ4とは経路12にて連通させてあり、この経路12に出口の近傍で開閉弁16を設けてある、また各蓄熱槽5a,5b,5c,5dの他方の出口からは排気を大気に排出する経路17を夫々導出してあり、各経路17に夫々開閉弁18と温度センサー14を設けてある。   Further, FIG. 8 is provided with a plurality of heat storage tanks 5a, 5b, 5c, 5d so that electricity and heat can be taken out simultaneously. Each of the heat storage tanks 5a, 5b, 5c, 5d has two inlets and two outlets, and the path 6 for discharging the exhaust gas of the prime mover 1 is connected to each of the heat storage tanks 5a, 5b, 5c via the on-off valves 7, 13. , 5d, and a passage 9 for taking in the outside air by the blower 8 is communicated with the other inlets of the heat storage tanks 5a, 5b, 5c, 5d via the on-off valves 10, 15. One outlet of each of the heat storage tanks 5a, 5b, 5c, 5d and the burner 4 of the boiler 3 communicate with each other through a path 12, and an opening / closing valve 16 is provided in the vicinity of the outlet in this path 12. Paths 17 for exhausting the exhaust gas to the atmosphere are respectively led out from the other outlets of the tanks 5a, 5b, 5c, and 5d, and an open / close valve 18 and a temperature sensor 14 are provided in each path 17, respectively.

上記のように構成せるコジェネレーションシステムでも発電だけをするときや蒸気だけを発生するときは上記の例と同様に動作するが、電気と熱としての蒸気を同時に取り出すときは原動機1の排気を複数の蓄熱槽5a,5b,5c,5dのうち適宜の蓄熱槽に通して蓄熱し、蓄熱に供した排気を経路17から排出する。一方、ブロア8から取り入れた空気を排気を通さない残りの蓄熱槽に通して空気を予熱し、予熱した空気をボイラー3のバーナ4に供給してバーナ4を燃焼させ、ボイラー5の熱交換器11で熱交換して蒸気を得る。このようにすると、電気と熱とを同時に得ることができると共に電気と熱の比率をリアルタイムで変化させることができる。   The cogeneration system configured as described above operates in the same manner as the above example when only generating power or generating only steam, but when taking out steam as electricity and heat at the same time, a plurality of exhausts of the prime mover 1 are used. The heat storage tanks 5a, 5b, 5c, and 5d are stored in an appropriate heat storage tank to store heat, and the exhaust gas used for heat storage is discharged from the path 17. On the other hand, the air taken in from the blower 8 is passed through the remaining heat storage tank through which exhaust does not pass, and the air is preheated, the preheated air is supplied to the burner 4 of the boiler 3, and the burner 4 is combusted. Heat is exchanged at 11 to obtain steam. If it does in this way, while being able to obtain electricity and heat simultaneously, the ratio of electricity and heat can be changed in real time.

従来のコジェネレーションシステムでは図9(a)に示すように必要な熱(蒸気)負荷変動が最小をポイントを越えないように運転しており、発電量及び蒸気発生量が常に一定であり、電気の電気の使用量の変動に対して買電で賄い、必要蒸気負荷の変動に対しては他の熱源で賄わなければならないが、本発明の図8の例に示すものでは図9(b)に示すように電気の使用量に合せて発電しても必要蒸気負荷が少ないときに蓄熱槽5に蓄熱し、必要蒸気負荷が多いときに蓄熱槽5で蓄熱した熱を多く取り出してバーナ4を負荷に合せて燃焼させることで電気及び蒸気をコジェネレーションシステムで全て賄うことができる。つまり、蓄熱槽5が熱負荷変動のバッファの機能を果たすようになり、より大容量のコジェネレーションシステムを構築することが可能になる。   As shown in Fig. 9 (a), the conventional cogeneration system is operated so that the necessary heat (steam) load fluctuation does not exceed the minimum point, the power generation amount and steam generation amount are always constant, Although the power consumption must be covered by buying electricity and the fluctuation of the required steam load must be covered by other heat sources, the example shown in FIG. As shown in Fig. 4, when the necessary steam load is small even if power is generated according to the amount of electricity used, heat is stored in the heat storage tank 5, and when the necessary steam load is large, a large amount of heat stored in the heat storage tank 5 is taken out and the burner 4 is removed. By burning according to the load, electricity and steam can all be covered by the cogeneration system. In other words, the heat storage tank 5 functions as a buffer for fluctuations in heat load, and a larger capacity cogeneration system can be constructed.

本発明の一例を示す系統図である。It is a systematic diagram showing an example of the present invention. (a)(b)は同上の動作を説明する系統図である。(A) (b) is a systematic diagram explaining operation | movement same as the above. 同上の運転パターンを説明するグラフである。It is a graph explaining the driving | operation pattern same as the above. 同上の他の例を示す系統図である。It is a systematic diagram which shows the other example same as the above. (a)(b)は同上の動作を説明する系統図である。(A) (b) is a systematic diagram explaining operation | movement same as the above. 同上の蓄熱槽への蓄熱状態を説明するグラフである。It is a graph explaining the heat storage state to a heat storage tank same as the above. 同上の空気の予熱温度の変化を説明するグラフである。It is a graph explaining the change of the preheating temperature of air same as the above. 同上のさらに他の例を説明するグラフである。It is a graph explaining another example same as the above. (a)(b)は同上の例の効果を説明するグラフである。(A) (b) is a graph explaining the effect of an example same as the above. 一従来例を示す系統図である。It is a systematic diagram which shows one prior art example. 他の従来例を示す系統図である。It is a systematic diagram which shows another prior art example.

