JP2005199258A - Anaerobic digestion treatment apparatus of organic waste solution - Google Patents

Anaerobic digestion treatment apparatus of organic waste solution Download PDF

Info

Publication number
JP2005199258A
JP2005199258A JP2004178571A JP2004178571A JP2005199258A JP 2005199258 A JP2005199258 A JP 2005199258A JP 2004178571 A JP2004178571 A JP 2004178571A JP 2004178571 A JP2004178571 A JP 2004178571A JP 2005199258 A JP2005199258 A JP 2005199258A
Authority
JP
Japan
Prior art keywords
sludge
concentrated
concentration
anaerobic digestion
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004178571A
Other languages
Japanese (ja)
Other versions
JP4507712B2 (en
Inventor
Kazuya Komatsu
和也 小松
Hidenari Yasui
英斉 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004178571A priority Critical patent/JP4507712B2/en
Priority to TW93127836A priority patent/TW200521088A/en
Priority to PCT/JP2004/013507 priority patent/WO2005058764A1/en
Publication of JP2005199258A publication Critical patent/JP2005199258A/en
Application granted granted Critical
Publication of JP4507712B2 publication Critical patent/JP4507712B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2853Anaerobic digestion processes using anaerobic membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/18External loop; Means for reintroduction of fermented biomass or liquid percolate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

<P>PROBLEM TO BE SOLVED: To raise a sludge volume reducing ratio by performing efficient digestion by concentrating digested sludge of an organic waste solution, solubilizing the digested sludge while returning the concentrated sludge to an anaerobic digestion tank and returning the solubilized sludge to the anaerobic digestion tank. <P>SOLUTION: The concentrated sludge is mixed with the solubilized sludge at a suction side of a transfer pump 4 for transferring the concentrated sludge and is adjusted with respect to its concentration and then is returned to the anaerobic digestion tank 1. While performing efficient concentration by raising a concentration ratio of the digested sludge, the concentrated sludge is smoothly returned and further the returned concentrated sludge can be sufficiently dispersed in the anaerobic digestion tank to perform efficient digestion. Thus, the sludge volume reducing ratio can be raised. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、有機性廃液を嫌気性消化する装置に係り、特に、有機性廃液の消化効率を高めて汚泥を大幅に減量化するための有機性廃液の嫌気性消化処理装置に関する。   The present invention relates to an apparatus for anaerobically digesting organic waste liquid, and more particularly to an anaerobic digestion apparatus for organic waste liquid for increasing the digestion efficiency of organic waste liquid and greatly reducing sludge.

有機性汚泥、し尿、食品工場廃水等のスラリー状の高濃度有機性汚泥を嫌気性微生物の存在下に消化処理して減量化する方法は、古くから行われている。しかし、従来の嫌気性消化処理法は、10日間以上という長時間の滞留時間を必要とするにもかかわらず、その消化率(有機成分の除去率)は35〜50%に留まり、汚泥の減量率が低いという問題点がある。   A method for reducing the amount of sludge-like organic sludge such as organic sludge, human waste, and food factory wastewater by digestion in the presence of anaerobic microorganisms has been practiced for a long time. However, although the conventional anaerobic digestion method requires a long residence time of 10 days or more, the digestibility (removal rate of organic components) remains at 35 to 50%, and sludge is reduced. There is a problem that the rate is low.

こうした問題点を解消するために、特開平9−206785号公報には、有機性廃液を嫌気性消化槽において嫌気性消化処理した後、消化汚泥を固液分離して分離液を処理水として放流し、分離汚泥(濃縮汚泥)を嫌気性消化槽に返送し、また、消化汚泥の一部をオゾン処理することにより改質して嫌気性消化槽に返送する有機性廃液の嫌気性消化方法が記載されている。この方法では、消化汚泥を固液分離して分離汚泥を嫌気性消化槽1に返送することにより嫌気性微生物の滞留時間を確保すると共に、消化汚泥の他の一部をオゾン処理して易生物分解性に改質した後嫌気性消化槽に返送することにより、嫌気性微生物の基質として再び分解させて、消化率(汚泥の減量率)を高めることができる。   In order to solve these problems, JP-A-9-206785 discloses an organic anaerobic digestion treatment in an anaerobic digestion tank, then the digested sludge is solid-liquid separated and the separated solution is discharged as treated water. There is an anaerobic digestion method for organic waste liquid that returns the separated sludge (concentrated sludge) to the anaerobic digester, and modifies the digested sludge by ozone treatment and returns it to the anaerobic digester. Has been described. In this method, digested sludge is separated into solid and liquid, and the separated sludge is returned to the anaerobic digestion tank 1 to secure the residence time of the anaerobic microorganisms, and the other part of the digested sludge is treated with ozone to facilitate easy living. After being modified to be degradable and returned to the anaerobic digestion tank, it can be decomposed again as a substrate for anaerobic microorganisms to increase the digestibility (sludge reduction rate).

この方法では、嫌気性微生物の滞留時間を長く維持しながらオゾン処理により改質する消化汚泥(嫌気性微生物を含む消化汚泥)の量を多くするために、嫌気性消化槽内の汚泥濃度を、従来の一過式の嫌気性消化法での1〜2%に対して4〜8%にまで高めて運転する必要がある。   In this method, in order to increase the amount of digested sludge (digested sludge containing anaerobic microorganisms) modified by ozone treatment while maintaining the residence time of anaerobic microorganisms, the sludge concentration in the anaerobic digester is It is necessary to increase the operation to 4 to 8% compared to 1 to 2% in the conventional transient anaerobic digestion method.

ところで、この方法において、消化汚泥の固液分離には、通常、遠心濃縮機が用いられるが、消化汚泥の遠心濃縮を効率的に行うためには、消化汚泥の濃縮倍率を高く、例えば2倍以上として運転することが好ましい。即ち、濃縮倍率が低いと、ある量の分離液を得るのに必要な遠心濃縮機の処理量が著しく増加するため、より大型の濃縮機が必要となったり、濃縮機の運転時間を長くする必要があったり、凝集剤がより多く必要になったりする。また、濃縮機による濃縮を所望の濃縮倍率に調整するには、高度の運転技術を要し、また条件変動があると安定して所望の濃度に濃縮することができないという課題もあり、この点からも、濃縮機による濃縮は、濃縮機の性能に見合った高濃度倍率で行うことが好ましい。一方で、消化汚泥は比較的濃縮され易いため、濃縮によりTS濃度10%以上の高濃度汚泥を得ることができる。   By the way, in this method, a centrifugal concentrator is usually used for solid-liquid separation of the digested sludge. However, in order to efficiently perform the centrifugal concentration of the digested sludge, the concentration rate of the digested sludge is high, for example, 2 times. It is preferable to operate as described above. In other words, if the concentration ratio is low, the throughput of the centrifugal concentrator required to obtain a certain amount of separation liquid increases remarkably, so a larger concentrator is required or the operation time of the concentrator is lengthened. There is a need or more coagulant is needed. In addition, in order to adjust the concentration by the concentrator to a desired concentration ratio, a high degree of operation technology is required, and there is a problem that it cannot be stably concentrated to a desired concentration if there is a change in conditions. Therefore, the concentration by the concentrator is preferably performed at a high concentration factor that matches the performance of the concentrator. On the other hand, since digested sludge is relatively easy to concentrate, high-concentration sludge having a TS concentration of 10% or more can be obtained by concentration.

ところが、濃縮倍率を高くして濃縮汚泥の濃度を高めると、汚泥の粘性は汚泥濃度に対して指数関数的に増加するため、濃縮汚泥の粘性が著しく増加してしまう。その結果、濃縮汚泥を嫌気性消化槽に返送することが困難になったり、濃縮汚泥移送のためのポンプとして動力(吐出圧)の大きいものが必要となったり、返送した濃縮汚泥を嫌気性消化槽内で十分に分散させることができなくなり、消化処理の効率が低下したりする課題があった。   However, when the concentration factor is increased to increase the concentration of the concentrated sludge, the viscosity of the sludge increases exponentially with respect to the sludge concentration, and thus the viscosity of the concentrated sludge increases remarkably. As a result, it becomes difficult to return the concentrated sludge to the anaerobic digestion tank, or a pump with high power (discharge pressure) is required to transfer the concentrated sludge, or the returned concentrated sludge is anaerobically digested. There was a problem that it could not be sufficiently dispersed in the tank and the efficiency of the digestion process was lowered.

特に、消化汚泥の可溶化処理を併用する方法では、前述の如く、嫌気性消化槽内の汚泥濃度を4〜8%と通常の嫌気性消化法の場合よりも高めて運転する必要があり、このように、嫌気性消化槽内の汚泥濃度を4〜8%にまで高めた場合、濃縮倍率を例えば2倍以上に高くすると、濃縮汚泥の濃度は8〜16%以上と非常に高いものとなる結果、濃縮汚泥の粘性は著しく高いものとなり、濃縮汚泥の嫌気性消化槽への返送、返送された濃縮汚泥の嫌気性消化槽内での分散はより一層困難となる。   In particular, in the method using the digested sludge solubilization treatment in combination, as described above, the sludge concentration in the anaerobic digestion tank needs to be increased to 4 to 8%, which is higher than in the case of the normal anaerobic digestion method. In this way, when the concentration of sludge in the anaerobic digester is increased to 4-8%, the concentration of concentrated sludge is very high at 8-16% when the concentration factor is increased to 2 times or more, for example. As a result, the viscosity of the concentrated sludge becomes remarkably high, and it becomes even more difficult to return the concentrated sludge to the anaerobic digester and to disperse the returned concentrated sludge in the anaerobic digester.

また、嫌気性消化槽の消化汚泥中には硫化物や二価の鉄、マンガンなど還元性の無機物が含まれているため、消化汚泥をオゾン処理により改質する際、難分解性の有機成分の改質に用いられるべきオゾンが、これらの還元性無機物の酸化に消費されてしまうという課題もあった。   In addition, the digested sludge in an anaerobic digester contains reducing inorganic substances such as sulfides, divalent iron, and manganese. Therefore, when modifying digested sludge by ozone treatment, it is difficult to decompose organic components. There is also a problem that ozone to be used for reforming is consumed for the oxidation of these reducing inorganic substances.

更に、消化汚泥中の有機成分は、改質及び消化の循環処理により分解、減量されるのに対し、汚泥中の無機成分は減量されないため、嫌気性消化槽内に蓄積し、汚泥濃度を上昇させるという課題もあった。汚泥濃度が上昇すると汚泥の粘性が高まり、嫌気性消化槽の攪拌、消化汚泥の改質、固液分離などに支障が生じる。そのため、嫌気性消化槽内の汚泥濃度を一定範囲に維持するように、嫌気性消化槽内の汚泥を引き抜いて汚泥を排出するが、その際、分解されない無機成分だけでなく、本来分解されうる有機成分まで系外に排出することになり、このことが、消化率(汚泥の減量率)のより一層の向上を阻む原因となっている。
特開平9−206785号公報
In addition, organic components in digested sludge are decomposed and reduced by cyclic treatment of reforming and digestion, while inorganic components in sludge are not reduced, so they accumulate in an anaerobic digester and increase sludge concentration. There was also a problem of making it happen. As the sludge concentration increases, the viscosity of the sludge increases, which hinders stirring of the anaerobic digester, reforming of the digested sludge, solid-liquid separation, and the like. Therefore, in order to maintain the sludge concentration in the anaerobic digestion tank within a certain range, the sludge in the anaerobic digestion tank is extracted and discharged, but at that time, not only the inorganic components that are not decomposed but also can be decomposed originally. Organic components are discharged out of the system, and this is a cause of hindering further improvement in digestibility (sludge reduction rate).
JP-A-9-206785

本発明は、前記従来の課題を解決して、消化汚泥の可溶化及び可溶化汚泥の返送と、消化汚泥の濃縮及び濃縮汚泥の返送とを行って嫌気性消化処理するに当たり、消化汚泥の濃縮倍率を高くして効率的な濃縮を行いつつ、濃縮汚泥の返送を円滑に行うと共に、返送した濃縮汚泥を嫌気性消化槽内で十分に分散させて効率的な消化を行うことにより、汚泥の減量率を高くする有機性廃液の嫌気性消化処理装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and when digesting sludge is solubilized and solubilized sludge is returned, concentrated digested sludge is concentrated and concentrated sludge is returned, and anaerobic digestion treatment is performed. The concentrated sludge can be returned smoothly while efficiently concentrating at a high magnification, and the returned sludge is fully dispersed in an anaerobic digester to efficiently digest the sludge. It aims at providing the anaerobic digestion processing apparatus of the organic waste liquid which makes a weight loss rate high.

本発明はまた、消化汚泥の可溶化手段としてのオゾン処理におけるオゾン利用率を高め、効率的な汚泥の改質を行うことができる有機性廃液の嫌気性消化処理装置を提供することを目的とする。   Another object of the present invention is to provide an anaerobic digestion treatment apparatus for organic waste liquid that can increase the ozone utilization rate in ozone treatment as a solubilization means for digested sludge and can efficiently reform sludge. To do.

本発明はまた、系内の無機成分の蓄積を防止して消化効率を高め、汚泥の減量率をより一層高めると共に、脱水性に優れた引抜汚泥を排出し、その処理効率、取り扱い性を高めることができる有機性廃液の嫌気性消化処理装置を提供することを目的とする。   The present invention also prevents the accumulation of inorganic components in the system to increase the digestion efficiency, further increase the sludge weight loss rate, and discharges the extracted sludge having excellent dewatering properties, thereby improving its treatment efficiency and handleability. An object of the present invention is to provide an anaerobic digestion treatment apparatus for organic waste liquid.

請求項1の有機性廃液の嫌気性消化処理装置は、有機性廃液を嫌気性消化する嫌気性消化槽と、該嫌気性消化槽から抜き出した消化汚泥を可溶化する可溶化手段と、該可溶化手段からの可溶化汚泥を前記嫌気性消化槽に返送する返送手段と、該嫌気性消化槽から排出される消化汚泥を濃縮する固液分離手段(以下「濃縮機」と称す場合がある。)と、該固液分離手段からの濃縮汚泥を前記嫌気性消化槽へ返送する移送ポンプを有する配管と、該移送ポンプ又は該移送ポンプのサクション側において、濃縮汚泥に液体を添加する液供給手段とを有することを特徴とする。   The apparatus for anaerobic digestion of an organic waste liquid according to claim 1 comprises an anaerobic digester for anaerobically digesting the organic waste liquid, a solubilizing means for solubilizing digested sludge extracted from the anaerobic digester, and Returning means for returning the solubilized sludge from the solubilizing means to the anaerobic digester, and solid-liquid separation means for concentrating the digested sludge discharged from the anaerobic digester (hereinafter referred to as “concentrator”). ), A pipe having a transfer pump for returning the concentrated sludge from the solid-liquid separation means to the anaerobic digester, and a liquid supply means for adding liquid to the concentrated sludge on the suction side of the transfer pump or the transfer pump It is characterized by having.

なお、本発明において、「汚泥の可溶化」とは、微生物によって資化されにくい汚泥中の物質や汚泥細胞を変性・破壊して、微生物によって資化されやすい形態にすることを指す。   In the present invention, “sludge solubilization” refers to denatured and destroyed sludge substances and sludge cells that are not easily assimilated by microorganisms to form a form that is easily assimilated by microorganisms.

請求項2の有機性廃液の嫌気性消化処理装置は、請求項1において、該濃縮汚泥に添加される液体が、前記可溶化汚泥であることを特徴とする。   The organic waste liquid anaerobic digestion treatment apparatus according to claim 2 is characterized in that, in claim 1, the liquid added to the concentrated sludge is the solubilized sludge.

請求項3の有機性廃液の嫌気性消化処理装置は、請求項1又は2において、前記可溶化手段が酸化処理手段であることを特徴とする。   The organic waste liquid anaerobic digestion treatment apparatus according to claim 3 is characterized in that, in claim 1 or 2, the solubilizing means is an oxidation treatment means.

請求項4の有機性廃液の嫌気性消化処理装置は、請求項3において、前記酸化処理手段の前段に、前記嫌気性消化槽から抜き出した消化汚泥を曝気する曝気手段を有することを特徴とする。   The anaerobic digestion treatment apparatus for organic waste liquid according to claim 4 is characterized in that, in claim 3, the anaerobic digestion sludge extracted from the anaerobic digestion tank is provided upstream of the oxidation treatment means. .

請求項5の有機性廃液の嫌気性消化処理装置は、請求項3又は4において、前記酸化処理手段がオゾン処理手段であることを特徴とする。   The organic waste liquid anaerobic digestion treatment apparatus according to claim 5 is characterized in that, in claim 3 or 4, the oxidation treatment means is an ozone treatment means.

請求項6の有機性廃液の嫌気性消化処理装置は、請求項1ないし5のいずれか1項において、前記嫌気性消化槽から排出される消化汚泥を、凝集剤を添加することなく濃縮する遠心濃縮手段と、該遠心濃縮手段の濃縮汚泥の少なくとも一部を系外に排出する汚泥排出手段とを有することを特徴とする。   The anaerobic digestion treatment apparatus for organic waste liquid according to claim 6 is the centrifugal separator according to any one of claims 1 to 5, wherein the digested sludge discharged from the anaerobic digestion tank is concentrated without adding a flocculant. It has a concentration means and a sludge discharge means for discharging at least a part of the concentrated sludge of the centrifugal concentration means to the outside of the system.

本発明の有機性廃液の嫌気性消化処理装置によれば、消化汚泥の可溶化及び可溶化汚泥の返送と、消化汚泥の濃縮及び濃縮汚泥の返送とを行って嫌気性消化処理するに当たり、粘性の著しく高い濃縮汚泥を可溶化汚泥等で濃度調整した後、嫌気性消化槽に返送することによって、効率的な濃縮を行いつつ濃縮汚泥を効率的に返送し、かつ、嫌気性消化槽内で十分に分散させて効率的な消化を行い、汚泥を高度に減量することができる。   According to the anaerobic digestion treatment apparatus of the organic waste liquid of the present invention, when performing anaerobic digestion treatment by solubilizing digested sludge and returning solubilized sludge, concentrating digested sludge and returning concentrated sludge, Concentrated sludge with extremely high concentration is adjusted with solubilized sludge, etc., and then returned to the anaerobic digester to efficiently return the concentrated sludge while efficiently concentrating, and within the anaerobic digester Sufficiently dispersed to perform efficient digestion and highly reduce sludge.

即ち、本発明では、消化汚泥を濃縮し、濃縮汚泥を嫌気性消化槽に返送することにより、HRT(水理学的滞留時間)はそのままで、嫌気性消化槽のSRT(固形物滞留時間)を長く確保して高い消化効率及び減量率を得ることができる。また、消化汚泥を可溶化して易生物分解性とし、可溶化汚泥を嫌気性消化槽に返送することにより、汚泥の減量率をより一層高めることができる。   That is, in the present invention, the digested sludge is concentrated, and the concentrated sludge is returned to the anaerobic digester, so that the SRT (solids residence time) of the anaerobic digester is maintained without changing the HRT (hydraulic residence time). High digestion efficiency and weight loss rate can be obtained by securing a long time. Moreover, the weight loss rate of sludge can be further increased by solubilizing digested sludge to be easily biodegradable and returning the solubilized sludge to the anaerobic digester.

このような消化汚泥の可溶化を行う嫌気性消化槽内の汚泥濃度は高く設定される。従って、この比較的高濃度の消化汚泥を濃縮して得られる濃縮汚泥は、ペースト状ないし粘性の非常に高い液状であり、ポンプで移送するにはポンプ吐出圧が極めて大きくなり、実現困難である。しかも、このような高粘性の濃縮汚泥は嫌気性消化槽内で分散し難く、このことが消化効率の低下につながる。一方で、前述の如く、ポンプでの移送可能な程度に適度に濃縮を行うことは困難であり、また、濃縮機の効率も悪くなる。   The sludge concentration in the anaerobic digester for solubilizing such digested sludge is set high. Therefore, the concentrated sludge obtained by concentrating this relatively high-concentration digested sludge is a paste-like or very viscous liquid, and the pump discharge pressure becomes extremely large to transfer with a pump, which is difficult to realize. . Moreover, such highly viscous concentrated sludge is difficult to disperse in the anaerobic digester, which leads to a decrease in digestion efficiency. On the other hand, as described above, it is difficult to perform concentration to such an extent that it can be transferred by a pump, and the efficiency of the concentrator also deteriorates.

本発明では、ポンプによる移送性を考慮することなく消化汚泥を濃縮し、得られた高粘性の濃縮汚泥に液体を混合することによりポンプ移送が容易な濃度に希釈して濃度調整する。   In the present invention, the digested sludge is concentrated without considering the transferability by the pump, and the liquid is mixed with the obtained highly viscous concentrated sludge to dilute the concentration so that the pump can be easily transferred to adjust the concentration.

本発明において、この濃縮汚泥の濃度調整位置が移送ポンプ又は移送ポンプのサクション側であることは極めて重要であり、このように移送ポンプ又は移送ポンプのサクション側で所定の濃度に濃度調整することにより、この移送ポンプにより容易に移送することが可能となる。   In the present invention, it is extremely important that the concentration adjustment position of the concentrated sludge is the transfer pump or the suction side of the transfer pump, and thus the concentration is adjusted to a predetermined concentration on the suction side of the transfer pump or the transfer pump. The transfer pump can be easily transferred.

これに対して、例えば、濃縮汚泥を嫌気性消化槽の入口側で原汚泥と混合して希釈しようとしても、原汚泥の導入側まで濃縮汚泥を移送することが困難であるため、移送性の改善を図ることはできない。   On the other hand, for example, even if the concentrated sludge is mixed with raw sludge at the inlet side of the anaerobic digestion tank and diluted, it is difficult to transfer the concentrated sludge to the introduction side of the raw sludge. It cannot be improved.

本発明では、濃縮汚泥を移送ポンプ又は移送ポンプのサクション側でポンプ移送に適当な濃度に濃度調整して効率的に嫌気性消化槽に返送すると共に、嫌気性消化槽においてこの返送汚泥を均一に分散させて効率的な嫌気性消化処理を行うことができる。   In the present invention, the concentrated sludge is adjusted to a concentration suitable for pump transfer on the transfer pump or the suction side of the transfer pump and efficiently returned to the anaerobic digester, and the returned sludge is uniformly distributed in the anaerobic digester. It can be dispersed for efficient anaerobic digestion.

なお、嫌気性消化処理の対象となる有機性廃液の窒素分が多い場合には、嫌気性消化処理の過程で液側に移行するアンモニアによって嫌気性消化反応が阻害され、処理効率が低下することがあるため、有機性廃液を予め希釈するなどして嫌気性消化槽の有機物負荷を下げる必要があるが、本発明のように、消化汚泥を濃縮してアンモニアを含む分離液を系外に引き抜き、濃縮汚泥をアンモニアの少ない他の廃液で希釈して嫌気性消化槽に返送することによって、有機物負荷を下げることなく、嫌気性消化処理を行うことができる。   In addition, when the organic waste liquid subject to anaerobic digestion has a high nitrogen content, the anaerobic digestion reaction is inhibited by the ammonia that moves to the liquid side during the anaerobic digestion process, resulting in a reduction in processing efficiency. Therefore, it is necessary to dilute the organic waste liquid in advance to reduce the organic load in the anaerobic digester. However, as in the present invention, the digested sludge is concentrated and the ammonia-containing separation liquid is drawn out of the system. The anaerobic digestion treatment can be performed without lowering the organic load by diluting the concentrated sludge with another waste liquid containing less ammonia and returning it to the anaerobic digester.

請求項2の有機性廃液の嫌気性消化処理装置によれば、濃縮汚泥の濃度調整のための希釈用液体として、可溶化汚泥を用いることにより、より一層効率的な処理を行える。即ち、可溶化処理により汚泥の粘性が低下するため、可溶化汚泥は、濃縮汚泥の希釈に有効である。この場合には、希釈用液体自体も処理対象であるので、消化効率が向上する。これに対して、例えば、希釈用液体として水を加えた場合には、消化効率を高めるべく再度濃縮が必要になるが、可溶化汚泥を使用すれば濃縮の必要もなくなる。しかも、可溶化汚泥と濃縮汚泥とは前もって混合された後嫌気性消化槽に返送されることにより、可溶化汚泥と濃縮汚泥とがより均一に混合、分散され消化が促進される。   According to the anaerobic digestion treatment apparatus for organic waste liquid according to claim 2, even more efficient treatment can be performed by using solubilized sludge as a dilution liquid for adjusting the concentration of concentrated sludge. That is, since the viscosity of the sludge is reduced by the solubilization treatment, the solubilized sludge is effective for diluting the concentrated sludge. In this case, since the dilution liquid itself is a processing target, digestion efficiency is improved. On the other hand, for example, when water is added as a dilution liquid, it is necessary to concentrate again to increase digestion efficiency. However, if solubilized sludge is used, there is no need for concentration. Moreover, the solubilized sludge and the concentrated sludge are mixed in advance and then returned to the anaerobic digestion tank, so that the solubilized sludge and the concentrated sludge are more uniformly mixed and dispersed to promote digestion.

請求項3の有機性廃液の嫌気性消化処理装置によれば、酸化処理により、消化汚泥を効率的に可溶化することができる。   According to the organic waste liquid anaerobic digestion treatment apparatus of claim 3, digested sludge can be efficiently solubilized by oxidation treatment.

請求項4の有機性廃液の嫌気性消化処理装置によれば、酸化処理手段に導入する消化汚泥を予め曝気手段で曝気することにより、消化汚泥中に含まれる還元性無機物を酸化し、例えば、後段の酸化処理手段としてのオゾン処理手段において、オゾンがこの還元性無機物の酸化に消費されることを防止し、オゾンの利用率を高め、可溶化処理効率を高めることができる。   According to the anaerobic digestion treatment apparatus for organic waste liquid according to claim 4, by oxidizing the digested sludge to be introduced into the oxidation treatment means in advance by the aeration means, the reducing inorganic substance contained in the digested sludge is oxidized, for example, In the ozone treatment means as the subsequent oxidation treatment means, it is possible to prevent ozone from being consumed for the oxidation of the reducing inorganic substance, increase the utilization rate of ozone, and improve the solubilization efficiency.

請求項5の有機性廃液の嫌気性消化処理装置によれば、可溶化手段としてオゾン処理手段を採用することにより、次のような効果が奏される。即ち、オゾン処理後の可溶化汚泥は粘度が小さいため、流動性を確保しつつ、均一な状態で嫌気性消化槽に返送することができる。そして、均一状態で嫌気性消化槽に返送するので、嫌気性消化槽での消化効率が上がる。また、可溶化のために、過マンガン酸カリウムなどの薬剤を添加する場合には系内に二酸化マンガン等が残留し、また、薬注設備が必要となるが、オゾンは、消費された後は酸素となるため系内に残らず、薬注設備も不要である。   According to the organic waste liquid anaerobic digestion treatment apparatus of the fifth aspect, by adopting the ozone treatment means as the solubilization means, the following effects are exhibited. That is, since the solubilized sludge after ozone treatment has a low viscosity, it can be returned to the anaerobic digester in a uniform state while ensuring fluidity. And since it returns to an anaerobic digester in a uniform state, the digestive efficiency in an anaerobic digester goes up. In addition, when adding chemicals such as potassium permanganate for solubilization, manganese dioxide, etc. remains in the system, and chemical injection equipment is required, but after ozone is consumed, Since it becomes oxygen, it does not remain in the system and no chemical injection equipment is required.

請求項6の有機性廃液の嫌気性消化処理装置によれば、消化汚泥に凝集剤を添加することなく遠心濃縮して得られた濃縮汚泥を系外に排出することにより、有機成分に比べて比重の大きい無機成分を優先的に系外へ排出することができ、系内の無機成分の蓄積を防止して消化効率を高めることができる。また、無機成分を多く含む汚泥は脱水性に優れることから、含水率の低い脱水ケーキを得ることができ、その容量の低減で運搬、処分等の取り扱い性が良好となる。   According to the anaerobic digestion treatment apparatus for organic waste liquid according to claim 6, the concentrated sludge obtained by centrifugal concentration without adding a flocculant to the digested sludge is discharged out of the system as compared with the organic components. An inorganic component having a large specific gravity can be discharged out of the system preferentially, and accumulation of inorganic components in the system can be prevented to increase digestion efficiency. In addition, since sludge containing a large amount of inorganic components is excellent in dewaterability, a dehydrated cake with a low water content can be obtained, and handling capacity for transportation, disposal, etc. is improved by reducing its capacity.

以下に図面を参照して本発明の有機性廃液の嫌気性消化処理装置の実施の形態を詳細に説明する。   Embodiments of an anaerobic digestion apparatus for organic waste liquid according to the present invention will be described below in detail with reference to the drawings.

図1,2は本発明の有機性廃液の嫌気性消化処理装置の実施の形態を示す系統図である。図1,2において、同一機能を奏する部材には、同一符号を付してある。   1 and 2 are system diagrams showing an embodiment of the organic waste liquid anaerobic digestion treatment apparatus of the present invention. 1 and 2, members having the same function are denoted by the same reference numerals.

[図1の有機性廃液の嫌気性消化処理装置]
図1において、有機性汚泥(有機性廃液)は嫌気性消化槽1に導入され嫌気性消化処理される。この嫌気性消化槽1の消化汚泥の一部を引き抜き、濃縮機2で濃縮する。また、嫌気性消化槽1の他の一部を引き抜いて、可溶化手段としてのオゾン処理装置5で可溶化する。可溶化汚泥の少なくとも一部は混合槽3に送給し、残部は嫌気性消化槽1に返送する。濃縮機2で濃縮された濃縮汚泥は混合槽3に送給してオゾン処理装置5からの可溶化汚泥と混合して濃度調整し、ポンプ移送に好適な濃度に希釈した汚泥を移送ポンプ4により嫌気性消化槽1に返送する。
[Anaerobic digestion treatment equipment for organic waste liquid in Fig. 1]
In FIG. 1, organic sludge (organic waste liquid) is introduced into an anaerobic digester 1 and subjected to anaerobic digestion. A part of the digested sludge in the anaerobic digester 1 is extracted and concentrated by the concentrator 2. Moreover, the other part of the anaerobic digester 1 is extracted and solubilized by the ozone treatment apparatus 5 as a solubilizing means. At least a part of the solubilized sludge is fed to the mixing tank 3 and the remainder is returned to the anaerobic digester 1. The concentrated sludge concentrated in the concentrator 2 is fed to the mixing tank 3 and mixed with the solubilized sludge from the ozone treatment device 5 to adjust the concentration, and the sludge diluted to a concentration suitable for pump transfer is transferred by the transfer pump 4. Return to anaerobic digester 1.

本発明において処理の対象となる有機性廃液は、嫌気性消化処理によって減量化される有機物を含有する廃液であり、固形物を含むスラリー状のものでも、固形物を含まない液状のものでも良い。また、難生物分解性の有機物、無機物、セルロース、紙、綿、ウール、布、し尿中の固形物などが含有されていても良い。このような有機性廃液としては下水、下水初沈汚泥、し尿、浄化槽汚泥、食品工場の排水や残渣、ビール廃酵母、その他の産業廃液、これらの廃液を処理した際に生じる余剰汚泥等の有機性汚泥が挙げられる。   The organic waste liquid to be treated in the present invention is a waste liquid containing an organic substance that is reduced by anaerobic digestion treatment, and may be a slurry containing a solid or a liquid containing no solid. . In addition, non-biodegradable organic substances, inorganic substances, cellulose, paper, cotton, wool, cloth, solid matter in human waste may be contained. Examples of such organic waste liquid include sewage, sewage initial sedimentation sludge, human waste, septic tank sludge, wastewater and residue from food factories, beer waste yeast, other industrial waste liquids, and surplus sludge generated when these waste liquids are treated. Natural sludge.

嫌気性消化槽1では、嫌気性微生物を含む汚泥の存在下に、このような有機性廃液をメタン発酵させて処理する。嫌気性微生物を含む汚泥は酸生成菌とメタン生成菌を含む。嫌気性消化工程において有機性物質は嫌気性微生物により液化→低分子化→有機酸生成→メタン生成のステップによりメタンガスに転換され、処理される。   In the anaerobic digester 1, such organic waste liquid is treated by methane fermentation in the presence of sludge containing anaerobic microorganisms. Sludge containing anaerobic microorganisms contains acid-producing bacteria and methanogens. In the anaerobic digestion process, organic substances are converted to methane gas and processed by anaerobic microorganisms through the steps of liquefaction → low molecular weight → organic acid production → methane production.

嫌気性消化の条件としては、35℃付近に最適温度がある中温メタン生成菌、及び55℃付近に最適温度を有する高温メタン生成菌が増殖するいずれの温度条件も可能である。中温メタン生成菌は増殖が遅いためSRTを長くする、即ち、嫌気性消化槽を大きくする必要があるが、比較的低温での処理が可能なため加温及び保温のための設備を簡易にすることができる。これに対し、高温メタン生成菌の場合は加温及び保温の設備が必要になるが、増殖が速いためSRTが短くて良く、嫌気性消化槽を小さくすることができる。   As the conditions for anaerobic digestion, any temperature condition in which a medium temperature methanogen having an optimum temperature near 35 ° C. and a high temperature methanogen having an optimum temperature around 55 ° C. can be used. Since mesophilic methanogens grow slowly, it is necessary to lengthen the SRT, that is, to increase the size of the anaerobic digester. However, since treatment at a relatively low temperature is possible, facilities for warming and heat insulation are simplified. be able to. On the other hand, in the case of a high-temperature methanogen, heating and heat insulation facilities are required, but since the growth is fast, the SRT may be short, and the anaerobic digester can be made small.

中温メタン生成菌を主体とする場合は嫌気性消化槽での汚泥のSRTは10日以上、好ましくは15〜50日程度必要である。これに対して高温メタン生成菌を主体とする場合は前記範囲よりも短いSRT(2日以上)とすることも可能である。   When mainly mesophilic methanogens are used, the SRT of sludge in the anaerobic digester is required to be 10 days or longer, preferably about 15 to 50 days. On the other hand, when a high temperature methanogen is mainly used, it is possible to set SRT (2 days or more) shorter than the above range.

有機物負荷は0.2〜3.0kg−TVS/m・日、好ましくは0.4〜0.8kg−TVS/m・日、嫌気性消化槽内のTS濃度は1〜10%、好ましくは3〜6%、温度は30〜38℃又は45〜60℃の条件で嫌気性消化処理を行うことができる。 The organic load is 0.2 to 3.0 kg-TVS / m 3 · day, preferably 0.4 to 0.8 kg-TVS / m 3 · day, and the TS concentration in the anaerobic digester is 1 to 10%, preferably Can be performed under conditions of 3 to 6% and a temperature of 30 to 38 ° C or 45 to 60 ° C.

消化汚泥を濃縮するための濃縮機2としては、消化汚泥を固液分離して濃縮することができるものであれば良く、特に制限はないが、遠心濃縮機、浮上濃縮機、スクリュープレス濃縮機、濾布型濃縮機などを用いることができる。また、沈殿槽、膜分離装置、濾過装置などの固液分離装置を用いることもできる。   The concentrator 2 for concentrating the digested sludge is not particularly limited as long as it can separate and concentrate the digested sludge by solid-liquid separation. However, the centrifugal concentrator, the flotation concentrator, and the screw press concentrator. A filter cloth type concentrator can be used. Moreover, solid-liquid separators, such as a precipitation tank, a membrane separator, and a filtration apparatus, can also be used.

この消化汚泥の濃縮に当っては、消化汚泥に凝集剤、好ましくは高分子凝集剤を添加して消化汚泥中のSS分を凝集させることにより、濃縮倍率を高め、清澄な分離液を得ることができる。凝集剤としては消化汚泥の濃縮、脱水に一般的に用いられる公知のものが適用できるが、添加量が少なくて済むことからカチオン系の高分子凝集剤が良い。高分子凝集剤は、水道水、工業用水、下水二次処理水等に好ましくは0.2〜0.4重量%程度の濃度に溶解して添加され、その添加率は消化汚泥のSS当たり0.05〜1.5重量%とすることが好ましい。消化汚泥に凝集剤を添加する場合、凝集剤は消化汚泥の移送ラインに注入しても良く、濃縮機に添加しても良く、また、別途凝集槽を設けて凝集処理しても良い。   In the concentration of the digested sludge, a flocculant, preferably a polymer flocculant, is added to the digested sludge to agglomerate the SS content in the digested sludge, thereby increasing the concentration factor and obtaining a clear separation liquid. Can do. As the flocculant, known ones generally used for concentration and dehydration of digested sludge can be applied, but a cationic polymer flocculant is preferable because the addition amount is small. The polymer flocculant is added to tap water, industrial water, sewage secondary treated water or the like preferably dissolved at a concentration of about 0.2 to 0.4% by weight, and the addition rate is 0 per SS of digested sludge. It is preferable to set it as 0.05 to 1.5 weight%. When a flocculant is added to the digested sludge, the flocculant may be injected into the digested sludge transfer line, may be added to the concentrator, or may be agglomerated by separately providing a coagulation tank.

濃縮機2における消化汚泥の濃縮の程度は、用いる濃縮機の性能にもよるが、通常TS(固形物)濃度3〜6%程度の消化汚泥を、8〜20%程度のペースト状ないし高粘性の液状に濃縮するのが好ましい。   The degree of concentration of digested sludge in the concentrator 2 depends on the performance of the concentrator used, but usually digested sludge with a TS (solid matter) concentration of about 3 to 6% is pasty or highly viscous about 8 to 20%. It is preferable to concentrate in the liquid form.

濃縮機2からの濃縮汚泥は、必要に応じてその一部を引抜汚泥(余剰汚泥)として系外に排出し、脱水、焼却、埋め立て、コンポスト化等の処分を行っても良い。排出する引抜汚泥の粘性が高い場合には、希釈用液体で薄めて排出すると、排出ポンプの動力が少なくて済む。この希釈用液体としては処理水(濃縮機2の分離液)や他の有機性廃液の生物処理水等を用いることができる。   A part of the concentrated sludge from the concentrator 2 may be discharged out of the system as extracted sludge (excess sludge) as necessary, and may be subjected to disposal such as dehydration, incineration, landfill, composting, and the like. If the extracted sludge to be discharged has a high viscosity, the power of the discharge pump can be reduced by diluting and discharging with the dilution liquid. As the liquid for dilution, treated water (separated liquid of the concentrator 2), biologically treated water of other organic waste liquids, or the like can be used.

この汚泥の引き抜きは、嫌気性消化槽1の汚泥(TS)濃度を3〜10%に維持するように行うのが好ましい。   The sludge extraction is preferably performed so as to maintain the sludge (TS) concentration in the anaerobic digester 1 at 3 to 10%.

引抜汚泥は嫌気性消化槽1から直接排出してもよい。   The drawn sludge may be discharged directly from the anaerobic digester 1.

また、濃縮機2の濃縮分離液は処理水としてそのまま下水道等へ放流することができるが、好気性生物処理、その他の後処理を行った後放流しても良い。   In addition, the concentrated separation liquid of the concentrator 2 can be discharged as treated water as it is to a sewer or the like, but may be discharged after aerobic biological treatment or other post-treatment.

また、この濃縮分離液にはアンモニア、リンなどが高濃度に含まれるため、その移送配管中にリン酸マグネシウムアンモニウム(MAP)の結晶などが析出し、配管を閉塞させることがある。この場合には、濃縮分離液に水道水、工業用水、下水二次処理水などを導入することによってそれらの濃度を下げ、析出を防ぐことができる。   In addition, since this concentrated separation liquid contains ammonia, phosphorus, and the like in high concentrations, magnesium ammonium phosphate (MAP) crystals may precipitate in the transfer pipe, which may block the pipe. In this case, by introducing tap water, industrial water, sewage secondary treated water or the like into the concentrated separation liquid, the concentration can be lowered and precipitation can be prevented.

オゾン処理装置5では、嫌気性消化槽1からの消化汚泥をオゾンと接触させることにより可溶化する。このオゾン処理装置5におけるオゾンとの接触方法としては、オゾン処理槽に消化汚泥を導入してオゾンを吹き込む方法、機械攪拌による方法、充填層を利用する方法などが採用できる。オゾンとしてはオゾン化酸素、オゾン化空気などのオゾン含有ガスの他、オゾン含有水などが使用でき、オゾンの使用量は通常オゾン処理される消化汚泥のVSSあたり0.01〜0.08g−O/g−VSS、好ましくは0.02〜0.05g−O/g−VSSである。 In the ozone treatment apparatus 5, the digested sludge from the anaerobic digester 1 is solubilized by contacting with ozone. As a contact method with ozone in the ozone treatment apparatus 5, a method of introducing digested sludge into an ozone treatment tank and blowing ozone, a method of mechanical stirring, a method of using a packed bed, or the like can be employed. As ozone, in addition to ozone-containing gas such as ozonated oxygen and ozonized air, ozone-containing water can be used. The amount of ozone used is 0.01 to 0.08 g-O per VSS of digested sludge that is usually treated with ozone. 3 / g-VSS, preferably 0.02 to 0.05 g-O 3 / g-VSS.

このようなオゾン処理を行うことにより、消化汚泥中の菌体は死滅し、その他の有機物と共に易生物分解性に改質される。また、その際、汚泥の粘性が著しく低下する。オゾン処理装置5で可溶化された可溶化汚泥は一部又は全部が混合槽3に送給され、残部(可溶化汚泥の一部を混合槽3に送給する場合)は嫌気性消化槽1に返送される。   By performing such ozone treatment, the bacterial cells in the digested sludge are killed and modified to be readily biodegradable together with other organic substances. Moreover, the viscosity of sludge falls remarkably in that case. Part or all of the solubilized sludge solubilized by the ozone treatment device 5 is fed to the mixing tank 3, and the remainder (when part of the solubilized sludge is fed to the mixing tank 3) is an anaerobic digester 1. Will be returned.

