JP2005209819A - Electrochemical device and its manufacturing method - Google Patents

Electrochemical device and its manufacturing method Download PDF

Info

Publication number
JP2005209819A
JP2005209819A JP2004013664A JP2004013664A JP2005209819A JP 2005209819 A JP2005209819 A JP 2005209819A JP 2004013664 A JP2004013664 A JP 2004013664A JP 2004013664 A JP2004013664 A JP 2004013664A JP 2005209819 A JP2005209819 A JP 2005209819A
Authority
JP
Japan
Prior art keywords
current collector
power generation
generation element
electrode
electrochemical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004013664A
Other languages
Japanese (ja)
Inventor
Sachiko Hirabayashi
幸子 平林
Takeru Suzuki
長 鈴木
Satoru Maruyama
哲 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2004013664A priority Critical patent/JP2005209819A/en
Publication of JP2005209819A publication Critical patent/JP2005209819A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical device which has a high steam barrier property and gas barrier property and hardly has short-circuits between current collectors at the time of sealing and has no adverse thermal effect on a power generation element, and also to provide its manufacturing method. <P>SOLUTION: The electrochemical device comprises a pair of plate-like current collectors 20 and 21, the power generation element 10 which is interposed between the current collectors 20 and 21 so that a first electrode 12 may be in contact with the current collector 20 and a second electrode 13 may be in contact with the other current collector 21, and a sealing member 30 which fills up a space between the peripheral portion 20a of the current collector 20 and the peripheral portion 21a of the current collector 21 to encapsulate the power generation element 10. The sealing member 30 is composed of a thermoplastic high molecular inner portion 32 which is thermally fused to the peripheral portions 20a and 21a of the current collectors 20 and 21 and surrounds the power generation element 10, and a liquid-crystal high molecular outer portion 34 which is thermally fused to the peripheral portions 20a and 21a of the current collectors 20 and 21 and surrounds the inner portion 32 from the outside and has a higher melting point than that of the inner portion 32. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電気二重層キャパシタやリチウム二次電池等の電気化学デバイス及びこれら電気化学デバイスの製造方法に関する。   The present invention relates to electrochemical devices such as electric double layer capacitors and lithium secondary batteries, and methods for producing these electrochemical devices.

従来、電気二重層キャパシタやリチウム二次電池等の電気化学デバイスが、携帯電話、PDA等に広く使用されている。   Conventionally, electrochemical devices such as electric double layer capacitors and lithium secondary batteries have been widely used in mobile phones, PDAs and the like.

このような電気化学デバイスとして、一対の電極及び電解質を有する発電要素を、この発電要素よりも大きな一対の集電体で挟み、集電体の周縁部間に配置した熱可塑性の封口材を集電体と熱融着させた密封構造の電気化学デバイスが考案されている。   As such an electrochemical device, a power generation element having a pair of electrodes and an electrolyte is sandwiched between a pair of current collectors larger than the power generation element, and a thermoplastic sealing material disposed between the peripheral portions of the current collector is collected. An electrochemical device having a hermetically sealed structure fused with an electric body has been devised.

このような電気化学デバイスの封口材としては、例えば、高密度ポリエチレンシートの両面に、高密度ポリエチレンシートよりも低融点でかつ不飽和カルボン酸等で変性されたエチレン共重合体シートを積層したポリオレフィン製の封口材が知られている(特許文献1参照)。   As a sealing material for such an electrochemical device, for example, a polyolefin in which an ethylene copolymer sheet having a melting point lower than that of a high-density polyethylene sheet and modified with an unsaturated carboxylic acid or the like is laminated on both surfaces of the high-density polyethylene sheet. The sealing material made from manufacturing is known (refer patent document 1).

また、これ以外にも、ポリイソブチレン変性ポリエチレン(特許文献2参照)、変性ポリプロピレン、変性ポリエチレン(特許文献3)、微粒子フィラーを含有する酸変性ポリオレフィン(特許文献4)等からなるポリオレフィン製の封口材が知られている。   In addition to this, a polyolefin sealing material comprising polyisobutylene-modified polyethylene (see Patent Document 2), modified polypropylene, modified polyethylene (Patent Document 3), acid-modified polyolefin containing fine particle filler (Patent Document 4), and the like. It has been known.

一方、ガスバリア性に優れた液晶性高分子製の封口材も知られている(特許文献5)。
特開昭62−154469号公報 特開平2−234344号公報 特開平4−121947号公報 特開平6−349462号公報 特開2003−92092号公報
On the other hand, a sealing material made of a liquid crystalline polymer having excellent gas barrier properties is also known (Patent Document 5).
Japanese Patent Laid-Open No. 62-154469 JP-A-2-234344 JP-A-4-121947 JP-A-6-349462 JP 2003-92092 A

しかしながら、ポリオレフィン製の封口材を用いた電気化学デバイスでは、水蒸気バリア性、ガスバリア性が十分でない場合があった。一方、液晶性高分子製の封口材を用いた電気化学デバイスでは、封口材の溶融温度が高くなるため、熱融着時の熱によって発電要素に悪影響を与える場合があった。   However, electrochemical devices using a sealing material made of polyolefin sometimes have insufficient water vapor barrier properties and gas barrier properties. On the other hand, in an electrochemical device using a sealing material made of a liquid crystalline polymer, since the melting temperature of the sealing material is high, the power generation element may be adversely affected by heat at the time of thermal fusion.

本発明は上記課題に鑑みてなされたものであり、水蒸気バリア性、ガスバリア性が高く、かつ、封口材の熱融着時に発電要素に対して熱による悪影響を与えにくい電気化学デバイス及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and has an excellent water vapor barrier property and gas barrier property, and an electrochemical device that hardly causes an adverse effect due to heat on a power generation element when heat sealing a sealing material, and a method for producing the same The purpose is to provide.

本発明に係る電気化学デバイスは、互いに対向する一対の板状の集電体と、第一電極、第二電極及びこれらの電極間に設けられた電解質を有し、第一電極が一方の集電体と接し第二電極が他方の集電体と接するように集電体間に挟まれた発電要素と、一方の集電体の周縁部と他方の集電体の周縁部との隙間を塞いで発電要素を集電体間に密封するための枠状の封口材と、を備える。この封口材は、発電要素を取り囲むと共に一方の集電体の周縁部と他方の集電体の周縁部とにそれぞれ熱融着された熱可塑性高分子製の内側部と、この内側部を外側から取り囲むと共に一方の集電体の周縁部と他方の集電体の周縁部とにそれぞれ熱融着された液晶性高分子製の外側部と、を有し、熱可塑性高分子は液晶性高分子よりも溶融温度が低い。   An electrochemical device according to the present invention includes a pair of plate-like current collectors facing each other, a first electrode, a second electrode, and an electrolyte provided between the electrodes, and the first electrode is one of the current collectors. A power generation element sandwiched between the current collectors so that the second electrode is in contact with the other current collector and a gap between the peripheral edge of one current collector and the peripheral edge of the other current collector And a frame-shaped sealing material for sealing and sealing the power generation element between the current collectors. The sealing material surrounds the power generation element and is thermally fused to the peripheral part of one current collector and the peripheral part of the other current collector, and the inner part is outside An outer portion made of a liquid crystalline polymer that is thermally fused to the peripheral portion of one current collector and the peripheral portion of the other current collector. Melting temperature is lower than molecules.

ここで、「液晶性高分子」とは、強い高分子鎖間相互作用によって溶融状態で液晶性、すなわち、高分子鎖が配向する特性を示すサーモトロピック性の高分子である。このような液晶性高分子の層は、一般的な熱可塑性高分子と比べて高耐熱性、低線膨張率、高絶縁性、低吸湿性および高ガスバリア性を示す。   Here, the “liquid crystalline polymer” is a thermotropic polymer that exhibits liquid crystallinity in a molten state, that is, a property in which the polymer chain is oriented, by strong interaction between polymer chains. Such a liquid crystalline polymer layer exhibits high heat resistance, low linear expansion coefficient, high insulation, low hygroscopicity, and high gas barrier properties as compared with a general thermoplastic polymer.

本発明によれば、液晶性高分子製の外側部を有しており、液晶高分子は水蒸気透過率や酸素透過率が他の熱可塑性高分子よりも高いので、封口材のガスバリア性が高まり電気化学デバイスの信頼性を向上できる。また、外側部の内側には外側部よりも溶融温度の低い内側部が設けられている。このため、封口材のうち外側部よりも発電要素に近い内側部を外側部と比較して低温で集電体と熱融着できる。これにより、液晶性高分子のみからなる封口材を用いる場合に比べて熱融着時に発電要素に対して熱による悪影響を与えにくい。   According to the present invention, the liquid crystal polymer has an outer portion, and the liquid crystal polymer has higher water vapor transmission rate and oxygen transmission rate than other thermoplastic polymers, so that the gas barrier property of the sealing material is increased. The reliability of electrochemical devices can be improved. Moreover, the inner side part whose melting temperature is lower than an outer side part is provided inside the outer side part. For this reason, the inner part closer to the power generation element than the outer part of the sealing material can be thermally fused to the current collector at a lower temperature than the outer part. Thereby, compared with the case where the sealing material which consists only of a liquid crystalline polymer is used, it is hard to give the bad influence by a heat | fever with respect to an electric power generation element at the time of heat fusion.

ここで、外側部の液晶性高分子としては、溶融温度が180〜350℃程度のものを用いると、熱融着が容易であると共に内側部によって発電要素への熱による悪影響を十分に抑止できる。   Here, as the liquid crystalline polymer on the outer side, when a polymer having a melting temperature of about 180 to 350 ° C. is used, heat fusion can be easily performed, and the adverse effect of heat on the power generation element can be sufficiently suppressed by the inner side. .

また、外側部の液晶性高分子の水蒸気透過率が1g/(m・24hr・100μm)以下であり、酸素透過率が10mL/(m・24hr・100μm)であると、十分なガスバリア性が得られて、電気化学素子の信頼性が十分に向上する。 In addition, when the water vapor permeability of the liquid crystalline polymer on the outer side is 1 g / (m 2 · 24 hr · 100 µm) or less and the oxygen permeability is 10 mL / (m 2 · 24 hr · 100 µm), sufficient gas barrier properties are obtained. And the reliability of the electrochemical device is sufficiently improved.

ここで、液晶性高分子としては、液晶ポリエステルを含むことが好ましい。   Here, the liquid crystalline polymer preferably contains liquid crystalline polyester.

一方、内側部の熱可塑性高分子の溶融温度が90〜200℃であると、内側部の熱融着時の熱による発電要素に対するダメージの低減に優れ、また、十分な耐熱性を有することとなる。   On the other hand, when the melting temperature of the thermoplastic polymer in the inner part is 90 to 200 ° C., it is excellent in reducing damage to the power generation element due to heat at the time of heat-sealing the inner part, and has sufficient heat resistance. Become.

特に、外側部の液晶性高分子の溶融温度が180〜350℃であり、内側部の熱可塑性高分子の溶融温度が90〜200℃であると、封口材の熱融着時の熱による発電要素に対するダメージの低減を高いレベルで実現できる。   In particular, when the melting temperature of the liquid crystalline polymer on the outer side is 180 to 350 ° C. and the melting temperature of the thermoplastic polymer on the inner side is 90 to 200 ° C., power generation by heat at the time of heat sealing the sealing material Reduces damage to elements at a high level.

また、内側部及び外側部が0.65N/mm(1/15kg/mm)以上の接着強度で集電体と接着していると、シール性を十分に発揮すると共に、電気化学デバイスの機械的強度が高くなる。ここで、本特許請求の範囲及び本明細書における接着強度とは、JIS K6848で定められる接着強度である。   Moreover, when the inner part and the outer part are bonded to the current collector with an adhesive strength of 0.65 N / mm (1/15 kg / mm) or more, the sealing performance is sufficiently exhibited, and the mechanical properties of the electrochemical device are increased. Strength increases. Here, the adhesive strength in the claims and the specification is an adhesive strength defined by JIS K6848.

ここで、熱可塑性高分子としては、ポリオレフィンを含むことが好ましい。   Here, the thermoplastic polymer preferably contains polyolefin.

また、内側部と外側部とは、接着剤により接着されていることができる。また、内側部と外側部とは互いに熱融着されていてもよい。この場合、電気化学デバイスの機械的強度を高くできる。   Moreover, the inner side part and the outer side part can be adhere | attached with the adhesive agent. Moreover, the inner side part and the outer side part may be heat-sealed with each other. In this case, the mechanical strength of the electrochemical device can be increased.

また、内側部は、溶融温度の互いに異なる複数のサブ層を発電要素に近づく方向に複数積層した積層体であり、このとき積層体において各サブ層の溶融温度は発電要素に近づくにつれて低くなるようにされてもよい。   Further, the inner part is a laminated body in which a plurality of sub-layers having different melting temperatures are laminated in a direction approaching the power generation element, and at this time, the melting temperature of each sub-layer in the laminated body becomes lower as the power generation element is approached. May be.

この場合には、内側部における発電要素に近い部分を、内側部における発電要素に遠い部分よりも低い温度で集電体と熱融着できる。したがって、集電体を封口材と熱融着する際の発電要素の熱ダメージをさらに十分に抑えつつ、封口材と集電体とを十分接着することができる。   In this case, the part near the power generation element in the inner part can be heat-sealed with the current collector at a lower temperature than the part far from the power generation element in the inner part. Therefore, it is possible to sufficiently bond the sealing material and the current collector while further sufficiently suppressing the heat damage of the power generation element when the current collector is heat-sealed with the sealing material.

また、封口材の外側部は、さらに集電体の端面に熱融着されて集電体の端面を取り囲むことが好ましい。   Moreover, it is preferable that the outer part of the sealing material is further heat-sealed to the end face of the current collector to surround the end face of the current collector.

この場合、さらに集電体の端面を利用して封口材を接着するので、ガスバリア性をさらに向上させることができると共に電気二重層キャパシタの機械的強度を十分に高めることができる。   In this case, since the sealing material is further bonded using the end face of the current collector, the gas barrier property can be further improved and the mechanical strength of the electric double layer capacitor can be sufficiently increased.

本発明に係る電気化学デバイスの製造方法は、第一電極、第二電極及びこれらの電極間に設けられた電解質を有する発電要素と、一対の板状の集電体と、熱可塑性高分子製であり前記発電要素を取り囲むことが可能な内側部及び液晶性高分子製であり内側部を取り囲むことが可能な外側部を有し熱可塑性高分子の溶融温度は液晶性高分子の溶融温度よりも低い封口材と、を用意する用意工程と、一方の集電体が発電要素の第一電極と接し、他方の集電体が発電要素の第二電極と接し、内側部が発電要素を取り囲み外側部が内側部を取り囲むような配置で、一対の板状の集電体の間に発電要素及び封口材を挟む配置工程と、封口材の内側部を第一の温度に加熱して内側部を集電体と熱融着させ、封口材の外側部を第一の温度よりも高い第二の温度に加熱して外側部を集電体と熱融着させる加熱工程と、を備える。   A method for producing an electrochemical device according to the present invention includes a first electrode, a second electrode, a power generation element having an electrolyte provided between these electrodes, a pair of plate-like current collectors, and a thermoplastic polymer The thermoplastic polymer has an inner part that can surround the power generation element and an outer part that is made of a liquid crystalline polymer and can surround the inner part, and the melting temperature of the thermoplastic polymer is higher than the melting temperature of the liquid crystalline polymer. A lower sealing material, one current collector is in contact with the first electrode of the power generation element, the other current collector is in contact with the second electrode of the power generation element, and the inner part surrounds the power generation element An arrangement process in which the outer part surrounds the inner part, and the power generation element and the sealing material are sandwiched between a pair of plate-like current collectors, and the inner part of the sealing material is heated to the first temperature and the inner part Is heat-sealed with the current collector, and the outer part of the sealing material is heated to a second temperature higher than the first temperature. And a heating step of the current collector and heat-sealing the outer portion is heated to.

本発明によれば、上述の電気化学デバイスを好適に製造できる。   According to the present invention, the above-described electrochemical device can be suitably manufactured.

ここで、加熱工程において、加熱手段を集電体に接触させることにより封口材を加熱し、加熱手段のうち集電体を挟んで外側部と対向する部分の温度を、加熱手段のうち集電体を挟んで内側部と対向する部分の温度よりも高くしてもよい。これによれば、封口材の内側部及び外側部を一度に効率よく集電体と熱融着させられる。   Here, in the heating step, the sealing material is heated by bringing the heating means into contact with the current collector, and the temperature of the portion of the heating means that faces the outer side across the current collector is set to the current collector of the heating means. You may make it higher than the temperature of the part which opposes an inner part on both sides of a body. According to this, the inner part and the outer part of the sealing material can be efficiently heat-sealed with the current collector at once.

また、加熱工程において、加熱手段を集電体に接触させることにより封口材を加熱し、この加熱手段を集電体のうち封口材と対向する部分に接触させる一方、集電体のうち発電要素と対向する部分に接触させないことが好ましい。これにより、発電要素の熱ダメージを十分低減できる。   In the heating step, the sealing member is heated by bringing the heating means into contact with the current collector, and the heating means is brought into contact with the portion of the current collector facing the sealing material, while the power generating element of the current collector It is preferable not to contact the portion facing the. Thereby, the heat damage of the power generation element can be sufficiently reduced.

さらに、加熱工程において、集電体における発電要素と対向する部分を冷却すると、加熱工程において集電体を介して発電要素に熱が伝わりにくくされ、熱による悪影響を十分に低減できる。   Further, when the portion of the current collector that faces the power generation element is cooled in the heating step, heat is hardly transmitted to the power generation element via the current collector in the heating step, and the adverse effects of heat can be sufficiently reduced.

本発明によれば、ガスバリア性が高く、かつ、封口材の熱融着時において発電要素に対して熱による悪影響を与えにくい電気化学デバイス及びその製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the electrochemical device which has high gas barrier property, and is hard to give the bad influence by a heat | fever with respect to an electric power generation element at the time of the heat sealing | fusion of a sealing material is provided, and its manufacturing method.

以下、図面を参照しながら本発明に係る電気化学デバイスの好適な実施形態について詳細に説明する。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments of an electrochemical device according to the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

(第一実施形態)
まず、図1及び図2を参照して、本発明に係る第一実施形態の電気化学デバイスとしての電気二重層キャパシタ1について説明する。
(First embodiment)
First, with reference to FIG.1 and FIG.2, the electric double layer capacitor 1 as an electrochemical device of 1st embodiment which concerns on this invention is demonstrated.

この電気二重層キャパシタ1は、主として、発電要素10と、この発電要素10を挟んで対向し外部電極及び外装体として機能する一対の板状の集電体20,21と、集電体20の周縁部20aと集電体21の周縁部21aとの隙間を塞いで発電要素10を集電体20,21間に密封する枠状の封口材30とを有する。   The electric double layer capacitor 1 mainly includes a power generation element 10, a pair of plate-like current collectors 20, 21 that are opposed to each other with the power generation element 10 interposed therebetween and function as external electrodes and an exterior body. A frame-shaped sealing member 30 that closes the gap between the peripheral edge portion 20 a and the peripheral edge portion 21 a of the current collector 21 and seals the power generation element 10 between the current collectors 20 and 21 is provided.

発電要素10は、互いに対向する正極としての第一電極12及び負極としての第二電極13と、これら第一電極12及び第二電極13の間に隣接して配置されるセパレータ14と、第一電極12、第二電極13及びセパレータ14中に含有され電解質を含む電解質溶液(図示せず)と、を有している。   The power generation element 10 includes a first electrode 12 as a positive electrode and a second electrode 13 as a negative electrode facing each other, a separator 14 disposed adjacent to the first electrode 12 and the second electrode 13, And an electrolyte solution (not shown) containing an electrolyte contained in the electrode 12, the second electrode 13, and the separator.

第一電極12、第二電極13は、電子伝導性の多孔体である。第一電極12、第二電極13の構成材料は、特に限定されず、公知の電気二重層キャパシタに用いられている炭素電極等の分極性電極を構成する多孔体層として使用されているものと同様の材料を使用することができる。例えば、原料炭(例えば、石油系重質油の流動接触分解装置のボトム油や減圧蒸留装置の残さ油を原料油とするディレードコーカーより製造された石油コークス等)を賦活処理することにより得られる炭素材料(例えば、活性炭)を構成材料の主成分としているものを使用することができる。その他の条件(バインダー等の炭素材料以外の構成材料の種類とその含有量)も特に限定されるものではない。例えば、炭素粉末に導電性を付与するための導電性補助剤(カーボンブラック等)や、バインダー(ポリテトラフルオロエチレン(PTFE)等)が添加されていてもよい。   The first electrode 12 and the second electrode 13 are electron conductive porous bodies. The constituent material of the first electrode 12 and the second electrode 13 is not particularly limited, and is used as a porous layer constituting a polarizable electrode such as a carbon electrode used in a known electric double layer capacitor. Similar materials can be used. For example, it is obtained by activating treatment of raw coal (for example, petroleum coke produced from a delayed coker using a bottom oil of a fluid catalytic cracking apparatus of heavy petroleum oil or a residual oil of a vacuum distillation apparatus as a raw oil). What has a carbon material (for example, activated carbon) as a main component of a constituent material can be used. Other conditions (types and contents of constituent materials other than carbon materials such as binder) are not particularly limited. For example, a conductive auxiliary agent (carbon black or the like) for imparting conductivity to the carbon powder or a binder (polytetrafluoroethylene (PTFE) or the like) may be added.

第一電極12及び第二電極13の間に配置されるセパレータ14は、電気絶縁性の多孔体から形成されていれば特に限定されず、公知の電気二重層キャパシタに用いられているセパレータを使用することができる。例えば、電気絶縁性の多孔体としては、ポリエチレン、ポリプロピレン等のポリオレフィンからなるフィルムの積層体や上記樹脂の混合物の延伸膜、或いは、セルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。   The separator 14 disposed between the first electrode 12 and the second electrode 13 is not particularly limited as long as it is formed of an electrically insulating porous body, and a separator used for a known electric double layer capacitor is used. can do. For example, as the electrically insulating porous body, at least one selected from the group consisting of a laminate of films made of polyolefin such as polyethylene and polypropylene, a stretched film of a mixture of the above resins, or cellulose, polyester and polypropylene Examples thereof include a fiber nonwoven fabric made of a constituent material.

ここで、第一電極12と第二電極13とのショートを抑制すべく、セパレータ14
の大きさを電極12,13の主表面の面積よりも大きくし、セパレータ14の端部を電極12,13の端面から突出させることが好ましい。このとき、セパレータ14の端面は、封口材30から離間されていることが好ましい。
Here, in order to suppress a short circuit between the first electrode 12 and the second electrode 13, the separator 14.
Is larger than the area of the main surface of the electrodes 12 and 13, and the end of the separator 14 is preferably protruded from the end surfaces of the electrodes 12 and 13. At this time, the end face of the separator 14 is preferably separated from the sealing material 30.

電解質溶液は、第一電極12、第二電極13、及び、セパレータ14の孔の内部に含有されている。電解質溶液は、特に限定されず、公知の電気二重層キャパシタに用いられている電解質溶液(電解質塩の水溶液、有機溶媒を使用した電解質塩の溶液)を使用することができる。ただし、電解質塩の水溶液は電気化学的に分解電圧が低く、電気二重層キャパシタ1の耐用電圧が低く制限されてしまうので、有機溶媒を使用する電解質溶液(非水電解質溶液)であることが好ましい。   The electrolyte solution is contained in the holes of the first electrode 12, the second electrode 13, and the separator 14. The electrolyte solution is not particularly limited, and an electrolyte solution (an electrolyte salt aqueous solution or an electrolyte salt solution using an organic solvent) used in a known electric double layer capacitor can be used. However, the aqueous solution of the electrolyte salt is electrochemically low in decomposition voltage, and the withstand voltage of the electric double layer capacitor 1 is limited to be low. Therefore, the electrolyte solution is preferably an electrolyte solution (nonaqueous electrolyte solution) using an organic solvent. .

なお、本実施形態において、電解質溶液は液状の状態以外にゲル化剤を添加することにより得られるゲル状電解質であってもよい。また、電解質溶液に代えて、固体電解質(固体高分子電解質又はイオン伝導性無機材料からなる電解質)が含有されていてもよい。   In the present embodiment, the electrolyte solution may be a gel electrolyte obtained by adding a gelling agent in addition to the liquid state. Further, instead of the electrolyte solution, a solid electrolyte (a solid polymer electrolyte or an electrolyte made of an ion conductive inorganic material) may be contained.

集電体20,21は、発電要素10の第一電極12、第二電極13の主表面の面積よりも大きな面積を有する矩形板状の導電材料である。これらの集電体20,21は、下側の集電体21が第二電極13と面接触し、上側の集電体20が第一電極12と面接触するように、上下から発電要素10を挟んでいる。集電体20,21の材料は、電荷の移動を充分に行うことができる良導体であれば特に限定されず、公知の電気二重層キャパシタに用いられている集電体を使用することができる。   The current collectors 20 and 21 are rectangular plate-like conductive materials having an area larger than the areas of the main surfaces of the first electrode 12 and the second electrode 13 of the power generation element 10. These current collectors 20, 21 have a power generation element 10 from above and below such that the lower current collector 21 is in surface contact with the second electrode 13 and the upper current collector 20 is in surface contact with the first electrode 12. Is sandwiched. The material of the current collectors 20 and 21 is not particularly limited as long as it is a good conductor capable of sufficiently transferring charges, and a current collector used in a known electric double layer capacitor can be used.

非水電解質の場合の集電体の材料としては、耐食性に富む導電性の材料が使用でき、例えば、アルミニウム、チタン等の金属箔が利用できる。金属箔の厚みは、例えば、10〜100μm程度である。   As a material for the current collector in the case of a non-aqueous electrolyte, a conductive material rich in corrosion resistance can be used. For example, a metal foil such as aluminum or titanium can be used. The thickness of the metal foil is, for example, about 10 to 100 μm.

封口材30は、発電要素10の周囲を取り囲む枠状形状を呈し、集電体20,21の周縁部20a,21a間の隙間を塞ぐように配されている。この封口材30は、集電体20,21間に発電要素10を密封するものである。この封口材30は、内側部32と外側部34とを有している。内側部32は外側部34よりも発電要素10に近い位置で発電要素10を取り囲み矩形枠状をなす。外側部34はこの内側部32を外側から取り囲む矩形枠状をなす。   The sealing material 30 has a frame shape surrounding the power generation element 10 and is disposed so as to close the gap between the peripheral portions 20a and 21a of the current collectors 20 and 21. The sealing material 30 seals the power generation element 10 between the current collectors 20 and 21. The sealing material 30 has an inner part 32 and an outer part 34. The inner portion 32 surrounds the power generation element 10 at a position closer to the power generation element 10 than the outer portion 34 and forms a rectangular frame shape. The outer portion 34 has a rectangular frame shape surrounding the inner portion 32 from the outside.

内側部32及び外側部34の厚み方向の両端は、集電体20の周縁部20aにおける内側面(集電体21に近い側の面)20c上、及び、集電体21の周縁部21aにおける内側面(集電体20に近い側の面)21c上に、それぞれ熱融着されている。   Both ends of the inner portion 32 and the outer portion 34 in the thickness direction are on the inner side surface (the surface closer to the current collector 21) 20 c in the peripheral portion 20 a of the current collector 20 and in the peripheral portion 21 a of the current collector 21. The inner side surfaces (surfaces close to the current collector 20) 21c are thermally fused to each other.

内側部32及び外側部34と、集電体20,21との接着強度は、特に限定されないが、0.65N/mm((1/15)kg/mm)以上であることが、電気二重層キャパシタ2の機械的強度を高める点やシール性の面から好ましい。   The adhesive strength between the inner part 32 and the outer part 34 and the current collectors 20 and 21 is not particularly limited, but is 0.65 N / mm ((1/15) kg / mm) or more. This is preferable from the standpoint of increasing the mechanical strength of the capacitor 2 and the sealing property.

また、この枠状の封口材30の外側部34の外側周面は、図1及び図2に示すように、集電体20,21の端面20b、21bと同一面を形成している。さらに、集電体20の主面に対して垂直な方向から見た時の内側部32の幅W32及び外側部34の幅W34(図1及び図2参照)は、それぞれ0.2〜20mm程度、好ましくは、1〜10mm程度とされている。   The outer peripheral surface of the outer portion 34 of the frame-shaped sealing material 30 forms the same surface as the end surfaces 20b and 21b of the current collectors 20 and 21, as shown in FIGS. Further, the width W32 of the inner portion 32 and the width W34 (see FIGS. 1 and 2) of the outer portion 34 when viewed from the direction perpendicular to the main surface of the current collector 20 are about 0.2 to 20 mm, respectively. The thickness is preferably about 1 to 10 mm.

また、封口材30の厚みは、発電要素10の厚みにあわせるのが好ましい。   The thickness of the sealing material 30 is preferably matched to the thickness of the power generation element 10.

ここで、内側部32は熱可塑性高分子から形成されている。この熱可塑性高分子は、外側部34(詳しくは後述)よりも溶融温度が低い熱可塑性高分子であれば特に限定されず、ポリオレフィン、ポリエステル、ポリフッ化ビニリデンおよびその共重合体等のフッ素樹脂等が挙げられる。特に、内側部32の熱可塑性高分子として、経済性、ヒートシール性、化学的安定性、水分透過性等の観点からポリオレフィンが好ましい。ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、酸変性ポリエチレン、およびこれらを含む共重合体等が挙げられる。これらの熱可塑性高分子は、単独または二種以上組合わせて使用することができる。また、この熱可塑性高分子には、さらにその性能を高めるため、必要に応じて公知の添加剤を含有させることもできる。   Here, the inner part 32 is formed from a thermoplastic polymer. The thermoplastic polymer is not particularly limited as long as it is a thermoplastic polymer having a melting temperature lower than that of the outer portion 34 (details will be described later), and fluorine resin such as polyolefin, polyester, polyvinylidene fluoride, and a copolymer thereof, and the like Is mentioned. In particular, polyolefin is preferable as the thermoplastic polymer of the inner portion 32 from the viewpoints of economy, heat sealability, chemical stability, moisture permeability, and the like. Examples of the polyolefin include polyethylene, polypropylene, acid-modified polyethylene, and copolymers containing these. These thermoplastic polymers can be used alone or in combination of two or more. Moreover, in order to further improve the performance of the thermoplastic polymer, known additives can be contained as necessary.

また、内側部32の溶融温度が90〜200℃であると、発電要素10に与える熱の影響を十分少なくし、かつ、十分な耐熱性を有することができるので好ましい。   Further, it is preferable that the melting temperature of the inner portion 32 is 90 to 200 ° C. because the influence of heat on the power generating element 10 can be sufficiently reduced and sufficient heat resistance can be obtained.

一方、外側部34は、液晶性高分子から形成されている。液晶性高分子は、強い高分子間相互作用によって溶融状態で液晶性、すなわち、高分子が配向する特性を示すサーモトロピック性の高分子である。このような液晶性高分子としては、例えば、全芳香族系や半芳香族系等の液晶ポリエステルが挙げられる。   On the other hand, the outer portion 34 is formed of a liquid crystalline polymer. The liquid crystalline polymer is a thermotropic polymer that exhibits liquid crystallinity in a molten state, that is, a property in which the polymer is aligned, due to strong intermolecular interaction. Examples of such a liquid crystalline polymer include fully aromatic and semi-aromatic liquid crystal polyesters.

全芳香系ポリエステルとしては、芳香族ジカルボン酸と芳香族ジオールと芳香族ヒドロキシカルボン酸との組合せからなるもの、異種の芳香族ヒドロキシカルボン酸の組合せからなるもの、芳香族ジカルボン酸と核置換芳香族ジオールとの組合せからなるものが挙げられる。また、半芳香族系ポリエステルとしては、ポリエチレンテレフタレートなどのポリエステルに芳香族ヒドロキシカルボン酸を反応させて得られるもの等が挙げられる。ここで、例えば上述の芳香族ジカルボン酸、芳香族ジオール、及び、芳香族ヒドロキシカルボン酸の代わりに、それらのエステル形成性誘導体を使用しても良い。   The wholly aromatic polyester includes a combination of an aromatic dicarboxylic acid, an aromatic diol and an aromatic hydroxycarboxylic acid, a combination of different types of aromatic hydroxycarboxylic acids, an aromatic dicarboxylic acid and a nucleus-substituted aromatic. The thing which consists of a combination with diol is mentioned. Examples of the semi-aromatic polyester include those obtained by reacting an aromatic hydroxycarboxylic acid with a polyester such as polyethylene terephthalate. Here, for example, instead of the above-described aromatic dicarboxylic acid, aromatic diol, and aromatic hydroxycarboxylic acid, their ester-forming derivatives may be used.

このような液晶性高分子は、低吸湿性であり、耐薬品性が良好であり、さらに、耐熱性が高く、また、概ね400℃以下の温度で異方性溶融体を形成する。   Such a liquid crystalline polymer has low hygroscopicity, good chemical resistance, high heat resistance, and forms an anisotropic melt at a temperature of approximately 400 ° C. or lower.

また、液晶性高分子の耐熱性は、主として分子鎖中の芳香環の割合に依存する。例えば、主鎖がフェニレン基で構成されている液晶性高分子の溶融温度は概ね260〜350℃であり、主鎖にナフタレン骨格を導入した液晶性高分子の溶融温度は概ね190〜270℃であり、主鎖にエチレン基が導入された液晶性高分子の溶融温度は概ね60〜230℃程度となる。本実施形態では、特に、溶融温度が180℃〜350℃程度の液晶性高分子を用いることが好ましい。   In addition, the heat resistance of the liquid crystalline polymer mainly depends on the ratio of the aromatic ring in the molecular chain. For example, the melting temperature of a liquid crystalline polymer whose main chain is composed of a phenylene group is approximately 260 to 350 ° C., and the melting temperature of a liquid crystalline polymer having a naphthalene skeleton introduced into the main chain is approximately 190 to 270 ° C. The melting temperature of the liquid crystalline polymer having an ethylene group introduced into the main chain is about 60 to 230 ° C. In the present embodiment, it is particularly preferable to use a liquid crystalline polymer having a melting temperature of about 180 ° C. to 350 ° C.

外側部34は、液晶性高分子のみからなっても良いが、液晶性高分子に加えて、他の高分子材料等を含む液晶性高分子組成物からなってもよい。他の樹脂としては、例えば、エポキシ器含有エチレン共重合体等の熱可塑性樹脂が挙げられる。混合比率は、例えば、液晶性高分子56〜99重量%に対して、他の高分子材料44〜1重量%である。また、この液晶性高分子には、さらにその性能を高めるため、必要に応じて公知の添加剤を含有させることもできる。   The outer portion 34 may be made of only a liquid crystalline polymer, but may be made of a liquid crystalline polymer composition containing other polymer materials in addition to the liquid crystalline polymer. As other resin, thermoplastic resins, such as an epoxy-unit-containing ethylene copolymer, are mentioned, for example. The mixing ratio is, for example, 44 to 1% by weight of another polymer material with respect to 56 to 99% by weight of the liquid crystalline polymer. Moreover, in order to further improve the performance, this liquid crystalline polymer can contain a known additive as required.

ここで、このような液晶性高分子のガスバリア性について説明する。   Here, the gas barrier property of such a liquid crystalline polymer will be described.

例えば、図3に液晶性高分子の一例としての液晶ポリエステル高分子組成物の層の水蒸気透過率及び酸素透過率の一例(特開1997−77960号公報)を、図4に、液晶性高分子以外の熱可塑性高分子の層の水蒸気透過率及び酸素透過率の一例(瓜生俊之、堀江一之、白石振作共著、ポリマー材料(材料テクノロジー16)、東京大学出版会、1984年11月発行)を示す。   For example, FIG. 3 shows an example of a water vapor transmission rate and an oxygen transmission rate of a layer of a liquid crystal polyester polymer composition as an example of a liquid crystalline polymer (Japanese Patent Laid-Open No. 1997-77960), and FIG. An example of water vapor permeability and oxygen permeability of other thermoplastic polymer layers (Toshiyuki Mibu, Kazuyuki Horie, Hansaku Shiraishi, Polymer Materials (Material Technology 16), The University of Tokyo Press, published in November 1984) Show.

ここで、液晶ポリエステル組成物G−1は、(a)以下の(1)式に示すような構造単位を有し溶融温度が324℃である粒子状の全芳香族ポリエステルを77重量%、及び(b)住友化学工業(株)製ボンドファースト 7Mを23重量%含む液晶性高分子組成物である。また、液晶ポリエステル組成物G−4は、(a)以下の(2)式に示す構造単位を有し溶融温度が270℃の粒子状の全芳香族ポリエステルを87重量%、(b)住友化学工業(株)製ボンドファースト 20Bを13重量%含む液晶性高分子組成物である。

Figure 2005209819
Figure 2005209819
これにより、液晶性高分子は、他の熱可塑性高分子に比して群を抜いて水蒸気透過率や酸素透過率が低い、すなわち、ガスバリア性が高いことが理解される。 Here, the liquid crystal polyester composition G-1 is (a) 77% by weight of a particulate wholly aromatic polyester having a structural unit represented by the following formula (1) and having a melting temperature of 324 ° C., and (B) A liquid crystalline polymer composition containing 23% by weight of Bond First 7M manufactured by Sumitomo Chemical Co., Ltd. In addition, the liquid crystal polyester composition G-4 is (a) 87% by weight of particulate wholly aromatic polyester having a structural unit represented by the following formula (2) and having a melting temperature of 270 ° C., and (b) Sumitomo Chemical. It is a liquid crystalline polymer composition containing 13% by weight of Bond First 20B manufactured by Kogyo Co., Ltd.
Figure 2005209819
Figure 2005209819
Thereby, it is understood that the liquid crystalline polymer is superior to other thermoplastic polymers and has a low water vapor transmission rate and oxygen transmission rate, that is, a high gas barrier property.

本実施形態では、外側部34の液晶性高分子として、水蒸気透過率が1g/(m・24hr・100μm)以下であり、酸素透過率が10mL/(m・24hr・100μm)であるものを用いると、十分なガスバリア性が得られて、電気化学デバイスの信頼性が十分に向上する。 In the present embodiment, the liquid crystal polymer of the outer portion 34 has a water vapor transmission rate of 1 g / (m 2 · 24 hr · 100 μm) or less and an oxygen transmission rate of 10 mL / (m 2 · 24 hr · 100 μm). When is used, sufficient gas barrier properties are obtained, and the reliability of the electrochemical device is sufficiently improved.

ここで、内側部32と外側部34とは、接触していても良いが、所定の隙間を有して互いに離間されていても良い。接触している場合には、互いに熱融着されていると、電気二重層キャパシタ2の強度の向上が可能である。なお、内側部32と外側部34とが接触している場合、この内側部32と外側部34とを集電体20,21に熱融着させる際に多かれ少なかれ熱融着されることとなる。   Here, the inner portion 32 and the outer portion 34 may be in contact with each other, but may be separated from each other with a predetermined gap. If they are in contact with each other, the strength of the electric double layer capacitor 2 can be improved if they are heat-sealed to each other. In addition, when the inner side part 32 and the outer side part 34 are contacting, when this inner side part 32 and the outer side part 34 are heat-seal | fused to the electrical power collectors 20 and 21, more or less will be heat-seal | fused. .

(電気二重層キャパシタの製造方法)
次に、図5(a)、図5(b)及び図6を参照して、上述した電気二重層キャパシタ1の製造方法の一例について説明する。
(Method for manufacturing electric double layer capacitor)
Next, an example of a method for manufacturing the electric double layer capacitor 1 described above will be described with reference to FIGS.

まず、図5(a)に示す一対の集電体20,21を用意する。これらの集電体20,21は、例えば、アルミニウム等の導電性の金属箔を所定の大きさの矩形状に切断することにより形成できる。   First, a pair of current collectors 20 and 21 shown in FIG. These current collectors 20 and 21 can be formed, for example, by cutting a conductive metal foil such as aluminum into a rectangular shape having a predetermined size.

次に、各集電体20,21の主表面の中央部分に、シート状の第一電極12、第二電極13をそれぞれ形成する。これら第一電極12、第二電極13の形成方法は、特に限定されず、公知の電気二重層キャパシタ1の製造に採用されている公知の薄膜製造技術を用いることができる。   Next, the sheet-like first electrode 12 and the second electrode 13 are respectively formed at the central portion of the main surface of each of the current collectors 20 and 21. The formation method of these 1st electrode 12 and the 2nd electrode 13 is not specifically limited, The well-known thin film manufacturing technique employ | adopted for manufacture of the well-known electric double layer capacitor 1 can be used.

例えば、第一電極12、第二電極13が炭素電極(分極性電極)の場合、公知の方法により賦活処理済みの活性炭等の炭素材料を用いてシート状の電極を作製することができる。具体的には、例えば、炭素材料を5〜100μm程度に粉砕し粒度を整えた後、例えば炭素粉末に導電性を付与するための導電性補助剤(カーボンブラック等)と、例えば結着剤と、例えば、MIBK等の有機溶媒とを添加し混練してペーストを得、このペーストを各集電体20,21上に塗布し乾燥すればよい。塗布は、メタルマスク印刷、ドクターブレード法、ロールプレス法などを利用できる。   For example, when the first electrode 12 and the second electrode 13 are carbon electrodes (polarizable electrodes), a sheet-like electrode can be produced using a carbon material such as activated carbon that has been activated by a known method. Specifically, for example, after pulverizing the carbon material to about 5 to 100 μm and adjusting the particle size, for example, a conductive auxiliary agent (carbon black or the like) for imparting conductivity to the carbon powder, for example, a binder, For example, an organic solvent such as MIBK may be added and kneaded to obtain a paste, and this paste may be applied to each of the current collectors 20 and 21 and dried. Application can be performed by metal mask printing, a doctor blade method, a roll press method, or the like.

ここで、上記の導電性補助剤としては、カーボンブラックの他、アセチレンブラック、粉末グラファイトなどを用いることができ、また、結着剤としては、ポリテトラフルオロエチレンの他、ポリフッ化ビニリデン、フッ素ゴムなどを使用することができる。   Here, as the conductive auxiliary agent, acetylene black, powdered graphite, etc. can be used in addition to carbon black, and as the binder, in addition to polytetrafluoroethylene, polyvinylidene fluoride, fluororubber Etc. can be used.

なお、集電体20,21上にペーストを塗布することにより第一電極12、第二電極13を形成する代わりに、シート状の電極を形成しこれを集電体20,21上に積層してもよい。   Instead of forming the first electrode 12 and the second electrode 13 by applying a paste on the current collectors 20 and 21, sheet-like electrodes are formed and laminated on the current collectors 20 and 21. May be.

次に、セパレータ14を準備する。このセパレータ14は、紙等の多孔質性の絶縁材料を所定の大きさに切ることにより形成できる。ここで、セパレータ14の主表面の面積を、第一電極12、第二電極13よりも大きくすることが好ましい。   Next, the separator 14 is prepared. The separator 14 can be formed by cutting a porous insulating material such as paper into a predetermined size. Here, the area of the main surface of the separator 14 is preferably larger than those of the first electrode 12 and the second electrode 13.

続いて、枠状の封口材30を用意する。ここでは、まず、同じ厚みの熱可塑性高分子シート及び液晶性高分子シートをそれぞれ用意する。そして、熱可塑性高分子シートを所定の枠状に切り抜いて内側部32とし、液晶性高分子シートを内側部32よりも大きな枠状に切り抜いて外側部34とし、封口材30を得る。   Subsequently, a frame-shaped sealing material 30 is prepared. Here, first, a thermoplastic polymer sheet and a liquid crystal polymer sheet having the same thickness are prepared. Then, the thermoplastic polymer sheet is cut into a predetermined frame shape to form the inner portion 32, and the liquid crystalline polymer sheet is cut to a frame shape larger than the inner portion 32 to form the outer portion 34, thereby obtaining the sealing material 30.

続いて、図5(b)に示すように、このようにして得た枠状の封口材30を、集電体21の周縁部21aに載置する。このとき、封口材30の内側部32が第二電極13を取り囲み、外側部34が内側部32を取り囲むように封口材30を配置する。そして、この封口材30を加熱して封口材30を集電体21に固定する。具体的には、封口材30と集電体21とを定盤91及びヒータ付の定盤92で挟み熱融着する。ここで、ヒータ付の定盤92は、集電体21を挟んで内側部32と対向する環状の低温ヒータ92a及び集電体21を挟んで外側部34と対向する環状の高温ヒータ92bを有している。そして、高温ヒータ92bにより外側部34の液晶性高分子を加熱し溶融させる一方、低温ヒータ92aにより内側部32の熱可塑性高分子を加熱し溶融させ、内側部32及び外側部34を集電体21に熱融着する。   Subsequently, as shown in FIG. 5B, the frame-shaped sealing material 30 obtained in this way is placed on the peripheral portion 21 a of the current collector 21. At this time, the sealing material 30 is arranged so that the inner part 32 of the sealing material 30 surrounds the second electrode 13 and the outer part 34 surrounds the inner part 32. Then, the sealing material 30 is heated to fix the sealing material 30 to the current collector 21. Specifically, the sealing material 30 and the current collector 21 are sandwiched between a surface plate 91 and a surface plate 92 with a heater and heat-sealed. Here, the surface plate 92 with a heater has an annular low temperature heater 92a facing the inner portion 32 with the current collector 21 in between, and an annular high temperature heater 92b facing the outer portion 34 with the current collector 21 in between. doing. The liquid crystalline polymer in the outer portion 34 is heated and melted by the high temperature heater 92b, while the thermoplastic polymer in the inner portion 32 is heated and melted by the low temperature heater 92a so that the inner portion 32 and the outer portion 34 are collected by the current collector. 21 is heat-sealed.

続いて、集電体21に形成された第二電極13に前述の電解質溶液を滴下し、他方の集電体20に形成された第一電極12にも電解質溶液を滴下する。   Subsequently, the above-described electrolyte solution is dropped on the second electrode 13 formed on the current collector 21, and the electrolyte solution is also dropped on the first electrode 12 formed on the other current collector 20.

さらに続いて、図6に示すように、第二電極13上にセパレータ14を積層し、セパレータ14上にも電解質溶液を滴下する。   Subsequently, as shown in FIG. 6, the separator 14 is laminated on the second electrode 13, and the electrolyte solution is dropped on the separator 14.

次に、他方の集電体20を集電体21に積層して積層構造体とする。このとき、第一電極12が上述のセパレータ14と接すると共に、集電体20の周縁部20aが枠状の封口材30と接するように集電体20を集電体21に積層する。   Next, the other current collector 20 is laminated on the current collector 21 to form a laminated structure. At this time, the current collector 20 is stacked on the current collector 21 so that the first electrode 12 is in contact with the separator 14 and the peripheral portion 20 a of the current collector 20 is in contact with the frame-shaped sealing material 30.

その後、真空容器内で真空に引きながら、定盤93上に載置した積層構造体を上から熱プレス器100で挟んで熱融着する。ここで、熱プレス器100は、集電体20を挟んで封口材30の内側部32と対向する環状の低温ヒータ(加熱手段)102と、集電体20を挟んで封口材の外側部34と対向する環状の高温ヒータ(加熱手段)104と、集電体20を挟んで発電要素10と対向する冷却部108と、低温ヒータ102、高温ヒータ104及び冷却部108を下方、すなわち、集電体20に向けて押圧するためのプレスヘッド106と、を備えている。   Thereafter, the laminated structure placed on the surface plate 93 is sandwiched between the heat presses 100 from above and heat-sealed while evacuating in a vacuum vessel. Here, the heat press 100 includes an annular low-temperature heater (heating means) 102 facing the inner portion 32 of the sealing material 30 with the current collector 20 in between, and an outer portion 34 of the sealing material with the current collector 20 in between. An annular high-temperature heater (heating means) 104 facing the current collector 20, a cooling unit 108 facing the power generation element 10 across the current collector 20, and the low-temperature heater 102, the high-temperature heater 104 and the cooling unit 108 below, that is, collecting current And a press head 106 for pressing toward the body 20.

低温ヒータ102は、集電体20と接触して集電体20を押圧するとともに、この集電体20を介して内側部32を加熱し溶融させて集電体20の周縁部20aと内側部32とを熱融着する。ここでは、低温ヒータ102により内側部32を例えば130〜160℃程度に加熱する。   The low-temperature heater 102 contacts the current collector 20 and presses the current collector 20, and the inner portion 32 is heated and melted through the current collector 20 to melt the peripheral portion 20 a and the inner portion of the current collector 20. And 32 are heat-sealed. Here, the inner portion 32 is heated to, for example, about 130 to 160 ° C. by the low-temperature heater 102.

高温ヒータ104は、集電体20と接触して集電体20を押圧するとともに、この集電体20を介して外側部34を加熱し溶融させて集電体20の周縁部20aと外側部34とを熱融着する。高温ヒータ104の温度は低温ヒータ102よりも高くする。ここでは、高温ヒータ104により外側部34を例えば、250〜300℃程度に加熱する。すなわち、封口材30を集電体20に熱融着する際に、発電要素10に近い側と遠い側とで加熱手段の温度を変えている。   The high temperature heater 104 is in contact with the current collector 20 to press the current collector 20, and heats and melts the outer side portion 34 through the current collector 20, so that the peripheral portion 20 a and the outer side portion of the current collector 20 are heated. 34 is heat-sealed. The temperature of the high temperature heater 104 is set higher than that of the low temperature heater 102. Here, the outer portion 34 is heated to, for example, about 250 to 300 ° C. by the high temperature heater 104. That is, when the sealing material 30 is heat-sealed to the current collector 20, the temperature of the heating means is changed between the side close to the power generation element 10 and the side far from the power generation element 10.

このような低温ヒータ102や高温ヒータ104としては、たとえば、タングステン、タンタル等の高融点金属、SiC等の高抵抗のセラミック材料からなる公知のヒータを適宜用いることができる。例えば、線状のヒータを環状に配置しても良いし、板状あるいはリボン状のヒータを環状に加工しても良い。ヒータ102,104の温度を各ヒータの内部で均一にするためには、封口材30の内側部32、外側部34の形状は、比較的単純な、円環状、正方形枠状、矩形枠状であることが好ましい。   As such a low temperature heater 102 or high temperature heater 104, for example, a known heater made of a high melting point metal such as tungsten or tantalum or a high resistance ceramic material such as SiC can be appropriately used. For example, a linear heater may be arranged in a ring shape, or a plate or ribbon heater may be processed in a ring shape. In order to make the temperature of the heaters 102 and 104 uniform inside each heater, the shape of the inner part 32 and the outer part 34 of the sealing material 30 is relatively simple, an annular shape, a square frame shape, and a rectangular frame shape. Preferably there is.

冷却部108は、内部に空洞108aを有し金属等の熱伝導の良い材料からなる。この空洞108aには、ライン109aを介して冷却水が供給されると共に、この空洞108a内の冷却水はライン109bを介して外部に排出される。これによって、冷却部108はこの冷却部108と接する集電体20の中央部分を冷却することができ、熱融着時の熱によって発電要素10が悪影響を受けないようにする。ここでは、例えば、冷却部108により発電要素10が60℃以下に維持されるように、集電体20の中央部を冷却することができる。なお、内側部32や外側部34の溶融温度が低い場合や、発電要素10の耐熱性が高い場合には、冷却部108が水冷されなくてもよく、さらに、冷却部108を設けない熱プレス器でも発電要素10への熱の影響を低減した熱融着は可能である。この場合、ヒータが集電体20の中央部分に接触しないことが好ましい。   The cooling unit 108 has a cavity 108a inside and is made of a material having good heat conductivity such as metal. Cooling water is supplied to the cavity 108a through the line 109a, and the cooling water in the cavity 108a is discharged to the outside through the line 109b. As a result, the cooling unit 108 can cool the central portion of the current collector 20 that is in contact with the cooling unit 108, so that the power generation element 10 is not adversely affected by the heat at the time of heat fusion. Here, for example, the central portion of the current collector 20 can be cooled so that the power generation element 10 is maintained at 60 ° C. or less by the cooling unit 108. In addition, when the melting temperature of the inner part 32 and the outer part 34 is low, or when the heat resistance of the power generation element 10 is high, the cooling unit 108 may not be water-cooled, and further, a heat press without the cooling unit 108. Even in the case, heat fusion with reduced influence of heat on the power generation element 10 is possible. In this case, it is preferable that the heater does not contact the central portion of the current collector 20.

プレスヘッド106は、低温ヒータ102、高温ヒータ104及び冷却部108を定盤93に向けて押圧するための金属製等の部材である。プレス圧力は、溶融状態の封口材30を集電体20と密着させることができる程度の圧力でよい。   The press head 106 is a member made of metal or the like for pressing the low temperature heater 102, the high temperature heater 104, and the cooling unit 108 toward the surface plate 93. The press pressure may be a pressure that can bring the sealing material 30 in a molten state into close contact with the current collector 20.

このような熱プレス器100による封口材30と集電体20との熱融着の工程を経て、図1に示す電気二重層キャパシタ1を得る。   The electric double layer capacitor 1 shown in FIG. 1 is obtained through the process of heat-sealing the sealing material 30 and the current collector 20 with such a heat press 100.

なお、図6に示すような熱プレス器100に変えて、例えば、図7に示すような熱プレス器150を用いても良い。   Instead of the heat press 100 as shown in FIG. 6, for example, a heat press 150 as shown in FIG. 7 may be used.

このような熱プレス器150においては、低温ヒータ102と集電体20との間、及び高温ヒータ104と集電体20との間にそれぞれ熱伝導性の良い熱伝導部材112,114を有している。この場合は、熱伝導部材112,114の形状を内側部32、外側部34の表面形状にそれぞれ対応させて環状とすればよく、これらの熱伝導部材112,114に接触して熱を与える低温ヒータ102、高温ヒータ104の形状が比較的自由である。熱伝導部材112,114の材料としては、プレス時の圧力に耐えられかつ良好な熱伝導度を有する材料であればよく、ステンレスやタングステン等の金属材料を好適に利用できる。ここでは、熱伝導部材112及び熱伝導部材114が加熱手段を構成している。また、熱伝導部材112の温度は熱伝導部材114の温度よりも低くされており、このような温度制御は低温ヒータ102、高温ヒータ104によりなされる。   Such a heat press 150 includes heat conducting members 112 and 114 having good heat conductivity between the low temperature heater 102 and the current collector 20 and between the high temperature heater 104 and the current collector 20, respectively. ing. In this case, the heat conducting members 112 and 114 may be formed in an annular shape corresponding to the surface shapes of the inner portion 32 and the outer portion 34, respectively. The shapes of the heater 102 and the high temperature heater 104 are relatively free. The material of the heat conducting members 112 and 114 may be any material that can withstand the pressure during pressing and has good thermal conductivity, and a metal material such as stainless steel or tungsten can be suitably used. Here, the heat conducting member 112 and the heat conducting member 114 constitute a heating means. Further, the temperature of the heat conducting member 112 is set lower than the temperature of the heat conducting member 114, and such temperature control is performed by the low temperature heater 102 and the high temperature heater 104.

さらに、図6に示すような熱プレス器100に代えて、高温ヒータ104を有さずに低温ヒータ102を備える熱プレス器と、低温ヒータ102を有さずに高温ヒータ104を有する熱プレス器とを順次用いても、発電要素10への熱の影響を低減した封口材30の熱融着は可能である。   Further, instead of the heat press 100 as shown in FIG. 6, a heat press having the low temperature heater 102 without the high temperature heater 104 and a heat press having the high temperature heater 104 without the low temperature heater 102. Can be heat-sealed with the sealing material 30 in which the influence of heat on the power generation element 10 is reduced.

以上により、本実施形態に係る電気二重層キャパシタ1の製造工程が終了する。   Thus, the manufacturing process of the electric double layer capacitor 1 according to this embodiment is completed.

これによれば、封口材30において、内側には熱可塑性高分子製の内側部32が、外側には熱可塑性高分子製の内側部32に比して溶融温度が高い液晶性高分子製の外側部34が存在する。ここで、外側部34の液晶性高分子は内側部32の熱可塑性高分子に比して水蒸気透過率や酸素透過率が高い。したがって、ガスバリア性が高く、水蒸気や酸素の進入による発電要素10の劣化や、高温にさらされた場合の電解質溶液の蒸発等が抑制されるので、信頼性の高い電気二重層キャパシタ1が提供される。   According to this, in the sealing material 30, the inner side 32 made of a thermoplastic polymer is formed on the inner side, and the outer side made of a liquid crystalline polymer having a higher melting temperature than the inner side 32 made of a thermoplastic polymer. An outer portion 34 is present. Here, the liquid crystalline polymer of the outer portion 34 has higher water vapor transmission rate and oxygen transmission rate than the thermoplastic polymer of the inner portion 32. Therefore, since the gas barrier property is high and the deterioration of the power generation element 10 due to the ingress of water vapor or oxygen, the evaporation of the electrolyte solution when exposed to high temperature, and the like are suppressed, the highly reliable electric double layer capacitor 1 is provided. The

また、内側部32は外側部34よりも溶融温度が低いため、封口材30のうち発電要素10に近い内側部32を外側部よりも低温で集電体20と熱融着できる。したがって、封口材30の熱融着時に発電要素10に対して熱による悪影響を与えにくい。   Further, since the inner part 32 has a melting temperature lower than that of the outer part 34, the inner part 32 close to the power generation element 10 in the sealing material 30 can be thermally fused to the current collector 20 at a lower temperature than the outer part. Therefore, it is difficult for the power generation element 10 to be adversely affected by heat when the sealing material 30 is heat-sealed.

これらにより、電気二重層キャパシタ1の信頼性の向上や長寿命化が可能となる。なお、ヒータを用いずに超音波溶接等により封口してもよく、同様の作用効果を生じる。   As a result, it is possible to improve the reliability and extend the life of the electric double layer capacitor 1. In addition, you may seal by ultrasonic welding etc., without using a heater, and the same effect is produced.

