JP2005203560A - Radiator - Google Patents

Radiator Download PDF

Info

Publication number
JP2005203560A
JP2005203560A JP2004008237A JP2004008237A JP2005203560A JP 2005203560 A JP2005203560 A JP 2005203560A JP 2004008237 A JP2004008237 A JP 2004008237A JP 2004008237 A JP2004008237 A JP 2004008237A JP 2005203560 A JP2005203560 A JP 2005203560A
Authority
JP
Japan
Prior art keywords
receiving body
heat
heat receiving
radiator
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004008237A
Other languages
Japanese (ja)
Inventor
Naohiro Konosu
直広 鴻巣
Masato Takahashi
正人 高橋
Atsushi Yanase
淳 梁瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2004008237A priority Critical patent/JP2005203560A/en
Publication of JP2005203560A publication Critical patent/JP2005203560A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Semiconductor Lasers (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat exchange efficiency without increasing manufacturing costs as much as possible. <P>SOLUTION: Flat heat receiving bodies 1-1, 2-1, 3-1 for receiving heat are laminated on at least upper, middle, and lower layers for joining, an LD array 17 for generating heat is joined onto the upper surface of the upper heat generating body 3-1 in them, a radiating fin 10 for radiating heat in the LD array 17 is formed at the junction section with the middle heat receiving body 2-1 at the lower portion of the junction surface, a channel shown by an arrow for cooling heat from the radiating fin 10 by allowing cooling water to flow is formed, and further one of the channels penetrates a communicating hole 11 in the middle heat receiving body 2-1 and is connected to a water-supplying port 5 of the lower heat receiving body 1-1, and the other is connected to a drain port 16. In this configuration, one to a plurality of weirs are provided in the channel shown by the arrow (a weir 40 and partitions 100a, 100b) to connect to the radiating fin 10 for regulation so that cooling water flowing in a channel flows while meandering in upper and lower directions. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高出力LD(レーザーダイオード)アレイ等の高熱を発生する装置に適用される水冷式の放熱器に関する。   The present invention relates to a water-cooled radiator that is applied to a device that generates high heat, such as a high-power LD (laser diode) array.

この種の従来技術として、例えば図8及び図9に示す高出力LDアレイ用の放熱器がある。ここで、図8は、放熱器4全体の縦断面図、図9の(a)は図8に示すA1−A2から見た上受熱体3の下面図、(b)は図8に示すB1−B2から見た平面図、(c)は図8に示すC1−C2から見た平面図である。
高出力LDアレイ17は、発熱密度が数十〜数百W/cm程度と大きいため、LDアレイ17の温度上昇によりレーザー出力、効率、発信波長、素子寿命に大きな影響を与える。従って、LDアレイ17で発生した熱をいかに除去するかが非常に重要な課題になる。
As this type of prior art, for example, there is a radiator for a high-power LD array shown in FIGS. 8 is a longitudinal sectional view of the entire radiator 4, FIG. 9A is a bottom view of the upper heat receiving body 3 viewed from A1-A2 shown in FIG. 8, and FIG. 8B is B1 shown in FIG. The top view seen from -B2, (c) is the top view seen from C1-C2 shown in FIG.
Since the high-power LD array 17 has a large heat generation density of about several tens to several hundreds W / cm 2 , the laser output, efficiency, transmission wavelength, and element lifetime are greatly affected by the temperature rise of the LD array 17. Therefore, how to remove the heat generated in the LD array 17 is a very important issue.

また、このLDアレイ17の大きさが長さ10mm×幅1〜1.5mm程度と上受熱体3との接触面積が非常に小さく、空冷式では温度上昇が押えきれないため、この種の放熱器4では内部に水路を設け水冷式の放熱を行っている。
この放熱器4の水路は、図9の(a)に示す上面水路、(b)に示す中面水路、(c)に示す下面水路が設けられた3層の構造となっている。
In addition, since the LD array 17 has a length of about 10 mm × width of about 1 to 1.5 mm and the contact area with the upper heat receiving member 3 is extremely small, the temperature rise cannot be suppressed by the air cooling type. In the vessel 4, a water passage is provided inside to perform water-cooled heat dissipation.
The water channel of the radiator 4 has a three-layer structure provided with an upper surface water channel shown in FIG. 9A, a middle water channel shown in FIG. 9B, and a lower water channel shown in FIG.

このような構造の放熱器の動作を、図8及び図9を参照して説明する。
受熱体1の給水口5に導かれた冷却水は、受熱体2の円形連通穴6を通り、上受熱体3の給水口7まで到達する。ここで冷却水は、概略扇形の上面水路8によって拡がり、多数の放熱フィン10に到達する。この際、給水側の圧力損失を低減させるために上座グリ部30を設けることによって、続路断面積を拡大させている。上座グリ部30は、放熱フィン10の手前まで形成され、放熱フィン10に冷却水が流入する際、流速を向上させ熱交換効率を高める役割を果たしている。
The operation of the radiator having such a structure will be described with reference to FIGS.
The cooling water guided to the water supply port 5 of the heat receiving body 1 passes through the circular communication hole 6 of the heat receiving body 2 and reaches the water supply port 7 of the upper heat receiving body 3. Here, the cooling water spreads by the generally fan-shaped upper surface water channel 8 and reaches a large number of the radiation fins 10. Under the present circumstances, in order to reduce the pressure loss by the side of water supply, the cross-sectional area is expanded by providing the upper countersunk part 30. FIG. The upper countersunk portion 30 is formed up to the front of the heat radiating fin 10 and plays a role of improving the flow rate and increasing the heat exchange efficiency when cooling water flows into the heat radiating fin 10.

この放熱フィン10の上面の端部にはLDアレイ17が接合されている。放熱フィン10まで到達した冷却水は、当該放熱フィン10で熱交換され中受熱体2の円形連通穴11を通り下受熱体1に設けられた放熱フィン13の間を通り、下面水路14に到達する。
ここで、冷却水は流路絞り部15により2つに分流し、排水口16で再び合流し、放熱器4外に排出される。この際、排水口の圧力損失を低減させる為、中受熱体2に貫通口31を設けることによって流路断面積を拡大させている。
An LD array 17 is joined to the end of the upper surface of the heat radiating fin 10. The cooling water that has reached the heat radiating fin 10 is heat-exchanged by the heat radiating fin 10, passes through the circular communication hole 11 of the intermediate heat receiving body 2, passes between the heat radiating fins 13 provided in the lower heat receiving body 1, and reaches the lower surface water channel 14. To do.
Here, the cooling water is divided into two by the flow restrictor 15, merged again at the drain port 16, and discharged outside the radiator 4. At this time, in order to reduce the pressure loss of the drain port, the flow passage cross-sectional area is enlarged by providing the through-hole 31 in the intermediate heat receiving body 2.

なお、受熱体1、2、3は熱伝導が良好な金属材料を用いて製作され、各受熱体1〜3は半田等で気密かつ熱伝導良好な状態に接合されている。
この種の従来の放熱器として、例えば特許文献1及び特許文献2に記載のものがある。
WO00/11922号公報 特開平8−139479号公報
The heat receiving bodies 1, 2, and 3 are manufactured using a metal material having good heat conduction, and each of the heat receiving bodies 1 to 3 is joined with solder or the like in an airtight and good heat conduction state.
Examples of this type of conventional radiator include those described in Patent Document 1 and Patent Document 2, for example.
WO00 / 11922 Japanese Patent Laid-Open No. 8-139479

ところで、従来の放熱器においては、放熱フィン10の構造を、LDアレイ17で発生した熱を上受熱体3で受熱し、板厚方向に熱伝導させ、LDアレイ17の数倍の長さに設計した放熱フィン10に導かせるようにしている。また、上受熱体3に設けられた放熱フィン10だけでは、放熱量が充分でないため、中受熱体2の隔壁11aに熱伝導させ、更に下受熱体1に設けた放熱フィン13に熱伝導させることによって、放熱量を増加させる構造としている。   By the way, in the conventional radiator, the structure of the radiation fin 10 is such that the heat generated in the LD array 17 is received by the upper heat receiving body 3 and is conducted in the thickness direction, which is several times as long as the LD array 17. It is made to guide to the designed heat radiating fin 10. Moreover, since the heat radiation amount is not sufficient only by the heat radiation fins 10 provided on the upper heat receiving body 3, heat conduction is performed to the partition wall 11a of the middle heat receiving body 2, and further heat conduction is performed to the heat radiation fins 13 provided on the lower heat receiving body 1. Thus, the heat dissipation amount is increased.

この放熱フィン10の構造では、給水口5の円形形状を矩形の平面状に拡大し、LDアレイ17で発生した熱を幅方向前面で熱交換し、熱交換された冷却水が、円形連通穴11を通り下層の水路へ導かれ、排水口16より排出されるので、LDアレイ17の熱を効率良く除去することが可能である。
また、LDアレイ17の更なる出力増加に伴う温度上昇を抑えるためには、冷却水との熱交換効率を更に高める必要がある。製作コストを無視すれば、熱交換効率をより高くすることは可能である。
In the structure of the heat radiating fin 10, the circular shape of the water supply port 5 is enlarged to a rectangular plane, the heat generated in the LD array 17 is heat-exchanged on the front surface in the width direction, and the heat-exchanged cooling water is supplied to the circular communication hole. 11 is led to the lower channel and discharged from the drain port 16, so that the heat of the LD array 17 can be efficiently removed.
Moreover, in order to suppress the temperature rise accompanying the further increase in the output of the LD array 17, it is necessary to further improve the heat exchange efficiency with the cooling water. If production costs are ignored, it is possible to increase the heat exchange efficiency.

しかし、実際には低コスト化が要求されるので、現状の構造で熱交換効率を高める必要があるが、現状の構造では、放熱フィン10と、この放熱フィン10を流れる冷却水との関係が固定されているため、これ以上の冷却性能を求めることは不可能であった。
本発明は、このような課題に鑑みてなされたものであり、製作コストを極力上げないで熱交換効率の向上を図るように製造することができる放熱器を提供することを目的としている。
However, since cost reduction is actually required, it is necessary to increase the heat exchange efficiency with the current structure, but in the current structure, the relationship between the radiating fin 10 and the cooling water flowing through the radiating fin 10 is Since it is fixed, it was impossible to obtain further cooling performance.
This invention is made | formed in view of such a subject, and it aims at providing the heat radiator which can be manufactured so that improvement in heat exchange efficiency may be aimed at, without raising manufacturing cost as much as possible.

上記目的を達成するために、本発明の請求項1による放熱器は、熱を受け取る板状の受熱体が少なくとも上中下の3層に積層されて接合され、このうち上受熱体の上面に熱を発生する発熱体が接合され、この接合面の下方の中受熱体との接合部分に前記発熱体の熱を放熱するための放熱フィンが形成されると共にその放熱フィンからの熱を冷却水を流して冷却するための流路が形成され、更にその流路が中受熱体を貫通して下受熱体の給水口及び排水口に接続されてなる放熱器において、前記上受熱体と前記中受熱体との接合部分に形成された前記放熱フィンに伝導された熱を放熱するための流路に、その放熱フィンに接合され、且つ流路を流れる冷却水が上下方向に蛇行しながら流れるように規制する1乃至は複数の堰部を設けたことを特徴としている。   In order to achieve the above object, a radiator according to claim 1 of the present invention includes a plate-shaped heat receiving body that receives heat and is laminated and bonded to at least three layers of upper, middle, and lower layers, and of these, the upper surface of the upper heat receiving body. A heat generating body for generating heat is joined, and a heat radiation fin for radiating heat of the heat generating body is formed at a joint portion with the intermediate heat receiving body below the joint surface, and heat from the heat radiation fin is cooled with water. In a radiator in which a flow path for cooling by cooling is formed, and the flow path passes through the middle heat receiving body and is connected to a water supply port and a drain port of the lower heat receiving body, the upper heat receiving body and the middle heat receiving body The cooling water which is joined to the heat radiation fin and flows through the flow path flows in a meandering manner in the flow path for radiating the heat conducted to the heat radiation fin formed at the joint portion with the heat receiving body. One or more weirs that are restricted to It is set to.

この構成によれば、上受熱体と中受熱体と接合部分を冷却水が上下に蛇行するようにしたので、冷却水の流れが上向きに流れた時、発熱体の直下面に対して冷却水が垂直に当たり、また上下の蛇行によって乱流が生じるので、熱交換性能を著しく向上させることが可能となる。
また、本発明の請求項2による放熱器は、請求項1において、前記給水口及び排水口が設けられる部分の流路の面積を広くしたことを特徴としている。
この構成によれば、給水口及び排水口の部分の流路の面積を広くすることによって流体抵抗を低減させているので、上受熱体と中受熱体と接合部分を冷却水が上下に蛇行することにより流体抵抗が若干上昇しても、流路トータルの圧力損失がさほど大きくなることは無い。
According to this configuration, since the cooling water meanders up and down at the joint portion between the upper heat receiving body and the middle heat receiving body, when the cooling water flows upward, the cooling water , And the turbulent flow is generated by the meandering up and down, so that the heat exchange performance can be remarkably improved.
A radiator according to claim 2 of the present invention is characterized in that, in claim 1, the area of the flow path in the portion where the water supply port and the drain port are provided is widened.
According to this configuration, since the fluid resistance is reduced by widening the area of the flow path of the water supply port and the drain port, the cooling water meanders up and down the upper heat receiving member, the middle heat receiving member, and the joint portion. Therefore, even if the fluid resistance slightly increases, the total pressure loss of the flow path does not increase so much.

また、本発明の請求項3による放熱器は、請求項1または2において、前記堰部は、前記上受熱体に櫛歯状の放熱フィンを形成すると共に前記流路の上側部分となる細長い複数の溝に、冷却水を規制するように堰を1乃至は複数設け、前記中受熱体に、前記堰に接合する隔壁が形成されるように当該中受熱体の厚さ方向に連通穴を形成し、この連通穴を、前記隔壁を貫通して連通させる凹部を前記下受熱体との対向面に設け、前記凹部が塞がれて前記中受熱体に流路が形成されるように当該中受熱体と前記下受熱体との間に薄板状受熱体を更に接合して形成されることを特徴としている。   According to a third aspect of the present invention, there is provided a radiator according to the first or second aspect, wherein the weir portion is formed with comb-shaped heat radiation fins in the upper heat receiving body and is an elongated plurality of portions serving as an upper portion of the flow path. One or a plurality of weirs are provided in the groove to regulate cooling water, and a communication hole is formed in the thickness direction of the intermediate heat receiving body so that a partition wall is formed on the intermediate heat receiving body. The communication hole is provided with a concave portion that penetrates the partition wall and communicates with the lower heat receiving body so that the concave portion is closed and a flow path is formed in the intermediate heat receiving body. A thin plate-shaped heat receiving body is further joined between the heat receiving body and the lower heat receiving body.

この構成によれば、上受熱体の放熱フィンに接合された堰に中受熱体部分の隔壁が接合されているので、発熱体で発生した熱を上受熱体から中受熱体に熱伝導させることが容易となる。また、中受熱体の連通穴と、凹部を塞いで形成された連通穴同士を接続する連通流路とにより放熱面積が増大されているので、それらの連通穴及び連通流路に冷却水を流すことにより熱交換量を増大させることができる。   According to this configuration, since the partition wall of the middle heat receiving body portion is joined to the weir joined to the heat radiating fin of the upper heat receiving body, heat generated in the heating element is conducted from the upper heat receiving body to the middle heat receiving body. Becomes easy. Further, since the heat radiation area is increased by the communication holes of the intermediate heat receiving body and the communication flow path connecting the communication holes formed by closing the recesses, the cooling water flows through the communication holes and the communication flow path. As a result, the amount of heat exchange can be increased.

また、本発明の請求項4による放熱器は、請求項3において、前記薄板状受熱体の周縁部に、所定間隔で上下面に突き抜けたスリット及び穴の少なくとも1つを形成したことを特徴としている。
この構成によれば、薄板状受熱体を含む合計4層の接合時に、各層間にロー材シートを挟まなくても、下受熱体と薄板状受熱体との間はロー材シートを省略することができる。何故ならば、接合時のロー材シート溶融時に、中受熱体と薄板状受熱体との間に介装されたロー材シートが毛細管現象によって、各スリット又は穴へ流れ込み、更に薄板状受熱体と、この下の下受熱体との間に入り込んで双方を接合する。この際、同時に中受熱体と薄板状受熱体とも接合される。
A radiator according to claim 4 of the present invention is characterized in that, in claim 3, at least one of a slit and a hole penetrating the upper and lower surfaces at a predetermined interval is formed in a peripheral portion of the thin plate-shaped heat receiving body. Yes.
According to this configuration, when joining a total of four layers including the thin plate-shaped heat receiving body, the brazing material sheet is omitted between the lower heat receiving body and the thin plate-shaped heat receiving body without sandwiching the brazing material sheet between the respective layers. Can do. This is because when the brazing material sheet is melted at the time of joining, the brazing material sheet interposed between the intermediate heat receiving member and the thin plate heat receiving member flows into each slit or hole by capillary action, and further, the thin plate heat receiving member and Then, it enters between the lower heat receiving body below and joins both. At this time, the intermediate heat receiving member and the thin plate heat receiving member are joined together.

以上説明したように本発明の放熱器によれば、製作コストを極力上げないで熱交換効率の向上を図るように製造することができるという効果がある。   As described above, according to the radiator of the present invention, there is an effect that it can be manufactured so as to improve the heat exchange efficiency without increasing the manufacturing cost as much as possible.

以下、本発明の実施の形態を、図面を参照して説明する。但し、本明細書中の全図において相互に対応する部分には同一符号を付し、重複部分においては後述での説明を適時省略する。
(実施の形態)
図1は、本発明の実施の形態に係る放熱器4−1の全体の縦断面図である。
図2は、図1に示す放熱器4−1の上受熱体3−1の構造を示し、(a)は図1と同様な上受熱体3−1の断面図、(b)は上受熱体3−1の下面図である。
図3は、図1に示す放熱器4−1の中受熱体2−1の構造を示し、(a)は中受熱体2−1の平面図、(b)は中受熱体2−1を(a)のD1−D2線で切断した際の断面図、(c)は中受熱体2−1の下面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, parts corresponding to each other in all the drawings in this specification are denoted by the same reference numerals, and description of the overlapping parts will be omitted as appropriate.
(Embodiment)
FIG. 1 is an overall longitudinal sectional view of a radiator 4-1 according to an embodiment of the present invention.
2 shows the structure of the upper heat receiving body 3-1 of the radiator 4-1 shown in FIG. 1, (a) is a sectional view of the upper heat receiving body 3-1 similar to FIG. 1, and (b) is the upper heat receiving body 3-1. It is a bottom view of the body 3-1.
3 shows the structure of the intermediate heat receiving body 2-1 shown in FIG. 1, (a) is a plan view of the intermediate heat receiving body 2-1, and (b) shows the intermediate heat receiving body 2-1. Sectional drawing at the time of cut | disconnecting by the D1-D2 line of (a), (c) is a bottom view of the intermediate | middle heat receiving body 2-1.

図4は、図1に示す放熱器4−1の薄板状受熱体104の構造を示し、(a)は薄板状受熱体104の平面図、(b)は薄板状受熱体104を(a)のE1−E2線で切断した際の断面図である。
図5は、図1に示す放熱器4−1の下受熱体1−1の構造を示し、(a)は下受熱体1−1の平面図、(b)は下受熱体1−1を(a)のF1−F2線で切断した際の断面図である。
4 shows the structure of the thin plate-shaped heat receiving body 104 of the radiator 4-1 shown in FIG. 1, (a) is a plan view of the thin plate-shaped heat receiving body 104, and (b) shows the thin plate-shaped heat receiving body 104 (a). It is sectional drawing at the time of cut | disconnecting by E1-E2 line | wire.
5 shows the structure of the lower heat receiving body 1-1 of the radiator 4-1 shown in FIG. 1, (a) is a plan view of the lower heat receiving body 1-1, and (b) shows the lower heat receiving body 1-1. It is sectional drawing at the time of cut | disconnecting by the F1-F2 line of (a).

本実施の形態の放熱器4−1の特徴は、まず、図1及び図2に示すように上受熱体3−1において、各放熱フィン10の間で且つLDアレイ17に極力近くなるように配置された流路部に冷却水の流れを規制する堰40を、流路に沿って所定間隔離して複数設けた。ここでは堰40を複数設けているが1つでもよい。また、複数の堰40を設けることによって堰40と堰40との間、並びに堰40と上受熱体3−1の周縁部との間に凹状流路108が形成される。   The feature of the radiator 4-1 of the present embodiment is that, as shown in FIGS. 1 and 2, first, in the upper heat receiving body 3-1, between the radiating fins 10 and as close as possible to the LD array 17. A plurality of weirs 40 that regulate the flow of the cooling water in the arranged flow path portions are provided at predetermined intervals along the flow path. Although a plurality of weirs 40 are provided here, one may be used. Further, by providing the plurality of weirs 40, the concave flow path 108 is formed between the weirs 40 and the weirs 40 and between the weir 40 and the peripheral edge of the upper heat receiving body 3-1.

また、図1及び図3に示すように中受熱体2−1において、上受熱体3−1の堰40に対向する部分に隔壁100aが形成されると共に、各凹状流路108の中央位置に隔壁100bが形成されるように円形連通穴101を設け、また、隔壁100aを挟んだ一対の円形連通穴101を流路として連通する連通流路102を設けた。
また、図1及び図4に示すように、中受熱体2−1と下受熱体1−1との間に、新たに薄板状受熱体104を設けた。この薄板状受熱体104は、中受熱体2−1の各々の円形連通穴11に対応する位置に円形連通穴11−1が設けられ、中受熱体2−1(図3参照)の座グリ部106に対応する位置に、これと同平面形状の連通穴105が設けられ、更に中受熱体2−1の貫通口113に対応する位置に、これと同平面形状の連通穴114が設けられて形成されている。
Further, as shown in FIGS. 1 and 3, in the middle heat receiving body 2-1, a partition wall 100 a is formed in a portion facing the weir 40 of the upper heat receiving body 3-1 and at the center position of each concave flow channel 108. A circular communication hole 101 is provided so that the partition wall 100b is formed, and a communication channel 102 is provided that communicates with the pair of circular communication holes 101 sandwiching the partition wall 100a as a channel.
Moreover, as shown in FIG.1 and FIG.4, the thin plate-shaped heat receiving body 104 was newly provided between the middle heat receiving body 2-1 and the lower heat receiving body 1-1. The thin plate-shaped heat receiving body 104 is provided with circular communication holes 11-1 at positions corresponding to the respective circular communication holes 11 of the intermediate heat receiving body 2-1, and the spot facing of the intermediate heat receiving body 2-1 (see FIG. 3). A communication hole 105 having the same planar shape as this is provided at a position corresponding to the portion 106, and a communication hole 114 having the same planar shape as this is provided at a position corresponding to the through-hole 113 of the intermediate heat receiving body 2-1. Is formed.

更に、図1及び図5に示すように、下受熱体1−1において、薄板状受熱体104(図4参照)の連通穴105に対応する位置に、給水口5を中心に扇形に広がり先端部分に放熱フィン10と上下で対向する放熱フィン13が形成された下面水路107を設けると共に、薄板状受熱体104の連通穴114に対応する位置に、排水口16を中心に扇形に広がる座グリ部115を設けた。
このような構造の下受熱体1−1、薄板状受熱体104、中受熱体2−1及び上受熱体3−1を、この順に積層して接合すると、図1に矢印in〜outまで連続して示すように、給水口5から排水口16まで繋がった冷却水の流路が形成される。
Further, as shown in FIGS. 1 and 5, in the lower heat receiving body 1-1, the front end spreads in a fan shape around the water supply port 5 at a position corresponding to the communication hole 105 of the thin plate heat receiving body 104 (see FIG. 4). The lower surface water channel 107 in which the heat radiating fins 13 are formed in the portion so as to be opposed to the heat radiating fins 10 at the top and bottom, and the counterbore that spreads in a fan shape around the drain port 16 at a position corresponding to the communication hole 114 of the thin plate heat receiving body 104 A portion 115 is provided.
When the lower heat receiving body 1-1, the thin plate-shaped heat receiving body 104, the middle heat receiving body 2-1 and the upper heat receiving body 3-1 having such a structure are stacked and joined in this order, they are continuously connected to the arrows in to out in FIG. As shown, a flow path of cooling water connected from the water supply port 5 to the drain port 16 is formed.

次に、このような構造の放熱器による放熱動作を説明する。
下受熱体1−1の給水口5に導かれた冷却水は、概略扇形の下面水路107により広がって放熱フィン13まで到達する。この際、給水側の圧力損失を低減させるために、薄板状受熱体104に連通穴105と中受熱体2−1の座グリ部106とにより流路面積を拡大させている。
下受熱体1−1の放熱フィン13まで導かれた冷却水は、薄板状受熱体104の連通穴11−1及び中受熱体2−1の連通穴11の順に上方向に流入して行く。この冷却水は、矢印で示すように、水平な凹状流路108と、この凹状流路108に対して垂直な連通穴101と、更に水平な連通流路102との順に流れる。即ち放熱フィン10が形成されている領域を上下方向に蛇行しながら流れる。
Next, the heat radiation operation by the heat radiator having such a structure will be described.
The cooling water led to the water supply port 5 of the lower heat receiving body 1-1 is spread by the generally fan-shaped lower surface water channel 107 and reaches the heat radiation fins 13. At this time, in order to reduce the pressure loss on the water supply side, the flow passage area is enlarged by the communication hole 105 and the spot facing portion 106 of the intermediate heat receiving body 2-1 in the thin plate heat receiving body 104.
The cooling water guided to the heat radiation fins 13 of the lower heat receiving body 1-1 flows upward in the order of the communication holes 11-1 of the thin plate heat receiving body 104 and the communication holes 11 of the middle heat receiving body 2-1. As indicated by the arrows, the cooling water flows in the order of a horizontal concave channel 108, a communication hole 101 perpendicular to the concave channel 108, and a further horizontal communication channel 102. That is, it flows while meandering in the vertical direction in the region where the radiation fins 10 are formed.

このように上下の蛇行を数回繰り返した後、上受熱体3−1の上面水路109に導かれる。この上面水路109は、上受熱体3−1の広い部分を水路としており、当該水路の略中央に設けられたランド111により分流された後、流路絞り部110を通って上受熱体3−1の排水口112で再び合流する。なお、ランド111は、本発明では次のように使用しないが、本放熱器4−1を数個程度積層して使用する場合に当該ランド111に連通穴を設け、冷却水をそれぞれの放熱器へと運ぶ為の機能を有する。   In this manner, the upper and lower meanders are repeated several times, and then guided to the upper surface water passage 109 of the upper heat receiving body 3-1. This upper surface water channel 109 has a wide portion of the upper heat receiving body 3-1 as a water channel, and after being diverted by a land 111 provided at substantially the center of the water channel, the upper heat receiving body 3-1 passes through the flow restrictor 110. 1 joins again at one drain port 112. The land 111 is not used in the present invention as follows. However, when several heat radiators 4-1 are stacked and used, a communication hole is provided in the land 111 and cooling water is supplied to each radiator. It has the function to carry to

次いで、上受熱体3−1の排水口112に導かれた冷却水は、中受熱体2−1の連通穴113及び薄板状受熱体104の連通穴114を下方向に通り、下受熱体1−1の排水口16から外部へ排水される。この際、排水側の圧力損失を低減させる為に、下受熱体1−1の座グリ部115及び薄板状受熱体104の連通穴114、中受熱体2−1の連通穴113により流路面積を拡大させている。   Next, the cooling water guided to the drain port 112 of the upper heat receiving body 3-1 passes downward through the communication hole 113 of the middle heat receiving body 2-1 and the communication hole 114 of the thin plate heat receiving body 104, and passes through the lower heat receiving body 1. -1 is drained from the drain 16 to the outside. At this time, in order to reduce the pressure loss on the drainage side, the flow passage area is determined by the spot facing portion 115 of the lower heat receiving body 1-1, the communication hole 114 of the thin plate heat receiving body 104, and the communication hole 113 of the intermediate heat receiving body 2-1. Is expanding.

このように流れる冷却水によって、次のような熱交換が行われる。LDアレイ17で発生した熱は、上受熱体3−1の内部に熱伝導良く拡散していく。この熱は、LDアレイ17搭載部の極近傍に設けられた堰40及び放熱フィン10の先端まで伝導する。この先端まで伝導してきた熱は、中受熱体2−1の隔壁100と周縁部116とに伝導する。このように中受熱体2−1が受けた熱は、当該中受熱体2−1の板厚方向に拡散していき、薄板状受熱体104を経て、下受熱体1−1の周縁部117及び放熱フィン13に伝導する。   The following heat exchange is performed by the cooling water flowing in this way. The heat generated in the LD array 17 diffuses with good thermal conductivity inside the upper heat receiving body 3-1. This heat is conducted to the tip of the weir 40 and the radiation fin 10 provided in the very vicinity of the LD array 17 mounting portion. The heat conducted to the tip is conducted to the partition wall 100 and the peripheral edge 116 of the intermediate heat receiving body 2-1. Thus, the heat received by the intermediate heat receiving body 2-1 diffuses in the thickness direction of the intermediate heat receiving body 2-1, passes through the thin plate-shaped heat receiving body 104, and the peripheral edge portion 117 of the lower heat receiving body 1-1. And conducted to the radiation fins 13.

このように上受熱体3−1の互いに薄い放熱フィン10及び堰40を、中受熱体2−1の薄い隔壁100に直接接合したので、下受熱体1−1から中受熱体2−1への熱の伝導が著しく向上している。ここで、中受熱体2−1には複数の連通穴101及び連通流路102が形成されることにより放熱面積が増大させてあるので、これらの連通穴101及び連通流路102を冷却水が流れることで熱交換量が増大することになる。   Thus, since the thin heat radiation fin 10 and the weir 40 of the upper heat receiving body 3-1 are directly joined to the thin partition wall 100 of the middle heat receiving body 2-1, the lower heat receiving body 1-1 to the middle heat receiving body 2-1. The heat conduction is significantly improved. Here, since the heat radiation area is increased by forming the plurality of communication holes 101 and the communication channels 102 in the intermediate heat receiving body 2-1, the cooling water passes through these communication holes 101 and the communication channels 102. By flowing, the amount of heat exchange increases.