混合槽3では、濃縮機2からの濃縮汚泥にオゾン処理装置5からの可溶化汚泥を添加して濃度調整する。この濃縮汚泥の濃度調整に用いる希釈用液体としては、可溶化汚泥の他、消化汚泥、原汚泥の有機性汚泥(有機性廃液)、処理水(濃縮機2の分離液)、工業用水、上水、下水二次処理水、その他、他系統の廃液や生物処理水等を用いることもできるが、好ましくは可溶化汚泥を用いる。濃縮汚泥のTS濃度は通常8〜20%であり著しく高粘性であるが、可溶化汚泥のTS濃度は通常3〜6%である上に、可溶化処理により更に粘性が低下しているため、このような可溶化汚泥により、濃度汚泥を効率的に希釈することができる。   In the mixing tank 3, the concentration is adjusted by adding the solubilized sludge from the ozone treatment device 5 to the concentrated sludge from the concentrator 2. Dilution liquids used to adjust the concentration of this concentrated sludge include solubilized sludge, digested sludge, organic sludge of the original sludge (organic waste liquid), treated water (separator of the concentrator 2), industrial water, Water, sewage secondary treated water, and other waste liquids or biological treated water may be used, but solubilized sludge is preferably used. The TS concentration of the concentrated sludge is usually 8 to 20% and extremely high viscosity, but the TS concentration of the solubilized sludge is usually 3 to 6% and the viscosity is further lowered by the solubilization treatment. Such solubilized sludge can efficiently dilute the concentrated sludge.

濃縮汚泥の濃度調整には、必ずしも混合槽を設ける必要はなく、濃縮汚泥の移送配管において、移送ポンプのサクション側或いは移送ポンプに希釈用液体を注入するのみでも良い。しかし、濃縮汚泥の粘性が高い場合には、図1に示す如く、混合槽3を設け、機械的に混合することが好ましい。この混合手段としては、撹拌機、ガスの吹き込み、スタティックミキサー等を用いることができる。   In order to adjust the concentration of the concentrated sludge, it is not always necessary to provide a mixing tank. In the concentrated sludge transfer pipe, the dilution liquid may be simply injected into the suction side of the transfer pump or the transfer pump. However, when the viscosity of the concentrated sludge is high, it is preferable to provide a mixing tank 3 and mechanically mix as shown in FIG. As the mixing means, a stirrer, gas blowing, a static mixer, or the like can be used.

濃縮汚泥の濃度調整のための混合槽3の滞留時間は1分〜6時間程度で良いため、混合槽3の容積は小さくて足りる。また、濃縮汚泥を直接嫌気性消化槽に投入して消化汚泥や原汚泥と混合する場合に比べ、この混合槽3における混合のために必要な動力は著しく小さくて済む。   Since the residence time of the mixing tank 3 for adjusting the concentration of the concentrated sludge may be about 1 minute to 6 hours, the volume of the mixing tank 3 may be small. Further, compared with the case where the concentrated sludge is directly fed into the anaerobic digestion tank and mixed with the digested sludge and the raw sludge, the power required for mixing in the mixing tank 3 can be remarkably small.

濃縮汚泥の濃度調整の程度は、例えば一段のモノポンプで円滑に移送が行える程度で良く、一般的には移送ポンプ4の吐出圧が0.4MPa以下となるように、TS濃度で6〜12%、例えば8%程度に濃縮することが好ましい。   The degree of concentration adjustment of the concentrated sludge may be such that it can be smoothly transferred with, for example, a single monopump. Generally, the TS concentration is 6 to 12% so that the discharge pressure of the transfer pump 4 is 0.4 MPa or less. For example, it is preferable to concentrate to about 8%.

図1の装置では、濃縮機2で濃縮された濃縮汚泥が混合槽3に投下され、この濃縮汚泥が可溶化汚泥によって濃度調整される。このようにして濃度調整された汚泥は移送ポンプ4により効率的に嫌気性消化槽1に返送することができ、また、嫌気性消化槽1内で容易に分散することにより、効率的に嫌気性消化処理される。   In the apparatus of FIG. 1, the concentrated sludge concentrated by the concentrator 2 is dropped into the mixing tank 3, and the concentration of this concentrated sludge is adjusted by the solubilized sludge. The sludge whose concentration has been adjusted in this way can be efficiently returned to the anaerobic digester 1 by the transfer pump 4, and can be easily dispersed in the anaerobic digester 1, thereby efficiently anaerobically. Digested.

濃度調整後の汚泥の移送のための移送ポンプ4としては特に制限はないが、モノポンプ、ホースポンプ等を用いることができる。   Although there is no restriction | limiting in particular as the transfer pump 4 for transfer of the sludge after density | concentration adjustment, A monopump, a hose pump, etc. can be used.

本発明では、このように嫌気性消化槽1内の消化汚泥の一部を引き抜いて濃縮機2で濃縮し、濃縮汚泥を濃度調整して嫌気性消化槽1に返送することにより、HRTを変えることなくSRTを長くすることができ、これにより汚泥減量率を低減することができる。   In the present invention, a part of the digested sludge in the anaerobic digester 1 is extracted in this way and concentrated by the concentrator 2, and the concentration of the concentrated sludge is adjusted and returned to the anaerobic digester 1, thereby changing the HRT. The SRT can be lengthened without causing a sludge reduction rate to be reduced.

濃縮のための嫌気性消化槽1からの消化汚泥の引き抜き量は特に制限はないが、嫌気性消化槽1内の保有汚泥の1/30〜1/10程度を引き抜いて、濃縮、濃度調整した後循環させることにより、SRTを、このような汚泥循環を行わない場合の少なくとも3倍程度以上に延長することができ、難生物分解性の有機性廃液であっても、汚泥の減量化を促進させることができる。   The amount of digested sludge withdrawn from the anaerobic digester 1 for concentration is not particularly limited, but about 1/30 to 1/10 of the retained sludge in the anaerobic digester 1 is withdrawn to concentrate and adjust the concentration. By post-circulating, the SRT can be extended at least about three times that of the case where such sludge circulation is not performed, and even if it is a non-biodegradable organic waste liquid, the reduction of sludge is promoted. Can be made.

また、可溶化のために嫌気性消化槽1から引き抜く消化汚泥量は、可溶化による減量効果を十分確保するために、消化汚泥中に含まれる有機固形物(VSS)の量として、嫌気性消化槽1に導入される有機固形物(VSS)量の1/3〜5倍、好ましくは1/2〜2倍に相当する量とするのが好ましい。また、一日当たりに可溶化処理する消化汚泥量は嫌気性消化槽1の全保有有機固形物(VSS)量の1/10以下、好ましくは1/100〜1/15、より好ましくは1/50〜1/30に相当する量とするのが好ましい。一日当たりの可溶化処理量をこのような量にすることにより、嫌気性消化処理に必要な微生物量を嫌気性消化槽1で保持することができ、嫌気性消化処理の効率を高く保つことができる。   The amount of digested sludge extracted from the anaerobic digester 1 for solubilization is anaerobic digestion as the amount of organic solids (VSS) contained in the digested sludge in order to ensure a sufficient weight reduction effect due to solubilization. It is preferable that the amount corresponds to 1/3 to 5 times, preferably 1/2 to 2 times the amount of organic solid (VSS) introduced into the tank 1. The amount of digested sludge to be solubilized per day is 1/10 or less, preferably 1/100 to 1/15, more preferably 1/50 of the total amount of organic solids (VSS) in the anaerobic digester 1. An amount corresponding to ˜1 / 30 is preferable. By setting the amount of solubilization treatment per day to such an amount, the amount of microorganisms necessary for the anaerobic digestion treatment can be retained in the anaerobic digestion tank 1, and the efficiency of the anaerobic digestion treatment can be kept high. it can.

なお、図1では、可溶化手段としてオゾン処理装置を用いているが、本発明において、可溶化処理は、何らオゾン処理装置に限定されず、汚泥細胞を変性、破壊して微生物によって資化されやすい形態に可溶化することができるものであれば良く、通常汚泥の可溶化方法として知られている任意の方法を採用することができ、オゾン処理の他、例えば過酸化水素等の酸化力の強い酸化剤や、酸、アルカリなどによる化学的処理、超音波処理、ミルによる磨砕のような物理的処理、熱的処理等の各種の方法を単独で或いは2種以上を組み合わせて採用することができる。   In FIG. 1, an ozone treatment device is used as the solubilization means. However, in the present invention, the solubilization treatment is not limited to the ozone treatment device, and the sludge cells are denatured and destroyed to be assimilated by microorganisms. Any method can be used as long as it can be solubilized in an easy form, and any method known as a sludge solubilization method can be adopted. Adopt various methods such as chemical treatment with strong oxidizer, acid, alkali, etc., ultrasonic treatment, physical treatment such as milling, thermal treatment, etc. alone or in combination of two or more. Can do.

また、可溶化処理は、嫌気性消化槽から引き抜いた消化汚泥に対して行う他、この消化汚泥を濃縮して得られた濃縮汚泥の一部又は全部に対して行っても良い。   Further, the solubilization treatment may be performed on the digested sludge extracted from the anaerobic digestion tank, or may be performed on a part or all of the concentrated sludge obtained by concentrating the digested sludge.

なお、濃縮機や混合槽は、大気と遮断した状態で運転するのが好ましく、例えば、濃縮機を密閉状態にして濃縮することにより、汚泥と酸素との接触を制限すると、嫌気性菌を生かしたまま嫌気性消化槽に返送でき、嫌気性消化槽の生菌数保持、増加が容易となり、消化効率を向上させることができる。   In addition, it is preferable to operate the concentrator and the mixing tank in a state cut off from the atmosphere. For example, by concentrating the concentrator in a sealed state to limit the contact between sludge and oxygen, the anaerobic bacteria are utilized. It can be returned to the anaerobic digestion tank as it is, and the number of viable bacteria in the anaerobic digestion tank can be easily maintained and increased, and the digestion efficiency can be improved.

また、嫌気性消化槽で発生する消化ガス(メタンガス)を有効利用して、消化槽の加温や、可溶化手段や濃縮機等に必要な動力の一部又は全部を賄うことも好ましい。   It is also preferable to effectively use the digestion gas (methane gas) generated in the anaerobic digestion tank to cover part or all of the power necessary for the digestion tank heating, solubilization means, concentrator and the like.