(第二実施形態)
続いて、図8を参照して、第二実施形態に係る電気二重層キャパシタ2について説明する。本実施形態に係る電気二重層キャパシタ2が、第一実施形態に係る電気二重層キャパシタ1と異なる点は封口材30に代えて封口材40を備えている点であり、この封口材40が封口材30と異なる点は、内側部32と外側部34とが接着剤36により接着されている点である。
(Second embodiment)
Next, the electric double layer capacitor 2 according to the second embodiment will be described with reference to FIG. The electric double layer capacitor 2 according to the present embodiment is different from the electric double layer capacitor 1 according to the first embodiment in that a sealing material 40 is provided instead of the sealing material 30, and the sealing material 40 is a sealing material. The difference from the material 30 is that the inner portion 32 and the outer portion 34 are bonded by an adhesive 36.

接着剤36を用いることにより、内側部32と外側部34とを十分強固に接着できる。この場合、封口材30の強度が高まり、電気二重層キャパシタ2の強度が高まる。   By using the adhesive 36, the inner part 32 and the outer part 34 can be bonded sufficiently firmly. In this case, the strength of the sealing material 30 is increased, and the strength of the electric double layer capacitor 2 is increased.

接着剤36の材料としては、内側部32と外側部34とを十分に接着できるものなら特に限定されないが、例えば、ウレタン系、エポキシ系、エステル系、エーテル系、アクリル系、オレフィン系の接着剤や、ウレタン化ポリエーテル、ウレタン化ポリエステル等の複合系接着剤等の硬化性樹脂の硬化物、すなわち、塗布後に化学反応により硬化して内側部32と外側部34とを結合させるものを好適に使用できる。   The material of the adhesive 36 is not particularly limited as long as the inner part 32 and the outer part 34 can be sufficiently bonded. For example, urethane, epoxy, ester, ether, acrylic, and olefin adhesives are used. Or a cured product of a curable resin such as a composite adhesive such as urethanized polyether or urethanized polyester, that is, a product that cures by a chemical reaction after application and bonds the inner portion 32 and the outer portion 34 to each other. Can be used.

ここで、接着剤36の厚みはなるべく薄いほうが好ましく、例えば、0.5〜3μmが好ましい。   Here, the thickness of the adhesive 36 is preferably as thin as possible, and is preferably 0.5 to 3 μm, for example.

(第三実施形態)
続いて、図9を参照して、第三実施形態に係る電気二重層キャパシタ3について説明する。本実施形態に係る電気二重層キャパシタ3が第一実施形態に係る電気二重層キャパシタ1と異なる点は、封口材30に代えて封口材50を備えている点である。封口材50が封口材30と異なる点は、内側部32が積層体である点である。内側部32は、溶融温度のそれぞれ異なる熱可塑性高分子製のサブ層32a、32bを発電要素10に向かって複数積層してなる。
(Third embodiment)
Subsequently, the electric double layer capacitor 3 according to the third embodiment will be described with reference to FIG. The electric double layer capacitor 3 according to this embodiment is different from the electric double layer capacitor 1 according to the first embodiment in that a sealing material 50 is provided instead of the sealing material 30. The sealing material 50 is different from the sealing material 30 in that the inner portion 32 is a laminate. The inner portion 32 is formed by laminating a plurality of thermoplastic polymer sub-layers 32 a and 32 b having different melting temperatures toward the power generation element 10.

各サブ層32a、32bの材料としては、外側部34の材料よりも溶融温度が低くければ特に限定されない。例えば、サブ層32bに酸変性されていないポリオレフィンを、サブ層32aに酸変性ポリオレフィンを用いると、発電要素10に向かって溶融温度が低くなる積層体を好適に形成できる。   The material of each of the sublayers 32a and 32b is not particularly limited as long as the melting temperature is lower than that of the material of the outer portion 34. For example, when a polyolefin that has not been acid-modified is used for the sub-layer 32 b and an acid-modified polyolefin is used for the sub-layer 32 a, a laminate in which the melting temperature decreases toward the power generation element 10 can be suitably formed.

このような封口材50は、例えば、外側から順に、外側部34の加熱用の高温ヒータ、サブ層32aの加熱用の中温ヒータ、及び、サブ層32bの加熱用の低温ヒータを有する熱プレス装置でシールできる。   Such a sealing material 50 includes, for example, a high-temperature heater for heating the outer portion 34, a medium-temperature heater for heating the sub-layer 32a, and a low-temperature heater for heating the sub-layer 32b in order from the outside. Can be sealed with.

このような電気二重層キャパシタ3によっても、第一実施形態と同様の作用効果を示す。加えて、封口材50の内側部32における発電要素10に最も近いサブ層32bを、内側部32のサブ層32aよりもさらに低い温度で集電体20,21と熱融着できるので、集電体20を封口材30と熱融着する際の発電要素10の熱ダメージを十分に抑えつつ、封口材50と集電体20,21との接着性を十分に高めることができる。   Such an electric double layer capacitor 3 also exhibits the same effects as the first embodiment. In addition, since the sublayer 32b closest to the power generation element 10 in the inner portion 32 of the sealing material 50 can be heat-sealed with the current collectors 20 and 21 at a lower temperature than the sublayer 32a of the inner portion 32, the current collector Adhesiveness between the sealing material 50 and the current collectors 20 and 21 can be sufficiently enhanced while sufficiently suppressing thermal damage of the power generation element 10 when the body 20 is heat-sealed with the sealing material 30.

(第四実施形態)
続いて、図10を参照して、第三実施形態に係る電気二重層キャパシタ4について説明する。本実施形態に係る電気二重層キャパシタ4が第一実施形態に係る電気二重層キャパシタ1と異なる点は、封口材30に代えて封口材60を備えている点であり、封口材60が封口材30と異なる点は、外側部34がさらに集電体20,21の端面に熱融着されて集電体20,21の端面を取り囲んでいる点である。
(Fourth embodiment)
Next, the electric double layer capacitor 4 according to the third embodiment will be described with reference to FIG. The electric double layer capacitor 4 according to the present embodiment is different from the electric double layer capacitor 1 according to the first embodiment in that a sealing material 60 is provided instead of the sealing material 30, and the sealing material 60 is the sealing material. The difference from 30 is that the outer portion 34 is further heat-sealed to the end faces of the current collectors 20 and 21 to surround the end faces of the current collectors 20 and 21.

このような電気二重層キャパシタ4は、集電体20,21の端面に接触する外側部34を用意し、前述の如き熱プレス器100等によりさらに集電体20,21の端面と外側部34とを熱融着させることにより形成できる。   Such an electric double layer capacitor 4 is provided with an outer portion 34 that comes into contact with the end faces of the current collectors 20, 21, and the end faces and outer portions 34 of the current collectors 20, 21 are further added by the heat press 100 or the like as described above. Can be formed by heat-sealing.

このような電気二重層キャパシタ4でも上述と同様の作用効果を奏する。また、この場合、さらに集電体20,21の端面を利用して封口材60を接着するので、ガスバリア性をさらに向上させることができると共に電気二重層キャパシタ4の機械的強度を十分に高めることができる。   Such an electric double layer capacitor 4 has the same effects as described above. Further, in this case, since the sealing material 60 is further bonded using the end faces of the current collectors 20 and 21, the gas barrier property can be further improved and the mechanical strength of the electric double layer capacitor 4 can be sufficiently increased. Can do.

以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。   The preferred embodiment of the present invention has been described in detail above, but the present invention is not limited to the above embodiment.

例えば、第三〜第四実施形態において、内側部32と外側部34とが接着剤によって接着されていいことは言うまでも無い。   For example, in the third to fourth embodiments, it goes without saying that the inner portion 32 and the outer portion 34 may be bonded by an adhesive.

また、上記実施形態においては、本発明を電気二重層キャパシタに適用した場合に好適な構成について説明したが、本発明は電気二重層キャパシタに限定されるものではなく、例えば、シュードキャパシタ、レドックスキャパシタ等の他の電気化学キャパシタに適用可能である。   Further, in the above-described embodiment, a configuration suitable for the case where the present invention is applied to an electric double layer capacitor has been described. However, the present invention is not limited to an electric double layer capacitor, for example, a pseudo capacitor, a redox capacitor. It is applicable to other electrochemical capacitors.

更に、上記実施形態の説明においては、本発明を電気化学キャパシタ(特に電気二重層キャパシタ)に適用した場合に好適な構成について説明したが、本発明はこれに限定されるものではなく、リチウムイオン二次電池等をはじめとする各種二次電池にも適用可能である。この場合には、第一電極(正極)12となる多孔体層には、リチウムイオン二次電池等の二次電池の正極に使用可能な電極活物質が含有される。また、第二電極(負極)13となる多孔体層には、リチウムイオン二次電池等の二次電池の負極に使用可能な電極活物質が含有される。この場合、第一電極12に接触する集電体には、耐食性の点からアルミニウム、チタン等を用いることが好ましく、第二電極13に接触する集電体には、リチウムと合金を形成しない観点から、銅、ニッケル等を用いることが好ましい。   Furthermore, in the description of the above-described embodiment, a configuration suitable for the case where the present invention is applied to an electrochemical capacitor (particularly an electric double layer capacitor) has been described. However, the present invention is not limited to this, and lithium ion The present invention can also be applied to various secondary batteries including secondary batteries. In this case, the porous layer that becomes the first electrode (positive electrode) 12 contains an electrode active material that can be used for the positive electrode of a secondary battery such as a lithium ion secondary battery. Moreover, the porous body layer used as the 2nd electrode (negative electrode) 13 contains the electrode active material which can be used for the negative electrodes of secondary batteries, such as a lithium ion secondary battery. In this case, it is preferable to use aluminum, titanium or the like for the current collector in contact with the first electrode 12 from the viewpoint of corrosion resistance, and the current collector in contact with the second electrode 13 has a viewpoint of not forming an alloy with lithium. Therefore, it is preferable to use copper, nickel or the like.

次に、実施例に基づいて、本発明の効果をより具体的に説明する。   Next, based on an Example, the effect of this invention is demonstrated more concretely.

(実施例1)
以下の手順により、図1に示した電気二重層キャパシタ1と同様の構成を有する実施例1の電気二重層キャパシタを作製した。
(Example 1)
The electric double layer capacitor of Example 1 having the same configuration as the electric double layer capacitor 1 shown in FIG.

まず、電極を有する集電体を一対作製した。   First, a pair of current collectors having electrodes was prepared.

集電体としては、アルミニウム箔(厚み50μm)を所定の矩形状に切断したものを採用し、これら集電体上に電極を形成した。具体的には、賦活処理した活性炭(比表面積2000m/g、クラレケミカル製BP−20)を80重量%、バインダーとしてのフッ素ゴム(デュポン社製、Viton−GF)を10重量%、導電助剤としてのアセチレンブラック(電気化学工業製、DENKABLACK)を10重量%を、所定量のメチルイソブチルケトンに混合・混練してペースト化し、メタルマスク法で集電体の主面の中央部に塗布し、乾燥して電極とした。電極の乾燥後の厚みは50μmであった。この電極を2枚作成した。 As the current collector, an aluminum foil (thickness: 50 μm) cut into a predetermined rectangular shape was adopted, and electrodes were formed on these current collectors. Specifically, activated carbon (specific surface area 2000 m 2 / g, BP-20 manufactured by Kuraray Chemical Co., Ltd.) 80% by weight, fluororubber (DuPont, Viton-GF) 10% by weight, conductive assistant 10% by weight of acetylene black (DENKABLACK, manufactured by Denki Kagaku Kogyo Co., Ltd.) as an agent is mixed and kneaded with a predetermined amount of methyl isobutyl ketone to form a paste, which is applied to the center of the main surface of the current collector by the metal mask method. The electrode was dried. The thickness of the electrode after drying was 50 μm. Two electrodes were prepared.

次に、セパレータを用意した。このセパレータは、厚み50μmの紙(ニッポン高度紙工業製、TF4050)を、電極の主表面の面積よりも大きく切り出すことにより形成した。   Next, a separator was prepared. This separator was formed by cutting a paper having a thickness of 50 μm (manufactured by Nippon Kogyo Paper Industries, TF4050) larger than the area of the main surface of the electrode.

続いて、第一実施形態(図1参照)の封口材30のような矩形枠状の封口材を用意した。まず、液晶性高分子シート(住友化学製、エコノール、厚み140μm)を用意し、この液晶性高分子シートを集電体の外形に沿って切り抜き、さらにその中央部を矩形に切り抜いて、矩形枠状の外側部を形成した。続いて、熱可塑性高分子シートとしての酸変性高密度ポリエチレンシート(厚み140μm)を用意し、作成した外側部の内側に入るように切り抜いて外側形状を定めると共にその中央部を発電要素の大きさに対応するように切り抜いて矩形枠状の内側部を作成した。   Then, the rectangular frame-shaped sealing material like the sealing material 30 of 1st embodiment (refer FIG. 1) was prepared. First, a liquid crystal polymer sheet (Sumitomo Chemical Co., Econol, thickness 140 μm) is prepared, this liquid crystal polymer sheet is cut out along the outer shape of the current collector, and the central part is cut out into a rectangular shape. A shaped outer part was formed. Subsequently, an acid-modified high-density polyethylene sheet (thickness 140 μm) is prepared as a thermoplastic polymer sheet, cut out so as to enter the inside of the created outer portion, and the outer shape is determined, and the central portion is the size of the power generation element. A rectangular frame-shaped inner part was created by cutting out so as to correspond to.

続いて、一方の集電体における電極が形成された面の周縁部上に、電極を取り囲むように枠状の内側部を載置し、この内側部を取り囲むように外側部を載置した。そして、集電体側からこれらの封口材を加熱して内側部と一方の集電体とを130℃で、外側部と一方の集電体を300℃で熱融着した。続いて、この一方の集電体の電極に適当量の電解質溶液を滴下し、この電極の上にセパレータを積層し、さらに、セパレータ上に適当量の電解質溶液を滴下した。電解質溶液としては、4フッ化トリエチルメチルアンモニウム塩のプロピレンカーボネート溶液に1.8mol/Lの濃度に溶解させたものを用いた。   Subsequently, a frame-shaped inner side portion was placed so as to surround the electrode, and an outer side portion was placed so as to surround the inner side portion, on the peripheral portion of the surface on which the electrode of one current collector was formed. Then, these sealing materials were heated from the current collector side, and the inner part and one current collector were heat-sealed at 130 ° C., and the outer part and one current collector were heat-sealed at 300 ° C. Subsequently, an appropriate amount of the electrolyte solution was dropped on the electrode of the one current collector, a separator was laminated on the electrode, and an appropriate amount of the electrolyte solution was further dropped on the separator. As the electrolyte solution, a solution of triethylmethylammonium tetrafluoride salt dissolved in propylene carbonate at a concentration of 1.8 mol / L was used.

続いて、他方の集電体の電極上にも適当量の電解質溶液を滴下した。そして、他方の集電体を、一方の集電体と重ね合わせた。このとき、他方の集電体の電極がセパレータと接触し、また、他方の集電体の周縁部が、枠状の封口材と重なるようにした。   Subsequently, an appropriate amount of the electrolyte solution was also dropped on the electrode of the other current collector. Then, the other current collector was superposed on one current collector. At this time, the electrode of the other current collector was in contact with the separator, and the peripheral portion of the other current collector was overlapped with the frame-shaped sealing material.

続いて、真空雰囲気下で、第一実施形態の熱プレス器100の如き熱プレス器を集電体に対して押し当てて、封口材の内側部を130℃で溶融し、外側部を300℃で溶融して熱融着し電気二重層キャパシタを完成させた。ここでは、このような電気二重層キャパシタを10個得た。   Subsequently, in a vacuum atmosphere, a heat press such as the heat press 100 of the first embodiment is pressed against the current collector, the inner part of the sealing material is melted at 130 ° C., and the outer part is 300 ° C. The electric double layer capacitor was completed by melting and heat fusing. Here, ten such electric double layer capacitors were obtained.

これらの電気二重層キャパシタの抵抗を測定したところ、10個ともショートしておらず、内部抵抗は5.5〜6.0Ω、放電容量は60mFですべて良品であった。   When the resistances of these electric double layer capacitors were measured, none of them were short-circuited, the internal resistance was 5.5 to 6.0Ω, the discharge capacity was 60 mF, and all were good products.

さらに、温度25℃、湿度90%の恒湿槽に1000h保存し、放電容量を測定したところ、すべて58〜60mFであり、容量保持率は96%以上であった。   Furthermore, when it stored for 1000 hours in the constant humidity tank of temperature 25 degreeC and humidity 90%, and measured the discharge capacity, they were all 58-60 mF and the capacity | capacitance retention rate was 96% or more.

(実施例2)
実施例2では、第一実施形態の熱プレス器150の如き熱伝導部材を有する熱プレス器を用いる以外は実施例1と同様にして、電気二重層キャパシタを10個作製した。
(Example 2)
In Example 2, ten electric double layer capacitors were produced in the same manner as in Example 1 except that a heat press having a heat conductive member such as the heat press 150 of the first embodiment was used.

これらの電気二重層キャパシタの抵抗を測定したところ、10個ともショートしておらず、内部抵抗は5.5〜6.0Ω、放電容量は60mFですべて良品であった。   When the resistances of these electric double layer capacitors were measured, none of them were short-circuited, the internal resistance was 5.5 to 6.0Ω, the discharge capacity was 60 mF, and all were good products.

さらに、温度25℃、湿度90%の恒湿槽に1000h保存し、放電容量を測定したところ、すべて58〜60mFであり、容量保持率は96%以上であった。   Furthermore, when it stored for 1000 hours in the constant humidity tank of temperature 25 degreeC and humidity 90%, and measured the discharge capacity, they were all 58-60 mF and the capacity | capacitance retention rate was 96% or more.

(比較例1)
比較例1では、液晶高分子製の外側部のみからなる封口材を用い、外側部を300℃で溶融させる以外は実施例1と同様にして電気二重層キャパシタを10個得た。
(Comparative Example 1)
In Comparative Example 1, ten electric double layer capacitors were obtained in the same manner as in Example 1 except that a sealing material made only of an outer portion made of liquid crystal polymer was used and the outer portion was melted at 300 ° C.

これらの電気二重層キャパシタの抵抗を測定したところ、10個中10個ともショートしていた。   When the resistance of these electric double layer capacitors was measured, 10 out of 10 capacitors were short-circuited.

これらの電気二重層キャパシタを解析したところ、発電要素に熱負荷がかかりすぎて発電要素が短絡していることが判明した。   When these electric double layer capacitors were analyzed, it was found that the power generation element was short-circuited due to excessive heat load on the power generation element.

図1は、本発明の第一実施形態に係る電気二重層キャパシタの断面図である。FIG. 1 is a cross-sectional view of the electric double layer capacitor according to the first embodiment of the present invention. 図2は、図1の電気二重層キャパシタの上面図である。FIG. 2 is a top view of the electric double layer capacitor of FIG. 図3は、液晶性高分子を含む樹脂の水蒸気透過率及び酸素透過率の一例を示す表である。FIG. 3 is a table showing an example of water vapor transmission rate and oxygen transmission rate of a resin containing a liquid crystalline polymer. 図4は、液晶性高分子を含まない高分子の水蒸気透過率及び酸素透過率の一例を示す表であるFIG. 4 is a table showing an example of water vapor transmission rate and oxygen transmission rate of a polymer that does not contain a liquid crystalline polymer. 図5(a)、及び図5(b)は、図1の電気二重層キャパシタの製造方法を説明する断面図である。5 (a) and 5 (b) are cross-sectional views illustrating a method for manufacturing the electric double layer capacitor of FIG. 図6は、図1の電気二重層キャパシタの製造方法を説明する図5(b)に続く断面図である。FIG. 6 is a cross-sectional view subsequent to FIG. 5B for explaining the method of manufacturing the electric double layer capacitor of FIG. 図7は、図1の電気二重層キャパシタの製造方法における図6の変形例である。FIG. 7 is a modification of FIG. 6 in the method for manufacturing the electric double layer capacitor of FIG. 図8は、本発明の第二実施形態に係る電気二重層キャパシタの断面図である。FIG. 8 is a cross-sectional view of the electric double layer capacitor according to the second embodiment of the present invention. 図9は、本発明の第三実施形態に係る電気二重層キャパシタの断面図である。FIG. 9 is a cross-sectional view of the electric double layer capacitor according to the third embodiment of the present invention. 図10は、本発明の第四実施形態に係る電気二重層キャパシタの断面図である。FIG. 10 is a cross-sectional view of an electric double layer capacitor according to the fourth embodiment of the present invention.

符号の説明Explanation of symbols

1,2,3,4…電気二重層キャパシタ(電気化学デバイス)、10…発電要素、12…第一電極、13…第二電極、20,21…集電体、20a,21a…周縁部、20b,21b…端面、20c,21c…内側面、30,40,50,60…封口材、32…内側部、34…外側部、36…接着剤、38…付加部、104…高温ヒータ(加熱手段)、102…低温ヒータ(加熱手段)、112…熱伝導部材(加熱手段)、114…熱伝導部材(加熱手段)、100,150…熱プレス器。   1, 2, 3, 4 ... electric double layer capacitor (electrochemical device), 10 ... power generation element, 12 ... first electrode, 13 ... second electrode, 20, 21 ... current collector, 20a, 21a ... peripheral portion, 20b, 21b ... end face, 20c, 21c ... inner surface, 30, 40, 50, 60 ... sealing material, 32 ... inner part, 34 ... outer part, 36 ... adhesive, 38 ... additional part, 104 ... high temperature heater (heating) Means), 102 ... Low temperature heater (heating means), 112 ... Heat conduction member (heating means), 114 ... Heat conduction member (heating means), 100, 150 ... Heat press.

Claims (15)

