JP2005202971A - ゾーンのオートファン組合せ - Google Patents

ゾーンのオートファン組合せ Download PDF

Info

Publication number
JP2005202971A
JP2005202971A JP2005009579A JP2005009579A JP2005202971A JP 2005202971 A JP2005202971 A JP 2005202971A JP 2005009579 A JP2005009579 A JP 2005009579A JP 2005009579 A JP2005009579 A JP 2005009579A JP 2005202971 A JP2005202971 A JP 2005202971A
Authority
JP
Japan
Prior art keywords
pwm
value
zones
zone
δpwm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005009579A
Other languages
English (en)
Inventor
Eileen M Marando
エイリーン・エム・マランド
Robert W Schoepflin
ロバート・ダブリュ・シューフリン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Standard Microsystems LLC
Original Assignee
Standard Microsystems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Standard Microsystems LLC filed Critical Standard Microsystems LLC
Publication of JP2005202971A publication Critical patent/JP2005202971A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Control Of Electric Motors In General (AREA)
  • Feedback Control In General (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

【課題】ファンを制御するシステムおよび方法を開示すること。
【解決手段】ファンに電力を与える対応するPWMジェネレータ出力の単一のPWMデューティ・サイクル値などの、ファンを制御する単一の制御信号値を、複数の温度ゾーンからのセンサのデータを組み合わせることによって計算することができる。一実施形態で、単一のPWMデューティ・サイクルを、第1ゾーン、たとえばCPUの温度に基づき、第2ゾーンの温度、たとえばPC外装体の環境温度に基づく追加要因を用いて、決定することができる。一実施形態で、最終的な単一PWM値は、第1ゾーンの第1ΔPWM係数を計算することによって得られるオフセット値を第1ゾーンの現在温度に基づいて計算されるPWM値に加算し、スケーリング係数と共に第1ΔPWM係数を使用して、第2ゾーンについて計算された第2ΔPWM係数に重みを付けることによって決定される。
【選択図】図1

Description

本発明は、たとえばファンなどの電子システムの冷却器具に関し、具体的には、ファンの回転速度を制御する冷却器具に関する。
ファンは、電子システムが格納された外装体から暖気を排出するのに使用される。たとえば、ほとんどのコンピュータ・システムに、外装体内部の空気の循環を助け、外装体内部の温度を許容可能な範囲に維持する、1つまたは複数の冷却ファンが含まれている。ファンによって提供される気流の増加は、通常、そうでなければ蓄積され、システム動作に悪影響を及ぼす可能性がある廃熱を除去するのを助ける。冷却ファンの使用は、比較的高い動作温度を有するある種の中央処理装置(CPU)の正しい動作を保証するのに特に役立っている。
システム内のファンの制御は、通常は、ファン制御アルゴリズムを実行するファン制御ユニットによって行っている。ファン制御アルゴリズムは、システムの外装体から熱気を排出するように構成された1つまたは複数のファンを制御する方法を決定している。たとえば、ファン制御アルゴリズムは、検出された温度に応じて、ファンの速度を増減しなければならないことを指示することができる。そのような制御アルゴリズムに、温度が十分に低いと思われる場合に、ファンをオフにすることも含めることができる。
温度を検出するために、温度センサが、電子システム内の特定の温度ゾーンの現在温度を示す信号をファン制御ユニットに供給する。しばしば、CPUおよび/またはコンピュータ・システムの冷却に使用されるファンは、電力、グラウンド、タコメータ信号用のワイヤを有する3線インターフェースを有する。ファン駆動システムは、しばしば、パルス幅変調(PWM)信号を供給する信号ジェネレータを使用して、ファンの電力インターフェースやグラウンド・インターフェースの間の電圧を制御する外部回路を駆動する。その電圧がファンの速度を制御する。PWM信号を供給する信号ジェネレータは、信号のパルス幅のディジタル制御を提供するので、有用である。ファンは、通常は、パルスの持続時間だけ電力を与えられる。パルスの間では、ファンへの電力がオフにされるが、ファンは、通常は、この時間中も回転したままである。ファンに供給されているPWMパルス・トレーンのデューティ・サイクルによって、ファンの速度が決定される。
Heceta 6 Specification、Version .97、May 17、2001、Intel Corporation) 米国特許仮出願第10/440745号
ファン回路を駆動するのにPWM信号を使用することから生じる1つの問題が、複数の冷却ゾーンが複数のセンサと複数のファンの必要を生じ、これによって、ファン動作管理での複雑な管理方式が必要になることである。オートファン(autofan)制御アルゴリズムが、3つの温度ゾーンに基づいて3つのPWM出力を制御する産業界の仕様(Heceta 6 Specification、Version .97、May 17、2001、Intel Corporation)として定義された。この仕様によれば、各温度ゾーンは、固定された形で温度センサに対応する。たとえば、ゾーン1を、第1リモート・ダイオードのpn接合の近くで測定される温度に対応するものとし、ゾーン2を、環境温度に対応するものとし、ゾーン3を、第2リモート・ダイオードのpn接合の近くで測定される温度に対応するものとされる。各PWM信号は、1つのゾーンによって、あるいは2つまたは3つのゾーンのうちの「最も熱い」ゾーンによって制御することができる。言い換えると、デバイスの制御は、選択された単一の対応するゾーンからのセンサ情報を使用して、または3つのゾーンのうちで最も熱いゾーンからのセンサ情報を使用して、実行することができる。デバイスが、最も熱いオプションの1つについて構成される場合に、PWM出力のデューティ・サイクルは、関連する限度とパラメータを用いてゾーンごとに計算される。最高のデューティ・サイクルを作るゾーンが、通常は、PWM出力を制御する。
従来技術に関連する他の対応する問題は、そのような従来技術を本明細書に記載の本発明と比較した後に、当業者に明白になる。
本発明には、ファンの制御に使用される単一の制御値を計算するために、2つの温度ゾーンからのセンサのデータを組み合わせるシステムと方法が含まれる。これによって、ファン制御の実行に使用されるオートファン・コントローラが、システム環境に自動的に適合することが可能になる。たとえば、この方法を使用すると、ファンの速度を、PC外装体の環境温度に基づく追加の要因と共に、CPUの温度に基づいて決定することができる。具体的に言うと、環境気温が高い場合に、熱い外装体内で熱を散逸することがより困難なので、CPUファンは、システム内の全体的な熱を補償するためにすばやくその速度を増やす。環境気温が低い場合には、CPUファンは、冷たい外装体内で熱を散逸することがより容易なので、よりゆっくりと速度を高める。1組の実施態様で、ファンは、単一の制御値が単一のPWM出力に対応する単一PWM値である、単一のPWM出力によって制御される。
一実施態様で、オートファン制御システムを説明する。オートファン制御システムは、オートファン・コントローラ・アルゴリズムを実装し、そのアルゴリズムは、3つの温度ゾーンに基づく3つのPWM出力の制御に使用することができ、3つのゾーンのそれぞれが3つのPWM出力の1つを制御するかゾーンの組合せが一時に3つのPWM出力のいずれをも制御することを特徴とする。一実施態様では、オートファン制御システムに、3つの別々のゾーンからゾーン・センサ読みを受け取る第1マルチプレクサと、3つの別々のゾーンからパラメータ入力を受け取る第2マルチプレクサと、3つのPWM出力を供給する第3マルチプレクサと、それぞれが3つのPWM出力のそれぞれの1つに対応する、PWMパラメータの3つの別々の組を受け取る第4マルチプレクサとが含まれる。第1と第2のマルチプレクサは、それぞれ、1つまたは複数のゾーンに対応するゾーン・センサ読みデータとパラメータをPWM計算論理ブロックに供給することができ、そのPWM計算論理ブロックは、PWM値の計算に使用されるオートファン制御関数を実装している。同様に、第4マルチプレクサは、オートファン制御機能への追加入力として、PWM計算ブロックにPWMパラメータを供給する。一実施態様では、PWM計算論理ブロックの出力が現在計算されているPWM値を担持し、これが、入力として第3マルチプレクサに供給され、第3マルチプレクサは、現在計算されているPWM値を、3つのPWM出力の対応する1つにルーティングする。
PWM値は、部分的に、温度差値から計算することができる。一実施態様では、温度差値は、現在温度が予め定めた最低ゾーン限度温度以上である時の、温度センサによって示される現在温度と予め定めたゾーン限度温度との間の差とすることができる。一実施態様におけるオートファン・コントローラ・アルゴリズムは、第2ゾーンの関数としての、第1ゾーンに関連する限度とパラメータとに基づいてPWM値を計算するように動作する。この実施態様では、最終的なPWM値を得るために、第1ゾーンだけについて計算されたPWM値にオフセットが加算される。このオフセットは、第2ゾーンについて計算されたPWM値の変化の関数としての、第1ゾーンについて計算されたPWM値の変化の割合をとることによって計算される値とすることができる。1組の実施形態で、オフセットを加算する2つの方法が構成され、各方法を、計算されたPWMデューティ・サイクルを調整するために独立にまたは同時にイネーブルすることができる。
一実施態様で、PWM値は、まず第1ゾーンの現在温度に基づくデルタPWM値を計算し、第1ゾーンに割り当てられた事前に決定さる最小PWM値にデルタPWM値を加算し、第1ゾーンのデルタPWM係数を計算し、第1ゾーンのデルタPWM係数を使用して、第2ゾーンについて計算されたデルタPWM係数に重みを付け、重み付きのデルタPWM係数を加算して最終的なPWM値を得ることによって決定される。したがって、重み付きデルタPWM値の大きさは、第2ゾーンについて計算されたPWM値の、第1ゾーンについて計算されたPWM値への追加される寄与の尺度とすることができる。言い換えると、第1ゾーンの温度が高いほど、ゾーン2の項が第1ゾーンについて計算されるPWM値に対して行う寄与が大きくなる。
本発明の他の態様は、図面および図面の詳細な説明を参照すれば明白になる。
本発明の前述ならびに他の目的、特徴、および長所は、添付図面と共に読まれる時に、次の詳細な説明を参照することによってより完全に理解することができる。
本発明は、さまざまな修正形態および代替形態を許すが、本発明の特定の実施形態を、例として図面に示し、本明細書で詳細に説明する。しかし、図面とそれに対する詳細な説明が、開示される特定の形態に本発明を制限することを意図されたものではなく、逆に、その意図は、請求項によって定義される本発明の趣旨と範囲に含まれるすべての修正形態、同等物、その他の代替形態を包含することである。見出しは、編成のみを目的とし、説明または請求項の制限または解釈に使用されてはならないことに留意されたい。さらに、単語「できる」は、本明細書全体で、強制的な意味(すなわち、〜しなければならない)ではなく、許可の意味で(すなわち、〜する能力を有する、〜することができる)使用される。単語「含まれる」とその派生物は、「〜を含むがこれに制限されない」を意味する。単語「接続され」は、「直接にまたは間接に接続される」を意味する。
ファン速度制御システムは、しばしば、PWM信号ジェネレータによって生成されるPWM(パルス幅変調)信号を用いてファンを制御する。信号ジェネレータは、特定の時のPWM信号の計算のためにPWM信号パラメータを受け取る。PWM信号パラメータの1つが、「デューティ・サイクル」である。PWM信号のデューティ・サイクルは、PWM信号がアサートされていない時間に対するPWM信号がアサートされている時間の比である。たとえば、50%のデューティ・サイクルを有するPWM信号は、半分の時間だけアサートされているPWM信号と理解される。PWMデューティ・サイクルが増えるほど、ファンの動作が高速になり、したがって、ファン速度制御システム内の空気の動きが多くなる。たとえば、100%デューティ・サイクルは、最大限ファンに電力を与えるPWM信号を作り、0%デューティ・サイクルは、ファンをオフにするPWM信号を作る。用語「PWM値」と「PWMデューティ・サイクル値」の両方が、本明細書で、「PWMデューティ・サイクル値」を指すのに使用される。
デューティ・サイクルは、部分的に、温度差値から計算することができる。温度差値は、ファン速度制御システムに応じて、さまざまな形で得ることができる。一実施形態においては、温度差値を、現在温度が予め定めたゾーン限度温度以上である時の、温度センサによって示される現在温度と予め定めたゾーン限度温度との間の差とすることができる。温度差値を使用して、所望のPWM信号のデューティ・サイクルを計算することができ、PWM信号ジェネレータは、ファンの速度を制御するために、対応するデューティ・サイクルを有するPWM信号を生成することができる。
図1に、オートファン制御システム(ACS)100の一実施形態を示すが、このシステムでは、オートファン・コントローラ・アルゴリズムが、3つの温度ゾーンに基づいて3つのPWM出力を制御するのに使用され、3つのゾーンのそれぞれの1つまたは複数が3つのPWM出力の1つを制御することを特徴とする。図1からわかるように、ACS 100に、それぞれゾーン1、ゾーン2、ゾーン3からゾーン・センサ読み入力130、132、134を受け取る第1マルチプレクサ(MUX)120と、PWM出力、PWM1 160、PWM2 162、PWM3 164を供給する第2MUX 124が含まれている。一実施形態で、MUX 120は、センサ読み入力130、132、134に基づくセンサ読みデータをPWM計算論理ブロック(PCLB)110に供給する。PCLB 110は、現在選択されているゾーンに対応するPWM出力値を計算するのに使用されるオートファン制御関数としてオートファン・コントローラ・アルゴリズムを実装している。その後、PWM出力値をMUX 124によって供給することができる。さらに、MUX 122は、ゾーン1パラメータ140、ゾーン2パラメータ142、ゾーン3パラメータ144を論理ブロック110に供給し、MUX 126は、PWM1パラメータ150、PWM2パラメータ152、PWM3パラメータ154のうちで現在計算されているPWM出力に対応する1つを、論理ブロック110に供給する。
オートファン制御アルゴリズムは、ゾーン2の関数としてのゾーン1に関連する限度とパラメータに基づいてファンを制御するように構成することができる。図1からわかるように、別のゾーンの関数としてのあるゾーンに関連する限度とパラメータ、この実施形態で具体的にはゾーン2の関数としてのゾーン1のパラメータによって1つの選択されたPWM出力を制御するように、PCLB 110の内部で「ゾーンの組合せ」論理ブロック(CZLB)170を構成することができる。図からわかるように、MUX 122とMUX 120は、それぞれ2つの入力をPCLB 110に供給することができる。図示の実施形態では、ゾーン2の関数としてのゾーン1に関連する限度とパラメータを使用して単一のファンを制御することができるが、必要に応じてゾーンの任意の組合せを使用できることが、当業者には明白であろう。たとえば、代替実施形態で、単一のファンを、ゾーン3の関数としての、またはゾーン3とゾーン1の両方の関数としての、ゾーン2に関連する限度とパラメータによって制御することができる。当業者に明白であるように、複数のゾーンからのゾーン・パラメータとセンサ読みを、PCLB 110に同時に供給することができ(それぞれが2つの出力を供給するMUX 122とMUX 120によって示されるように)、あるいは、これらを個別に供給して、まず保管し、他の形でPCLB 110から並列に使用可能にして、必要な計算を実行することができる。
上で説明したように、「ゾーンの組合せ」オプションは、ACS 100に、主および副の2つの熱入力の関数としてのPWM出力に関する冷却の量を調整する能力が与えられる。通常の応用例は、システム環境温度の関数としてのCPU温度に基づくCPUファンの制御とすることができる。「ゾーンの組合せ」オプションは、ゾーン1に関連するPWM出力に似るが、ゾーン1の計算された総PWM出力にオフセット値を加算できることが異なる形でACS 100が動作することが可能になるように構成することができる。1組の実施形態では、オフセットを加算する2つの方法を設けることができ、計算されるPWMデューティ・サイクルを調整するために、各方法を個別にまたは同時にイネーブルすることができる。代替実施形態では、監視され制御されるシステムに必要と思われるところに従って、単一の方法を使用するか、他の方法を追加することができる。第1の方法に関するオフセット項を、本明細書ではアルファ項と称し、第2の方法に関連するオフセット項を本明細書ではベータ項と称する。
オートファン制御機能は、2つのモードの1つで動作することができる。第1のモードは、線形オートファン制御関数モードである。第2のモードは、マランド(Eileen M. Marando)とシェフリン(Robert W. Schoepflin)による2003年5月19日出願の米国特許仮出願第10/440745号、表題「Piecewise Linear Control of the Duty Cycle of a Pulse Width Modulated Signal」に記載の区分的線形オートファン制御関数モードであり、上記特許出願書は、参照により、その全体が完全に本明細書に記載されているように本明細書に組み込まれる。本明細書に記載の実施形態の第1組は、線形オートファン制御関数モードに関し、その後、線形オートファン制御関数モードと区分的線形オートファン制御関数モードの両方で動作するように構成された実施形態の1組の説明を続ける。オートファン・コントローラは、温度が現在選択されているゾーンの最低温度未満である時に、制御されるファンが最小限の速度で動作できるようにする動作モードと、温度が最低温度未満である時にファンをオフにすることができる動作モードも特徴とする。
図2に、線形オートファン制御関数の図を示す。PWMデューティ・サイクルとアクティブ範囲の温度の間の線形関係が、図2ではグラフ302によって示されている。区分的線形オートファン制御関数モードを、図6に示す。
線形オートファン制御関数モード
一実施形態では、CZLB 170は、ゾーン1だけに関して計算されるデューティ・サイクルに基づき、ゾーン2だけに関して計算されるデューティ・サイクルからの調整要因を用いて、PWMデューティ・サイクルを計算するようにPCLB 110を操作するように構成される。複数のゾーンによって制御される所与のPWM出力について、図2でそれぞれレベル306、304として示された、PWMminとPWMmaxなどのPWMパラメータが、各ゾーンではなく、所与のPWM出力に関連する。図2でそれぞれレベル308と範囲310として示されたTminとTrangeなどの温度パラメータは、各ゾーンに関連し、各ゾーンは対応するTminとTrangeを有することができる。
PWMデューティ・サイクルは、次の式に従って、単一のゾーンだけ(たとえばゾーン1)に基づいて計算することができる。
(1)PWM=PWMmin+ΔPWM(z1)
ただし
(2)ΔPWM(z1)=ΔT(z1)*(PWMmax−PWMmin)/Trange(z1)
かつ
(3)ΔT(z1)=Tcurrent(z1)−Tmin(z1)
ただし、「z1」は、特色をなすパラメータがゾーン1に対応することを示す。同様に、「z2」、「z3」は、特色をなすパラメータが、それぞれゾーン2とゾーン3に対応することを示す。言い換えると、PWMデューティ・サイクルが計算されるたびに、PWMデューティ・サイクルは、ゾーンの現在温度に基づいてΔPWMを計算し、ゾーンの最小PWM(PWMmin)にΔPWMを加算することによって決定することができる。ΔPWMの値は、図2に示されたオートファン曲線ではPWMminとPWMmaxの間にあり、図2に示された「アクティブ範囲」によって示されるように、ゾーンの温度に基づくものとすることができる。
一実施形態で、ゾーン1のΔPWM係数が、ゾーン2のΔPWMに重みを付けるのに使用され、ゾーン2のΔPWMは、ゾーン1の計算されたPWMデューティ・サイクルに加算される。したがって、ΔPWM値の大きさは、ゾーン2について計算されたPWMの、ゾーン1のPWMに対する追加の寄与の尺度とすることができる。すなわち、ゾーン1の温度が高いほど、ゾーン2の項のゾーン1のPWMに対する寄与が大きくなる。やはり、ゾーン1とゾーン2について計算を説明するが、代替実施形態では、異なるゾーンおよび/またはゾーンの組合せに基づいて類似する計算を実行することができる。
一実施形態で、ゾーンの組合せを使用して計算されるPWM出力は、
(4)PWM=PWM(z1のみ)+Offset
と表され、Offsetの値は、
(5)(アルファ項>ベータ項)の場合にOffset=アルファ項、そうでない場合にOffset=ベータ項
によって決定される。
アルファ項は、ゾーン2(だけ)について計算されたデューティ・サイクルの変化の関数として、ゾーン1(だけ)について計算されたデューティ・サイクルの変化の割合をとることによって計算される値とすることができる。この関係は、次の式で表すことができる。
(5.1)アルファ項=α(ΔPWM(z1))*ΔPWM(z2)
PWM値は、次のように表すことができる。
(6)PWM=PWMmin+ΔPWM(z1)+アルファ項
ここで、ΔPWM(z1)は、式(2)、(3)で定義され、ΔPWM(z2)は、同様に、式
(7)ΔPWM(z2)=ΔT(z2)*(PWMmax−PWMmin)/Trange(z2)
で定義することができ、ここで、
(8)ΔT(z2)=Tcurrent(z2)−Tmin(z2)
である。
式(5.1)からわかるように、アルファ項に、スケーリング係数αが含まれる(すなわち、1/2、1/4、1/8など)。前に述べたように、α(ΔPWM(z1))は、ゾーン1について計算されたΔPWMデューティ・サイクルに基づき、実際には、ゾーン2について計算されたΔPWMデューティ・サイクルの量に「重み」を付ける。アルファ項を、ゾーン1について計算されたΔPWMデューティ・サイクルに加算して、ゾーンの組合せに基づいて計算されたPWMデューティ・サイクルを得ることができる。一実施形態で、αが、プログラム可能な値であり、表1に、CZLB 170おとPCLB 110の実施形態の1組で実行できる対応する動作と共にαの可能な値の組を示す。アルファ項の計算は、ΔPWM(z1)とΔPWM(z2)をかけることによって実施することができ、これは、8ビットと8ビットの乗算の場合に、16ビットの結果を作る。α係数を、ΔPWM(z1)とΔPWM(z2)の積のスケーリング係数とみなすことができ、16ビット結果のプログラム可能なシフトがもたらされる。一実施形態でのαのオプションは、1、1/2、1/4、1/8、1/16、1/32、1/64、1/128、1/256、さらにアルファ項を取り消す0である。実施形態の1組で、アルファ項の値が、0h(16進数値)から255hまでの範囲になる、すなわち、アルファ項は、255hを超える値になると計算される場合に、255hに制限される。
αの値は、たとえば、選択されたPWM出力の最終的な値に対する環境温度の所望の影響に基づいて、選択し、かつ/または構成することができる。1組の実施形態で、αの値を、システムの各ゾーンでの温度変化の影響からの測定値に基づく試行錯誤によって決定することができる。図3に、ゾーン2の一定の温度、言い換えると、固定されたΔPWM(z2)に関する線形オートファン制御関数に対するアルファ項の影響を示す。グラフの線302が、元々の線形オートファン制御関数に対応し、グラフの線312が、0を超えるアルファ項に関する、固定されたΔPWM(z2)に基づく変更された線形オートファン制御関数に対応する。図3からわかるように、オートファン制御関数は、ΔPWM(z2)が変化するたびに変化することができ、グラフの線302の傾斜と比較して、グラフの線312の傾斜が顕著に増えている。
Figure 2005202971
一実施形態におけるベータ項は、ゾーン2だけについて計算されたPWMデューティ・サイクルの変化の割合をとることによって計算される値であり、次のように表すことができる。
(9)ベータ項=β(ΔPWM(z2))
ここで、式(6)に似て、βは、プログラム可能とすることもできるスケーリング係数である。βの値は、αの値を選択するのに使用されるものと同一の方法に基づいて選択し、かつ/または構成することができる。一実施形態で、ゾーン2のPWMデューティ・サイクルのプログラム可能なシフト(ベータ項)が、ゾーン2のデューティ・サイクルからの計算された調整係数(アルファ項)と比較され、大きい方が最終的な調整係数として選択される。最終的なPWM出力は、次のように表すことができる。
(10)PWM=PWMmin+ΔPWM(z1)+ΔPWMvalue
ここで、ΔPWMvalueは、式(5)に基づいて決定され、
(11a)α(ΔPWM(z1))*ΔPWM(z2)>β(ΔPWM(z2))の場合には、
(11b)ΔPWMvalue=α(ΔPWM(z1))*ΔPWM(z2)
であり、
(12a)α(ΔPWM(z1))*ΔPWM(z2)≦β(ΔPWM(z2))の場合には、
(12b)ΔPWMvalue=β(ΔPWM(z2))
である。βの可能な値の組を、CZLB 170およびPCLB 110の1組の実施形態で実行できる対応する動作と共に、表2に示す。
Figure 2005202971
図4に、ゾーン2の一定の温度に関する、言い換えれば固定されたΔPWM(z2)に関する、線形オートファン制御関数に対するベータ項の影響を示す。グラフの線302は、元々の線形オートファン制御関数に対応し、グラフの線314は、0を超えるベータ項に関し、固定されたΔPWM(z2)に基づく変更された線形オートファン制御関数に対応する。図4には、PWMminに対するベータ項の追加の影響も示されており、新しいPWMmin 316が、図示のように現れる。図4からわかるように、オートファン制御関数は、ΔPWM(z2)が変化するたびに変化することができる。
図5に、ゾーン2の一定の温度、言い換えると固定されたΔPWM(z2)に関する、線形オートファン制御関数に対するアルファ項とベータ項の両方の影響を示す。図5に示された影響は、式(10)からのΔPWMvalueの選択が、式(11a)、(11b)、(12a)、(12b)に従って実行される時に観察することができる。温度軸でのβ>α部分に対応するグラフの線の線分318は、図4のグラフの線314の挙動の鏡像であり、温度軸のα>β部分に対応するグラフの線の線分320の傾きは、図3のグラフの線312によって示された傾きの変化を反映する。やはり、図5では、オートファン制御関数が、ΔPWM(z2)が変化するたびに変化できることを観察することができる。
区分的線形オートファン制御関数モード
図6に、区分的線形オートファン制御関数を示す。図6からわかるように、温度軸のそれぞれのセグメントに対応する各グラス線分は、図2に示された線形関係を表す。言い換えると、グラフ線分322は、温度セグメント1の線形オートファン制御関数を表し、グラフ線分324は、温度セグメント2の線形オートファン制御関数を表し、グラフ線分326は、温度セグメント3の線形オートファン制御関数を表し、グラフ線分328は、温度セグメント4の線形オートファン制御関数を表し、グラフ線分330は、温度セグメント5の線形オートファン制御関数を表す。PWMmin 306、PWMmax 304、TempMin 308、アクティブ範囲310の全体的な値は、図2と同一のままにすることができる。
式(6)を拡張して、線形オートファン制御関数と区分的線形オートファン制御関数の両方を含めることができる。
(13)PWM=PWMmin(current_z1_seg)+ΔPWM(current_z1_seg)+α(ΔPWM(z1_total))*ΔPWM(z2_total)
ここで、
(14)ΔPWM(current_z1_seg)=ΔT(current_z1_seg)*(PWMmax(current_z1_seg)−PWMmin(current_z1_seg)/Trange(z1);
(15)ΔPWM(z1_total)=(PWMmin(current_z1_seg)−PWMmin(z1_seg1))+ΔPWM(current_z1_seg);
(16)ΔPWM(z2_total)=(PWMmin(current_z2_seg)−PWMmin(z2_seg1))+ΔPWM(current_z2_seg);
(17)ΔT(current_z1_seg)=Tcurrent(z1)−Tmin(current_z1_seg);
(18)ΔT(current_z2_seg)=Tcurrent(z2)−Tmin(current_z2_seg);
(19)ΔPWM(current_z2_seg)=ΔT(current_z2_seg)*(PWMmax(current_z2_seg)−PWMmin(current_z2_seg)/Trange(z2)
式(6)と同様に、式(13)のαは、表1に示されたように1/2、1/4、1/8などの値をとることができるスケーリング係数である。さらに、α(ΔPWM(z1_total))は、ゾーン1について計算されたΔPWMデューティ・サイクルに基づき、ゾーン2について計算されたΔPWMデューティ・サイクルの量に「重みを付ける」。α(ΔPWM(z1_total))*ΔPWM(z2_total)を、やはりアルファ項と称し、これをゾーン1に関して計算されたΔPWMデューティ・サイクル値に加算して、ゾーンの組合せに基づいて計算されたPWMデューティ・サイクル値を得ることができる。PWMmaxは、PWMの最大値を表す。1組の実施形態で、区分的線形オートファン制御関数のアルファ項の最大値が、255h(16進数の255)である、すなわち、アルファ項は、255hを超える値に計算される場合に、255hに制限される。
式(13)から(19)で、「(current_z1_seg)」は、PWMminおよびΔTなどの所与のパラメータの値が、ゾーン1の現在の測定温度を含む温度セグメント(図6に図示)に対応することを示す。同様に、「(current_z2_seg)」は、所与のパラメータの値が、ゾーン2の現在の測定温度を含む温度セグメントに対応することを示す。「(z1_seg1)」と「(z2−seg1)」は、それぞれ、ゾーン1で測定された温度のセグメント1、ゾーン2で測定された温度のセグメント1を指す。たとえば、図6を参照すると、セグメント3の最小PWM値が、PWMデューティ・サイクル軸の点336に示されている。
区分的線形オートファン制御関数のベータ項は、線形オートファン関数に似た形で定義でき、次のように表すことができる。
(20)ベータ項=β(ΔPWM(z2_total))
スケーリング係数であるβの値は、前に表2に示したように選択することができる。
一実施形態で、線形オートファン制御関数に似て、ゾーン2のPWMデューティ・サイクルのプログラム可能なシフト(ベータ項)は、ゾーン2のデューティ・サイクルから計算された調整係数(アルファ項)と比較され、大きい方が最終的な調整係数として選択される。式(10)を、次のように区分的線形オートファン制御関数について書き直すことができる。
(21)PWM=PWMmin(current_z1_seg)+ΔPWM(current_z1_seg)+ΔPWMvalue
ここでΔPWMvalueは、式(5)に基づいて決定され、
(22a)α(ΔPWM(z1_total))*ΔPWM(z2_total)>β(ΔPWM(z2_total))の場合に、
(22b)ΔPWMvalue=α(ΔPWM(z1_total))*ΔPWM(z2_total)
であり、
(23a)α(ΔPWM(z1_total))*ΔPWM(z2_total)≦β(ΔPWM(z2_total))の場合に、
(23b)ΔPWMvalue=β(ΔPWM(z2_total))
である。
図7に、ゾーン2の一定の温度に関する、言い換えれば固定されたΔPWM(z2)に関する、区分的線形オートファン制御関数に対するアルファ項の影響を示す。曲線332は、図6からの組み合わされたグラフ線分322から330に対応し、元々の区分的線形オートファン制御関数を表し、曲線334は、0を超えるアルファ項に関する、固定されたΔPWM(z2)に基づく変更された区分的線形オートファン制御関数の組み合わされたグラフ線分に対応する。図7からわかるように、オートファン制御関数は、ΔPWM(z2)が変化するたびに変化することができる。やはり図7からわかるように、どの特定の温度点を見ても、曲線332の全体的な傾きが、曲線302の全体的な傾きより顕著に大きい。
図8に、ゾーン2の一定の温度に関する、言い換えれば固定されたΔPWM(z2)に関する区分的線形オートファン制御関数に対するベータ項の影響を示す。曲線338は、図6からの組み合わされたグラフ線分322から330に対応し、元々の区分的線形オートファン制御関数を表し、曲線340は、0を超えるベータ項に関し、固定されたΔPWM(z2)に基づく変更された区分的線形オートファン制御関数の組み合わされたグラフ線分に対応する。図8には、PWMminに対するベータ項の追加の効果も示され、新しいPWMmin 342が、図示のように現れる。図8からわかるように、オートファン制御関数は、ΔPWM(z2)が変化するたびに変化することができる。
図9に、ゾーン2の一定の温度に関する、言い換えると固定されたΔPWM(z2)に関する、区分的線形オートファン制御関数に対するアルファ項とベータ項の両方の影響を示す。図9に示された影響は、式(21)からのΔPWMvalueの選択が、式(22a)、(22b)、(23a)、および(23b)に従って実行される時に観察することができる。温度軸のβ>α部分に対応する実線の曲線の線分344は、図8の曲線340の挙動を鏡像化したものであり、温度軸のα>β部分に対応する曲線の線分346は、図7の曲線334の挙動を反映したものである。やはり、図9では、オートファン制御関数が、ΔPWM(z2)が変化するたびに変化できることを観察できる。
前に述べたように、1組の実施形態で、オートファン・コントローラをプログラムして、現在の測定温度がそれぞれのゾーンの最低温度限度未満になる(T<Tmin)時に、ファンが最低速度で動作できるようにすることができる。代替の組の実施形態では、オートファン・コントローラをプログラムして、T<Tminの時に、ファンをオフにする(すなわち、PWM=0にする)ことができる。一実施形態で、βがイネーブルされ、オートファン・コントローラが、T<Tminの時にファンを最低速度で動作させられるようにプログラムされる場合に、T<TminでのPWMデューティ・サイクルに、プログラムされた最小PWMデューティ・サイクルとベータ項の合計がセットされる。同様に、βがイネーブルされ、オートファン・コントローラが、T<Tminの時にファンをオフにするようにプログラムされる場合に、Tが所定のヒステリシス温度範囲内でないならば、T<TminでのPWMデューティ・サイクルを「オフ」にセットすることができる。
図10に、ゾーンの組合せに関するPWM値を計算する方法の流れ図を示す。一実施形態で、オートファン・コントローラが、オートファン制御関数に基づいてPWM値を計算するのに使用される。ΔPWM値を、まずゾーン1だけについて計算し(402)、次にゾーン2だけについて計算する(404)。一実施形態で、アルファ項とベータ項を計算し(422)、アルファ項の値とベータ項の値を比較し(424)、アルファ項がベータ項より大きい場合に、PWM値が、アルファ項、事前に決定された最小PWM値と、ゾーン1だけについて計算されたΔPWMを加算することによって計算される(426)。アルファ項がベータ項より大きくない場合(424)には、PWM値は、ベータ項、事前に決定された最小PWM値と、ゾーン2だけについて計算されたΔPWMを加算することによって計算することができる(428)。
上で説明した実施形態では、PWM出力に対応する単一PWM値が、ファンを制御する単一の制御値として使用された。代替実施形態では、単一の制御値を、PWM出力に対応する単一PWM値以外のものとすることができる、他のファン制御機構を使用することができる。たとえば、1組の実施形態で、単一の制御値を、単一のアナログ電圧値とすることができる。他の実施形態で、単一の制御値を、ファンを制御するのに使用される代替の好ましい機構に対応するものとすることができ、単一PWM値または単一のアナログ電圧値以外のものとすることができる。
したがって、本発明およびそれを使用する形を説明したので、複数の温度ゾーンから受け取られるセンサのデータに基づいて計算される単一の制御信号値を介してファンを制御するシステムと方法を提示した。上の実施形態は、かなり詳細に記載されているが、他の形態が可能である。上の開示を完全に諒解したならば、多数の変形形態や修正形態が、当業者に明白になるであろう。請求項が、そのような変形形態と修正形態のすべてを含むように解釈されるべきことが意図されている。本明細書のセクションの見出しが、編成のみを目的とし、本明細書の説明または請求項を制限することを意図されたものでないことに留意されたい。
本発明の実施形態の1つの組に従って実施されるオートファン制御システムを示す図である。 線形オートファン制御関数を示す機能図である。 本発明の一実施形態による、線形オートファン制御関数に対するアルファ項の影響を示す機能図である。 本発明の一実施形態による、線形オートファン制御関数に対するベータ項の影響を示す機能図である。 本発明の一実施形態による、線形オートファン制御関数に対するアルファ項およびベータ項の両方の影響を示す機能図である。 区分的線形オートファン制御関数を示す機能図である。 本発明の一実施形態による、区分的線形オートファン制御関数に対するアルファ項の影響を示す機能図である。 本発明の一実施形態による、区分的線形オートファン制御関数に対するベータ項の影響を示す機能図である。 本発明の一実施形態による、区分的線形オートファン制御関数に対するアルファ項およびベータ項の両方の影響を示す機能図である。 本発明の一実施形態による、ゾーンの組合せに関するPWM値を計算する方法を示す流れ図である。
符号の説明
100 オートファン制御システム(ACS)、110 PWM計算論理ブロック(PCLB)、120 第1マルチプレクサ(MUX)、122 MUX(第3)、124 第2MUX、126 MUX(第4)、130 ゾーン・センサ読み入力、132 ゾーン・センサ読み入力、134 ゾーン・センサ読み入力、140 ゾーン1パラメータ、142 ゾーン2パラメータ、144 ゾーン3パラメータ、150 PWM1パラメータ、152 PWM2パラメータ、154 PWM3パラメータ、160 PWM1、162 PWM2、164 PWM3、170 「ゾーンの組合せ」論理ブロック(CZLB)

Claims (24)

  1. 複数のゾーンのそれぞれからセンサのデータを受け取るように構成された第1の複数の入力と、
    前記第1の複数の入力に結合された論理ブロックであって、前記複数のゾーンのそれぞれから前記センサのデータを受け取るように構成され、前記複数のゾーンのうちの複数のゾーンからの前記センサのデータに基づいて単一PWM値を計算するように動作可能である、論理ブロックと
    を含み、前記論理ブロックが、さらに、少なくとも1つのファンを制御するために前記単一PWM値を供給するように動作可能である
    前記少なくとも1つのファンを制御するシステム。
  2. 前記センサのデータが、前記複数のゾーンのそれぞれの1つの内で構成されたさまざまな温度センサからの温度読みを含む請求項1に記載のシステム。
  3. 前記複数のゾーンのそれぞれのゾーン・パラメータ・データを受け取るように構成された第2の複数の入力をさらに含み、
    前記論理ブロックが前記第2の複数の入力に結合され、前記論理ブロックが前記複数のゾーンのそれぞれの前記ゾーン・パラメータ・データを受け取るようにも構成され、
    前記論理ブロックが、前記複数のゾーンのうちの複数のゾーンからの前記センサのデータと、前記複数のゾーンのうちの前記複数のゾーンに関する前記ゾーン・パラメータ・データとに基づいて前記単一PWM値を計算するように動作可能である請求項1に記載のシステム。
  4. 複数のPWM出力のそれぞれのPWMパラメータ・データを受け取るように構成された第3の複数の入力をさらに含み、
    前記論理ブロックが前記第3の複数の入力に結合され、前記論理ブロックが前記複数のPWM出力のそれぞれの前記PWMパラメータ・データを受け取るようにも構成され、
    前記複数のPWM出力の1つが、前記単一PWM値に対応し、
    前記論理ブロックが、前記複数のゾーンのうちの複数のゾーンからの前記センサのデータ、前記複数のゾーンのうちの前記複数のゾーンの前記ゾーン・パラメータ・データ、前記複数のPWM出力のうちで前記単一PWM値に対応する1つの前記PWMパラメータ・データに基づいて前記単一PWM値を計算するように動作可能である請求項3に記載のシステム。
  5. 前記論理ブロックが、前記複数のゾーンのうちの複数のゾーンからの前記センサのデータに基づいて複数の単一PWM値の各それぞれの1つを計算するように動作可能である請求項1に記載のシステム。
  6. 前記複数のゾーンのそれぞれのゾーン・パラメータ・データを受け取るように構成された第2の複数の入力をさらに含み、
    前記論理ブロックが前記第2の複数の入力に結合され、前記論理ブロックが前記複数のゾーンのそれぞれの前記ゾーン・パラメータ・データを受け取るようにも構成され、
    前記論理ブロックが、前記複数のゾーンのうちの複数のゾーンからの前記センサのデータおよび前記複数のゾーンのうちの前記複数のゾーンの前記ゾーン・パラメータ・データに基づいて前記複数の単一PWM値の各それぞれの1つを計算するように動作可能である請求項5に記載のシステム。
  7. 複数のPWM出力のそれぞれのPWMパラメータ・データを受け取るように構成された第3の複数の出力をさらに含み、
    前記論理ブロックが前記第3の複数の入力に結合され、前記論理ブロックが前記複数のPWM出力のそれぞれの前記PWMパラメータ・データを受け取るようにも構成され、
    前記複数のPWM出力のそれぞれの1つが、前記複数の単一PWM値のそれぞれの1つに対応し、
    前記論理ブロックが、前記複数のゾーンのうちの複数のゾーンからの前記センサのデータ、前記複数のゾーンのうちの前記複数のゾーンの前記ゾーン・パラメータ・データと、前記複数の単一PWM値の前記それぞれの1つに対応する前記複数のPWM出力の前記1つの前記PWMパラメータ・データとに基づいて前記複数の単一PWM値の各それぞれの1つを計算するように動作可能である請求項6に記載のシステム。
  8. 前記単一PWM値の計算において、前記論理ブロックが、オートファン制御アルゴリズムを使用して前記計算を実行するように動作可能である請求項1に記載のシステム。
  9. 前記論理ブロックが、さらに、前記複数のゾーンのうちの3つ以上からのセンサのデータに基づいて前記単一PWM値を計算するように動作可能である請求項1に記載のシステム。
  10. 第1温度ゾーンに対応するパラメータの第1組を受け取ることと、
    第2温度ゾーンに対応するパラメータの第2組を受け取ることと、
    ファンを制御するために、パラメータの前記第1組とパラメータの前記第2組に基づいて単一PWM出力を生成することとを含む、前記ファンを制御する方法。
  11. 前記ファンを制御するためのパラメータの前記第1組とパラメータの前記第2組に基づく前記単一PWM出力の前記生成が、
    パラメータの前記第1組に基づいて第1PWM値を計算することと、
    パラメータの前記第2組に基づいてオフセット値を生成することと
    を含み、前記単一PWM出力の値が、前記第1PWM値と前記オフセット値との合計である請求項10に記載の方法。
  12. 前記オフセット値の前記生成が、パラメータの前記第2組に基づいてΔPWM値を計算すること
    を含み、前記オフセット値がスケーリング係数と前記ΔPWM値との積である請求項11に記載の方法。
  13. 前記オフセット値の前記生成が、
    パラメータの前記第1組に基づいて第1ΔPWM値を計算することと、
    パラメータの前記第2組に基づいて第2ΔPWM値を計算することと
    を含み、前記オフセット値が、前記第1ΔPWM値、第2ΔPWM値、スケーリング係数の積である請求項11に記載の方法。
  14. 前記オフセット値の前記生成が、
    パラメータの前記第1組に基づいて第1ΔPWM値を計算することと、
    パラメータの前記第2組に基づいて第2ΔPWM値を計算することと、
    第1スケーリング係数、前記第1ΔPWM値、および前記第2ΔPWM値の積である、第1オフセット項を生成することと、
    第2スケーリング係数と前記第2ΔPWM値との積である第2オフセット項を生成することと、
    前記第1オフセット項を前記第2オフセット項と比較することと
    を含み、前記第1オフセット項が、前記第2オフセット項より大きい場合に、前記オフセット値が前記第1オフセット項と等しく、そうでない場合に、前記オフセット値が前記第2オフセット項と等しい請求項11に記載の方法。
  15. パラメータの前記第1組が、前記第1温度ゾーン内で構成される1つまたは複数の温度センサからの温度読みを含む請求項10に記載の方法。
  16. パラメータの前記第2組が、前記第2温度ゾーン内で構成される1つまたは複数の温度センサからの温度読みを含む請求項10に記載の方法。
  17. 前記単一PWM出力に対応するPWMパラメータ・データを受け取ることをさらに含み、
    前記ファンを制御するためのパラメータの前記第1組とパラメータの前記第2組に基づく前記単一PWM出力の前記生成が、前記PWMパメータ値に基づいて前記単一PWM値を生成することを含む請求項10に記載の方法。
  18. 第1温度ゾーンに対応する第1PWMデューティ・サイクル情報を受け取ることと、
    第2温度ゾーンに対応する第2PWMデューティ・サイクル情報を受け取ることと、
    前記第1PWMデューティ・サイクル情報と前記第2PWMデューティ・サイクル情報の組合せに基づいて単一PWM出力の値を生成することと
    を含む、ファンの制御に使用される前記単一PWM出力の値を計算する方法。
  19. 複数のゾーンからセンサのデータを受け取るように構成された第1データ選択ユニット(DSU)と、
    前記複数のゾーンからゾーン・パラメータ・データを受け取るように構成された第2DSUと、
    複数のPWM出力に関するPWMパラメータ・データを受け取るように構成された第3DSUと、
    前記複数のPWM出力を供給するように構成された第4DSUと、
    前記第1DSU、前記第2DSU、前記第3DSU、および前記第4DSUに結合されたPWM計算論理ブロック(PCLB)と
    を含み、前記第1DSUが、対応する単一PWM値を計算するために、前記複数のゾーンのうちの複数のゾーンから受け取るそれぞれのセンサのデータを前記PCLBに供給するように動作可能であり、
    前記第2DSUが、対応する単一PWM値を計算するために、前記複数のゾーンのうちの複数のゾーンから受け取るそれぞれのゾーン・パラメータを前記PCLBに供給するように動作可能であり、
    前記PCLBが、前記第1DSUから受け取る前記それぞれのセンサのデータおよび前記第2DSUから受け取る前記それぞれのゾーン・パラメータ・データに基づいて、前記対応する単一PWM値を計算するように動作可能であるオートファン・システム。
  20. 前記センサのデータが、前記複数のゾーンのそれぞれの1つの内で構成されたさまざまな温度センサからの温度読みを含む請求項19に記載のオートファン・システム。
  21. 複数のゾーンのそれぞれからセンサのデータを受け取るように構成された第1の複数の入力と、
    前記第1の複数の入力に結合され、前記複数のゾーンのそれぞれから前記センサのデータを受け取るように構成され、前記複数のゾーンのうちの複数のゾーンからの前記センサのデータに基づいて単一制御値を計算するように動作可能である、論理ブロックと
    を含み、前記論理ブロックが、さらに、少なくとも1つのファンを制御するために前記単一制御値を提供するように動作可能である
    前記少なくとも1つのファンを制御するシステム。
  22. 前記単一制御値が、前記ファンの速度を決定する請求項21に記載のシステム。
  23. 前記単一制御値が、前記ファンを制御するPWM出力に対応する単一PWM値である請求項21に記載のシステム。
  24. 前記単一制御値が、単一電圧値である請求項21に記載のシステム。
JP2005009579A 2004-01-16 2005-01-17 ゾーンのオートファン組合せ Pending JP2005202971A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/759,796 US7064511B2 (en) 2004-01-16 2004-01-16 Autofan combination of zones

Publications (1)

Publication Number Publication Date
JP2005202971A true JP2005202971A (ja) 2005-07-28

Family

ID=34749765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005009579A Pending JP2005202971A (ja) 2004-01-16 2005-01-17 ゾーンのオートファン組合せ

Country Status (3)

Country Link
US (1) US7064511B2 (ja)
JP (1) JP2005202971A (ja)
TW (1) TWI286276B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101316178B1 (ko) 2006-08-29 2013-10-08 엘지전자 주식회사 팬 제어 장치 및 방법
JP2015161451A (ja) * 2014-02-27 2015-09-07 富士通株式会社 データセンタ、データセンタの制御方法及び制御プログラム

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7092623B2 (en) * 2003-09-22 2006-08-15 Standard Microsystems Corporation Method and apparatus to achieve accurate fan tachometer with programmable look-up table
US7098617B1 (en) * 2005-02-16 2006-08-29 Texas Instruments Incorporated Advanced programmable closed loop fan control method
TWI292654B (en) * 2005-04-22 2008-01-11 Delta Electronics Inc Fan control device and method
US7394217B2 (en) * 2005-12-27 2008-07-01 Standard Microsystems Corporation Dynamic hysteresis for autofan control
US8140196B2 (en) * 2007-06-06 2012-03-20 Hewlett-Packard Development Company, L.P. Method of controlling temperature of a computer system
US7863849B2 (en) 2008-02-29 2011-01-04 Standard Microsystems Corporation Delta-sigma modulator for a fan driver
US7742844B2 (en) * 2008-04-21 2010-06-22 Dell Products, Lp Information handling system including cooling devices and methods of use thereof
US20090271049A1 (en) * 2008-04-25 2009-10-29 Sun Microsystems, Inc. Assuring stability of the speed of a cooling fan in a computer system
TWI373202B (en) * 2008-05-23 2012-09-21 Asustek Comp Inc System and method for compensating characteristic of a fan
CN101813950B (zh) * 2009-02-23 2012-10-10 联想(北京)有限公司 一种控制设备散热的装置和具有该装置的设备
US8241008B2 (en) 2009-02-26 2012-08-14 Standard Microsystems Corporation RPM controller using drive profiles
TWI514167B (zh) * 2013-08-13 2015-12-21 Realtek Semiconductor Corp 參數產生裝置與方法
CN104375801A (zh) * 2013-08-16 2015-02-25 瑞昱半导体股份有限公司 参数产生装置与方法
US9945576B2 (en) 2014-10-08 2018-04-17 Dell Products, Lp System and method for detecting the presence of alternate cooling systems
CN111734667A (zh) * 2020-05-29 2020-10-02 苏州浪潮智能科技有限公司 一种服务器风扇转速调控方法及装置
CN114658680B (zh) * 2022-03-18 2024-04-26 深存科技(无锡)有限公司 一种板卡散热风扇的控制方法和控制装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4530395A (en) * 1982-10-14 1985-07-23 Parker Electronics, Inc. Single zone HVAC controlled for operation in multiple zone arrangement
JPS6152193A (ja) 1984-08-22 1986-03-14 Toshiba Corp Pwm制御回路
US4722669A (en) 1985-03-25 1988-02-02 Control Resources, Inc. Fan speed controller
JPH04255489A (ja) 1991-02-06 1992-09-10 Nec Corp スピンドルモータ駆動回路
US5249741A (en) 1992-05-04 1993-10-05 International Business Machines Corporation Automatic fan speed control
JP3015587B2 (ja) * 1992-05-11 2000-03-06 三洋電機株式会社 空気調和機の制御装置
US5271558A (en) * 1993-01-21 1993-12-21 Hampton Electronics, Inc. Remotely controlled electrically actuated air flow control register
EP0676688A3 (en) 1994-04-08 1997-06-18 Sun Microsystems Inc Line-saving device and methods for computers.
US5511724A (en) * 1994-11-23 1996-04-30 Delco Electronics Corporation Adaptive climate control system
US5825972A (en) 1995-02-17 1998-10-20 Dell Usa, L.P. Direct current fan motor speed controller
US5727928A (en) 1995-12-14 1998-03-17 Dell Usa L.P. Fan speed monitoring system for determining the speed of a PWM fan
US5886734A (en) * 1997-01-28 1999-03-23 Videoserver, Inc. Apparatus and method for storage and playback of video images and audio messages in multipoint videoconferencing
US6247898B1 (en) 1997-05-13 2001-06-19 Micron Electronics, Inc. Computer fan speed control system
US5962933A (en) 1997-05-13 1999-10-05 Micron Electronics, Inc. Computer fan speed control method
US5990582A (en) 1997-05-13 1999-11-23 Micron Electronics, Inc. Computer fan speed control device
US6226324B1 (en) 1997-12-17 2001-05-01 The Foxboro Company Methods and systems for trimming a PWM signal
GB2333378B (en) 1998-01-16 1999-12-08 Hsieh Hsin Mao PWN control circuit for a DC brushless fan
US6182902B1 (en) 1998-07-23 2001-02-06 Mitac Technology Corp. Device and method for automatically controlling rotating speed of fan cooler
EP1058374A1 (en) 1999-06-01 2000-12-06 Motorola, Inc. PWM control apparatus
US6601168B1 (en) 1999-11-19 2003-07-29 Hewlett-Packard Development Company, L.P. Computer fan speed system to reduce audible perceptibility of fan speed changes
US6188189B1 (en) 1999-12-23 2001-02-13 Analog Devices, Inc. Fan speed control system
US6528987B1 (en) 2000-06-19 2003-03-04 Analog Devices, Inc. Method and apparatus for determining fan speed
US6262549B1 (en) 2000-06-29 2001-07-17 System General Corp. Fan speed pulse filter for a PWM fan
US6563284B2 (en) 2000-11-21 2003-05-13 Texas Instruments Incorporated Single wire digital width modulation for fan control with tachometer feedback
US6519167B1 (en) 2001-03-16 2003-02-11 Tranh To Nguyen PWM controller with single-cycle response
US7075261B2 (en) 2002-04-10 2006-07-11 Standard Microsystems Corporation Method and apparatus for controlling a fan
US6650074B1 (en) 2002-05-29 2003-11-18 Dell Products, L.P. Fan speed controller with conditioned tachometer signal
US7096134B2 (en) 2002-07-01 2006-08-22 Standard Microsystems Corporation Method and apparatus for measuring the rotational speed of a fan
US6661679B1 (en) 2002-10-28 2003-12-09 System General Corporation PWM controller having adaptive off-time modulation for power saving

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101316178B1 (ko) 2006-08-29 2013-10-08 엘지전자 주식회사 팬 제어 장치 및 방법
JP2015161451A (ja) * 2014-02-27 2015-09-07 富士通株式会社 データセンタ、データセンタの制御方法及び制御プログラム

Also Published As

Publication number Publication date
US7064511B2 (en) 2006-06-20
US20050156544A1 (en) 2005-07-21
TWI286276B (en) 2007-09-01
TW200537280A (en) 2005-11-16

Similar Documents

Publication Publication Date Title
JP2005202971A (ja) ゾーンのオートファン組合せ
US9918410B2 (en) Fan control system and method
EP1708068B1 (en) Cooling apparatus and method for controlling the same
TWI298578B (en) Fan control system for mapping a plurality of sensors to respective zones
CN1333320C (zh) 电脑装置的冷却系统
CN101140450B (zh) 节能型热舒适控制器及控制方法
US7394217B2 (en) Dynamic hysteresis for autofan control
TWI410044B (zh) 用於控制一風扇之旋轉速度之方法及控制電路,以及電腦系統
US7991514B2 (en) Processor temperature measurement through median sampling
US7141953B2 (en) Methods and apparatus for optimal voltage and frequency control of thermally limited systems
JP2004162711A (ja) リアルタイムタービン修正出力及び修正熱消費率を表示するシステム及び方法
US20060156747A1 (en) Object temperature adjusting system, control unit for adjusting object temperature, method of adjusting temperature of object, and signal-bearing medium embodying program of controller
US20050019162A1 (en) Utilizing an altitude sensor to control fan speed
KR101539067B1 (ko) 통풍기 제어 장치
JP2005518593A (ja) 冷却システムの自動温度校正方法
US6933697B2 (en) Parabolic control of the duty cycle of a pulse width modulated signal
US20130084192A1 (en) Cooling fan control device and control method thereof
CN102450113A (zh) 电子设备及冷却扇控制方法
JP5955206B2 (ja) デマンド制御装置及びその方法
JP2011186515A (ja) コンピュータシステム
JP2008131695A (ja) ステッピングモータの制御装置および制御方法
KR101776382B1 (ko) 터보차져 액츄에이터용 냉각장치
TWI487844B (zh) 風扇監控方法及伺服器系統
WO2023100580A1 (ja) モータ駆動制御装置、モータユニット、および、モータ駆動制御方法
WO2024157421A1 (ja) 空気調和機、学習装置及び推論装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20060216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519