[図2の有機性廃液の嫌気性消化処理装置]
図2の有機性廃液の嫌気性消化処理装置は、混合槽3を省略し、オゾン処理装置5からの可溶化汚泥を移送ポンプ4のサクション側に注入して濃縮機2からの濃縮汚泥と混合するようにした点、オゾン処理装置5の前段に前曝気槽6を設け、消化汚泥を予め前曝気槽6で曝気処理した後オゾン処理するようにした点、嫌気性消化槽1の消化汚泥を引き抜き遠心濃縮機7で濃縮し、濃縮汚泥を引抜汚泥として系外へ排出し、分離液を移送ポンプ4のサクション側に注入するようにした点、が図1の有機性廃液の嫌気性消化処理装置と異なり、その他は同様の構成とされている。
[Organic waste liquid anaerobic digestion treatment equipment in Fig. 2]
The organic waste liquid anaerobic digestion treatment apparatus of FIG. 2 omits the mixing tank 3 and injects the solubilized sludge from the ozone treatment apparatus 5 into the suction side of the transfer pump 4 and mixes it with the concentrated sludge from the concentrator 2. The point which was made to perform, the pre-aeration tank 6 was provided in the front | former stage of the ozone treatment apparatus 5, the point which was made to carry out ozone treatment after digesting sludge in the pre-aeration tank 6 beforehand, Anaerobic digestion treatment of the organic waste liquid in FIG. 1 is concentrated in the drawing centrifugal concentrator 7, the concentrated sludge is discharged out of the system as the drawn sludge, and the separated liquid is injected into the suction side of the transfer pump 4. Unlike the device, the rest of the configuration is the same.

前曝気槽6の処理条件としては、特に制限はないが、消化汚泥中の還元性無機物の空気酸化を効率良く行わせる観点から、曝気空気を0.2〜1.0m/m・minの条件で吹き込み、滞留時間5分〜8時間程度で曝気処理することが好ましい。このような前曝気槽6をオゾン処理装置5の前段に設けることにより、消化汚泥中の還元性無機物を予め酸化処理し、オゾン処理装置5でのオゾン処理による汚泥の可溶化効率を高めることができる。 The treatment conditions for pre-aeration tank 6 is not particularly limited, but the air oxidation of the reducing inorganic digested sludge from the viewpoint of efficiently carried out, the aeration air 0.2~1.0m 3 / m 3 · min It is preferable that the aeration is performed under the above conditions and the residence time is about 5 minutes to 8 hours. By providing such a pre-aeration tank 6 in the preceding stage of the ozone treatment device 5, the reducing inorganic substance in the digested sludge is oxidized in advance, and the sludge solubilization efficiency by the ozone treatment in the ozone treatment device 5 can be increased. it can.

なお、この前曝気槽6の曝気空気として、オゾン処理装置5からの排オゾンガスを用いると、排ガスを有効利用して消化汚泥中の還元性無機物の酸化をより一層効率的に行うことができる。特に、オゾンとしてオゾン化酸素を用いた場合には、排ガスの酸素濃度が高いため、効果的である。   If exhausted ozone gas from the ozone treatment device 5 is used as the aerated air in the pre-aeration tank 6, it is possible to more efficiently oxidize the reducing inorganic substance in the digested sludge by effectively using the exhaust gas. In particular, the use of ozonated oxygen as ozone is effective because the oxygen concentration of the exhaust gas is high.

このような前曝気槽6を設けることにより、オゾン処理装置5におけるオゾン使用量を低減することができ、例えば、オゾン処理装置5に導入される消化汚泥に対して0.01〜0.04kg−O/kg−VSSとして、汚泥を効率的に可溶化処理することが可能となる。 By providing such a pre-aeration tank 6, the amount of ozone used in the ozone treatment device 5 can be reduced. For example, 0.01 to 0.04 kg− with respect to digested sludge introduced into the ozone treatment device 5. As O 3 / kg-VSS, sludge can be efficiently solubilized.

遠心濃縮機7へは、嫌気性消化槽1内の汚泥濃度を前述の好適範囲に維持するための必要量の消化汚泥が、凝集剤が添加されることなく導入され、遠心濃縮される。この凝集剤無添加の消化汚泥を遠心濃縮することにより、消化汚泥中の無機成分が優先的に濃縮される。この濃縮汚泥を系外へ引き抜くことにより、無機成分を優先的に系外へ排出し、系内の無機成分の蓄積を防止して消化効率を高めることができる。   To the centrifugal concentrator 7, a necessary amount of digested sludge for maintaining the sludge concentration in the anaerobic digester 1 in the above-described preferred range is introduced without adding a flocculant and concentrated by centrifugation. By centrifugally concentrating the digested sludge to which no flocculant is added, the inorganic components in the digested sludge are preferentially concentrated. By drawing this concentrated sludge out of the system, the inorganic components are preferentially discharged out of the system, and accumulation of the inorganic components in the system can be prevented to increase digestion efficiency.

この引抜汚泥は、脱水、焼却、埋め立て、コンポスト化等で処分される。なお、この引抜汚泥は無機成分含有量が多く、脱水性に優れ、含水率の低い脱水ケーキとなるため、取り扱いに有利である。   This extracted sludge is disposed of by dehydration, incineration, landfill, composting, and the like. This drawn sludge has a high inorganic component content, is excellent in dewaterability, and becomes a dehydrated cake with a low moisture content, which is advantageous for handling.

図2の有機性廃液の嫌気性消化処理装置において、その他の処理条件や、代替し得る手段等は、図1の有機性廃液の嫌気性消化処理装置について前述した説明と同様である。   In the organic waste liquid anaerobic digestion treatment apparatus of FIG. 2, other processing conditions and means that can be replaced are the same as those described above for the organic waste liquid anaerobic digestion treatment apparatus of FIG.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

下水の初沈汚泥と余剰汚泥を35℃の下、一過式で嫌気性消化した。嫌気性消化槽の容積は1,100m、TVS負荷は0.65kg/m・日、HRTは45日(1日当たりの投入汚泥量は24.4m)。投入汚泥濃度(TS濃度。以下同様)3.5%(TVS/TS比83%)に対し、消化汚泥濃度は1.6%(TVS/TS比73%)であり、消化率(TVSの減量率)は60%であった。この嫌気性消化槽による嫌気性消化処理に当たり、嫌気性消化槽内汚泥を固液分離して濃縮汚泥を返送することによって汚泥滞留時間を増加させると共に、槽内汚泥を可溶化処理して返送することにより、減量率を高めることを試み、固液分離手段として遠心濃縮機を用いた。また、可溶化手段としてオゾン処理装置を用いた。 Sewage primary sedimentation sludge and excess sludge were anaerobically digested at 35 ° C in a transient manner. The volume of the anaerobic digester is 1,100 m 3 , the TVS load is 0.65 kg / m 3 · day, and the HRT is 45 days (the amount of sludge input per day is 24.4 m 3 ). Digested sludge concentration is 1.6% (TVS / TS ratio 73%), compared to the input sludge concentration (TS concentration, the same applies below) 3.5% (TVS / TS ratio 83%), and digestibility (reduction of TVS) Rate) was 60%. In the anaerobic digestion treatment by the anaerobic digestion tank, the sludge retention time is increased by solid-liquid separation of the sludge in the anaerobic digestion tank and returning the concentrated sludge, and the sludge in the tank is solubilized and returned. Thus, an attempt was made to increase the weight loss rate, and a centrifugal concentrator was used as a solid-liquid separation means. Moreover, an ozone treatment apparatus was used as a solubilizing means.

槽内汚泥を1.0m/hrでオゾン処理装置に送り、オゾン使用量0.03kg−O/kg−VSSとなるようにオゾンと反応させた。また、投入汚泥量の15%に相当する3.7mの槽内汚泥を引き抜き、残り85%に相当する分を、槽内汚泥を遠心濃縮した際の分離液として系外に排出した。遠心濃縮は、槽内汚泥を2.0m/hrで遠心濃縮機に供給して、遠心強度2,100G、差速15min−1のもと、0.2重量%に溶解したカチオン系高分子凝集剤をSS当たり0.6重量%添加しながら行った。このとき、濃縮汚泥濃度は12%、SS回収率は95%以上であった。遠心濃縮機から濃縮汚泥受槽(混合槽)に排出された濃縮汚泥をモノポンプで嫌気性消化槽に返送しようとしたところ、モノポンプの圧力が0.8MPaに達し、ポンプがトリップしてしまい、汚泥を返送することができなかった。 The tank sludge was sent to the ozone treatment apparatus at 1.0 m 3 / hr and reacted with ozone so that the amount of ozone used was 0.03 kg-O 3 / kg-VSS. Further, 3.7 m 3 of the sludge in the tank corresponding to 15% of the input sludge amount was drawn out, and the remaining 85% was discharged out of the system as a separation liquid when the sludge in the tank was centrifugally concentrated. Centrifugal concentration is performed by supplying sludge in the tank to a centrifugal concentrator at 2.0 m 3 / hr and dissolving at 0.2 wt% under a centrifugal strength of 2,100 G and a differential speed of 15 min −1. The aggregating agent was added while adding 0.6% by weight per SS. At this time, the concentrated sludge concentration was 12%, and the SS recovery rate was 95% or more. When the concentrated sludge discharged from the centrifugal concentrator to the concentrated sludge receiving tank (mixing tank) was returned to the anaerobic digester with a monopump, the pressure of the monopump reached 0.8 MPa, and the pump tripped. I was unable to return it.

そこで、以下の実施例及び比較例の処理を行った。   Therefore, the following examples and comparative examples were processed.

実施例1
濃縮汚泥を混合槽に投入すると共に、この混合槽にオゾン処理により可溶化した汚泥の一部を導入して、攪拌機で緩やかに攪拌しながら混合したところ、混合槽内の汚泥濃度は3.6%となり、モノポンプの圧力は0.12MPaにまで低下したため、速やかに嫌気性消化槽に返送することができた。
Example 1
Concentrated sludge was introduced into the mixing tank, and a part of the sludge solubilized by ozone treatment was introduced into the mixing tank and mixed while gently stirring with a stirrer. The sludge concentration in the mixing tank was 3.6. Since the pressure of the monopump decreased to 0.12 MPa, it could be promptly returned to the anaerobic digester.

このような運転を1年間継続したときの嫌気性消化槽内の汚泥濃度、及び固形分の収支及び消化ガスの発生量から求めた消化率の推移を図3に示す。図3に示されるように、運転開始5ヶ月め以降、槽内のTVS濃度は2.3%前後で推移するようになり、80%以上の消化率が継続して得られた。槽内汚泥濃度が4.6%まで増加したのに応じてオゾン処理汚泥と混合後の濃縮汚泥濃度は7.2%にまで増加したが、モノポンプの圧力は0.3MPa以下で、無理なく返送することができた。   FIG. 3 shows the transition of the digestibility obtained from the sludge concentration in the anaerobic digester when such operation is continued for one year, the balance of solids, and the amount of digestion gas generated. As shown in FIG. 3, after the fifth month from the start of operation, the TVS concentration in the tank began to change around 2.3%, and a digestibility of 80% or higher was continuously obtained. As the sludge concentration in the tank increased to 4.6%, the concentrated sludge concentration after mixing with ozone-treated sludge increased to 7.2%, but the pressure of the monopump was 0.3 MPa or less, and returned without difficulty. We were able to.