互いに対向する一対の板状の集電体と、
第一電極、第二電極及びこれらの電極間に設けられた電解質を有し、前記第一電極が一方の前記集電体と接し前記第二電極が他方の前記集電体と接するように前記集電体間に挟まれた発電要素と、
一方の前記集電体の周縁部と他方の前記集電体の周縁部との隙間を塞いで前記発電要素を前記集電体間に密封するための封口材と、を備え、
前記封口材は、
前記発電要素を取り囲むと共に一方の前記集電体の周縁部と他方の前記集電体の周縁部とにそれぞれ熱融着された熱可塑性高分子製の内側部と、
前記内側部を外側から取り囲むと共に一方の前記集電体の周縁部と他方の前記集電体の周縁部とにそれぞれ熱融着された液晶性高分子製の外側部と、を有し、
前記熱可塑性高分子は前記液晶性高分子よりも溶融温度が低い電気化学デバイス。
A pair of plate-like current collectors facing each other;
A first electrode, a second electrode, and an electrolyte provided between the electrodes, wherein the first electrode is in contact with one of the current collectors and the second electrode is in contact with the other current collector. A power generation element sandwiched between current collectors;
A sealing material for closing a gap between a peripheral portion of one of the current collectors and a peripheral portion of the other current collector to seal the power generating element between the current collectors,
The sealing material is
An inner portion made of a thermoplastic polymer that surrounds the power generation element and is thermally fused to the peripheral edge of one of the current collectors and the peripheral edge of the other current collector;
An outer part made of a liquid crystalline polymer that surrounds the inner part from the outside and is thermally fused to the peripheral part of one of the current collectors and the peripheral part of the other current collector,
The thermoplastic polymer is an electrochemical device having a melting temperature lower than that of the liquid crystalline polymer.
前記液晶性高分子の溶融温度は180〜350℃である請求項1の電気化学デバイス。   The electrochemical device according to claim 1, wherein the melting temperature of the liquid crystalline polymer is 180 to 350 ° C. 前記液晶性高分子の水蒸気透過率は1g/(m・24hr・100μm)以下であり、前記液晶性高分子の酸素透過率は10mL/(m・24hr・100μm)である請求項1又は2の電気化学デバイス。 The water vapor permeability of the liquid crystalline polymer is 1 g / (m 2 · 24 hr · 100 µm) or less, and the oxygen permeability of the liquid crystalline polymer is 10 mL / (m 2 · 24 hr · 100 µm). 2 electrochemical devices. 前記液晶性高分子は液晶ポリエステルを含む請求項1〜3の何れか一項に記載の電気化学デバイス。   The electrochemical device according to claim 1, wherein the liquid crystalline polymer includes liquid crystal polyester. 前記熱可塑性高分子の溶融温度は90〜200℃である請求項1〜4の何れか一項に記載の電気化学デバイス。   The electrochemical device according to any one of claims 1 to 4, wherein a melting temperature of the thermoplastic polymer is 90 to 200 ° C. 前記内側部及び外側部は0.65N/mm以上の接着強度で前記集電体の周縁部と接着している請求項1〜5の何れか一項に記載の電気化学デバイス。   The electrochemical device according to any one of claims 1 to 5, wherein the inner portion and the outer portion are bonded to a peripheral portion of the current collector with an adhesive strength of 0.65 N / mm or more. 前記熱可塑性高分子はポリオレフィンを含む請求項1〜6の何れか一項に記載の電気化学デバイス。   The electrochemical device according to claim 1, wherein the thermoplastic polymer includes a polyolefin. 前記内側部と前記外側部とが、接着剤により接着されている請求項1〜7の何れか一項に記載の電気化学デバイス。   The electrochemical device according to any one of claims 1 to 7, wherein the inner portion and the outer portion are bonded with an adhesive. 前記内側部と前記外側部とが、互いに熱融着されている請求項1〜7の何れか一項に記載の電気化学デバイス。   The electrochemical device according to any one of claims 1 to 7, wherein the inner portion and the outer portion are thermally fused to each other. 前記内側部は、溶融温度の互いに異なる複数のサブ層を前記発電要素に近づく方向に複数積層した積層体であり、前記積層体において前記各サブ層の溶融温度は前記発電要素に近づくにつれて低くなるようにされている請求項1〜9の何れか一項に記載の電気化学デバイス。   The inner portion is a laminate in which a plurality of sub-layers having different melting temperatures are laminated in a direction approaching the power generation element, and the melting temperature of each sub-layer in the laminate decreases as the power generation element is approached. The electrochemical device according to any one of claims 1 to 9, which is configured as described above. 前記外側部は、さらに前記集電体の端面に熱融着されて前記集電体の端面を取り囲む請求項1〜10の何れか一項に記載の電気化学デバイス。   The electrochemical device according to any one of claims 1 to 10, wherein the outer portion is further thermally fused to an end surface of the current collector to surround the end surface of the current collector. 第一電極、第二電極及びこれらの電極間に設けられた電解質を有する発電要素と、一対の板状の集電体と、熱可塑性高分子製であり前記発電要素を取り囲むことが可能な内側部及び液晶性高分子製であり前記内側部を取り囲むことが可能な外側部を有し前記熱可塑性高分子の溶融温度は前記液晶性高分子の溶融温度よりも低い封口材と、を用意する用意工程と、
一方の前記集電体が前記発電要素の前記第一電極と接し、他方の前記集電体が前記発電要素の前記第二電極と接し、前記内側部が前記発電要素を取り囲み前記外側部が前記内側部を取り囲むような配置で、前記一対の板状の集電体の間に前記発電要素及び前記封口材を挟む配置工程と、
前記封口材の内側部を第一の温度に加熱して前記内側部を前記集電体と熱融着させ、前記封口材の外側部を前記第一の温度よりも高い第二の温度に加熱して前記外側部を前記集電体と熱融着させる加熱工程と、を備える電気化学デバイスの製造方法。
A power generation element having a first electrode, a second electrode and an electrolyte provided between these electrodes, a pair of plate-like current collectors, and an inner side made of a thermoplastic polymer and capable of surrounding the power generation element And a sealing material made of a liquid crystalline polymer and having an outer portion that can surround the inner portion, and a melting temperature of the thermoplastic polymer is lower than a melting temperature of the liquid crystalline polymer. A preparation process;
One current collector is in contact with the first electrode of the power generation element, the other current collector is in contact with the second electrode of the power generation element, the inner portion surrounds the power generation element, and the outer portion is the An arrangement step of sandwiching the power generation element and the sealing material between the pair of plate-like current collectors in an arrangement so as to surround the inner part,
The inner part of the sealing material is heated to a first temperature to thermally fuse the inner part with the current collector, and the outer part of the sealing material is heated to a second temperature higher than the first temperature. And a heating step of heat-sealing the outer portion with the current collector.
前記加熱工程において加熱手段を前記集電体に接触させることにより前記封口材を加熱し、前記加熱手段のうち前記集電体を挟んで前記外側部と対向する部分の温度を、前記加熱手段のうち前記集電体を挟んで前記内側部と対向する部分の温度よりも高くする請求項12に記載の電気化学デバイスの製造方法。   In the heating step, the sealing member is heated by bringing the heating means into contact with the current collector, and the temperature of the portion of the heating means that faces the outer portion across the current collector is determined. The method for producing an electrochemical device according to claim 12, wherein the temperature is set higher than a temperature of a portion facing the inner portion across the current collector. 前記加熱工程において加熱手段を前記集電体に接触させることにより前記封口材を加熱し、前記加熱手段を前記集電体のうち前記封口材と対向する部分に接触させ、前記加熱手段を前記集電体のうち前記発電要素と対向する部分に接触させない請求項12又は13記載の電気化学デバイスの製造方法。   In the heating step, the sealing means is heated by bringing a heating means into contact with the current collector, the heating means is brought into contact with a portion of the current collector facing the sealing material, and the heating means is brought into contact with the current collector. The method for producing an electrochemical device according to claim 12 or 13, wherein the electric body is not brought into contact with a portion facing the power generation element. 前記加熱工程において、前記集電体のうち前記発電要素と対向する部分を冷却する請求項12〜14の何れか一項に記載の電気化学デバイスの製造方法。   The method for producing an electrochemical device according to any one of claims 12 to 14, wherein, in the heating step, a portion of the current collector facing the power generation element is cooled.
JP2004013664A 2004-01-21 2004-01-21 Electrochemical device and its manufacturing method Withdrawn JP2005209819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004013664A JP2005209819A (en) 2004-01-21 2004-01-21 Electrochemical device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004013664A JP2005209819A (en) 2004-01-21 2004-01-21 Electrochemical device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005209819A true JP2005209819A (en) 2005-08-04

Family

ID=34899658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004013664A Withdrawn JP2005209819A (en) 2004-01-21 2004-01-21 Electrochemical device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005209819A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007257859A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Bipolar battery
WO2012139107A1 (en) * 2011-04-08 2012-10-11 Empire Technology Development Llc Liquid battery formed from encapsulated components
US8722228B2 (en) 2011-04-08 2014-05-13 Empire Technology Development Llc Moisture activated battery
US8735001B2 (en) 2011-04-08 2014-05-27 Empire Technology Development Llc Gel formed battery
US8828581B2 (en) 2011-04-08 2014-09-09 Empire Technology Development Llc Liquid battery formed from encapsulated components
JP2016042459A (en) * 2014-08-18 2016-03-31 昭和電工パッケージング株式会社 Thin power storage device and method for manufacturing the same
CN109560241A (en) * 2017-09-25 2019-04-02 松下知识产权经营株式会社 Battery
JP2019521498A (en) * 2016-07-19 2019-07-25 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Battery cell comprising housing parts closely adhered to each other by a three-layer adhesive composite, and method and apparatus for its manufacture
KR20200133180A (en) * 2019-05-15 2020-11-26 프로로지움 테크놀로지 코., 엘티디. Package structure for chemical system
WO2023120171A1 (en) * 2021-12-21 2023-06-29 株式会社豊田自動織機 Power storage device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007257859A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Bipolar battery
WO2012139107A1 (en) * 2011-04-08 2012-10-11 Empire Technology Development Llc Liquid battery formed from encapsulated components
US8722228B2 (en) 2011-04-08 2014-05-13 Empire Technology Development Llc Moisture activated battery
US8735001B2 (en) 2011-04-08 2014-05-27 Empire Technology Development Llc Gel formed battery
US8744593B2 (en) 2011-04-08 2014-06-03 Empire Technology Development Llc Gel formed battery
US8828581B2 (en) 2011-04-08 2014-09-09 Empire Technology Development Llc Liquid battery formed from encapsulated components
JP2016042459A (en) * 2014-08-18 2016-03-31 昭和電工パッケージング株式会社 Thin power storage device and method for manufacturing the same
JP2019521498A (en) * 2016-07-19 2019-07-25 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Battery cell comprising housing parts closely adhered to each other by a three-layer adhesive composite, and method and apparatus for its manufacture
US10923692B2 (en) 2016-07-19 2021-02-16 Robert Bosch Gmbh Battery cell with housing components which are adhesively bonded to one another in a sealed manner by a three-layer adhesive composite, and method and apparatus for manufacturing said battery cell
CN109560241A (en) * 2017-09-25 2019-04-02 松下知识产权经营株式会社 Battery
KR20200133180A (en) * 2019-05-15 2020-11-26 프로로지움 테크놀로지 코., 엘티디. Package structure for chemical system
KR102262589B1 (en) * 2019-05-15 2021-06-10 프로로지움 테크놀로지 코., 엘티디. Package structure for chemical system
KR20210069024A (en) * 2019-05-15 2021-06-10 프로로지움 테크놀로지 코., 엘티디. Package structure for chemical system
KR102582625B1 (en) * 2019-05-15 2023-09-22 프로로지움 테크놀로지 코., 엘티디. Package structure for chemical system
WO2023120171A1 (en) * 2021-12-21 2023-06-29 株式会社豊田自動織機 Power storage device

Similar Documents

Publication Publication Date Title
US7623339B2 (en) Electrochemical device
JP6006104B2 (en) Tab lead manufacturing method
US7256099B2 (en) Method of producing electrochemical device, and the electrochemical device
WO2000026976A1 (en) Non-aqueous electrolytic cell and production method therefor
US7704635B2 (en) Electrochemical device and method of manufacturing electrochemical device
JP2001351831A (en) Electric double-layer capacitor and battery
JP2005277064A (en) Electrode and method for manufacturing the same and method for manufacturing electrochemical device and electrochemical device
JP2005209819A (en) Electrochemical device and its manufacturing method
WO2017158986A1 (en) Battery cell
JP4419568B2 (en) Electrochemical device and method for producing electrochemical device
US20050128684A1 (en) Electrode for electrochemical capacitor and method for manufacturing the same,electrochemical capacitor and method for manufacturing the same
JP4986241B2 (en) Electrochemical device and manufacturing method thereof
JP2004335889A (en) Electrochemical capacitor
JP4956777B2 (en) Bipolar battery, battery pack and vehicle equipped with these batteries
JP2005071658A (en) Flat electrochemical cell and its manufacturing method
JP2007287724A (en) Laminated electrochemical device
WO2000022635A9 (en) Ultracapacitor separator
JP2004253562A (en) Electrochemical capacitor
JP2010278455A (en) Electrochemical device
JP4595465B2 (en) Electrochemical devices
JP2004349156A (en) Secondary battery and stacked secondary battery
JP2019057473A (en) Electrochemical cell
JP2006303269A (en) Electric double layer capacitor and electric double layer capacitor module
JP2002216854A (en) Manufacturing method of bipolar secondary cell, and bipolar secondary cell
JP2005216659A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070403