JP2005203466A - Heatsink - Google Patents

Heatsink Download PDF

Info

Publication number
JP2005203466A
JP2005203466A JP2004006389A JP2004006389A JP2005203466A JP 2005203466 A JP2005203466 A JP 2005203466A JP 2004006389 A JP2004006389 A JP 2004006389A JP 2004006389 A JP2004006389 A JP 2004006389A JP 2005203466 A JP2005203466 A JP 2005203466A
Authority
JP
Japan
Prior art keywords
duct
heat
partition
heat receiving
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004006389A
Other languages
Japanese (ja)
Inventor
Atsutomo Ooyama
敦智 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2004006389A priority Critical patent/JP2005203466A/en
Publication of JP2005203466A publication Critical patent/JP2005203466A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a forced heat dissipation type heatsink which uses such a gaseous refrigerant that can solve a conventional technical problem. <P>SOLUTION: The heatsink 1 made of aluminum is provided with a heat reception part 51 having a heat generating body 9, a main fin 52 and partitioning fins 2 and 4, and a duct 6 is formed like a matrix of four layers and four lines so as to have a square section for distributing an air 8 for removal of a heat generating from a heat generating body 9. Duct group layers 6A-6D of four layers are arranged side by side in the orthogonally crossing direction of the heat reception part 51. The partitioning fin 2 or the like shared by the adjacent duct group layer 6A and 6B is provided with a through hole 31 and a guide body 38 for each of the ducts 6 in the corresponding region adjacent to flow-out end 9b of the air 8 of the heat generating body 9, and a through hole 32 and a guide body 39 in the corresponding region adjacent to a flow-in end 9a. The guide bodies 38 and 39 are integrally formed like a tongue by creating from the material of the partitioning fin 2 from the end near to the generating body 9 of the through holes during formation of the through holes. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、半導体素子などの発熱体が発生する熱を気体状の冷媒を用いて強制的に放熱するための放熱体に関する。   The present invention relates to a radiator for forcibly radiating heat generated by a heating element such as a semiconductor element using a gaseous refrigerant.

従来の空気などの気体状の冷媒を用いて強制的に放熱するための放熱体としては、冷媒を通流させるための四角形状の断面形状を持つ複数のダクトを、受熱部,基幹フィンおよび仕切フィンによってマトリックス状に形成したものが知られており、このダクトとしてはダクト断面積が全て同一のものや,発熱体に近く位置するダクトほど広いダクト断面積を持たせるようにしたものが知られている(例えば、特許文献1参照。)。
特開2002−314277号公報 (第4−6頁、第4図,第6図,第8図)
As a heat radiator for forcibly radiating heat using a gaseous refrigerant such as conventional air, a plurality of ducts having a quadrangular cross-sectional shape for allowing the refrigerant to flow, a heat receiving portion, basic fins, and a partition It is known that it is formed in a matrix with fins, and this duct has the same duct cross-sectional area, or a duct that has a wider duct cross-section as the duct is located closer to the heating element. (For example, refer to Patent Document 1).
JP 2002-314277 A (page 4-6, FIG. 4, FIG. 6, FIG. 8)

前述した気体状の冷媒を用いて強制的に放熱するための従来の放熱体では、それぞれのダクトが基幹フィンと,受熱部または仕切フィンとによって四周を囲まれているので、それぞれのダクトに流入した冷媒はそのままの質量流量を維持してそれぞれのダクトから流出されることになる。また、放熱体は伝導熱抵抗の存在などによって、発熱体に近い部位ほど高温になるという温度分布を持つ。そうして冷媒には空気などの気体が用いられているので、気体状の冷媒として空気が採用されている場合を例に採り,空気を理想気体と見なすと、この気体状の冷媒の体積はシャルルの法則により一定の圧力下では温度が1℃上昇する毎に0℃での体積に対して約273分の1ずつ増大することになる。
すなわち、気体状の冷媒の温度上昇は冷媒に大きな熱膨張を生じさせて、ダクト内の質量流量が冷媒の通流方向に関して一定であることから冷媒流速の増大を招き、ダクト内を通流する冷媒に発生する圧力損失の増大を引き起こしてしまうので、結果としてダクト内を通流する冷媒の質量流量の低減をもたらす。そうして、放熱能力が相対的に高い高温の部位のダクト内を通流する冷媒ほど質量流量の低減度が大きくなるので、従来の放熱体では放熱性能を十分に発揮することが困難であるとの問題がある。
In the conventional radiator for forcibly radiating heat using the gaseous refrigerant described above, each duct is surrounded by the main fin and the heat receiving part or the partition fin, so that it flows into each duct. Thus, the refrigerant is discharged from each duct while maintaining the mass flow rate as it is. In addition, the radiator has a temperature distribution in which the portion closer to the heating element becomes higher due to the presence of conductive thermal resistance. Thus, since a gas such as air is used as the refrigerant, taking the case where air is adopted as the gaseous refrigerant as an example, and assuming that air is an ideal gas, the volume of the gaseous refrigerant is According to Charles' law, every time the temperature rises by 1 ° C. under a constant pressure, it increases by about 273 times the volume at 0 ° C.
That is, the temperature rise of the gaseous refrigerant causes a large thermal expansion in the refrigerant, and the mass flow rate in the duct is constant with respect to the flow direction of the refrigerant. Since the pressure loss generated in the refrigerant is increased, the mass flow rate of the refrigerant flowing through the duct is reduced as a result. Thus, since the degree of reduction of the mass flow rate becomes larger as the refrigerant flows through the duct of the high-temperature portion having a relatively high heat dissipation capability, it is difficult to sufficiently exhibit the heat dissipation performance with the conventional heat radiator. There is a problem with.

特開2002−314277号公報で開示されている前述の従来例の放熱体はこの問題の解決を試みたものであるが、それぞれのダクトが四周を囲まれていてダクトに流入した冷媒がそのままの質量流量を維持してダクトから流出されることに関してはそれまでのものと同一のため、前記した問題点は解決されていない。したがってこの発明は、前述の従来技術の問題を解決した気体状の冷媒を用いる強制放熱式の放熱体を提供することを目的とする。   The above-described conventional radiator disclosed in Japanese Patent Laid-Open No. 2002-314277 is an attempt to solve this problem, but each duct is surrounded by four sides and the refrigerant flowing into the duct remains as it is. The above-mentioned problem has not been solved since it is the same as the previous one in maintaining the mass flow rate and flowing out of the duct. Accordingly, an object of the present invention is to provide a forced heat dissipation type heat dissipating body using a gaseous refrigerant that solves the above-described problems of the prior art.