符号の説明Explanation of symbols

1 原動機
2 発電機
3 ボイラー
4 バーナ
5 蓄熱槽
1 prime mover 2 generator 3 boiler 4 burner 5 heat storage tank

Claims (3)

エンジン、タービン等の原動機を駆動させて発電機により発電すると共に該原動機の排気の排熱を回収して利用するコジェネレーションシステムであって、原動機の排気を蓄熱槽に通して排出することで排熱を蓄熱槽に蓄熱して排熱を回収すると共に原動機の駆動とは関係なく熱需要のある時間帯に蓄熱槽に空気を通して得た予熱空気をボイラーに供給して蒸気または温水を得るようにしたことを特徴とするコジェネレーションシステム。 A cogeneration system that drives a prime mover such as an engine or a turbine to generate electricity by a generator and collects and uses exhaust heat from the exhaust of the prime mover. The cogeneration system exhausts the exhaust from the prime mover through a heat storage tank. Heat is stored in the heat storage tank to recover the exhaust heat, and steam or hot water is obtained by supplying preheated air obtained by passing air through the heat storage tank to the boiler at times when there is heat demand regardless of the driving of the prime mover Cogeneration system characterized by that. 熱需要のある時間帯に蓄熱槽に空気を通して空気を予熱し、この予熱した空気を燃焼用空気としてボイラーのバーナを燃焼させてボイラーにて蒸気または温水を得るようにしたことを特徴とする請求項1記載のコジュネレーションシステム。 The air is preheated through the heat storage tank during a time when there is a demand for heat, and the boiler burner is burned using the preheated air as combustion air to obtain steam or hot water in the boiler. Item 2. A cogeneration system according to item 1. 複数の蓄熱槽を有し、そのうち1つに原動機の排気を流し、その蓄熱槽から出る排気の温度が所定値以上になると次の蓄熱槽に排気を流すようにしたことを特徴とする請求項1または請求項2記載のコジェネレーションシステム。
A plurality of heat storage tanks are provided, and the exhaust of the prime mover is caused to flow into one of them, and when the temperature of the exhaust gas coming out of the heat storage tank exceeds a predetermined value, the exhaust gas is allowed to flow to the next heat storage tank. The cogeneration system according to claim 1 or 2.
JP2004018614A 2004-01-27 2004-01-27 Cogeneration system Expired - Fee Related JP4119851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004018614A JP4119851B2 (en) 2004-01-27 2004-01-27 Cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004018614A JP4119851B2 (en) 2004-01-27 2004-01-27 Cogeneration system

Publications (2)

Publication Number Publication Date
JP2005214449A true JP2005214449A (en) 2005-08-11
JP4119851B2 JP4119851B2 (en) 2008-07-16

Family

ID=34903075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004018614A Expired - Fee Related JP4119851B2 (en) 2004-01-27 2004-01-27 Cogeneration system

Country Status (1)

Country Link
JP (1) JP4119851B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098366A (en) * 2012-11-15 2014-05-29 Mitsui Eng & Shipbuild Co Ltd Heat storage power generation system and method for controlling the same
JP2021088977A (en) * 2019-12-05 2021-06-10 株式会社Ihi Waste heat storage system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098366A (en) * 2012-11-15 2014-05-29 Mitsui Eng & Shipbuild Co Ltd Heat storage power generation system and method for controlling the same
JP2021088977A (en) * 2019-12-05 2021-06-10 株式会社Ihi Waste heat storage system

Also Published As

Publication number Publication date
JP4119851B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JP6183887B2 (en) Method and system for controlling a stoichiometric EGR system in a reheat regeneration system
JP3112831U (en) Thermal storage exhaust gas combustion system
JP2012531480A (en) Method and apparatus for keeping the coke oven chamber warm when the waste heat boiler is stopped
JP2005274123A (en) Power generation system and control method thereof
JP4119851B2 (en) Cogeneration system
JP4898651B2 (en) Combined cycle combined cycle power plant and its operation method
JP6858821B2 (en) Gas turbine intake temperature control system and power plant
JP2009299947A (en) Thermal storage type gas treatment furnace
JP2006266085A (en) Regenerative cycle type gas turbine power generation system
JP5318667B2 (en) Engine exhaust heat recovery device
JP2011094862A (en) Heat storage type deodorizing device
JP4901373B2 (en) In-house power generator
JP4833774B2 (en) An atmospheric combustion turbine system for industrial heat treatment furnaces.
JPH07208200A (en) Combustion equipment for turbine compressor and method thereof
JP6347007B1 (en) Organic solvent-containing gas treatment system
JP2006266086A (en) Regenerative cycle type gas turbine power generation system
JP6847682B2 (en) How to operate a waste power plant and a waste power plant
JP3767414B2 (en) Operation method of regenerative burner furnace and regenerative burner furnace
JP2004108249A (en) Refuse incinerating power generation system
JP2005147647A (en) Exhaust gas boiler
JP2004308949A (en) Waste heat recovery system
JP3774288B2 (en) Supply air preheating device and supply air preheating method
JP2019065786A (en) Air gas turbine device in reverse brayton cycle, and control method therefor
JP5420295B2 (en) Power generation system using exhaust gas effectively
JPH09287418A (en) Composite power generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees