JP2005197417A - Capillary and capillary regenerating method - Google Patents

Capillary and capillary regenerating method Download PDF

Info

Publication number
JP2005197417A
JP2005197417A JP2004001341A JP2004001341A JP2005197417A JP 2005197417 A JP2005197417 A JP 2005197417A JP 2004001341 A JP2004001341 A JP 2004001341A JP 2004001341 A JP2004001341 A JP 2004001341A JP 2005197417 A JP2005197417 A JP 2005197417A
Authority
JP
Japan
Prior art keywords
capillary
tip
substance
wire
gold wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004001341A
Other languages
Japanese (ja)
Inventor
Osamu Hattori
修 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2004001341A priority Critical patent/JP2005197417A/en
Publication of JP2005197417A publication Critical patent/JP2005197417A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • H01L2224/78302Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01007Nitrogen [N]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capillary regenerating method for regenerating a capillary by removing a substance with which the capillary is filled in short time, and to provide the capillary. <P>SOLUTION: It is judged whether the capillary 100 can be regenerated or not from a tip 100a of the capillary 100. When it is judged that the capillary can be regenerated, the substances 200 and 400 existing in a through hole 100d inside the capillary 100 are dissolved, and the substances 200 and 400 are removed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体素子の端子間をワイヤーを用いて電気的に接続するワイヤーボンディング装置に使用される硬脆材のキャピラリ及びキャピラリの再生方法に関する。   The present invention relates to a hard brittle capillary used in a wire bonding apparatus that electrically connects terminals of a semiconductor element using a wire, and a method for regenerating the capillary.

半導体組立に於いてパッケージの端子と集積回路側の端子を結ぶには細い金属線を用いている場合が一般的である。金属線を用いて端子間を接続する装置は、ワイヤーボンダー装置と呼ばれる。ワイヤーボンダー装置に用いられる金属線の種類は、大きく分けてアルミ線と金線に分けられる。近年、使われる金属線の傾向としては、金線を用いる場合が増加する傾向がある。また、その直径も細くなり、直径が20ミクロン以下の金線を用いるワイヤーボンダー装置も増加している。   In semiconductor assembly, a thin metal wire is generally used to connect a package terminal and an integrated circuit terminal. A device for connecting terminals using metal wires is called a wire bonder device. The types of metal wires used in the wire bonder device can be broadly divided into aluminum wires and gold wires. In recent years, as a tendency of the metal wire used, the case of using a gold wire tends to increase. In addition, the diameter of the wire bonder apparatus is also increasing, and wire bonder apparatuses using a gold wire having a diameter of 20 microns or less are increasing.

従来のキャピラリは、キャピラリの側部に継手が累着されている。継手には、他端が気体源に連結された導管が挿入されている。気体源から噴射された気体は、キャピラリ内を通り、キャピラリ先端のワイヤまで届く。これは、ワイヤがキャピラリ内で目詰まりしないようにするためである(例えば、特許文献1参照。)。   In conventional capillaries, joints are stacked on the side of the capillary. A conduit having the other end connected to a gas source is inserted into the joint. The gas injected from the gas source passes through the capillary and reaches the wire at the tip of the capillary. This is to prevent the wire from clogging in the capillary (see, for example, Patent Document 1).

また、気体を噴出しない通常使用される金線を用いるワイヤーボンダー装置のキャピラリ100を図1と図3に示す。キャピラリ100の材質は硬脆材、例えばセラミックやルビー等で出来ているのが一般的である。キャピラリ100は、先端部100aと、斜面部100bと胴部100cからなり、胴部100cから先端部100aに向かって、外径が細くなっている。また、キャピラリ100は、その内部に金線200を通すために貫通穴100dがあいている。貫通穴100eはテーパー状になっており、先端部100aから胴部100cに向かって、貫通穴100eの直径が大きくなる。直径が大きくなっているのは、キャピラリ100に金線200を挿入する際に挿入し易くする為である。また、先端部100aの先端は平坦な面を有する面取り部100eが設けてある。   Moreover, the capillary 100 of the wire bonder apparatus using the gold wire used normally which does not spout gas is shown in FIG. 1 and FIG. The material of the capillary 100 is generally made of a hard and brittle material such as ceramic or ruby. The capillary 100 includes a front end portion 100a, a slope portion 100b, and a body portion 100c, and the outer diameter decreases from the body portion 100c toward the front end portion 100a. The capillary 100 has a through hole 100d in order to pass the gold wire 200 therein. The through hole 100e is tapered, and the diameter of the through hole 100e increases from the distal end portion 100a toward the body portion 100c. The reason why the diameter is increased is to facilitate insertion of the gold wire 200 into the capillary 100. Further, a chamfered portion 100e having a flat surface is provided at the tip of the tip portion 100a.

次に、金属線200を用いて両端子間を電気的に接続する場合について、図3を用いて説明する。金属線200を用いて両端子間を電気的に接続する場合は、先ずキャピラリ100の貫通孔100eに金線200を通す。先端部100aから出た金線200の尖端を放電により溶かして金球200aを作る。出来た金球200aを素子300の第1の接合場所310に押しつける。超音波振動を加えながら、金球200aと第1の接合場所310を接合させる。次に、キャピラリ100が金線200を延ばしながら第2の接合場所320に移動する。キャピラリ100は、第2の接合場所320で金線200を押しつける。超音波振動を加えて、金線200と第2の接合場所320を接合させる。最後に、金線200をクランプ200bして引きちぎる。この動作を繰り返す事でボンディングを遂行する。
特開平5−47824号公報(第2頁、第1図)
Next, a case where the two terminals are electrically connected using the metal wire 200 will be described with reference to FIG. When electrically connecting both terminals using the metal wire 200, first, the gold wire 200 is passed through the through hole 100e of the capillary 100. The tip of the gold wire 200 coming out from the tip 100a is melted by discharge to form a gold ball 200a. The resulting gold ball 200 a is pressed against the first joining location 310 of the element 300. The gold ball 200a and the first joining location 310 are joined while applying ultrasonic vibration. Next, the capillary 100 moves to the second joining location 320 while extending the gold wire 200. The capillary 100 presses the gold wire 200 at the second joining location 320. Ultrasonic vibration is applied to bond the gold wire 200 and the second bonding location 320. Finally, the gold wire 200 is torn by clamping 200b. Bonding is performed by repeating this operation.
Japanese Patent Laid-Open No. 5-47824 (2nd page, FIG. 1)

しかし、金線にこの様な異物が付着している場合はその塵を金線が引きずって行く為、キャピラリに於ける金線の入り口では直径が大きいため塵が通過できても、金線の出口では直径が狭まるため、塵が詰まってしまい、結局金線が通過出来ずに破損する結果がしばしば発生する。金線に気体を吹付けたキャピラリを使用しても、金線がキャピラリ内に詰まってしまうことがある。キャピラリに金線が詰まる原因となる異物は、ボンディング用の金線の他に多種に渡る。例えば、油脂や繊維質異物の様な有機質の異物、金属片や石質等の無機質の異物など様々な異物がキャピラリ内に入り込み、金線の移動を妨げるためである。   However, when such foreign matter adheres to the gold wire, the gold wire drags the dust, so the diameter of the gold wire entrance at the capillary is large, so even if dust can pass through the gold wire, Since the diameter of the outlet narrows, dust is clogged, and the result is that a gold wire cannot pass through and eventually breaks. Even when a capillary in which gas is blown onto a gold wire is used, the gold wire may be clogged in the capillary. There are various types of foreign substances that cause clogging of the gold wire in the capillary in addition to the gold wire for bonding. For example, various foreign matters such as organic foreign matters such as fats and oils and fibrous foreign matters, and inorganic foreign matters such as metal pieces and stones enter the capillaries and prevent the movement of the gold wire.

金線が詰まってしまうと、金銭を取り除くには手間や時間を要するため、キャピラリは消耗品と位置付けられ、金銭を除去して再生されておらず、廃棄処分となっていた。   When the gold wire is clogged, it takes time and effort to remove the money, so the capillary is positioned as a consumable item and has not been reclaimed by removing the money.

本発明のキャピラリ再生方法は、キャピラリの尖端状態から前記キャピラリが再生可能か否かを判断するステップと、再生可能と判断したときに前記キャピラリ内部に存在する物質を溶解させて前記物質を取り除くステップからなる。   The capillary regeneration method of the present invention includes a step of determining whether or not the capillary can be regenerated from the tip state of the capillary, and a step of dissolving the substance existing in the capillary and removing the substance when it is determined that regeneration is possible. Consists of.

本発明のキャピラリ再生方法は、前記再生可能否かの判断が、前記キャピラリの前記尖端の磨耗が前記キャピラリの未使用の尖端の高さに対して1/4以下であるとき、前記キャピラリが再生可能であるとするものである。   In the capillary regeneration method of the present invention, the determination as to whether or not the regeneration is possible is that the capillary is regenerated when the wear of the tip of the capillary is ¼ or less of the height of the unused tip of the capillary. It is supposed to be possible.

本発明のキャピラリ再生方法は、前記物質が有機溶剤にて浸した後に、王水を用いて溶解する。   In the capillary regeneration method of the present invention, the substance is dissolved using aqua regia after being immersed in an organic solvent.

本発明のキャピラリ再生方法は、前記王水を用いて前記物質を溶解する際に、前記王水に超音波振動を与えて溶解する。   In the capillary regeneration method of the present invention, when the substance is dissolved using the aqua regia, the aqua regia is dissolved by applying ultrasonic vibration.

本発明のキャピラリ再生方法は、前記物質を更に強酸を用いて溶解する。   In the capillary regeneration method of the present invention, the substance is further dissolved using a strong acid.

本発明のキャピラリ再生方法は、フッ素加工を施した容器に前記王水を入れて前記物質を溶解する。   In the capillary regeneration method of the present invention, the aqua regia is placed in a container subjected to fluorine processing to dissolve the substance.

本発明のキャピラリ再生方法は、前記物質を溶解させた後に、圧力を加えた気体を前記キャピラリに噴射して前記物質を取り除く。物質を完全に溶解させずに、その一部分を溶解させ、その後に、圧力を加えた空気、窒素などの気体を噴射して、前記物質を取り除く。   In the capillary regeneration method of the present invention, after the substance is dissolved, a gas under pressure is ejected onto the capillary to remove the substance. A part of the substance is dissolved without completely dissolving the substance, and then the substance is removed by jetting a gas such as air or nitrogen under pressure.

本発明のキャピラリは、上記のキャピラリ再生方法を使用して再生するものである。   The capillary of the present invention is regenerated using the above capillary regeneration method.

本発明により、従来と比べて少ない時間でキャピラリ内に詰まった金線を取り除くことができる。これにより、従来は廃棄となっていたキャピラリが、効率よく再生することができる。   According to the present invention, the gold wire clogged in the capillary can be removed in a shorter time than in the prior art. Thereby, the capillaries that have been discarded can be efficiently regenerated.

金線を用いるワイヤーボンダーは24時間稼働するものに付いては、日に1本の割合でキャピラリを交換する場合が多い。本発明を実施する際に交換した使用済みキャピラリを分類した結果、ほぼ7割が本発明の再生可能なキャピラリに分類された。本発明に依って再生されたキャピラリは尖端の摩耗等の原因で新品と同じ寿命を持たないが、再生をすることで本来捨てていたキャピラリを再利用する事が出来、本発明の再生作業は安価な為半導体後工程の生産コストを下げる事に寄与する効果を持つ。   For wire bonders that use gold wires that operate for 24 hours, the capillaries are often replaced at a rate of one per day. As a result of classifying the used capillaries replaced when the present invention was carried out, almost 70% were classified into the reproducible capillaries of the present invention. The capillary regenerated according to the present invention does not have the same life as a new product due to wear of the tip, etc., but by regenerating, the originally discarded capillary can be reused. Because it is inexpensive, it has the effect of contributing to lowering the production cost of the semiconductor post-process.

本発明における実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described with reference to the drawings.

実施例1では、油脂によって金線がキャピラリ内に詰まった場合における、キャピラリの再生方法を図4から図6に基づいて説明する。   In Example 1, a method for regenerating a capillary in the case where a gold wire is clogged in the capillary with oil or fat will be described with reference to FIGS.

実施例1で再生に用いたキャピラリ100の使用前の形状を図4(A)に示す。キャピラリ100の外形部分に於けるテーパ部100a、100bは2段に分かれる。実施例1で用いたキャピラリ100はアルミナとジルコニアを混合したセラミックで作られており、金線の出口100dの直径が25ミクロン、使用する金線200の直径を20ミクロンとするものである。再生を試みた使用済みキャピラリ100の外観を見ると、大きく分けて2分される。先ず、尖端100aが若干斜面上100fに削られた形状(以下「形状1」という。)のキャピラリ100である。この形状1の側面外観を図4(B)に示す。もう一つは、尖端100aが第2テーパ100b近くまで摩耗した形状(以下「形状2」という。)のキャピラリである。
この形状2の側面外観を図4(C)に示す。形状2を示すキャピラリ100はボンディング行程で尖端100aが破損したものが大半である。形状2のキャピラリ100に付いて尖端100aを研磨して、新たに尖端部分100aだけ接着やその他の手法を用いて接合する事は不可能ではないが、先端部100aの強度が十分確保できるかとか、接合作業がかなり難しい。加えて、それに伴う加工金額が高額になり、再生するという観点でこれらを考慮に入れて、実施例1では再生不可能品として扱った。
The shape before use of the capillary 100 used for regeneration in Example 1 is shown in FIG. The tapered portions 100a and 100b in the outer portion of the capillary 100 are divided into two stages. The capillary 100 used in Example 1 is made of a ceramic in which alumina and zirconia are mixed. The diameter of the gold wire outlet 100d is 25 microns, and the diameter of the gold wire 200 to be used is 20 microns. Looking at the appearance of the used capillary 100 for which regeneration was attempted, it is roughly divided into two. First, the capillary 100 has a shape (hereinafter, referred to as “shape 1”) in which the tip 100a is slightly shaved on the slope 100f. A side view of the shape 1 is shown in FIG. The other is a capillary having a shape in which the tip 100a is worn to near the second taper 100b (hereinafter referred to as “shape 2”).
A side view of the shape 2 is shown in FIG. Most of the capillaries 100 showing the shape 2 are those in which the tip 100a is damaged in the bonding process. It is not impossible to polish the tip 100a on the capillary 100 having the shape 2 and to join only the tip 100a by bonding or other methods. However, the strength of the tip 100a can be sufficiently secured. The joining work is quite difficult. In addition, the amount of processing associated with it was high, and these were taken into consideration from the viewpoint of recycling, and in Example 1, it was treated as a non-recyclable product.

図5は、キャピラリ100を尖端側100aから見た図である。図5(A)は使用前のキャピラリ100の尖端100aの状態を示す。多くの場合、尖端部100aの内面はバリ防止の面取り100eが施されており、その中は空洞100dとなっている。この空洞100dは内部がテーパ状で反対側、つまり金線を挿入する部分まで空洞となっている。しかし、形状1のキャピラリ100の尖端100aは、図5(B)に示す様に金属線200が切れて詰まり、その回りを塵の様な物質400が取り囲んで詰まっている状態となる。又は、図5(C)に示す様に金属線200の破断面は見えず、油脂で塵が固まった様な物質400が詰まった様な状態もあり得る。   FIG. 5 is a view of the capillary 100 as viewed from the tip side 100a. FIG. 5A shows the state of the tip 100a of the capillary 100 before use. In many cases, the inner surface of the tip portion 100a is chamfered 100e for preventing burr, and the inside thereof is a cavity 100d. The cavity 100d has a tapered shape inside and is hollow up to the opposite side, that is, the portion into which the gold wire is inserted. However, the tip 100a of the capillary 100 having the shape 1 is in a state where the metal wire 200 is cut and clogged as shown in FIG. Alternatively, as shown in FIG. 5C, there may be a state in which the fracture surface of the metal wire 200 is not visible and the substance 400 in which dust is hardened with oil or fat is clogged.

図5(B)の場合と図5(C)の場合において、金線等200、400を取り除くために、キャピラリ100の尖端100aから、金線等200、400に対して物理的に力を加えただけでは簡単に金線等200、400を除去出来ないほど硬く詰まっている。金属線200の目詰まりは、ワイヤーボンディングに使用される金線200が浮遊塵などの塵を巻き込んでテーパが最も細くなったキャピラリ100の出口部分100dで詰まり、その結果、金線200が破損されたと想定される為、詰まったものは金線200の場合が最も多い。金線200を含んだ目詰まり物質を取り除くには、キャピラリ100の尖端100aから機械的な圧力、例えば尖端の細くなった針や金属線で突く方法や圧搾空気を注入する方法、を加えて目詰まりを押し出す方法が考えられる。しかし、この方法だと尖端を破損する可能性があり、25ミクロンと非常に小さい孔に針を当てる作業は効率が悪く、量産再生に向かない。反面、金線200は顕微鏡観察で光沢や破断面の状態から判断出来る。従って、金線200を化学的に溶かす方法を用いる。   In the case of FIG. 5B and FIG. 5C, a physical force is applied to the gold wires 200, 400 from the tip 100a of the capillary 100 in order to remove the gold wires 200, 400. It is packed so hard that the gold wires 200 and 400 cannot be removed easily. The clogging of the metal wire 200 is caused by clogging of the gold wire 200 used for wire bonding at the outlet portion 100d of the capillary 100 where the taper is thinned by entraining dust such as floating dust, and as a result, the gold wire 200 is damaged. As a result, it is most likely that the gold wire 200 is clogged. In order to remove the clogging material including the gold wire 200, the mechanical pressure from the tip 100 a of the capillary 100, for example, a method of piercing with a needle with a thin tip or a metal wire or a method of injecting compressed air is added to the eye. A method of pushing out the clogging can be considered. However, with this method, the tip may be damaged, and the work of applying a needle to a very small hole of 25 microns is not efficient and is not suitable for mass production reproduction. On the other hand, the gold wire 200 can be judged from the state of gloss or fractured surface by microscopic observation. Therefore, a method of chemically melting the gold wire 200 is used.

キャピラリの再生工程を図8のフローチャートに基づいて説明する。先ず、使用済みのキャピラリ100を用意する(行程201)。用意したキャピラリ100の再生可否を判断する(行程202)。まず、再生可能なキャピラリ100は、図4(B)に示す外観を有し、図5(B)と図5(C)に示すような金線等200、400によってキャピラリ100の内部が目詰まりしたものである。つまり、再生可能と判断される使用済みキャピラリ100は、尖端100aの摩耗以外には損傷がなく、且つ、尖端の摩耗100fが第1テーパ部100aの四分の一以下のキャピラリとした。第1テーパ部100aの摩耗を四分の一以下に規定した事由は、キャピラリ100の内部キャベティーはキャピラリ100aの尖端に向かって細くなるテーパ形状をしており、尖端の内部径が大きくなると狙った場所にワイヤーを打てない不具合が発生する為である。   The capillary regeneration process will be described with reference to the flowchart of FIG. First, a used capillary 100 is prepared (step 201). It is determined whether the prepared capillary 100 can be regenerated (step 202). First, the reproducible capillary 100 has the appearance shown in FIG. 4B, and the inside of the capillary 100 is clogged by the gold wires 200 and 400 as shown in FIGS. 5B and 5C. It is a thing. In other words, the used capillary 100 determined to be recyclable is a capillary having no damage other than the wear of the tip 100a, and the tip wear 100f is not more than a quarter of the first taper portion 100a. The reason that the wear of the first taper portion 100a is regulated to a quarter or less is that the internal cabbage of the capillary 100 has a tapered shape that becomes narrower toward the tip of the capillary 100a, and is aimed at when the inner diameter of the tip is increased. This is because there is a problem that the wire cannot be struck at the same place.

次に、再生可能と判断されたキャピラリ100を有機溶剤に浸して脱脂をする(行程203)。キャピラリ100の内部に金属線200と共に詰まった有機塵400は、通常油脂分を含んでいる。この油脂分が次に行う金線200を溶かす為に用いる溶剤の浸食を妨げる為に、油脂分を除く事が金線200の溶解を早め、作業の効率化を促進する。有機溶剤としてはアセトン、IPA等のアルコール類やベンゼン等の芳香族有機溶剤も使用可能である。なお、本実施例では有機溶剤としてアセトンを用いた。また、脱脂を早める為にキャピラリ100を綿の上に置き、超音波振動を加えて6時間掛けて脱脂した。   Next, the capillary 100 determined to be regenerated is immersed in an organic solvent for degreasing (step 203). The organic dust 400 clogged with the metal wire 200 inside the capillary 100 usually contains oil and fat. Since this oil and fat prevents the erosion of the solvent used to dissolve the gold wire 200 to be performed next, removing the oil and fat accelerates the dissolution of the gold wire 200 and promotes work efficiency. As the organic solvent, alcohols such as acetone and IPA and aromatic organic solvents such as benzene can be used. In this example, acetone was used as the organic solvent. Further, in order to accelerate degreasing, the capillary 100 was placed on cotton and degreased by applying ultrasonic vibration for 6 hours.

次に、脱脂が終わったキャピラリ100を乾燥させ、有機溶剤成分を取り除く(行程204)。本実施例ではアセトンを用いた為、揮発性が高く、自然乾燥とした。次に硝酸1と塩酸3の割合で混合して王水720を製造する(行程205)。次に前行程で製造された王水720を容器710に移し、(行程206)、容器710の中に脱脂したキャピラリ100を入れる(行程206)。容器に超音波振動を加えて金線を溶かす(行程207)。本実施例で使用した容器710は、フッ素加工製のものを使用した。王水720が金線200を溶かす際に超音波振動740を加えた方が溶解速度が増す。しかし、超音波振動740でキャピラリ100が王水720の中で跳ねると、キャピラリ尖端100aが破損することが有る為、キャピラリ100を乗せる緩衝剤が必要となる。ところが、反応性の高い王水720に対して耐久性を示す緩衝剤は少なく、フッ素加工の容器710用いる事で容器と緩衝剤と両方の機能を持たせる事が出来た。なお、王水720も加熱する事で金線200の溶解速度を増す事が可能であるが、溶液温度は摂氏50度以内に押さえる事が好ましい。本実施例では王水は常温のまま使用した。金線200の溶解時間はキャピラリ内部の目詰まり状態に依って異なる為、個々によって異なるが、本実施例では2昼夜掛かった。   Next, the capillary 100 that has been degreased is dried and the organic solvent component is removed (step 204). Since acetone was used in this example, it was highly volatile and was naturally dried. Next, aqua regia 720 is produced by mixing at a ratio of nitric acid 1 and hydrochloric acid 3 (step 205). Next, the aqua regia 720 produced in the previous step is transferred to the container 710 (step 206), and the degreased capillary 100 is placed in the container 710 (step 206). An ultrasonic vibration is applied to the container to melt the gold wire (step 207). The container 710 used in this example was made of fluorine processing. When the aqua regia 720 melts the gold wire 200, the addition of ultrasonic vibration 740 increases the dissolution rate. However, if the capillary 100 jumps in the aqua regia 720 by the ultrasonic vibration 740, the capillary tip 100a may be damaged, so a buffering agent on which the capillary 100 is placed is necessary. However, there are few buffering agents that show durability against the highly reactive aqua regia 720, and by using a fluorine-processed container 710, it was possible to provide both functions of the container and the buffering agent. It is possible to increase the dissolution rate of the gold wire 200 by heating the aqua regia 720, but it is preferable to keep the solution temperature within 50 degrees Celsius. In this example, aqua regia was used at room temperature. Since the melting time of the gold wire 200 differs depending on the clogged state inside the capillary, it takes two days and nights in this embodiment, although it differs depending on the individual.

金属線溶解の作業を終えたキャピラリは水洗いを施し、王水成分720を洗い流す(行程208)。キャピラリ100の内部の目詰まりは金線200が解けてしまうと、超音波振動の影響で目詰まり物質が取れてしまう。もし、目詰まり物質が取れていない場合はキャピラリの尖端側から圧搾空気を吹き付けて目詰まり物質を押し出す(行程209)。通常であれば、目詰まり物質を押し出す必要が少ないが、目詰まり物質を除く事も出来る。次にアルコールを用いて洗浄する(行程210)。本実施例ではエタノールを使用した。キャピラリ100を乾燥させ(行程211)、梱包する(行程212)。梱包には塩化ビニール系の箱を用いて梱包箱とした。   After completion of the metal wire melting operation, the capillary is washed with water to wash away the aqua regia component 720 (step 208). When the gold wire 200 is released from the clogging inside the capillary 100, the clogging substance is removed due to the influence of ultrasonic vibration. If the clogging substance is not removed, the clogging substance is pushed out by blowing compressed air from the tip end side of the capillary (step 209). Normally, it is not necessary to push out clogging substances, but clogging substances can be removed. Next, it wash | cleans using alcohol (process 210). In this example, ethanol was used. The capillary 100 is dried (step 211) and packed (step 212). For packaging, a vinyl chloride box was used to form a packaging box.

なお、キャピラリ100の目詰まりが金線200のみである場合、キャピラリ100を有機溶剤で脱脂する工程(工程204)と、キャピラリ100を乾燥させる工程(工程205)を省略することもできる。   When the capillary 100 is clogged only with the gold wire 200, the step of degreasing the capillary 100 with an organic solvent (step 204) and the step of drying the capillary 100 (step 205) can be omitted.

次に、キャピラリの目詰まりの原因が金線200及び有機塵400以外の場合におけるキャピラリ100の再生方法について図*説明する。キャピラリの目詰まりの原因は、金線200及び有機塵400以外にも多数想定出来る。例えば、ワイヤーボンダー装置の可動部分が摩耗して金属片を出し、それが目詰まりとなった場合や潤滑油が固化して、それが目詰まりの原因となる場合が考えられる。本実施例は、この様に金属の種類を特定出来ない場合について説明する。   Next, a method of regenerating the capillary 100 when the cause of clogging of the capillary is other than the gold wire 200 and the organic dust 400 will be described with reference to FIG. Many causes of clogging of capillaries can be assumed in addition to the gold wire 200 and the organic dust 400. For example, the movable part of the wire bonder device wears out to give a metal piece that becomes clogged, or the lubricating oil is solidified, which may cause clogging. In this embodiment, the case where the metal type cannot be specified will be described.

キャピラリ100を用意する(行程301)。なお、用意するキャピラリ100は、実施例1で目詰まりを除去出来なかったキャピラリであっても構わない。また、実施例1の判断工程(工程202)で、目詰まりの原因が金線200及び有機塵400以外有機溶剤では溶けないと判断したキャピラリ100でもよい。   The capillary 100 is prepared (step 301). The prepared capillary 100 may be a capillary that could not be clogged in Example 1. Further, in the determination step (step 202) of the first embodiment, the capillary 100 may be determined that the cause of the clogging is not soluble in an organic solvent other than the gold wire 200 and the organic dust 400.

次に、金属を溶かす溶剤を入れた容器の中にキャピラリ100を入れる(行程302)。
一般的に金属を溶かす溶剤は、熱濃硫酸、シアン酸、熱濃燐酸等の強酸などが用いられる。本実施例ではシアン酸を用いた。容器に超音波振動を加えて金属目詰まりを溶かす(行程303)。シアン酸の容器は、実施例1同様にフッ素加工を施したものを用いた。作業時間は2昼夜おこなった。
Next, the capillary 100 is put in a container containing a solvent for dissolving metal (step 302).
Generally, a strong acid such as hot concentrated sulfuric acid, cyanic acid or hot concentrated phosphoric acid is used as the solvent for dissolving the metal. In this example, cyanic acid was used. Ultrasonic vibration is applied to the container to dissolve the metal clogging (step 303). As the cyanic acid container, a fluorine-treated container as in Example 1 was used. The working time was two days and nights.

溶剤を洗い流す(行程304)。実施例1と同様、金属部分が溶解したが、目詰まり物質が取れていない場合は、キャピラリの尖端側から圧搾空気を吹き付ける(行程305)。このようにすることで、目詰まり物質を除く事も出来る。   The solvent is washed away (step 304). As in Example 1, when the metal portion is dissolved but the clogging substance is not removed, compressed air is blown from the tip side of the capillary (step 305). In this way, clogging substances can be removed.

次にアルコールを用いて洗浄する(行程306)。本実施例ではエタノールを使用した。キャピラリを乾燥させ(行程307)、キャピラリ100を梱包する(行程308)。   Next, it wash | cleans using alcohol (process 306). In this example, ethanol was used. The capillary is dried (step 307), and the capillary 100 is packed (step 308).

次に、キャピラリ100の尖端100aが変形した場合におけるキャピラリ100の再生方法に付いて、図10から図12に基づき説明する。キャピラリ尖端100aの変形は、ワイヤーボンディングを行う際にキャピラリ尖端100aをボンディング面に押しつける為に摩耗して起こる。摩耗したキャピラリ尖端は、図4(B)に示すように片減り形状が一般的である。この片減りが極端な鋭角となっている場合、再生後のキャピラリ100は、正常にワイヤーを打つ事が出来ない可能性があるので、摩耗面100fを平坦に加工する必要がある。   Next, a method for regenerating the capillary 100 when the tip 100a of the capillary 100 is deformed will be described with reference to FIGS. The deformation of the capillary tip 100a is caused by wear because the capillary tip 100a is pressed against the bonding surface during wire bonding. As shown in FIG. 4B, the worn capillary tip has a generally reduced shape. When this half reduction is an extremely acute angle, the regenerated capillary 100 may not be able to normally hit the wire, so the wear surface 100f needs to be processed flat.

摩耗は尖端部の極わずかな部分で有る為、その是正は化学研磨加工するのが一般的である。キャピラリの材質はセラミックまたはアルミナの単結晶が一般的で有る為、研磨剤はコロイダルシリカ系の研磨剤が適する。化学研磨法は機械研磨法と異なり、研磨面周辺にチッピングを起こしにくい特徴があり、また研磨エッジは面取りした様に丸みを帯びる為、キャピラリ尖端を化学研磨加工をした場合、平坦化と面取りが一度に出来る利点がある。
図12に示すフローチャートに基づき、本実施例で行った化学研磨行程について説明する。先ず、尖端が変形したキャピラリ100を用意する(行程401)。用意するキャピラリ100は、尖端100aの摩耗以外には損傷がなく、且つ、尖端の摩耗100fが第1テーパ部100aの四分の一以下のキャピラリとした。第1テーパ部100aの摩耗を四分の一以下に規定した事由は、キャピラリ100の内部キャベティーはキャピラリ100aの尖端に向かって細くなるテーパ形状をしており、尖端の内部径が大きくなると狙った場所にワイヤーを打てない不具合が発生する為である。
キャピラリをセット冶具900に装着する(行程402)。この冶具900は、キャピラリ100の尖端の削り過ぎを防止するとともに、研磨面100fに対してキャピラリ100を垂直に保つ。
次に、研磨パッド920を張った研磨盤910を回転させ、研磨剤930を流しながら冶具900にセットされたキャピラリを研磨パッドに押しつけながら、キャピラリの尖端を研磨する(行程403)。化学研磨は通常、化学研磨剤と研磨パッドの組み合わせで行われる。研磨剤には中心粒径40ナノメートルのコロイダルシリカのアルカリ性水溶液を用い、研磨パッドには硬質ナイロン系の研磨パッドを用いた。また、研磨剤は加工する部分で摂氏50度になる様に加熱し、研磨剤を循環しながら研磨する循環研磨法を用いた。
Since wear is a very small part of the tip, correction is generally performed by chemical polishing. Since the capillary is generally made of ceramic or alumina single crystal, a colloidal silica-based abrasive is suitable as the abrasive. Unlike the mechanical polishing method, the chemical polishing method has the feature that it is difficult to cause chipping around the polishing surface, and the polishing edge is rounded like a chamfer, so when the capillary tip is chemically polished, flattening and chamfering are not possible. There is an advantage that can be done at once.
Based on the flowchart shown in FIG. 12, the chemical polishing process performed in the present embodiment will be described. First, the capillary 100 whose tip is deformed is prepared (step 401). The prepared capillary 100 is a capillary having no damage other than the wear of the tip 100a, and the tip wear 100f is not more than a quarter of the first taper portion 100a. The reason that the wear of the first taper portion 100a is regulated to a quarter or less is that the internal cabbage of the capillary 100 has a tapered shape that becomes narrower toward the tip of the capillary 100a, and is aimed at when the inner diameter of the tip is increased. This is because there is a problem that the wire cannot be struck at the same place.
The capillary is mounted on the set jig 900 (step 402). The jig 900 prevents overcutting of the tip of the capillary 100 and keeps the capillary 100 perpendicular to the polishing surface 100f.
Next, the polishing disk 910 with the polishing pad 920 stretched is rotated, and the tip of the capillary is polished while pressing the capillary set on the jig 900 against the polishing pad while flowing the polishing agent 930 (step 403). Chemical polishing is usually performed with a combination of a chemical polishing agent and a polishing pad. An alkaline aqueous solution of colloidal silica having a central particle size of 40 nanometers was used as the polishing agent, and a hard nylon polishing pad was used as the polishing pad. In addition, a circulating polishing method was used in which the polishing agent was heated to 50 degrees Celsius at the part to be processed and polished while circulating the polishing agent.

研磨が完了したキャピラリをアルコールで洗浄し(行程404)、乾燥させる(行程405)。本実施例ではエタノールを用いた。研磨完了したキャピラリの尖端を検査する(行程406)。検査は外観検査であり、実体顕微鏡を用いて外観形状を観察する。観察内容はキャピラリ尖端の平行度、尖端周辺のチッピングの状態及び割れ等である。   The polished capillary is washed with alcohol (step 404) and dried (step 405). In this example, ethanol was used. The tip of the capillary that has been polished is inspected (step 406). The inspection is an appearance inspection, and the appearance shape is observed using a stereomicroscope. The observation contents are the parallelism of the capillary tip, the chipping state around the tip, cracks, and the like.

金線ワイヤーボンダー用キャピラリの形状を表した図で、(A)はキャピラリの外観形状図、(B)はキャピラリを尖端から見た図である。It is the figure showing the shape of the capillary for gold wire wire bonders, (A) is the external appearance shape figure of a capillary, (B) is the figure which looked at the capillary from the tip. キャピラリの内部構造と金線の形状を示す図である。It is a figure which shows the internal structure of a capillary, and the shape of a gold wire. 金線ワイヤーに依るワイヤーボンディングの方法を表した図で、(A)は熱して金球を形成する状態、(B)は第1ボンディング状態、(C)は金線の引き回し状態、(D)は第2ボンディング状態、(E)は金線切断と作業の完結状態を表す。It is the figure showing the method of wire bonding by a gold wire, (A) is the state which forms a gold ball by heating, (B) is the 1st bonding state, (C) is the drawing state of a gold wire, (D) Is the second bonding state, and (E) is the gold wire cutting and the completion state of the work. キャピラリとその破損及び摩耗状態を表した図であり、(A)は使用前のキャピラリの外形図、(B)は尖端の摩耗が軽度なキャピラリ外形図、(C)は尖端破損又は摩耗過度のキャピラリの外形図である。It is a figure showing a capillary, its breakage, and a wear state, (A) is an outline drawing of a capillary before use, (B) is a capillary outline drawing with slight wear of a tip, and (C) is a tip breakage or excessive wear. It is an external view of a capillary. キャピラリの目詰まりとその状態を示す図であり、(A)は使用前キャピラリの状態、 (B)は金属線の目詰まり状態、(C)は有機塵での目詰まり状態を示す。It is a figure which shows the clogging of a capillary and its state, (A) is the state of a capillary before use, (B) is the clogged state of a metal wire, (C) shows the clogged state with organic dust. 再生可能なキャピラリの外形図である。It is an external view of a reproducible capillary. 王水による金線の溶解処理の模式図である。It is a schematic diagram of the dissolution process of the gold wire by aqua regia. キャピラリ再生行程を示すフローチャートである。It is a flowchart which shows a capillary regeneration process. 金線以外の物質を溶かすときのフローチャートである。It is a flowchart when melting substances other than a gold wire. キャピラリ尖端校正用冶具とその装着方法の外形図であり、(A)は校正用冶具の側面図で、(B)は校正用冶具を下から見た図である。It is an external view of the capillary tip calibration jig and its mounting method, (A) is a side view of the calibration jig, and (B) is a view of the calibration jig as seen from below. キャピラリ尖端校正研磨加工の模式図である。It is a schematic diagram of capillary tip calibration polishing processing. キャピラリ尖端校正のフローチャートである。It is a flowchart of capillary tip calibration.

符号の説明Explanation of symbols

100 キャピラリ
200 金線
400 有機塵
710 容器
720 王水
730 電熱器
100 Capillary 200 Gold wire 400 Organic dust 710 Container 720 Aqua regia 730 Electric heater

Claims (8)

キャピラリの尖端状態から前記キャピラリが再生可能か否かを判断するステップと、再生可能と判断したときに前記キャピラリ内部に存在する物質を溶解させて前記物質を取り除くステップからなるキャピラリ再生方法。   A method for regenerating a capillary comprising the steps of determining whether or not the capillary can be regenerated from the state of the tip of the capillary, and dissolving and removing the substance present in the capillary when it is determined that the capillary can be regenerated. 前記再生可能否かの判断は、前記キャピラリの前記尖端の磨耗が前記キャピラリの未使用の尖端の高さに対して1/4以下であるとき、前記キャピラリが再生可能であるとする請求項1記載のキャピラリ再生方法。   The determination as to whether or not the regeneration is possible is that the capillary can be regenerated when the wear of the tip of the capillary is ¼ or less of the height of the unused tip of the capillary. The capillary regeneration method described. 前記物質は、有機溶剤にて浸した後に、王水を用いて溶解する請求項1又は2に記載のキャピラリ再生方法。   3. The capillary regeneration method according to claim 1, wherein the substance is dissolved using aqua regia after being immersed in an organic solvent. 前記王水を用いて前記物質を溶解する際に、前記王水に超音波振動を与えて溶解する請求項3に記載のキャピラリ再生方法。   The capillary regeneration method according to claim 3, wherein when the substance is dissolved using the aqua regia, the aqua regia is dissolved by applying ultrasonic vibration. 前記物質は、更に強酸を用いて溶解する請求項3又は4に記載のキャピラリ再生方法。   The capillary regeneration method according to claim 3 or 4, wherein the substance is further dissolved using a strong acid. 前記王水は、フッ素加工を施した容器に入れて前記物質を溶解する請求項3乃至5のいずれかに記載のキャピラリ再生方法。   6. The capillary regeneration method according to claim 3, wherein the aqua regia is placed in a fluorine-processed container to dissolve the substance. 前記物質を溶解させた後に、圧力を加えた気体を前記キャピラリに噴射して前記物質を取り除く請求項1乃至6のいずれかに記載のキャピラリ再生方法。   The capillary regeneration method according to any one of claims 1 to 6, wherein after the substance is dissolved, a gas to which pressure is applied is jetted onto the capillary to remove the substance. 前記1乃至7のいずれかに記載のキャピラリ再生方法を使用して再生するキャピラリ。   A capillary which is regenerated using the capillary regeneration method according to any one of 1 to 7 above.
JP2004001341A 2004-01-06 2004-01-06 Capillary and capillary regenerating method Pending JP2005197417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004001341A JP2005197417A (en) 2004-01-06 2004-01-06 Capillary and capillary regenerating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004001341A JP2005197417A (en) 2004-01-06 2004-01-06 Capillary and capillary regenerating method

Publications (1)

Publication Number Publication Date
JP2005197417A true JP2005197417A (en) 2005-07-21

Family

ID=34816883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004001341A Pending JP2005197417A (en) 2004-01-06 2004-01-06 Capillary and capillary regenerating method

Country Status (1)

Country Link
JP (1) JP2005197417A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011097042A (en) * 2009-09-30 2011-05-12 Toto Ltd Bonding capillary
KR20230124332A (en) * 2022-02-18 2023-08-25 최광진 System and Methoed for recycled capillary management through image data sharing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011097042A (en) * 2009-09-30 2011-05-12 Toto Ltd Bonding capillary
KR20230124332A (en) * 2022-02-18 2023-08-25 최광진 System and Methoed for recycled capillary management through image data sharing
KR102682915B1 (en) 2022-02-18 2024-07-05 최광진 System and Methoed for recycled capillary management through image data sharing

Similar Documents

Publication Publication Date Title
JP3765778B2 (en) Capillary for wire bonding and wire bonding method using the same
KR100910748B1 (en) Bonding device, and method for washing the tip of the bonding tool
JP2001118873A (en) Method for forming pin-shaped wire and the like
JP7312338B2 (en) Semiconductor wire bonding machine cleaning device and method
JP2008277602A (en) Manufacturing method of semiconductor integrated circuit device
JP2005197417A (en) Capillary and capillary regenerating method
JP4823639B2 (en) Deburring device
US9093515B2 (en) Wire bonding capillary with working tip protrusion
JP4238669B2 (en) Expanding method and expanding apparatus
JP2008137096A (en) Cutting tool and its manufacturing method
CN103289837B (en) Resin dissolved solution of resin diamond wire and broken-wire connecting method of resin diamond wire
CN100559475C (en) The manufacture method of head-slider
JP4306337B2 (en) Expanding method
JP2007276043A (en) Grinding machine and grinding method
JP2006187848A (en) Core drill
JP2006088297A (en) Cutting device and cutting method
JP2018046069A (en) Processing method for device wafer
JP2005012130A (en) Electrode cutting apparatus and method for electronic component
JP4725192B2 (en) Chip removal method
JP2006294688A (en) Semiconductor device and manufacturing method thereof
KR101882804B1 (en) sleeve of inner diameter and cutting tool with the same sleeve
JP4247670B2 (en) Expanding method and expanding apparatus
JPS58135646A (en) Manufacture of resin sealed type semiconductor device
JP2009054950A (en) Bump forming method
JP2006278454A (en) Method of forming stud bump