また、冷却水が熱源であるLDアレイ17の直下面に垂直方向に当たり、また上下の蛇行によって乱流が生じるので、熱交換性能が著しく向上する。
また、このような放熱器4−1においては、各受熱体1−1,104,2−1,3−1が、従来技術に比べ3層から4層へと1層分増加することになるので、従来技術の接合方法を用いると、下から順に下受熱体1−1、ロー材シート、薄板状受熱体104、ロー材シート、中受熱体2−1、ロー材シート、上受熱体3−1というようにロー材シートが3枚必要になる。
Further, since the cooling water hits the right bottom surface of the LD array 17 as a heat source in the vertical direction, and turbulent flow is caused by the upper and lower meanders, the heat exchange performance is remarkably improved.
Moreover, in such a heat radiator 4-1, each heat receiving body 1-1,104,2-1,3-1 increases by one layer from 3 layers to 4 layers compared with a prior art. Therefore, when the joining method of the prior art is used, the lower heat receiving body 1-1, the brazing material sheet, the thin plate heat receiving body 104, the brazing material sheet, the middle heat receiving body 2-1, the brazing material sheet, and the upper heat receiving body 3 in order from the bottom. For example, three raw material sheets are required.

しかし、図6(a)及び(b)に示すように、中受熱体2−1の四角状の周縁部に、当該周縁に沿って所定間隔で上下面に突き抜けた複数のスリット118を形成し、図7に示すように、ロー材シート119を上受熱体3−1と中受熱体2−1との間、並びに中受熱体2−1と薄板状受熱体104との間に2枚配置して4層を接合するようにした。
このように接合する場合、下受熱体1、薄板状受熱体104、ロー材シート119、中受熱体2−1、ロー材シート119及び上受熱体3の順に積層し、治具にセットして接合する。この際の各ロー材シート119の溶融時に、下方のロー材シート119が毛細管現象によって、図7に矢印で示すように各スリット118へ流れ込み、更に薄板状受熱体104と下受熱体1との間に入り込んで双方を接合する。この際、同時に薄板状受熱体104と中受熱体2−1とも接合される。
However, as shown in FIGS. 6 (a) and 6 (b), a plurality of slits 118 that penetrates the upper and lower surfaces at predetermined intervals along the peripheral edge are formed in the rectangular peripheral edge of the intermediate heat receiving body 2-1. 7, two brazing material sheets 119 are disposed between the upper heat receiving body 3-1 and the intermediate heat receiving body 2-1, and between the intermediate heat receiving body 2-1 and the thin plate heat receiving body 104. Thus, four layers were joined.
When joining in this way, the lower heat receiving body 1, the thin plate-shaped heat receiving body 104, the brazing material sheet 119, the middle heat receiving body 2-1, the brazing material sheet 119, and the upper heat receiving body 3 are laminated in this order and set on a jig. Join. At the time of melting of each brazing material sheet 119, the lower brazing material sheet 119 flows into each slit 118 as shown by an arrow in FIG. 7 due to a capillary phenomenon, and further, between the thin plate-shaped heat receiving body 104 and the lower heat receiving body 1 Go in between and join both. At this time, the thin plate-shaped heat receiving body 104 and the intermediate heat receiving body 2-1 are also joined at the same time.

つまり、このように薄板状受熱体104にスリット118を形成することによって、2枚のロー材シート119で4層の接合が可能となるので、従来の3層と同様2枚のロー材シート119で済む。なお、スリット118の代わりに貫通穴を形成しても良い。
以上説明したように本実施の形態の放熱器4−1によれば、LDアレイ17で発生した熱を上受熱体3−1から中受熱体2−1に熱伝導させることが容易となり、且つ中受熱体2−1の連通穴101及び連通流路102により放熱面積を増大させ、それらの連通穴101及び連通流路102に冷却水を流すことにより熱交換量を増大させることができる。
That is, by forming the slit 118 in the thin plate-shaped heat receiving body 104 in this manner, it is possible to join four layers with the two brazing material sheets 119, and thus two brazing material sheets 119 as in the conventional three layers. Just do it. A through hole may be formed instead of the slit 118.
As described above, according to the radiator 4-1 of the present embodiment, it is easy to conduct heat generated in the LD array 17 from the upper heat receiving body 3-1 to the middle heat receiving body 2-1, and The amount of heat exchange can be increased by increasing the heat radiation area by the communication hole 101 and the communication channel 102 of the intermediate heat receiving body 2-1 and flowing cooling water through the communication hole 101 and the communication channel 102.

また、中受熱体2−1の内部を冷却水が上下に蛇行するようにしたので、冷却水の流れが上向きに流れた時、LDアレイ17の直下面に対して冷却水が垂直に当たり、また上下の蛇行によって乱流が生じるので、熱交換性能を著しく向上させることが可能となる。
また、中受熱体2−1の連通穴101及び連通流路102を流れる時の流体抵抗が若干上昇するが、給水口5側と排水口16側の流路面積を大きくして流体抵抗を低減させているので、トータルの圧力損失がさほど大きくなることは無い。更に、堰40や凹状流路108は、エッチングや塑性加工などで容易に形成することができるので、製造コストは殆ど変わらない。
In addition, since the cooling water meanders up and down inside the intermediate heat receiving body 2-1, when the cooling water flows upward, the cooling water hits the direct lower surface of the LD array 17 and Since the turbulent flow is generated by the upper and lower meanders, the heat exchange performance can be remarkably improved.
In addition, the fluid resistance when flowing through the communication hole 101 and the communication channel 102 of the intermediate heat receiving body 2-1 slightly increases, but the fluid resistance is reduced by increasing the channel area on the water supply port 5 side and the drain port 16 side. Therefore, the total pressure loss does not increase so much. Furthermore, since the weir 40 and the concave channel 108 can be easily formed by etching, plastic working, etc., the manufacturing cost is hardly changed.

また、従来技術に比べ3層から4層へと1層分増加することになるが、薄板状受熱体104にスリット118を設けることによって、従来技術の3層接合時と同数のロー材シート119で済むのでコストアップを抑えることができる。また、薄板状受熱体104もプレス等で容易に成形可能なので、大きなコストアップとはならない。
従って、これらのことから本放熱器4−1は、製作コストを極力上げないで熱交換効率の向上を図るように製造することができる。
Moreover, although it will increase by 1 layer from 3 layers to 4 layers compared with a prior art, by providing the slit 118 in the thin plate-shaped heat receiving body 104, the same number of brazing material sheets 119 as the time of 3 layers joining of a prior art is provided. The cost increase can be suppressed because it is sufficient. Further, since the thin plate-shaped heat receiving body 104 can be easily formed by a press or the like, the cost is not greatly increased.
Therefore, the radiator 4-1 can be manufactured so as to improve the heat exchange efficiency without increasing the manufacturing cost as much as possible.

本発明の実施の形態に係る放熱器の全体の縦断面図である。It is the longitudinal cross-sectional view of the whole heat radiator which concerns on embodiment of this invention. 上記実施の形態に係る放熱器の上受熱体の構造を示し、(a)は上受熱体の断面図、(b)は上受熱体の下面図である。The structure of the upper heat receiving body of the heat radiator which concerns on the said embodiment is shown, (a) is sectional drawing of an upper heat receiving body, (b) is a bottom view of an upper heat receiving body. 上記実施の形態に係る放熱器の中受熱体の構造を示し、(a)は中受熱体の平面図、(b)は中受熱体を(a)のD1−D2線で切断した際の断面図、(c)は中受熱体の下面図である。The structure of the intermediate | middle heat receiving body of the heat radiator which concerns on the said embodiment is shown, (a) is a top view of an intermediate | middle heat receiving body, (b) is a cross section at the time of cut | disconnecting an intermediate | middle heat receiving body by the D1-D2 line of (a). FIG. 4C is a bottom view of the intermediate heat receiving body. 上記実施の形態に係る放熱器の薄板状受熱体を構造を示し、(a)は薄板状受熱体の平面図、(b)は薄板状受熱体を(a)のE1−E2線で切断した際の断面図である。The structure of the thin plate-shaped heat receiving body of the radiator according to the above embodiment is shown, (a) is a plan view of the thin plate-shaped heat receiving body, and (b) is the thin plate-shaped heat receiving body cut along line E1-E2 of (a). FIG. 上記実施の形態に係る放熱器の下受熱体の構造を示し、(a)は下受熱体の平面図、(b)は下受熱体を(a)のF1−F2線で切断した際の断面図である。The structure of the lower heat receiving body of the heat radiator which concerns on the said embodiment is shown, (a) is a top view of a lower heat receiving body, (b) is a cross section when the lower heat receiving body is cut | disconnected by F1-F2 line of (a) FIG. 図4の薄板状受熱体にスリットを設けた構造を示し、(a)は薄板状受熱体の平面図、(b)は薄板状受熱体を(a)のG1−G2線で切断した際の断面図である。FIG. 4 shows a structure in which slits are provided in the thin plate-shaped heat receiving body of FIG. 4, (a) is a plan view of the thin plate-shaped heat receiving body, and (b) is a view when the thin plate-shaped heat receiving body is cut along the G1-G2 line of (a). It is sectional drawing. 実施の形態に係る放熱器の下受熱体、図6に示すスリットが設けられた薄板状受熱体、中受熱体及び上受熱体を接合するためのロー材シートの配置状態を示す図である。It is a figure which shows the arrangement | positioning state of the brazing material sheet | seat for joining the lower heat receiving body of the heat radiator which concerns on embodiment, the thin plate-shaped heat receiving body provided with the slit shown in FIG. 6, a middle heat receiving body, and an upper heat receiving body. 従来の放熱器の全体の縦断面図である。It is the longitudinal cross-sectional view of the whole conventional radiator. 従来の放熱器の構造を示し、(a)は図8に示すA1−A2から見た上受熱体の下面図、(b)は図8に示すB1−B2から見た平面図、(c)は図8に示すC1−C2から見た平面図である。The structure of the conventional heat radiator is shown, (a) is a bottom view of the upper heat receiving body seen from A1-A2 shown in FIG. 8, (b) is a plan view seen from B1-B2 shown in FIG. FIG. 10 is a plan view seen from C1-C2 shown in FIG.

符号の説明Explanation of symbols

1,1−1 下受熱体
2,2−1 中受熱体
3,3−1 上受熱体
4,4−1 放熱器
5 給水口
6 円形連通穴
8 上面水路
10,13 放熱フィン
11,101 円形連通穴
11a,100a,100b 隔壁
14 下面水路
15 流路絞り部
16 排水口
17 LDアレイ
30 上座グリ部
31 貫通口
40 堰
104 薄板状受熱体
105 連通穴
106,115 座グリ部
108 凹状流路
113 貫通口
114 連通穴
107 下面水路
109 上面水路
110 流路絞り部
111 ランド
112 排水口
113,114 連通穴
117 下受熱体の周縁部
118 スリット
119 ロー材シート
DESCRIPTION OF SYMBOLS 1,1-1 Lower heat receiving body 2,2-1 Middle heat receiving body 3,3-1 Upper heat receiving body 4,4-1 Radiator 5 Water supply port 6 Circular communication hole 8 Upper surface water channel 10,13 Radiation fin 11,101 Circular Communication hole 11a, 100a, 100b Bulkhead 14 Lower surface water channel 15 Channel constriction part 16 Drainage port 17 LD array 30 Upper counterbore part 31 Through hole 40 Weir 104 Thin plate heat receiving body 105 Communication hole 106, 115 Spot face part 108 Concave flow path 113 Through-hole 114 Communication hole 107 Lower surface water channel 109 Upper surface water channel 110 Channel constriction part 111 Land 112 Drain port 113,114 Communication hole 117 Peripheral part of lower heat receiving body 118 Slit 119 Raw material sheet

Claims (4)

熱を受け取る板状の受熱体が少なくとも上中下の3層に積層されて接合され、このうち上受熱体の上面に熱を発生する発熱体が接合され、この接合面の下方の中受熱体との接合部分に前記発熱体の熱を放熱するための放熱フィンが形成されると共にその放熱フィンからの熱を冷却水を流して冷却するための流路が形成され、更にその流路が中受熱体を貫通して下受熱体の給水口及び排水口に接続されてなる放熱器において、
前記上受熱体と前記中受熱体との接合部分に形成された前記放熱フィンに伝導された熱を放熱するための流路に、その放熱フィンに接合され、且つ流路を流れる冷却水が上下方向に蛇行しながら流れるように規制する1乃至は複数の堰部を設けた
ことを特徴とする放熱器。
A plate-shaped heat receiving body that receives heat is laminated and bonded to at least three layers, upper, middle, and lower layers, and a heating element that generates heat is bonded to the upper surface of the upper heat receiving body, and the intermediate heat receiving body below the bonding surface. A heat dissipation fin for radiating the heat of the heating element is formed at a joint portion with the heat sink, and a flow path for cooling the heat from the heat dissipation fin by flowing cooling water is formed. In the radiator that penetrates the heat receiving body and is connected to the water supply port and the drain port of the lower heat receiving body,
The cooling water that is joined to the heat radiation fin and flows through the flow path is vertically connected to the flow path for radiating the heat conducted to the heat radiation fin formed at the joint portion between the upper heat receiving body and the middle heat receiving body. A radiator having one or more weir portions that are controlled to flow while meandering in a direction.
前記給水口及び排水口が設けられる部分の流路の面積を広くした
ことを特徴とする請求項1に記載の放熱器。
The radiator according to claim 1, wherein an area of a flow path in a portion where the water supply port and the drain port are provided is widened.
前記堰部は、
前記上受熱体に櫛歯状の放熱フィンを形成すると共に前記流路の上側部分となる細長い複数の溝に、冷却水を規制するように堰を1乃至は複数設け、
前記中受熱体に、前記堰に接合する隔壁が形成されるように当該中受熱体の厚さ方向に連通穴を形成し、この連通穴を、前記隔壁を貫通して連通させる凹部を前記下受熱体との対向面に設け、
前記凹部が塞がれて前記中受熱体に流路が形成されるように当該中受熱体と前記下受熱体との間に薄板状受熱体を更に接合して形成される
ことを特徴とする請求項1または2に記載の放熱器。
The weir is
Forming one or more weirs so as to regulate cooling water in a plurality of elongated grooves which form upper teeth of the flow path and form comb-like heat radiation fins in the upper heat receiving body;
A communication hole is formed in the thickness direction of the intermediate heat receiving body so that a partition wall to be joined to the weir is formed in the intermediate heat receiving body, and a concave portion that communicates with the communication hole through the partition wall is formed on the lower side. Provided on the surface facing the heat receiver,
A thin plate-shaped heat receiving body is further joined between the intermediate heat receiving body and the lower heat receiving body so that the recess is closed and a flow path is formed in the intermediate heat receiving body. The heat radiator according to claim 1 or 2.
前記薄板状受熱体の周縁部に、所定間隔で上下面に突き抜けたスリット及び穴の少なくとも1つを形成した
ことを特徴とする請求項3に記載の放熱器。
4. The radiator according to claim 3, wherein at least one of a slit and a hole penetrating the upper and lower surfaces at a predetermined interval is formed in a peripheral portion of the thin plate-shaped heat receiving body.
JP2004008237A 2004-01-15 2004-01-15 Radiator Pending JP2005203560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004008237A JP2005203560A (en) 2004-01-15 2004-01-15 Radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004008237A JP2005203560A (en) 2004-01-15 2004-01-15 Radiator

Publications (1)

Publication Number Publication Date
JP2005203560A true JP2005203560A (en) 2005-07-28

Family

ID=34821665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004008237A Pending JP2005203560A (en) 2004-01-15 2004-01-15 Radiator

Country Status (1)

Country Link
JP (1) JP2005203560A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008026856A1 (en) * 2008-06-05 2009-12-17 Jenoptik Laserdiode Gmbh Cooling element for an electronic component and device with an electronic component
JP2010109079A (en) * 2008-10-29 2010-05-13 Aisin Aw Co Ltd Cooling device of heat generating body
CN104051952A (en) * 2014-07-04 2014-09-17 成都三鼎日新激光科技有限公司 Internal micro-channel heat sink
CN106816804A (en) * 2015-11-30 2017-06-09 中国科学院大连化学物理研究所 A kind of microchannel metal foam disk like laser crystal cooling device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008026856A1 (en) * 2008-06-05 2009-12-17 Jenoptik Laserdiode Gmbh Cooling element for an electronic component and device with an electronic component
JP2010109079A (en) * 2008-10-29 2010-05-13 Aisin Aw Co Ltd Cooling device of heat generating body
CN104051952A (en) * 2014-07-04 2014-09-17 成都三鼎日新激光科技有限公司 Internal micro-channel heat sink
CN106816804A (en) * 2015-11-30 2017-06-09 中国科学院大连化学物理研究所 A kind of microchannel metal foam disk like laser crystal cooling device
CN106816804B (en) * 2015-11-30 2020-10-09 中国科学院大连化学物理研究所 Micro-channel metal foam disc-shaped laser crystal cooling device

Similar Documents

Publication Publication Date Title
JP4224217B2 (en) Semiconductor laser stack equipment
JP2003008273A (en) Cooler and light source apparatus
KR20190016945A (en) Micro-channel evaporator with reduced pressure drop
CN110957632B (en) Micro-channel heat sink for improving semiconductor laser array spectrum half-width
JP5332115B2 (en) Power element mounting unit
KR20040050910A (en) High heat flux single-phase heat exchanger
US20190020175A1 (en) Ld module cooling device and laser apparatus
JP2011017516A (en) Plate laminated type cooling device and method of manufacturing the same
WO2000011922A1 (en) Heat sink, and semiconductor laser and semiconductor laser stacker using the same
JP2020070938A (en) Plate type heat exchanger and hot water device including the same
JP2008111653A (en) Cooler
JP2005203560A (en) Radiator
JP2007266463A (en) Cooler
CN116741724A (en) Cooling integrated silicon carbide module, preparation method thereof and chip transformation method
JP2008294128A (en) Liquid-cooled type cooler and manufacturing method thereof
JP5005356B2 (en) Helicon type liquid cooling heat sink
JP2005209874A (en) Heatsink
CN113937615A (en) Cooling assembly and cooling method for laser
JP4305253B2 (en) Radiator
JP2006253702A (en) Cooling device, method of manufacturing the same, and semiconductor laser device
JP2005340532A (en) Radiator
JP2005217033A (en) Radiator
JP2005166789A (en) Heat dissipator
CN205178261U (en) Semiconductor laser cools off heat sink device
JP2005203559A (en) Radiator