この発明では前述の目的は、
1)四角形状の面形状を持ち一方の側面を発熱体装着用の受熱面とする受熱部と、この受熱部の反受熱面側の側面に受熱部にほぼ直交されると共に互いにほぼ平行とされて四角形状の面形状を持つ複数の基幹フィンと、この基幹フィンの側面にほぼ直交されると共に前記受熱部にほぼ平行とされて四角形状の面形状を持つ複数の仕切フィンとを有し、これ等の受熱部,基幹フィンおよび仕切フィンとによって前記発熱体で発生された熱を除去する気体状の冷媒を通流させるためのダクトが、互いに隣り合う基幹フィンを互いに対峙し合う一方の側壁対とし,互いに隣り合う仕切フィンをまたは前記受熱部とこの受熱部に隣接する前記仕切フィンとを互いに対峙し合う他方の側壁対として四角形状の断面形状を持つダクトとしてその冷媒通流方向が平行になるように互いに隣接されて形成されると共にマトリックス状に配列され、これ等複数のダクトの内の前記受熱部に対して互いに平行に配列される複数のダクトによりダクト群層が形成されると共にこれ等複数のダクト群層のそれぞれは受熱部に直交する方向に互いに隣接されて配列され、互いに隣接される前記ダクト群層により共有される前記仕切フィンが前記発熱体の前記冷媒の流出側端部の近傍に対応する部位に貫通孔を備えること、または、
2)前記1項に記載の手段において、前記貫通孔を備えた前記仕切フィンは貫通孔の前記発熱体に近い方の端部の近傍に、前記ダクト内を通流する前記冷媒の一部を受熱部から遠い方のダクト群層のダクトに導く案内体を備えること、または、
3)前記1項または2項に記載の手段において、互いに隣接される前記ダクト群層により共有される前記仕切フィンが前記ダクト毎の前記発熱体の前記冷媒の流入側端部の近傍に対応する部位に貫通孔、およびこの貫通孔の前記発熱体に近い方の端部の近傍に,前記ダクト内を通流する前記冷媒の一部を受熱部に近い方のダクト群層のダクトに導く案内体を備えること、さらにまたは、
4)前記2項または3項に記載の手段において、前記案内体は前記仕切フィンの素材から一体に形成されたものであることにより達成される。
In the present invention, the aforementioned object is
1) A heat receiving portion having a quadrangular surface shape and having one side surface as a heat receiving surface for mounting a heating element, and a side surface of the heat receiving portion on the side opposite to the heat receiving surface is substantially orthogonal to and parallel to each other. A plurality of basic fins having a quadrangular surface shape, and a plurality of partition fins having a quadrangular surface shape that is substantially orthogonal to the side surface of the basic fin and substantially parallel to the heat receiving portion, One side wall in which a duct for passing a gaseous refrigerant for removing heat generated in the heating element by these heat receiving portions, basic fins, and partition fins faces adjacent basic fins to each other Refrigerant flow method as a pair of partition fins adjacent to each other or as a duct having a quadrangular cross-sectional shape as the other side wall pair facing each other between the heat receiving portion and the partition fin adjacent to the heat receiving portion Are formed adjacent to each other so as to be parallel to each other and arranged in a matrix, and a duct group layer is formed by the plurality of ducts arranged in parallel to each other with respect to the heat receiving portion of the plurality of ducts. In addition, each of the plurality of duct group layers is arranged adjacent to each other in a direction orthogonal to the heat receiving portion, and the partition fins shared by the duct group layers adjacent to each other serve as an outflow of the refrigerant of the heating element. Providing a through hole in a portion corresponding to the vicinity of the side end, or
2) In the means described in the item 1, the partition fin provided with the through hole has a part of the refrigerant flowing in the duct in the vicinity of an end of the through hole closer to the heating element. Including a guide body that leads to a duct of a duct group layer far from the heat receiving section, or
3) In the means described in the item 1 or 2, the partition fin shared by the duct group layers adjacent to each other corresponds to the vicinity of the refrigerant inflow side end of the heating element for each duct. A guide that guides a part of the refrigerant flowing in the duct to a duct of a duct group layer closer to the heat receiving part in the vicinity of the through hole in the part and the end of the through hole closer to the heating element Providing the body, or
4) In the means described in the item 2 or 3, the guide body is achieved by being integrally formed from a material of the partition fin.

この発明による放熱体では、前記課題を解決するための手段の項で述べた構成とすることで、次記効果を得られる。
1)前記課題を解決するための手段の項の第(1)項による構成とすることで、それぞれのダクト群層のそれぞれのダクト内を通流する気体状の冷媒の分流の内の熱除去量が相対的に多い分流では、この分流が貫通孔に差し掛かった際に、この貫通孔を通過して隣接するダクト群層のダクト内を通流する相対的に低圧の分流に流れ込むバイパス流が発生し、この貫通孔からダクトの冷媒の流出端の間では通流する気体状の冷媒の流量が減少することで発生する圧力損失が低減される。このことによりこの発明による放熱体では、相対的に熱除去量の多い分流に関して、放熱体のそれぞれのダクトにおいて温度が相対的に高いことで放熱能が相対的に高い部位(後記図1,図3および図4に範囲寸法Sで示し、発熱体9の長さ方向寸法Lとほぼ同等あるいは若干長い寸法を持つ部位。)での質量流量の低減が抑制されることで、その放熱性能の向上が可能になる。また、
2)前記課題を解決するための手段の項の第(2)項,第(4)項による構成とすることで、前記1)項で述べたバイパス流の発生要因として、前記1)項で述べた要因に加えて、仕切フィンに備えられた案内体に衝突することで分流の通流方向が強制的に変えられことで貫通孔への流入量が増加することによる要因、および、分流の通流路の断面積が仕切フィンに備えられた案内体によって狭められて局部的に高速になるなどによって案内体の先端部付近に低圧部が発生することによる要因が加わる。このことにより、貫通孔を通流するバイパス流の流量が前記1)項の場合よりも増大し、この発明による放熱体の放熱性能のさらなる向上が可能になる。さらにまた、
3)前記課題を解決するための手段の項の第(3)項,第(4)項による構成とすることで、受熱部を構成要素の一部に用いるダクトにより形成されたダクト群層を除くそれぞれのダクト群層のそれぞれのダクト内を通流する気体状の冷媒の分流は、発熱体の冷媒の流入側端部の近傍に対応する部位に備えられた貫通孔に差し掛かった際に、この貫通孔に関連させて仕切フィンに備えられた案内体に衝突し、その通流方向が強制的に変えられる。このことによって、この貫通孔を通過して発熱体に近い方に隣接するダクト群層のダクト内に流れ込むバイパス流が発生する。このバイパス流の発生により、放熱体のそれぞれのダクトにおいて温度が相対的に高いことで放熱能が相対的に高い部位(後記図1,図3および図4に範囲寸法Sで示し、発熱体9の長さ方向寸法Lとほぼ同等あるいは若干長い寸法を持つ部位。)でのそれぞれの分流の質量流量は、受熱部を構成要素の一部に用いるダクトにより形成されたダクト群層のそれぞれのダクト内を通流する分流が最も多くなる。この分流は、発熱体に最も近い部位に位置して最も高温になるダクト群層のダクト内を通流する分流であり、同一流速の条件での単位質量流量当たりの熱除去量が最も多い分流である。このことにより、この発明による放熱体は、前記2)項の場合よりもその放熱性能の増大が可能になる。
In the heat dissipating body according to the present invention, the following effects can be obtained by adopting the configuration described in the section of means for solving the above-mentioned problems.
1) By adopting the configuration according to item (1) of the means for solving the above-mentioned problems, heat removal in the diverted flow of the gaseous refrigerant flowing through each duct of each duct group layer In the branch flow having a relatively large amount, when this branch flow reaches the through-hole, there is a bypass flow that passes through the through-hole and flows into the duct of the adjacent duct group layer and flows into a relatively low-pressure branch flow. The generated pressure loss is reduced by reducing the flow rate of the gaseous refrigerant flowing between the through-hole and the refrigerant outflow end of the duct. As a result, in the radiator according to the present invention, a part having a relatively high heat dissipation capability due to a relatively high temperature in each of the ducts of the radiator (see FIGS. 3 and FIG. 4, which is indicated by a range dimension S, and a portion having a dimension approximately equal to or slightly longer than the length-direction dimension L of the heating element 9). Is possible. Also,
2) By adopting the configuration according to the items (2) and (4) of the means for solving the problem, the cause of the bypass flow described in the item 1) is the factor in the item 1). In addition to the factors described above, the factors caused by the increase in the amount of inflow into the through-holes by forcibly changing the flow direction of the split flow by colliding with the guide body provided in the partition fin, and The cross-sectional area of the flow path is narrowed by the guide body provided in the partition fin, and a factor due to the generation of a low-pressure portion in the vicinity of the front end portion of the guide body is added due to local high speed. As a result, the flow rate of the bypass flow flowing through the through-hole is increased as compared with the case of the above item 1), and the heat dissipation performance of the radiator according to the present invention can be further improved. Furthermore,
3) By adopting the configuration according to the items (3) and (4) of the means for solving the above problems, the duct group layer formed by the ducts using the heat receiving portion as a part of the constituent elements is provided. When the diverted flow of the gaseous refrigerant flowing through the respective ducts of the respective duct group layers excluding each of the duct group layers reaches a through hole provided in a portion corresponding to the vicinity of the refrigerant inflow side end of the heating element, It collides with the guide body provided in the partition fin in relation to the through hole, and its flow direction is forcibly changed. As a result, a bypass flow is generated that passes through the through hole and flows into the duct of the duct group layer adjacent to the heating element. Due to the occurrence of this bypass flow, the temperature of each duct of the heat radiating body is relatively high so that the heat radiating capacity is relatively high (shown by the range dimension S in FIGS. 1, 3 and 4 to be described later, The mass flow rate of each diverted flow at a portion having a dimension substantially equal to or slightly longer than the lengthwise dimension L of each of the ducts in the duct group layer formed by the duct using the heat receiving portion as a part of the component. The shunt flowing through the inside is the largest. This diversion is the diversion that flows through the duct of the duct group layer that is located at the closest location to the heating element and that has the highest temperature, and the diversion with the largest heat removal amount per unit mass flow rate at the same flow rate condition. It is. As a result, the heat dissipating body according to the present invention can increase its heat dissipating performance as compared with the case of item 2).

以下、この発明を実施するための最良の形態を図面を参照して詳細に説明する。
『実施の形態1』図2はこの発明の実施の形態の一例による放熱体を関連装置と共に斜視図として示す説明図であり、図3は図2のP―P断面図である。図2,図3において、1Aは、受熱部51,複数の基幹フィン52,複数の仕切フィン2Aおよび仕切フィン4を有する金属材製の放熱体である。受熱部51は矩形状の面形状を持つ平板状体であり、一方の側面511が半導体素子などの発熱体9を装着するための受熱面である。それぞれの基幹フィン52は矩形状の面形状を持つ平板状体であり、受熱部51の受熱面511に反対する側の側面512に受熱部51に直交されると共に互いに平行に配設される。それぞれの仕切フィン2Aおよび仕切フィン4は矩形状の面形状を持つ平板状体であり、基幹フィン52の側面に,基幹フィン52に直交されると共に受熱部51に平行とされ、しかも互いに隣接し合う基幹フィン52を連結するように配設される。なお、仕切フィン4はこの事例の場合の放熱体1Aの外側面部に配設される仕切フィンである。
The best mode for carrying out the present invention will be described below in detail with reference to the drawings.
Embodiment 1 FIG. 2 is an explanatory view showing a radiator according to an example of an embodiment of the present invention as a perspective view together with related devices, and FIG. 3 is a sectional view taken along the line PP in FIG. In FIG. 2 and FIG. 3, reference numeral 1 </ b> A is a heat radiating body made of a metal material having a heat receiving portion 51, a plurality of basic fins 52, a plurality of partition fins 2 </ b> A, and partition fins 4. The heat receiving portion 51 is a flat plate having a rectangular surface shape, and one side surface 511 is a heat receiving surface for mounting the heating element 9 such as a semiconductor element. Each basic fin 52 is a flat plate having a rectangular surface shape, and is arranged on a side surface 512 of the heat receiving portion 51 opposite to the heat receiving surface 511 so as to be orthogonal to the heat receiving portion 51 and parallel to each other. Each of the partition fins 2 </ b> A and the partition fins 4 is a flat plate having a rectangular surface shape. The partition fins 2 </ b> A and the partition fins 4 are orthogonal to the main fins 52 and parallel to the heat receiving portions 51 on the side surfaces of the main fins 52. It arrange | positions so that the matching basic | foundation fin 52 may be connected. In addition, the partition fin 4 is a partition fin arrange | positioned in the outer surface part of 1 A of heat radiators in this case.

放熱体1Aでは、受熱部51,基幹フィン52,仕切フィン2Aおよび仕切フィン4とにより、発熱体9で発生された熱を除去する気体状の冷媒である空気8を通流させるためのダクト6の群が形成されている。これ等のダクト6は図2,図3に示されているように、互いに隣り合う基幹フィン52を互いに対峙し合う一方の側壁対とし、互いに隣り合う仕切フィン2A,4をまたは受熱部51と受熱部51に隣接する仕切フィン2Aとを互いに対峙し合う他方の側壁対として、矩形状の断面形状を持つダクトとして空気8の通流方向が平行になるように互いに隣接されて形成されると共にマトリックス状に配列されている。
これ等のダクト6は、この事例の場合には、受熱部51に関して互いに平行に配列されるそれぞれ4個のダクト6によりダクト群層6A,6B,6Cおよび6Dの4層のダクト群層を形成している。それぞれのダクト群層6A〜6Dは、受熱部51に直交する方向に互いに隣接されて配列されている。空気8はその流入端6aから各ダクト6へ流入し,その流出端6bから流出されるが、それぞれのダクト群層6A〜6Dのダクト6内を分流81〜分流84として通流する。そうして、発熱体9で発生した熱は、一部は受熱部51→空気8の経路で空気8に伝達されるが、多くの部分は受熱部51→基幹フィン52→空気8あるいは受熱部51→基幹フィン52→仕切フィン2A,4→空気8の経路で空気8に伝達される。
In the heat radiating body 1A, the duct 6 for allowing the air 8 which is a gaseous refrigerant to remove heat generated by the heat generating body 9 to flow through the heat receiving portion 51, the core fins 52, the partition fins 2A and the partition fins 4. A group of is formed. As shown in FIGS. 2 and 3, these ducts 6 have adjacent side wall fins 52 facing each other as one pair of side walls, and adjacent partition fins 2 </ b> A, 4 or heat receiving portion 51. The other side wall pair that opposes the partition fin 2A adjacent to the heat receiving portion 51 is formed as a duct having a rectangular cross-sectional shape and adjacent to each other so that the flow direction of the air 8 is parallel. It is arranged in a matrix.
In this case, these ducts 6 form four duct group layers of duct group layers 6A, 6B, 6C and 6D by four ducts 6 arranged in parallel with each other with respect to the heat receiving portion 51. doing. The respective duct group layers 6 </ b> A to 6 </ b> D are arranged adjacent to each other in a direction orthogonal to the heat receiving portion 51. The air 8 flows into the ducts 6 from the inflow ends 6a and flows out of the outflow ends 6b, but flows through the ducts 6 of the respective duct group layers 6A to 6D as the divided flow 81 to the divided flow 84. Thus, a part of the heat generated in the heating element 9 is transmitted to the air 8 through the path of the heat receiving portion 51 → air 8, but most of the heat receiving portion 51 → the basic fin 52 → air 8 or the heat receiving portion. 51 → main fin 52 → partition fin 2A, 4 → air 8 is transmitted to the air 8 through the route.

図2,図3を用いてこれまで説明してきた放熱体1Aの構成内容は、前述「特許文献1」などによる従来例の場合と同等である。ところで、それぞれのダクト群層6A〜6Dのダクト6内を分流81〜分流84として通流する空気8は、発熱体9で発生された熱を除去することで温度の上昇→体積の膨張→流速の増大→圧力の上昇を生じるが、放熱体1Aの相対的に高温な部位のダクト6内を通流することで熱除去量の多い分流ほどその圧力値が相対的に高くなる。換言すると、発熱体9で発生された熱を除去することで温度上昇した分流81〜分流84の圧力値の相互関係は、分流81>分流82>分流83>分流84の関係にある。この発明はこの点に着目してなされたものであり、この発明による放熱体1Aの特徴的なところは、互いに隣接されるダクト群層6Aと6B,6Bと6Cあるいは6Cと6Dによりそれぞれ共有される仕切フィン2A(仕切フィン4を除く仕切フィンでもある。)が、ダクト6毎の発熱体9の空気8の流出側端部9bの近傍に対応する部位に貫通孔31を備えることにある。   The configuration content of the heat dissipating body 1A described so far with reference to FIGS. 2 and 3 is the same as that of the conventional example according to the above-mentioned “Patent Document 1”. By the way, the air 8 flowing through the ducts 6 of the respective duct group layers 6A to 6D as the diverted flow 81 to the diverted flow 84 is increased in temperature by removing heat generated in the heating element 9 → expanded in volume → flow velocity. → Increase in pressure, but by flowing through the duct 6 at a relatively high temperature portion of the heat radiating body 1A, the pressure value becomes relatively higher as the amount of heat removal becomes larger. In other words, the mutual relationship between the pressure values of the diverted flow 81 to the diverted flow 84 that has risen in temperature by removing the heat generated in the heating element 9 is as follows: diverted flow 81> divided flow 82> divided flow 83> divided flow 84 The present invention has been made paying attention to this point, and the characteristic features of the radiator 1A according to the present invention are shared by the duct group layers 6A and 6B, 6B and 6C, or 6C and 6D, which are adjacent to each other. The partition fin 2 </ b> A (which is also a partition fin excluding the partition fin 4) is provided with a through hole 31 in a portion corresponding to the vicinity of the outflow side end portion 9 b of the air 8 of the heating element 9 for each duct 6.

前記の構成を持つ放熱体1Aは、例えば、アルミニウム材などの金属材製であり、1枚の基幹フィン52の部分および互いに隣接し合う基幹フィン52の配設間隔に対応する幅寸法を持つ受熱部51の部分とを一体にしてL字状に形成した押出し加工部材(A)と、1枚の基幹フィン52の部分と基幹フィン52の厚さ方向寸法に対応する幅寸法を持つ受熱部51の部分とを一体にして板状に形成した押出し加工部材(B)と、板材を仕切フィン2Aに対応する形状・寸法に貫通孔31と共に形成した打ち抜き加工部材(A)と、板材を仕切フィン4に対応する形状・寸法に形成した打ち抜き加工部材(B)とを所要個数組み合わせ、一体にろう付けすることで製作される。
ここで、押出し加工部材(B)は、端部に配設される基幹フィン52などに対応した部材である。なお、押出し加工部材(A)および押出し加工部材(B)には、打ち抜き加工部材(A)および打ち抜き加工部材(B)が接合される部位に凹溝が形成されることが好ましい。なおまた、それぞれが長尺材として作製された押出し加工部材(A),押出し加工部材(B),打ち抜き加工部材(A)および打ち抜き加工部材(B)を一体にろう付けして長尺部材を作製し、この長尺部材を適宜の長さに切断することで放熱体1Aを得ることも可能である。
The heat radiator 1A having the above-described configuration is made of a metal material such as an aluminum material, for example, and has a width dimension corresponding to the disposition interval of a portion of the main fin 52 and the adjacent main fin 52. The extruded member (A) formed integrally with the portion 51 in an L shape, and the heat receiving portion 51 having a width dimension corresponding to the thickness direction dimension of the one main fin 52 and the main fin 52. The extruding member (B) formed in a plate shape integrally with the part, a punching member (A) in which the plate material is formed with the through hole 31 in a shape and size corresponding to the partition fin 2A, and the plate material as the partition fin 4 is manufactured by combining the required number of punched members (B) formed in the shape and dimensions corresponding to 4 and brazing them together.
Here, the extruded member (B) is a member corresponding to the core fins 52 and the like disposed at the end. In the extruded member (A) and the extruded member (B), it is preferable that a concave groove is formed at a portion where the punched member (A) and the stamped member (B) are joined. In addition, the extruded member (A), the extruded member (B), the punched member (A), and the punched member (B), each of which is manufactured as a long material, are brazed together to form a long member. It is also possible to obtain the heat radiator 1A by manufacturing and cutting the long member into an appropriate length.

図2,図3に示すこの発明の実施の形態の一例による放熱体1Aでは前述の構成としたので、それぞれのダクト群層6A〜6Dのダクト6内を分流81〜分流84として通流する空気8では、貫通孔31に差し掛かった分流81〜分流83には、分流81→分流82,分流82→分流83および分流83→分流84へと、貫通孔31を通過して相対的に低圧の分流82〜分流84に流れ込むバイパス流88が発生する。したがって、放熱体1Aの相対的に高温な部位のダクト6内を通流することで熱除去量が相対的に多い分流(この事例の場合には分流81など)では、貫通孔31の形成部位からダクト6の空気8の流出端6bの間では通流する空気8の流量が減少することで発生する圧力損失が低減される。
すなわち放熱体1Aでは、熱除去量が相対的に多い分流で熱膨張した分の空気8を、相対的に熱除去量の少ない分流が通流している別のダクト6にバイパスさせることにより、相対的に熱除去量の多い分流に発生する圧力損失の増大量を低減できる。これにより放熱体1Aでは、相対的に熱除去量の多い分流に関して、放熱体1Aのそれぞれのダクト6において温度が相対的に高いことで放熱能が相対的に高い部位(図3に範囲寸法Sで示し、発熱体9の長さ方向寸法Lとほぼ同等あるいは若干長い寸法を持つ部位。)での質量流量の低減が抑制され、その結果、放熱体1Aの放熱性能が向上される。
『実施の形態2』図4はこの発明の実施の形態の異なる例による放熱体を関連装置と共に示す断面図であり、その断面位置は図3の場合と同一である。なお、以下の説明においては、図2,図3に示したこの発明による放熱体1Aと同一部分には同じ符号を付しその説明を省略する。図4において、1Bは、図2,図3に示したこの発明の実施の形態の一例による放熱体1Aに対して、仕切フィン2Aに替えて案内体38を貫通孔31の配設部に備えた仕切フィン2Bを用いるようにした放熱体である。この案内体38は、この事例の場合には、貫通孔31の発熱体9に近い方の端部から、貫通孔31の形成時に仕切フィン2Bの素材から切り起こし加工などによって舌状体として一体に形成される。前記の構成を持つ放熱体1Bは、例えば、アルミニウム材などの金属材製であり、前記打ち抜き加工部材(A)が、板材を仕切フィン2Bに対応する形状・寸法に貫通孔31および案内体38と共に形成されることを除いては、前記放熱体1Aの場合と同様にして製作される。
2A and 3B, the heat radiating body 1A according to the embodiment of the present invention has the above-described configuration. Therefore, the air flowing through the ducts 6 of the respective duct group layers 6A to 6D as the diverted flow 81 to the diverted flow 84 is provided. 8, the diverted flow 81 to the diverted flow 83 reaching the through-hole 31 are divided into a relatively low pressure diverted flow through the through-hole 31 from the diverted flow 81 to the divided flow 82, the divided flow 82 → the divided flow 83 and the divided flow 83 → the divided flow 84. A bypass flow 88 that flows into the 82-divided flow 84 is generated. Accordingly, in the branch flow (such as the branch flow 81 in this case) where the heat removal amount is relatively large by flowing through the duct 6 at a relatively high temperature portion of the radiator 1A, the portion where the through hole 31 is formed. To the outflow end 6 b of the air 8 of the duct 6, the pressure loss caused by the flow rate of the flowing air 8 is reduced.
That is, in the heat dissipating body 1A, the air 8 that has been thermally expanded by the diversion with a relatively large amount of heat removal is bypassed to another duct 6 through which the diversion with a relatively small amount of heat removal flows. In particular, it is possible to reduce the amount of increase in pressure loss that occurs in the diversion with a large amount of heat removal. As a result, in the heat radiating body 1A, with respect to the diversion with a relatively large amount of heat removal, a portion having a relatively high heat radiating capacity due to a relatively high temperature in each duct 6 of the heat radiating body 1A (range dimension S in FIG. 3). And a portion having a dimension approximately equal to or slightly longer than the longitudinal dimension L of the heating element 9), the reduction of the mass flow rate is suppressed, and as a result, the heat dissipation performance of the radiator 1A is improved.
[Embodiment 2] FIG. 4 is a sectional view showing a radiator according to a different example of the embodiment of the present invention together with related devices, and the sectional position thereof is the same as that in FIG. In the following description, the same parts as those of the heat radiator 1A according to the present invention shown in FIGS. In FIG. 4, 1B is provided with a guide body 38 in the arrangement portion of the through hole 31 in place of the partition fin 2A with respect to the radiator 1A according to the embodiment of the present invention shown in FIGS. It is the heat radiator which used the partition fin 2B. In this case, the guide body 38 is integrated as a tongue-like body by cutting and raising from the material of the partition fin 2B from the end of the through hole 31 closer to the heating element 9 when the through hole 31 is formed. Formed. The radiator 1B having the above-described configuration is made of, for example, a metal material such as an aluminum material, and the punching member (A) has a through-hole 31 and a guide body 38 in a shape and size corresponding to the partition fin 2B. Except for being formed together, it is manufactured in the same manner as in the case of the radiator 1A.

図4に示すこの発明の実施の形態の異なる例による放熱体1Bでは前述の構成としたので、それぞれのダクト群層6A〜6Dのダクト6内を通流する空気8の分流81〜分流83に、貫通孔31を通過して相対的に低圧の分流82〜分流84に流れ込むバイパス流88が発生する。放熱体1Bで発生するバイパス流88をダクト群層6A,6Bで共有される仕切フィン2Bの場合で説明すると、分流82に分流83に向かうバイパス流88を生じさせる要因に関しては、前記放熱体1Aの場合の分流82と分流83との圧力差による要因に、仕切フィン2Bに備えられた案内体38に衝突することで分流82の通流方向が強制的に変えられことによる要因が加わることで、分流82から分流83へのバイパス流88の流量が放熱体1Aの場合よりも増大される。
また、同じくダクト群層6A,6Bで共有される仕切フィン2Bの場合の分流81にバイパス流88を生じさせる要因に関しては、前記放熱体1Aの場合の分流81と分流82との圧力差による要因に、ダクト群層6Bのダクト6の流出端6bに向かう分流82の通流路の断面積が仕切フィン2Bに備えられた案内体38によって狭められて局部的に高速になるなどによって案内体38の先端部38a付近に低圧部が発生することによる要因が加わることで、分流81から分流82へのバイパス流88の流量が放熱体1Aの場合よりも増大される。
Since the heat dissipating body 1B according to a different example of the embodiment of the present invention shown in FIG. 4 has the above-described configuration, the air 8 is divided into the diverted flow 81 to the diverted flow 83 flowing through the ducts 6 of the respective duct group layers 6A to 6D. Then, a bypass flow 88 is generated that passes through the through-hole 31 and flows into the relatively low pressure diversion 82 to diversion 84. The bypass flow 88 generated in the heat radiating body 1B will be described in the case of the partition fin 2B shared by the duct group layers 6A and 6B. With regard to the factors that cause the bypass flow 88 toward the diversion 83 in the diversion 82, the heat radiating body 1A is described. In addition to the factor due to the pressure difference between the diverted flow 82 and the diverted flow 83 in the case of the above, a factor due to the forced change of the flow direction of the diverted flow 82 by colliding with the guide body 38 provided in the partition fin 2B is added. The flow rate of the bypass flow 88 from the branch flow 82 to the branch flow 83 is increased as compared with the case of the radiator 1A.
Further, regarding the factor causing the bypass flow 88 in the branch flow 81 in the case of the partition fin 2B shared by the duct group layers 6A and 6B, the factor due to the pressure difference between the branch flow 81 and the branch flow 82 in the case of the radiator 1A. In addition, the cross-sectional area of the flow path of the diverted flow 82 toward the outflow end 6b of the duct 6 of the duct group layer 6B is narrowed by the guide body 38 provided in the partition fin 2B, and the guide body 38 is locally increased in speed. By adding a factor due to the generation of the low pressure portion in the vicinity of the tip portion 38a, the flow rate of the bypass flow 88 from the divided flow 81 to the divided flow 82 is increased as compared with the case of the radiator 1A.

なお、ダクト群層6B,6Cまたはダクト群層6C,6Dでそれぞれ共有される仕切フィン2Bの場合にも、ダクト群層6A,6Bで共有される仕切フィン2Bの場合と同様に、バイパス流88の流量が放熱体1Aの場合よりも増大される作用・効果が得られる。以上述べたことにより、放熱体1Bでは、放熱体1Bのそれぞれのダクト6において温度が相対的に高いことで放熱能が相対的に高い部位(図4に範囲寸法Sで示し、発熱体9の長さ方向寸法Lとほぼ同等あるいは若干長い寸法を持つ部位。)での質量流量の低減度が放熱体1Aの場合よりも減少される。また、案内体38が切り起こし加工などによって仕切フィン2Bと一体に形成されているので、貫通孔31の形成による仕切フィン2Bの放熱面積の減少を補える。これ等の結果、放熱体1Bの放熱性能は放熱体1Aの場合よりも向上される。
『実施の形態3』図1はこの発明の実施の形態のさらに異なる例による放熱体を関連装置と共に示す断面図であり、その断面位置は図3,図4の場合と同一である。なお、以下の説明においては、図4に示したこの発明による放熱体1Bと同一部分には同じ符号を付しその説明を省略する。図1において、1は、図4に示したこの発明の実施の形態の一例による放熱体1Bに対して、仕切フィン2Bに替えて貫通孔32と案内体39とを追加して備えた仕切フィン2を用いるようにした放熱体である。貫通孔32は互いに隣接されるダクト群層6Aと6B,6Bと6Cあるいは6Cと6Dによりそれぞれ共有される仕切フィン2のダクト6毎の、発熱体9の空気8の流入側端部9aの近傍に対応する部位に配設される。
In the case of the partition fins 2B shared by the duct group layers 6B and 6C or the duct group layers 6C and 6D, respectively, as in the case of the partition fins 2B shared by the duct group layers 6A and 6B, the bypass flow 88 is used. The effect | action and effect which are increased rather than the case of the heat radiator 1A are obtained. As described above, in the heat radiating body 1B, the portions of the heat dissipating body 1B having a relatively high heat dissipating capacity due to the relatively high temperatures (shown by the range dimension S in FIG. The degree of reduction of the mass flow rate at the part having a dimension substantially equal to or slightly longer than the lengthwise dimension L) is reduced as compared with the case of the radiator 1A. Moreover, since the guide body 38 is integrally formed with the partition fin 2B by cutting and raising processing or the like, the reduction of the heat radiation area of the partition fin 2B due to the formation of the through hole 31 can be compensated. As a result of these, the heat dissipation performance of the radiator 1B is improved as compared with the case of the radiator 1A.
[Embodiment 3] FIG. 1 is a sectional view showing a heat dissipating body according to still another example of the embodiment of the present invention together with related devices, and the position of the section is the same as in FIGS. In the following description, the same parts as those of the radiator 1B according to the present invention shown in FIG. In FIG. 1, reference numeral 1 denotes a partition fin provided with a through hole 32 and a guide body 39 in place of the partition fin 2 </ b> B, in addition to the radiator 1 </ b> B according to the example of the embodiment of the present invention shown in FIG. 4. 2 is a heat radiator. The through-hole 32 is in the vicinity of the inflow side end portion 9a of the air 8 of the heating element 9 for each duct 6 of the partition fin 2 shared by the duct group layers 6A and 6B, 6B and 6C, or 6C and 6D, which are adjacent to each other. It arrange | positions in the site | part corresponding to.

また、案内体39は、この事例の場合には、貫通孔32の発熱体9に近い方の端部から、貫通孔32の形成時に仕切フィン2の素材から切り起こし加工などによって舌状体として一体に形成される。前記の構成を持つ放熱体1は、例えば、アルミニウム材などの金属材製であり、前記打ち抜き加工部材(A)が、板材を仕切フィン2に対応する形状・寸法に貫通孔31,32および案内体38,39と共に形成されることを除いては、前記放熱体1A,1Bの場合と同様にして製作される。
図1に示すこの発明の実施の形態のさらに異なる例による放熱体1では前述の構成としたので、それぞれのダクト群層6A〜6Dのダクト6内を分流81〜分流84として通流する空気8では、放熱体1A,1Bにおけるバイパス流88の他に、空気8の分流82〜分流84に、貫通孔32を通過して分流81〜分流83に流れ込むバイパス流89が発生する。放熱体1で発生するバイパス流89をダクト群層6A,6Bで共有される仕切フィン2の場合でまず説明すると、貫通孔32,案内体39の配設部に差し掛かった分流82は、仕切フィン2に備えられた案内体39に衝突してその通流方向が強制的に変えられことで、分流82の一部が貫通孔32から分流81に流れ込むバイパス流89になる。
In this case, the guide body 39 is formed as a tongue-like body by cutting and raising the material of the partition fin 2 from the end of the through hole 32 closer to the heating element 9 when the through hole 32 is formed. It is integrally formed. The heat radiator 1 having the above-described configuration is made of, for example, a metal material such as an aluminum material, and the punching member (A) forms the plate material into the shape and size corresponding to the partition fins 2 and the through holes 31 and 32 and the guide. Except for being formed together with the bodies 38 and 39, the heat radiators 1A and 1B are manufactured in the same manner.
Since the heat dissipating body 1 according to a further different example of the embodiment of the present invention shown in FIG. 1 has the above-described configuration, the air 8 flowing through the ducts 6 of the respective duct group layers 6A to 6D as the divided flow 81 to the divided flow 84 is provided. Then, in addition to the bypass flow 88 in the radiators 1 </ b> A and 1 </ b> B, a bypass flow 89 that flows through the through holes 32 and flows into the split flow 81 to the split flow 83 is generated in the split flow 82 to the split flow 84 of the air 8. First, the bypass flow 89 generated in the radiator 1 will be described in the case of the partition fin 2 shared by the duct group layers 6A and 6B. The branch flow 82 approaching the arrangement portion of the through hole 32 and the guide body 39 is divided into the partition fins. 2, the flow direction is forcibly changed by colliding with the guide body 39 provided in 2, whereby a part of the divided flow 82 becomes a bypass flow 89 flowing into the divided flow 81 from the through hole 32.

なお、ダクト群層6B,6Cまたはダクト群層6C,6Dでそれぞれ共有される仕切フィン2の場合にも、ダクト群層6A,6Bで共有される仕切フィン2の場合と全く同様の理由で、分流83→分流82,分流84→分流83の通流経路を持つバイパス流89が発生する。放熱体1では、このようにして分流82〜分流84のそれぞれからバイパス流89が貫通孔32を通流して分流81〜分流83に流れ込むことで、放熱体1のそれぞれのダクト6において温度が相対的に高いことで放熱能が相対的に高い部位(図1に範囲寸法Sで示し、発熱体9の長さ方向寸法Lとほぼ同等あるいは若干長い寸法を持つ部位。)での質量流量は、分流81が最も多くなる。
したがって、分流81の質量流量が前記放熱体1A,1Bの場合よりも増加すると共に、その流速も放熱体1A,1Bの場合よりも増大する。この分流81は、放熱体1の発熱体9に最も近い部位に位置して最も高温になるダクト群層6Aのダクト6内を通流する分流であり、同一流速の条件での単位質量流量当たりの熱除去量が最も多い分流である。この結果、放熱体1の放熱性能は放熱体1Bの場合よりも向上される。
In the case of the partition fin 2 shared by the duct group layers 6B and 6C or the duct group layers 6C and 6D, respectively, for the same reason as the partition fin 2 shared by the duct group layers 6A and 6B, A bypass flow 89 having a flow path of the divided flow 83 → the divided flow 82 and the divided flow 84 → the divided flow 83 is generated. In the radiator 1, the bypass flow 89 flows from each of the divided flow 82 to the divided flow 84 through the through-hole 32 and flows into the divided flow 81 to the divided flow 83 in this way, so that the temperature in each duct 6 of the radiator 1 is relative. The mass flow rate at a part having a relatively high heat radiation capability (a part having a range dimension S shown in FIG. 1 and having a dimension approximately equal to or slightly longer than the length L of the heating element 9) is The diversion 81 is the largest.
Therefore, the mass flow rate of the diverted flow 81 is increased as compared with the case of the radiators 1A and 1B, and the flow velocity thereof is also increased as compared with the case of the radiators 1A and 1B. This branch flow 81 is a branch flow that flows in the duct 6 of the duct group layer 6A that is located at the position closest to the heating element 9 of the radiator 1 and that has the highest temperature, and per unit mass flow rate under the condition of the same flow velocity. This is the diversion with the largest amount of heat removed. As a result, the heat dissipation performance of the radiator 1 is improved as compared with the case of the radiator 1B.

なお、貫通孔32の配設位置に関しては、この配設位置が発熱体9の発熱中心部に近寄るに従って、図1に範囲寸法Sで示した部位(温度が相対的に高いことで放熱能が相対的に高い部位)に流入するバイパス流89の内,この範囲寸法Sで示した部位の全体を通流する割合は減少を開始または減少度の増大を示すという関係にある。他方、この配設位置が発熱体9の発熱中心部に近寄るに従って、例えば、貫通孔32の形成部位以降の分流81が通流するダクト6内での圧力損失の増大度が低減されるという関係にある。これ等のことから、放熱体1の空気8への放熱性能を最大にする見地からの貫通孔32の配設位置の最適位置が存在する。したがって、貫通孔32の配設位置は、個々の放熱体の使用条件などに対応した最適位置に設定されることが好ましい。
前述の『実施の形態1』〜『実施の形態3』の記述において放熱体1,1Aおよび1Bが備える貫通孔31は、ダクト6毎の発熱体9の空気8の流出側端部9bの近傍に対応する部位に配設されると説明してきた。貫通孔31の配設位置に関しては、この配設位置が発熱体9の発熱中心部に近寄るに従って、貫通孔31の形成部位からダクト6の流出端6bの間の圧力損失の低減度が増大されるという関係にある。他方、この配設位置が発熱体9の発熱中心部に近寄るに従って、図1,図3および図4に範囲寸法Sで示した部位(温度が相対的に高いことで放熱能が相対的に高い部位)に流入する分流81などの内,この範囲寸法Sで示した部位の全体を通流する割合は減少を開始または減少度の増大を示すという関係にある。これ等のことから、放熱体1,1Aおよび1Bの空気8への放熱性能を最大にする見地からの貫通孔31の配設位置の最適位置が存在する。したがって、貫通孔31の配設位置は、個々の放熱体の使用条件などに対応した最適位置に設定されることが好ましい。
In addition, regarding the arrangement position of the through-hole 32, as this arrangement position approaches the heat generation center portion of the heating element 9, the portion indicated by the range dimension S in FIG. Of the bypass flow 89 flowing into a relatively high portion), the ratio of the flow through the entire portion indicated by the range dimension S is such that it starts to decrease or increases in the degree of decrease. On the other hand, as this arrangement position approaches the heat generation center portion of the heat generating element 9, for example, the degree of increase in pressure loss in the duct 6 through which the branch flow 81 after the formation site of the through hole 32 flows is reduced. It is in. For these reasons, there is an optimum position of the through hole 32 from the viewpoint of maximizing the heat dissipation performance of the radiator 1 to the air 8. Therefore, it is preferable that the arrangement position of the through hole 32 is set to an optimum position corresponding to the use condition of each heat radiator.
In the description of “Embodiment 1” to “Embodiment 3”, the through holes 31 provided in the heat dissipating bodies 1, 1 </ b> A and 1 </ b> B are in the vicinity of the outflow side end portion 9 b of the air 8 of the heating element 9 for each duct 6. It has been described that it is disposed at a portion corresponding to the above. As for the position where the through hole 31 is disposed, the degree of reduction in pressure loss between the through hole 31 formation portion and the outflow end 6b of the duct 6 is increased as the position is closer to the heat generation center of the heating element 9. There is a relationship. On the other hand, as this arrangement position approaches the heat generation center portion of the heating element 9, the portion indicated by the range dimension S in FIGS. 1, 3, and 4 (the heat dissipation performance is relatively high due to the relatively high temperature). Of the diverted flow 81 and the like flowing into the portion), the ratio of the flow through the entire portion indicated by the range dimension S is such that the reduction starts or increases. For these reasons, there is an optimum position of the through hole 31 from the viewpoint of maximizing the heat dissipation performance of the radiators 1, 1A and 1B to the air 8. Therefore, it is preferable that the arrangement position of the through-hole 31 is set to an optimum position corresponding to the use condition of each radiator.

また、本項の前述の説明では、放熱体1,1Bが備える案内体38および放熱体1が備える案内体39は、仕切フィン2,2Bの素材から切り起こし加工などによって一体に形成されるとしてきたが、これに限定されるものではなく、必要によっては、案内体を仕切フィン2,2Bの素材とは別体の素材から、仕切フィンとは別体の部材として作製してもよい。また、本項の前述の説明では、それぞれの放熱体1,1A,1Bが備える受熱部51は1個であるとしてきたが、これに限定されるものではなく、例えば、受熱部51はそれぞれの放熱体について2個備え、これ等の受熱部51を互いに対峙させて放熱体の外側面部に配設するようにしてもよい。なおまた、本項の前述の説明では、気体状の冷媒に空気8が用いられるとしてきたが、これに限定されるものではなく、空気とは異なる気体を気体状の冷媒として用いても何ら差し支えは無いことは勿論のことである。   Further, in the above description of this section, it is assumed that the guide body 38 included in the radiators 1 and 1B and the guide body 39 included in the radiator 1 are integrally formed by cutting and raising from the material of the partition fins 2 and 2B. However, the present invention is not limited to this, and if necessary, the guide body may be made of a material separate from the material of the partition fins 2 and 2B and may be manufactured as a member separate from the partition fin. Further, in the above description of this section, it is assumed that each heat radiator 1, 1A, 1B has one heat receiving portion 51. However, the heat receiving portion 51 is not limited to this. Two heat sinks may be provided, and the heat receiving portions 51 may be arranged on the outer surface of the heat sink so as to face each other. In the above description of this section, air 8 has been used as the gaseous refrigerant. However, the present invention is not limited to this, and a gas other than air may be used as the gaseous refrigerant. Of course there is nothing.

この発明の実施の形態のさらに異なる例による放熱体を関連装置と共に示す断面図である。It is sectional drawing which shows the heat radiator by the further different example of embodiment of this invention with a related apparatus. この発明の実施の形態の一例による放熱体を関連装置と共に斜視図として示す説明図である。It is explanatory drawing which shows the heat radiator by an example of this Embodiment with a related apparatus as a perspective view. 図2のP―P断面図である。FIG. 3 is a cross-sectional view taken along the line PP in FIG. 2. この発明の実施の形態の異なる例による放熱体を関連装置と共に示す断面図である。It is sectional drawing which shows the heat radiator by the example from which this Embodiment differs from a related apparatus.

符号の説明Explanation of symbols

1 放熱体
2 仕切フィン
31 貫通孔
32 貫通孔
38 案内体
39 案内体
4 仕切フィン
51 受熱部
52 基幹フィン
6 ダクト
6A ダクト群層
6B ダクト群層
6C ダクト群層
6D ダクト群層
8 空気
9 発熱体
9a 流入側端部
9b 流出側端部
DESCRIPTION OF SYMBOLS 1 Radiator 2 Partition fin 31 Through-hole 32 Through-hole 38 Guide body 39 Guide body 4 Partition fin 51 Heat-receiving part 52 Core fin 6 Duct 6A Duct group layer 6B Duct group layer 6C Duct group layer 6D Duct group layer 8 Air 9 Heating element 9a Inlet side end 9b Outlet side end

Claims (4)

四角形状の面形状を持ち一方の側面を発熱体装着用の受熱面とする受熱部と、この受熱部の反受熱面側の側面に受熱部にほぼ直交されると共に互いにほぼ平行とされて四角形状の面形状を持つ複数の基幹フィンと、この基幹フィンの側面にほぼ直交されると共に前記受熱部にほぼ平行とされて四角形状の面形状を持つ複数の仕切りフィンとを有し、これ等の受熱部,基幹フィンおよび仕切りフィンとによって前記発熱体で発生された熱を除去する気体状の冷媒を通流させるためのダクトが、互いに隣り合う基幹フィンを互いに対峙し合う一方の側壁対とし,互いに隣り合う仕切りフィンをまたは前記受熱部とこの受熱部に隣接する前記仕切りフィンとを互いに対峙し合う他方の側壁対として四角形状の断面形状を持つダクトとしてその冷媒通流方向が平行になるように互いに隣接されて形成されると共にマトリックス状に配列され、これ等複数のダクトの内の前記受熱部に対して互いに平行に配列される複数のダクトによりダクト群層が形成されると共にこれ等複数のダクト群層のそれぞれは受熱部に直交する方向に互いに隣接されて配列され、互いに隣接される前記ダクト群層により共有される前記仕切りフィンが前記発熱体の前記冷媒の流出側端部の近傍に対応する部位に貫通孔を備えることを特徴とする放熱体。 A heat receiving part having a quadrangular surface shape and having one side surface as a heat receiving surface for mounting the heating element, and a side surface of the heat receiving part on the side opposite to the heat receiving surface that is substantially orthogonal to and parallel to each other. A plurality of main fins having a surface shape, and a plurality of partition fins having a quadrangular surface shape that is substantially parallel to the side surface of the main fin and substantially parallel to the heat receiving portion. The duct for passing the gaseous refrigerant for removing the heat generated in the heating element by the heat receiving portion, the core fins and the partition fins is a pair of side walls which face each other adjacent core fins. , The partition fins adjacent to each other or as a duct having a quadrangular cross-sectional shape as the other side wall pair facing each other between the heat receiving portion and the partition fin adjacent to the heat receiving portion. A duct group layer is formed by a plurality of ducts that are formed adjacent to each other so as to be parallel to each other and arranged in a matrix, and that are arranged in parallel to each other with respect to the heat receiving portion of the plurality of ducts. Each of the plurality of duct group layers is arranged adjacent to each other in a direction orthogonal to the heat receiving portion, and the partition fins shared by the duct group layers adjacent to each other serve as the refrigerant of the heating element. A radiator having a through hole in a portion corresponding to the vicinity of the outflow side end. 請求項1に記載の放熱体において、前記貫通孔を備えた前記仕切りフィンは貫通孔の前記発熱体に近い方の端部の近傍に、前記ダクト内を通流する前記冷媒の一部を受熱部から遠い方のダクト群層のダクトに導く案内体を備えることを特徴とする放熱体。 2. The heat dissipating body according to claim 1, wherein the partition fin provided with the through-hole receives a part of the refrigerant flowing through the duct in the vicinity of an end of the through-hole closer to the heating element. A heat radiating body comprising a guide body that leads to a duct of a duct group layer far from the section. 請求項1または2に記載の放熱体において、互いに隣接される前記ダクト群層により共有される前記仕切りフィンが前記ダクト毎の前記発熱体の前記冷媒の流入側端部の近傍に対応する部位に貫通孔、およびこの貫通孔の前記発熱体に近い方の端部の近傍に,前記ダクト内を通流する前記冷媒の一部を受熱部に近い方のダクト群層のダクトに導く案内体を備えることを特徴とする放熱体。 3. The heat dissipating body according to claim 1, wherein the partition fin shared by the duct group layers adjacent to each other is located at a portion corresponding to the vicinity of the refrigerant inflow end of the heating element for each duct. In the vicinity of the through hole and the end of the through hole closer to the heating element, a guide body for guiding a part of the refrigerant flowing through the duct to the duct of the duct group layer closer to the heat receiving part A heat radiator characterized by comprising. 請求項2または3に記載の放熱体において、前記案内体は前記仕切りフィンの素材から一体に形成されたものであることを特徴とする放熱体。 The heat radiator according to claim 2 or 3, wherein the guide body is integrally formed from a material of the partition fin.
JP2004006389A 2004-01-14 2004-01-14 Heatsink Pending JP2005203466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004006389A JP2005203466A (en) 2004-01-14 2004-01-14 Heatsink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004006389A JP2005203466A (en) 2004-01-14 2004-01-14 Heatsink

Publications (1)

Publication Number Publication Date
JP2005203466A true JP2005203466A (en) 2005-07-28

Family

ID=34820371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004006389A Pending JP2005203466A (en) 2004-01-14 2004-01-14 Heatsink

Country Status (1)

Country Link
JP (1) JP2005203466A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104470273A (en) * 2014-11-28 2015-03-25 江西铜鼓江桥竹木业有限责任公司 Bamboo case and manufacturing method thereof
WO2023045073A1 (en) * 2021-09-27 2023-03-30 北京热刺激光技术有限责任公司 Heat dissipation assembly and fiber laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104470273A (en) * 2014-11-28 2015-03-25 江西铜鼓江桥竹木业有限责任公司 Bamboo case and manufacturing method thereof
CN104470273B (en) * 2014-11-28 2018-04-03 江西铜鼓江桥竹木业有限责任公司 A kind of bamboo matter cabinet and preparation method thereof
WO2023045073A1 (en) * 2021-09-27 2023-03-30 北京热刺激光技术有限责任公司 Heat dissipation assembly and fiber laser

Similar Documents

Publication Publication Date Title
JP4776032B2 (en) Heat exchanger
JP4586772B2 (en) COOLING STRUCTURE AND COOLING STRUCTURE MANUFACTURING METHOD
EP2141740A2 (en) Semiconductor device
JP6462737B2 (en) heatsink
JP5009249B2 (en) Cooler
JP6349161B2 (en) Liquid cooling system
JP2010123881A (en) Cold plate
JP2016207928A (en) Heat sink for cooling multiple heating components
JP2019149404A (en) Heat radiation fin structure and cooling structure of electronic substrate using the same
JP6623810B2 (en) Cooler, flow path unit
JP5498135B2 (en) heatsink
JP5498143B2 (en) Heat sink using bent louver-like heat dissipation unit
JP2007250701A (en) Cooling device for electronic equipment
JP2008300447A (en) Heat radiation device
JP2010118497A (en) Heat exchanger equipped with fin with louvers
JP5715352B2 (en) heatsink
JP5589647B2 (en) Cooling system
JP2005203466A (en) Heatsink
WO2019180762A1 (en) Liquid-cooled cooler
WO2021131175A1 (en) Cooling structure and heatsink
JP2011003708A (en) Heat exchanger using corrugated heat radiation unit
JP2007221153A (en) Heat sink cooling device
JP6265949B2 (en) heatsink
JP2019079908A (en) Cooling device and semiconductor module including the same
JP4128935B2 (en) Water-cooled heat sink