比較例1
モノポンプで圧送できる程度に圧力を下げるため、遠心濃縮の条件を変更した。遠心強度を1,000Gまで下げ、凝集剤添加率を0.2重量%まで下げたところ、濃縮汚泥濃度は7%程度となり、モノポンプの圧力は0.3MPaまで低下し、嫌気性消化槽に返送することができるようになった。しかし、このときのSS回収率は70%であり、分離液側に汚泥が流出した。
Comparative Example 1
The centrifugal concentration conditions were changed to reduce the pressure to such an extent that it could be pumped with a monopump. When the centrifugal strength was lowered to 1,000G and the flocculant addition rate was lowered to 0.2% by weight, the concentration of concentrated sludge became about 7%, the pressure of the monopump decreased to 0.3 MPa, and it was returned to the anaerobic digester. I was able to do that. However, the SS recovery rate at this time was 70%, and sludge flowed out to the separation liquid side.

このような運転を1年間継続したときの嫌気性消化槽内汚泥濃度、及び消化率の推移を図4に示す。図4に示されるように、SS回収率が低かったため、運転を継続しても槽内汚泥濃度を高めることができず、消化率を70%以上に高めることはできなかった。   FIG. 4 shows the transition of the sludge concentration in the anaerobic digester and the digestibility when such operation is continued for one year. As shown in FIG. 4, since the SS recovery rate was low, the sludge concentration in the tank could not be increased even if the operation was continued, and the digestibility could not be increased to 70% or more.

実施例2
嫌気性消化槽からの消化汚泥を4.0m/hrで遠心濃縮し、下水二次処理水を1.0m/hrで混合槽に導入し、攪拌機で緩やかに攪拌して混合したこと以外は実施例1と同様に処理を行ったところ、濃縮汚泥返送用のモノポンプの圧力は0.2MPaにまで低下し、嫌気性消化槽に速やかに返送することができた。
Example 2
Except that the digested sludge from the anaerobic digestion tank is centrifugally concentrated at 4.0 m 3 / hr, the secondary treated water of sewage is introduced into the mixing tank at 1.0 m 3 / hr, and gently stirred with a stirrer and mixed. When the treatment was performed in the same manner as in Example 1, the pressure of the monopump for returning the concentrated sludge decreased to 0.2 MPa and could be returned quickly to the anaerobic digester.

このような運転を継続したときの嫌気性消化槽内汚泥濃度、及び消化率の推移を図5に示す。図5に示されるように、運転開始5ヶ月後に槽内TS濃度が3.7%を超えるようになると、遠心濃縮機の固形物負荷量が高くなりすぎて運転することができなくなった。そこで、槽内汚泥の引き抜き量を投入汚泥量の25%に相当する6m/日に増加させたところ、槽内TS濃度は3.7%前後で推移し、運転を継続することができ、消化率は78%まで向上した。 FIG. 5 shows the transition of the sludge concentration in the anaerobic digester and the digestibility when such operation is continued. As shown in FIG. 5, when the TS concentration in the tank exceeded 3.7% after 5 months from the start of operation, the centrifugal solidifier became too solid to be operated. Therefore, when the extraction amount of sludge in the tank was increased to 6 m 3 / day corresponding to 25% of the input sludge amount, the TS concentration in the tank changed around 3.7%, and the operation could be continued. Digestibility improved to 78%.

以下に、オゾン処理による可溶化効果と、凝集剤無添加での遠心濃縮による無機成分の優先的排出効果を示す実験例を挙げる。   Below, the experimental example which shows the preferential discharge effect of the inorganic component by the solubilization effect by ozone treatment and the centrifugal concentration without flocculant addition is given.

実験例1
消化汚泥をオゾン反応率0.03kg−O/kg−VSSでオゾン処理したときの、オゾン処理前後の汚泥の性状を調べ、結果を表1に示した。
Experimental example 1
The properties of the sludge before and after the ozone treatment when the digested sludge was ozone treated with an ozone reaction rate of 0.03 kg-O 3 / kg-VSS are shown in Table 1.

Figure 2005199258
Figure 2005199258

表1より明らかなように、オゾン処理の前後で、TS、VS、全CODCr濃度は殆ど変らなかったが、SS、VSS濃度はオゾン処理前に比べ1割弱減少し、溶解性CODCr、全BOD濃度が増加した。この結果から、オゾン処理により、汚泥中のVSS成分の一部が可溶化して溶解性成分に転換され、生物分解されやすくなったことが分かる。 As is clear from Table 1, the TS, VS, and total COD Cr concentrations were almost unchanged before and after the ozone treatment, but the SS and VSS concentrations were decreased by less than 10% compared to those before the ozone treatment, and soluble COD Cr , Total BOD concentration increased. From this result, it can be seen that a part of the VSS component in the sludge was solubilized and converted into a soluble component by the ozone treatment, and biodegradation was facilitated.

実験例2
消化汚泥(TS5%)に、高分子凝集剤として下水二次処理水に0.2重量%濃度に溶解したポリメタクリル酸エステル系ポリマーを、SS当たり0.5重量%添加してデカンタ型遠心濃縮機に4m/hrで供給し、遠心強度2100Gで遠心濃縮した場合、得られる濃縮汚泥と濃縮分離液の濃度(TS)及び量は表2に示す通りであった。
Experimental example 2
Decanter-type centrifugal concentration by adding 0.5% by weight of polymethacrylate polymer dissolved in 0.2% by weight of sewage secondary treatment water as a polymer flocculant to digested sludge (TS 5%) The concentration (TS) and amount of the obtained concentrated sludge and the concentrated separated liquid were as shown in Table 2 when supplied to the machine at 4 m 3 / hr and centrifugally concentrated at a centrifugal strength of 2100 G.

また、この消化汚泥を凝集剤無添加で同条件で遠心濃縮した場合、得られる濃縮汚泥と濃縮分離液の濃度(TS)及び量は表2に示す通りであった。   In addition, when this digested sludge was centrifugally concentrated under the same conditions without adding a flocculant, the concentration (TS) and amount of the obtained concentrated sludge and the concentrated separation liquid were as shown in Table 2.

Figure 2005199258
Figure 2005199258

次に、濃度の異なる数種類の消化汚泥について、凝集剤無添加で上記と同様にして遠心濃縮を行い、遠心濃縮機への供給汚泥のTVS/TS比と排出汚泥(濃縮汚泥と上澄汚泥(濃縮分離液))のTVS/TS比との関係を調べ、結果を図6に示した。   Next, several types of digested sludges with different concentrations were subjected to centrifugal concentration in the same manner as above without adding a flocculant, and the TVS / TS ratio of the sludge supplied to the centrifugal concentrator and the discharged sludge (concentrated sludge and supernatant sludge ( The relationship between the concentrated separation liquid)) and the TVS / TS ratio was examined, and the results are shown in FIG.

図6より明らかなように、濃縮汚泥のTVS/TS比は供給汚泥のTVS/TS比より0.02〜0.04低くなっているのに対し、上澄汚泥では0.03程度高くなっていた。この結果から、濃縮汚泥側に無機成分が優先的に濃縮されたことが分かる。   As is clear from FIG. 6, the TVS / TS ratio of the concentrated sludge is 0.02 to 0.04 lower than the TVS / TS ratio of the supplied sludge, whereas the supernatant sludge is about 0.03 higher. It was. This result shows that the inorganic component was concentrated preferentially to the concentrated sludge side.

また、各々の濃縮汚泥及び供給汚泥をそれぞれベルトプレス脱水機で同条件(濾過速度、濾布圧、凝集剤添加率)の下、脱水したところ、得られた脱水ケーキの含水率はいずれも、濃縮汚泥の脱水ケーキの方が供給汚泥の脱水ケーキより5%程度低くなっており、同じ固形物量で比較した場合、濃縮汚泥の脱水ケーキでは、供給汚泥の脱水ケーキに比べて脱水ケーキ量は15〜20%減少した。この結果から、凝集剤無添加の遠心濃縮で得られた無機成分含有量の多い濃縮汚泥は脱水性に優れることが明らかである。   In addition, each concentrated sludge and supplied sludge were dehydrated under the same conditions (filtration speed, filter cloth pressure, coagulant addition rate) with a belt press dehydrator, respectively, and the water content of the obtained dehydrated cake was The concentrated sludge dehydrated cake is about 5% lower than the supplied sludge dehydrated cake. When compared with the same amount of solids, the concentrated sludge dehydrated cake has a dehydrated cake amount of 15 compared to the supplied sludge dehydrated cake. Reduced by ~ 20%. From this result, it is clear that the concentrated sludge with a high content of inorganic components obtained by centrifugal concentration without adding a flocculant is excellent in dewaterability.

本発明の有機性廃液の嫌気性消化処理装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the anaerobic digestion processing apparatus of the organic waste liquid of this invention. 本発明の有機性廃液の嫌気性消化処理装置の他の実施の形態を示す系統図である。It is a systematic diagram which shows other embodiment of the anaerobic digestion processing apparatus of the organic waste liquid of this invention. 実施例1における嫌気性消化槽内の汚泥濃度及び消化率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the sludge density | concentration in the anaerobic digestion tank in Example 1, and a digestibility. 比較例1における嫌気性消化槽内の汚泥濃度及び消化率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the sludge density | concentration and digestibility in the anaerobic digester in the comparative example 1. 実施例2における嫌気性消化槽内の汚泥濃度及び消化率の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the sludge density | concentration in the anaerobic digester in Example 2, and a digestibility. 実験例2で求めた供給汚泥のTVS/TS比と排出汚泥(濃縮汚泥と上澄汚泥(濃縮分離液))のTVS/TS比との関係を示すグラフである。It is a graph which shows the relationship between TVS / TS ratio of the supply sludge calculated | required in Experimental example 2, and TVS / TS ratio of discharge sludge (concentrated sludge and supernatant sludge (concentrated separation liquid)).

符号の説明Explanation of symbols

1 嫌気性消化槽
2 濃縮機
3 混合槽
4 移送ポンプ
5 オゾン処理装置
6 前曝気槽
7 遠心濃縮機
DESCRIPTION OF SYMBOLS 1 Anaerobic digester 2 Concentrator 3 Mixing tank 4 Transfer pump 5 Ozone treatment device 6 Pre-aeration tank 7 Centrifugal concentrator

Claims (6)

有機性廃液を嫌気性消化する嫌気性消化槽と、
該嫌気性消化槽から抜き出した消化汚泥を可溶化する可溶化手段と、
該可溶化手段からの可溶化汚泥を前記嫌気性消化槽に返送する返送手段と、
該嫌気性消化槽から排出される消化汚泥を濃縮する固液分離手段と、
該固液分離手段からの濃縮汚泥を前記嫌気性消化槽へ返送する移送ポンプを有する配管と、
該移送ポンプ又は該移送ポンプのサクション側において、濃縮汚泥に液体を添加する液供給手段と
を有することを特徴とする有機性廃液の嫌気性消化処理装置。
An anaerobic digester for anaerobically digesting organic waste liquid;
Solubilization means for solubilizing digested sludge extracted from the anaerobic digester;
Returning means for returning the solubilized sludge from the solubilizing means to the anaerobic digester;
Solid-liquid separation means for concentrating the digested sludge discharged from the anaerobic digester;
A pipe having a transfer pump for returning the concentrated sludge from the solid-liquid separation means to the anaerobic digester;
An apparatus for anaerobic digestion of organic waste liquid, comprising: a liquid supply means for adding a liquid to the concentrated sludge on the transfer pump or a suction side of the transfer pump.
請求項1において、該濃縮汚泥に添加される液体が、前記可溶化汚泥であることを特徴とする有機性廃液の嫌気性消化処理装置。   2. The organic waste liquid anaerobic digestion apparatus according to claim 1, wherein the liquid added to the concentrated sludge is the solubilized sludge. 請求項1又は2において、前記可溶化手段が酸化処理手段であることを特徴とする有機性廃液の嫌気性消化処理装置。   3. The organic waste liquid anaerobic digestion treatment apparatus according to claim 1, wherein the solubilization means is an oxidation treatment means. 請求項3において、前記酸化処理手段の前段に、前記嫌気性消化槽から抜き出した消化汚泥を曝気する曝気手段を有することを特徴とする有機性廃液の嫌気性消化処理装置。   The anaerobic digestion treatment apparatus for organic waste liquid according to claim 3, further comprising aeration means for aeration of the digested sludge extracted from the anaerobic digestion tank before the oxidation treatment means. 請求項3又は4において、前記酸化処理手段がオゾン処理手段であることを特徴とする有機性廃液の嫌気性消化処理装置。   5. The organic waste liquid anaerobic digestion apparatus according to claim 3, wherein the oxidation treatment means is an ozone treatment means. 請求項1ないし5のいずれか1項において、前記嫌気性消化槽から排出される消化汚泥を、凝集剤を添加することなく濃縮する遠心濃縮手段と、該遠心濃縮手段の濃縮汚泥の少なくとも一部を系外に排出する汚泥排出手段とを有することを特徴とする有機性廃液の嫌気性消化処理装置。   The centrifugal concentration means for concentrating the digested sludge discharged from the anaerobic digester without adding a flocculant and at least a part of the concentrated sludge of the centrifugal concentration means according to any one of claims 1 to 5. An apparatus for anaerobic digestion of organic waste liquid, comprising sludge discharge means for discharging the wastewater out of the system.
JP2004178571A 2003-12-16 2004-06-16 Anaerobic digester for organic waste liquid Expired - Fee Related JP4507712B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004178571A JP4507712B2 (en) 2003-12-16 2004-06-16 Anaerobic digester for organic waste liquid
TW93127836A TW200521088A (en) 2003-12-16 2004-09-15 Apparatus for anaerrobicly digesting organic waste liquid
PCT/JP2004/013507 WO2005058764A1 (en) 2003-12-16 2004-09-16 Anaerobic digestion apparatus for organic waste liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003418331 2003-12-16
JP2004178571A JP4507712B2 (en) 2003-12-16 2004-06-16 Anaerobic digester for organic waste liquid

Publications (2)

Publication Number Publication Date
JP2005199258A true JP2005199258A (en) 2005-07-28
JP4507712B2 JP4507712B2 (en) 2010-07-21

Family

ID=34703280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004178571A Expired - Fee Related JP4507712B2 (en) 2003-12-16 2004-06-16 Anaerobic digester for organic waste liquid

Country Status (3)

Country Link
JP (1) JP4507712B2 (en)
TW (1) TW200521088A (en)
WO (1) WO2005058764A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035594A1 (en) * 2006-09-21 2008-03-27 Kurita Water Industries Ltd. Apparatus for biologically treating organic waste liquid
JP2010179216A (en) * 2009-02-04 2010-08-19 Japan Sewage Works Agency Anaerobic digestion treatment method of organic sludge
JP2013523450A (en) * 2010-04-14 2013-06-17 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート Anaerobic membrane bioreactor for treating waste streams
JP2013525106A (en) * 2010-04-27 2013-06-20 ビーシーアール・エンバイロンメンタル・コーポレーション Wastewater treatment device for obtaining Class B biosolids using chlorine dioxide
JP2014184355A (en) * 2013-03-21 2014-10-02 Metawater Co Ltd Sludge treatment system
CN107537189A (en) * 2017-09-28 2018-01-05 荣成市固废综合处理与应用产业园有限公司 Nitrifying sludge muddy water pre-separate device
JP2020062640A (en) * 2015-01-09 2020-04-23 水ing株式会社 Processing method and apparatus for organic sludge

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2641877T3 (en) * 2012-03-20 2017-02-28 Veolia Water Solutions & Technologies Support Method for treating a waste stream using a bioreactor and a membrane filter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299995A (en) * 1995-05-11 1996-11-19 Kurita Water Ind Ltd Treatment of organic waste liquid
JP2001149980A (en) * 1999-12-01 2001-06-05 Hitachi Kiden Kogyo Ltd Method for treating sewage and sludge
JP2001225091A (en) * 2000-02-18 2001-08-21 Hitachi Kiden Kogyo Ltd Method and apparatus for treating sewage and sludge
JP2001286885A (en) * 2000-04-05 2001-10-16 Hitachi Kiden Kogyo Ltd Treatment process of sewage and sludge
JP2002166289A (en) * 2000-09-22 2002-06-11 Shinko Pantec Co Ltd Method to treat organic waste water and apparatus therefor
JP2002361291A (en) * 2001-06-01 2002-12-17 Kurita Water Ind Ltd Anaerobic digesting apparatus
JP2002361292A (en) * 2001-06-04 2002-12-17 Kurita Water Ind Ltd Anaerobic digesting apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3409728B2 (en) * 1999-03-01 2003-05-26 栗田工業株式会社 Organic waste treatment method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08299995A (en) * 1995-05-11 1996-11-19 Kurita Water Ind Ltd Treatment of organic waste liquid
JP2001149980A (en) * 1999-12-01 2001-06-05 Hitachi Kiden Kogyo Ltd Method for treating sewage and sludge
JP2001225091A (en) * 2000-02-18 2001-08-21 Hitachi Kiden Kogyo Ltd Method and apparatus for treating sewage and sludge
JP2001286885A (en) * 2000-04-05 2001-10-16 Hitachi Kiden Kogyo Ltd Treatment process of sewage and sludge
JP2002166289A (en) * 2000-09-22 2002-06-11 Shinko Pantec Co Ltd Method to treat organic waste water and apparatus therefor
JP2002361291A (en) * 2001-06-01 2002-12-17 Kurita Water Ind Ltd Anaerobic digesting apparatus
JP2002361292A (en) * 2001-06-04 2002-12-17 Kurita Water Ind Ltd Anaerobic digesting apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035594A1 (en) * 2006-09-21 2008-03-27 Kurita Water Industries Ltd. Apparatus for biologically treating organic waste liquid
JP2008073613A (en) * 2006-09-21 2008-04-03 Kurita Water Ind Ltd Biological treatment apparatus for organic waste liquid
JP2010179216A (en) * 2009-02-04 2010-08-19 Japan Sewage Works Agency Anaerobic digestion treatment method of organic sludge
JP2013523450A (en) * 2010-04-14 2013-06-17 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート Anaerobic membrane bioreactor for treating waste streams
US8758614B2 (en) 2010-04-14 2014-06-24 Veolia Water Solutions & Technologies Support Anaerobic membrane bioreactor for treating a waste stream
JP2013525106A (en) * 2010-04-27 2013-06-20 ビーシーアール・エンバイロンメンタル・コーポレーション Wastewater treatment device for obtaining Class B biosolids using chlorine dioxide
US10689274B2 (en) 2010-04-27 2020-06-23 Bcr Environmental Corporation Wastewater treatment apparatus to achieve class B biosolids using chlorine dioxide
US11485659B2 (en) 2010-04-27 2022-11-01 Bcr Environmental Corporation Wastewater treatment apparatus to achieve class B biosolids using chlorine dioxide
JP2014184355A (en) * 2013-03-21 2014-10-02 Metawater Co Ltd Sludge treatment system
JP2020062640A (en) * 2015-01-09 2020-04-23 水ing株式会社 Processing method and apparatus for organic sludge
CN107537189A (en) * 2017-09-28 2018-01-05 荣成市固废综合处理与应用产业园有限公司 Nitrifying sludge muddy water pre-separate device

Also Published As

Publication number Publication date
TW200521088A (en) 2005-07-01
JP4507712B2 (en) 2010-07-21
WO2005058764A1 (en) 2005-06-30

Similar Documents

Publication Publication Date Title
JP5211769B2 (en) Biological treatment method and treatment apparatus for organic waste liquid
JP6909878B2 (en) Organic matter processing method and processing equipment
JP4507712B2 (en) Anaerobic digester for organic waste liquid
JP2002361291A (en) Anaerobic digesting apparatus
JP4075946B2 (en) Method and apparatus for anaerobic digestion treatment of organic waste liquid
JP2003033780A (en) Method for wastewater treatment
JP2014008491A (en) Organic waste treatment apparatus, and organic waste treatment method using the same
JP2003024972A (en) Biological treatment method for organic sewage and apparatus therefor
JP2008018378A (en) Organic sludge treatment method and equipment
JP2007061773A (en) Organic sludge treatment method and apparatus
TWI414489B (en) Anaerobic digestion treatment method of organic waste solution and apparatus thereof
JP4590756B2 (en) Organic drainage treatment method and organic drainage treatment apparatus
JP4298602B2 (en) Method and apparatus for anaerobic digestion treatment of organic sludge
JP3885879B2 (en) Sludge treatment equipment
JP4525161B2 (en) Anaerobic treatment equipment
JP2004041953A (en) Method and equipment for treating organic waste water
JP2002186996A (en) Treatment method of organic waste
JP5061551B2 (en) Biological treatment equipment for organic waste liquid
JP5140980B2 (en) Biological treatment equipment
JP3871531B2 (en) Organic waste treatment method and apparatus
JP2007021367A (en) Method and apparatus for treating organic sludge
JP2006075730A (en) Anaerobic treatment device
JP4288975B2 (en) Organic waste liquid digester
JP4192491B2 (en) Organic waste processing apparatus and processing method
JP3672091B2 (en) Organic wastewater treatment method and equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees