JP2005197340A - Power semiconductor module - Google Patents

Power semiconductor module Download PDF

Info

Publication number
JP2005197340A
JP2005197340A JP2004000253A JP2004000253A JP2005197340A JP 2005197340 A JP2005197340 A JP 2005197340A JP 2004000253 A JP2004000253 A JP 2004000253A JP 2004000253 A JP2004000253 A JP 2004000253A JP 2005197340 A JP2005197340 A JP 2005197340A
Authority
JP
Japan
Prior art keywords
power semiconductor
electrode
base plate
semiconductor module
current output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004000253A
Other languages
Japanese (ja)
Other versions
JP4336205B2 (en
Inventor
Kazuhiro Morishita
和博 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004000253A priority Critical patent/JP4336205B2/en
Publication of JP2005197340A publication Critical patent/JP2005197340A/en
Application granted granted Critical
Publication of JP4336205B2 publication Critical patent/JP4336205B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/71Means for bonding not being attached to, or not being formed on, the surface to be connected
    • H01L24/72Detachable connecting means consisting of mechanical auxiliary parts connecting the device, e.g. pressure contacts using springs or clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/074Stacked arrangements of non-apertured devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for miniaturizing a power semiconductor module by reducing the chip occupied area on the base plate, in the power semiconductor module with a reflux diode among an IGBT chip and a collector and an emitter for the IGBT chip. <P>SOLUTION: The IGBT chip 101 and a reflux diode chip are jointed with the conductive base plate 103 so that the collector electrode surface for the IGBT chip 101 and the cathode electrode surface for the reflux diode chip 102 face each other. A gate electrode terminal 105 is jointed with the base plate 103 via an insulator. A gate electrode for the IGBT chip 101 and a gate external terminal are connected by aluminum wires 110. An emitter electrode and an emitter external terminal 106 are connected by a plurality of the aluminum wires 111. A cathode electrode and the emitter external terminal 106 are connected by a plurality of the aluminum wires 112. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、パワー半導体モジュールに関し、特にモータ等の電気機器を制御する電力変換装置等に用いられるパワー半導体モジュールに関する。 The present invention relates to a power semiconductor module, and more particularly, to a power semiconductor module used for a power conversion device for controlling an electric device such as a motor.

モータ等の電気機器を制御する電力変換装置等に用いられるパワー半導体モジュールは、負荷へ供給する電流を制御するためのIGBT(Insulated Gate Bipolar Transistor)チップを備えている。そして、このIGBTチップのコレクタ電極・エミッタ電極間には、逆方向電圧印加時の破壊防止のため、負荷電流をバイパスさせる還流ダイオードチップが接続されている。
なお、本発明に関連する先行技術が特許文献1,2に開示されている。
2. Description of the Related Art A power semiconductor module used for a power conversion device that controls an electric device such as a motor includes an IGBT (Insulated Gate Bipolar Transistor) chip for controlling a current supplied to a load. A free-wheeling diode chip that bypasses the load current is connected between the collector electrode and the emitter electrode of the IGBT chip in order to prevent breakdown when a reverse voltage is applied.
Prior arts related to the present invention are disclosed in Patent Documents 1 and 2.

特開平11−121691号公報Japanese Patent Laid-Open No. 11-121691 特開平6−204398号公報JP-A-6-204398

一般にパワー半導体モジュール内で、IGBTチップと還流ダイオードチップはべース板の同一面上に並列に搭載される。その結果、IGBTチップと還流ダイオードチップのベース板上の占有面積が大きくなるため、パワー半導体モジュールの小型化は困難であった。また、各素子間や各素子と外部電極端子との配線は、ワイヤボンディングによって行われている。このため半導体チップとアルミワイヤの電気的接合面は、急峻な温度サイクルが頻繁に発生する使用環境で、熱応力により剥離が生じ易く、長期的信頼性に欠ける問題があった。   In general, in a power semiconductor module, an IGBT chip and a reflux diode chip are mounted in parallel on the same surface of a base plate. As a result, the occupied area on the base plate of the IGBT chip and the reflux diode chip is increased, and it is difficult to reduce the size of the power semiconductor module. Further, wiring between each element and between each element and the external electrode terminal is performed by wire bonding. For this reason, there is a problem that the electrical bonding surface between the semiconductor chip and the aluminum wire is liable to be peeled off due to thermal stress in a usage environment in which steep temperature cycles are frequently generated and lacks long-term reliability.

そこで本発明では、パワー半導体モジュールを小型化し、かつ電気的接合面の長期信頼性の向上を可能とする技術を提供する。   Therefore, the present invention provides a technique that makes it possible to downsize a power semiconductor module and improve long-term reliability of an electrical joint surface.

この発明に係る半導体装置においては、パワー半導体素子と、前記パワー半導体素子の電流入力電極・電流出力電極間に接続されたダイオード素子とを樹脂ケース内に備えるパワー半導体モジュールであって、前記パワー半導体素子の電流入力電極面と前記ダイオード素子のカソード電極面とが対向するように、前記パワー半導体素子と前記ダイオード素子がそれぞれ表面と裏面に接合された導電性のベース板を備えることを特徴とする。   The semiconductor device according to the present invention is a power semiconductor module comprising a power semiconductor element and a diode element connected between a current input electrode and a current output electrode of the power semiconductor element in a resin case, wherein the power semiconductor The power semiconductor element and the diode element are each provided with a conductive base plate bonded to the front surface and the back surface so that the current input electrode surface of the element and the cathode electrode surface of the diode element face each other. .

本発明は、IGBTチップ(パワー半導体素子)のコレクタ電極(電流入力電極)面と、還流ダイオードチップ(ダイオード素子)のカソード電極面とが対向するように、IGBTチップと還流ダイオードチップとがコレクタ電極端子を兼ねる導電性のベース板に接合されている。その結果、ベース板上のチップ占有面積が約半分になるので、パワー半導体モジュールを小型化することができる。   In the present invention, the IGBT chip and the freewheeling diode chip are arranged so that the collector electrode (current input electrode) surface of the IGBT chip (power semiconductor device) and the cathode electrode surface of the freewheeling diode chip (diode device) face each other. It is joined to a conductive base plate that also serves as a terminal. As a result, the chip occupation area on the base plate is approximately halved, so that the power semiconductor module can be reduced in size.

実施の形態1.
図1は、本実施の形態に係るパワー半導体モジュールの断面図を示す。また、図2は上面図を示す。ここで図1は、図2のA−A線断面図に相当する。導電性材料から構成されたベース板103が、モジュールケース(樹脂ケース)109内の上下略中央部に設置されている。そして、ベース板103の一端は、モジュールケース109の外部に引き出されており、この引出部がパワー半導体モジュールのコレクタ電極端子を兼ねている。またベース板103の他端は、エポキシ樹脂等からなる絶縁体107を介してエミッタ電極端子(電流出力端子)106に接続されている。そしてエミッタ電極端子106の一部はモジュールケース109の外部に引き出されている。
Embodiment 1 FIG.
FIG. 1 is a sectional view of a power semiconductor module according to the present embodiment. FIG. 2 shows a top view. Here, FIG. 1 corresponds to a cross-sectional view taken along line AA of FIG. A base plate 103 made of a conductive material is installed at a substantially central portion in the upper and lower sides of the module case (resin case) 109. One end of the base plate 103 is drawn to the outside of the module case 109, and this lead portion also serves as a collector electrode terminal of the power semiconductor module. The other end of the base plate 103 is connected to an emitter electrode terminal (current output terminal) 106 via an insulator 107 made of epoxy resin or the like. A part of the emitter electrode terminal 106 is drawn out of the module case 109.

ベース板103の両主面には、IGBTチップ(パワー半導体素子)101のコレクタ電極(電流入力電極)面(図示せず)と、還流ダイオードチップ(ダイオード素子)102のカソード電極面(図示せず)とが対向するように、IGBTチップ101と還流ダイオードチップ102がはんだ等によって接合されている。   On both main surfaces of the base plate 103, a collector electrode (current input electrode) surface (not shown) of an IGBT chip (power semiconductor element) 101 and a cathode electrode surface (not shown) of a free-wheeling diode chip (diode element) 102 are provided. The IGBT chip 101 and the free-wheeling diode chip 102 are joined together by solder or the like.

またIGBTチップ101と同主面に、エポキシ樹脂等からなる絶縁体104を介して、ゲート電極端子105の一端が接合されている。ゲート電極端子105の他端は、モジュールケース109の外部に引き出されている。IGBTチップ101のゲート電極114(図2参照)とゲート電極端子105がアルミワイヤ110によって接続されている。そして、IGBTチップ101のエミッタ電極(電流出力電極)115(図2参照)が、複数のアルミワイヤ111によってエミッタ電極端子106と接続されている。還流ダイオードチップ102のアノード電極(図示せず)は、複数のアルミワイヤ112によってエミッタ電極端子106と接続されている。   Further, one end of the gate electrode terminal 105 is joined to the same main surface as the IGBT chip 101 via an insulator 104 made of epoxy resin or the like. The other end of the gate electrode terminal 105 is drawn out of the module case 109. The gate electrode 114 (see FIG. 2) of the IGBT chip 101 and the gate electrode terminal 105 are connected by an aluminum wire 110. The emitter electrode (current output electrode) 115 (see FIG. 2) of the IGBT chip 101 is connected to the emitter electrode terminal 106 by a plurality of aluminum wires 111. An anode electrode (not shown) of the reflux diode chip 102 is connected to the emitter electrode terminal 106 by a plurality of aluminum wires 112.

なお、モジュールケース109の内部はシリコンゲル108によって密封されている。また、ゲート電極端子105、ベース板103及びエミッタ電極端子106のモジュールケース外部への引出部には、外部配線を接続するネジ止め用の複数の孔113が設けられている。   The inside of the module case 109 is sealed with silicon gel 108. In addition, a plurality of screw holes 113 for connecting external wiring are provided in the lead-out portions of the gate electrode terminal 105, the base plate 103, and the emitter electrode terminal 106 to the outside of the module case.

本実施の形態に係るパワー半導体モジュールによれば、IGBTチップ101のコレクタ電極面と還流ダイオードチップ102のカソード電極面とが対向するようにべース板103の両主面に接合されている。そのため、ベース板103上のチップ占有面積を従来の約半分にできる。その結果、パワー半導体モジュールの小型化が可能となる。そして、製造コスト削減による低価格化も可能となる。また、ベース板がコレクタ電極端子を兼ねているので、IGBTチップのコレクタ電極と還流ダイオードチップのカソード電極を接続するための配線を省略することができる。   In the power semiconductor module according to the present embodiment, the collector electrode surface of the IGBT chip 101 and the cathode electrode surface of the reflux diode chip 102 are joined to both main surfaces of the base plate 103 so as to face each other. Therefore, the chip occupation area on the base plate 103 can be reduced to about half of the conventional one. As a result, the power semiconductor module can be reduced in size. In addition, the price can be reduced by reducing the manufacturing cost. Further, since the base plate also serves as a collector electrode terminal, wiring for connecting the collector electrode of the IGBT chip and the cathode electrode of the reflux diode chip can be omitted.

なお、本実施の形態ではIGBTチップ101を用いた例を示したが、MOSFET等の他のパワー素子にも適用できる。また、一対のIGBTチップ101と還流ダイオードチップ102を接続した場合を示したが、複数のチップ対を並列に配置することもできる。   In the present embodiment, an example using the IGBT chip 101 is shown, but the present invention can also be applied to other power elements such as MOSFETs. Moreover, although the case where a pair of IGBT chip | tip 101 and the free-wheeling diode chip | tip 102 was connected was shown, several chip | tip pairs can also be arrange | positioned in parallel.

実施の形態2.
図3は、本実施の形態2に係るパワー半導体モジュールを示す断面図である。実施の形態1と同一の構成には同一の符号を付し、重複する説明は省略する。本実施の形態では、IGBTチップ101のエミッタ電極115(図2参照)とエミッタ電極端子202は、板状の金属配線であるブスバー電極201によって接続されている。そして、還流ダイオードチップ102のアノード電極(図示せず)とエミッタ電極端子202もまたブスバー電極201によって接続されている。
Embodiment 2. FIG.
FIG. 3 is a sectional view showing a power semiconductor module according to the second embodiment. The same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted. In the present embodiment, the emitter electrode 115 (see FIG. 2) of the IGBT chip 101 and the emitter electrode terminal 202 are connected by a bus bar electrode 201 which is a plate-like metal wiring. The anode electrode (not shown) of the reflux diode chip 102 and the emitter electrode terminal 202 are also connected by the bus bar electrode 201.

本実施の形態においては、IGBTチップ101のエミッタ電極115(図2参照)とエミッタ電極端子202がブスバー電極201によって接続されている。そして、還流ダイオードチップ102のアノード電極(図示せず)とエミッタ電極端子202もまたブスバー電極201によって接続されている。その結果、アルミワイヤで接続するよりも接合面が大きくなるので、機械的強度を増すことができる。また、接合面での電流密度及び接触抵抗を小さく抑えることができる。そのため、接合面で発生するジュール熱を抑えて熱応力を小さくできるので、電気的接続部の長期信頼性をさらに向上させることができる。   In the present embodiment, the emitter electrode 115 (see FIG. 2) of the IGBT chip 101 and the emitter electrode terminal 202 are connected by the bus bar electrode 201. The anode electrode (not shown) of the reflux diode chip 102 and the emitter electrode terminal 202 are also connected by the bus bar electrode 201. As a result, the joint surface becomes larger than that of connecting with an aluminum wire, so that the mechanical strength can be increased. Moreover, the current density and contact resistance at the joint surface can be kept small. Therefore, since Joule heat generated at the joint surface can be suppressed and the thermal stress can be reduced, the long-term reliability of the electrical connection portion can be further improved.

なお本実施の形態では、IGBTチップ101を用いた場合を示したがMOSFET等の他のパワー素子にも適用できる。また、一対のIGBTチップ101と還流ダイオードチップ102を接続した場合を示したが、複数のチップ対を並列に配置することもできる。   In the present embodiment, the case where the IGBT chip 101 is used is shown, but the present invention can also be applied to other power elements such as MOSFETs. Moreover, although the case where a pair of IGBT chip | tip 101 and the free-wheeling diode chip | tip 102 was connected was shown, several chip | tip pairs can also be arrange | positioned in parallel.

実施の形態3.
図4は、本実施の形態3に係るパワー半導体モジュールを示す断面図である。本実施の形態では、ブスバー電極にベンドが付けられたベンド付きブスバー電極301となっている。このブスバー電極301のベンド部は、S字型の断面形状となっている。その他の構成は実施の形態2と同一であり、同一の構成には同一の符号を付し重複する説明は省略する。
Embodiment 3 FIG.
FIG. 4 is a cross-sectional view showing a power semiconductor module according to the third embodiment. In the present embodiment, a bus bar electrode 301 with a bend is formed by bending a bus bar electrode. The bend portion of the bus bar electrode 301 has an S-shaped cross-sectional shape. Other configurations are the same as those of the second embodiment, and the same components are denoted by the same reference numerals and redundant description is omitted.

IGBTチップ101は、オン時にはIGBTチップ101内を流れる電流によりジュール熱が発生し、IGBTチップ101の材料に応じたある熱膨張係数で膨張する。このため、IGBTチップ101とベンド付きブスバー電極301との接合面には垂直方向に圧縮応力が発生する。この応力は、IGBTチップ101からベンド付きブスバー電極301を上方に持ち上げるように発生する。また、ブスバー電極301からIGBTチップ101を圧縮するように発生する。   When the IGBT chip 101 is turned on, Joule heat is generated by the current flowing in the IGBT chip 101 and expands at a certain thermal expansion coefficient corresponding to the material of the IGBT chip 101. For this reason, compressive stress is generated in the vertical direction on the joint surface between the IGBT chip 101 and the bus bar electrode 301 with bend. This stress is generated so as to lift the bent bus bar electrode 301 upward from the IGBT chip 101. Moreover, it generate | occur | produces so that the IGBT chip | tip 101 may be compressed from the bus bar electrode 301. FIG.

またオフ時には、IGBTチップ101は高温状態から冷却され、IGBTチップ101は収縮する。このため、IGBTチップ101とブスバー電極301との接合面には垂直方向に引張り応力が発生する。この応力は、ブスバー電極301を下方に引っ張るように発生する。また、ブスバー電極301からIGBTチップ101を上方に引っ張るように応力が発生する。   Further, at the time of OFF, the IGBT chip 101 is cooled from a high temperature state, and the IGBT chip 101 contracts. For this reason, tensile stress is generated in the vertical direction on the joint surface between the IGBT chip 101 and the bus bar electrode 301. This stress is generated so as to pull the bus bar electrode 301 downward. Further, stress is generated so that the IGBT chip 101 is pulled upward from the bus bar electrode 301.

以上のように、ブスバー電極301とIGBTチップ101の接合面には、スイッチングにより圧縮応力と引張り応力とを繰り返す熱応力が働き、接合面が剥離を生じ易くなる。また、還流ダイオードチップ102のアノード電極とベンド付きブスバー電極301の接合面でも、IGBTチップ102のスイッチングに応じて上記と同様の現象により剥離が生じ易くなる。   As described above, thermal stress that repeats compressive stress and tensile stress by switching acts on the joint surface between the bus bar electrode 301 and the IGBT chip 101, and the joint surface is likely to be peeled off. Further, even at the joint surface between the anode electrode of the reflux diode chip 102 and the bus bar electrode 301 with the bend, peeling is likely to occur due to the same phenomenon as described above according to the switching of the IGBT chip 102.

本実施の形態では、ブスバー電極にベンド部を設けてベンド付きブスバー電極301とすることにより、接合面が上下に動けるように構成されている。その結果、IGBTチップ101の駆動に伴う応力を吸収し、ベンド付きブスバー電極301との接合面における剥離を抑えることができる。   In the present embodiment, the bus bar electrode is provided with a bend portion to form a bus bar electrode 301 with a bend, so that the joint surface can move up and down. As a result, stress accompanying driving of the IGBT chip 101 can be absorbed, and peeling at the joint surface with the bend busbar electrode 301 can be suppressed.

また実施の形態2と同様に、本実施の形態においても、ベンド付きブスバー電極301の接合面における電流密度及び接触抵抗を小さく抑えることができる。以上から、本実施の形態に係る構成では、電気的接続部の長期信頼性をさらに向上させることができる。   Further, similarly to the second embodiment, also in this embodiment, the current density and the contact resistance at the joint surface of the bend busbar electrode 301 can be suppressed. From the above, in the configuration according to the present embodiment, the long-term reliability of the electrical connection portion can be further improved.

なお、本実施の形態では、IGBTチップ101を用いた場合を示したが、MOSFET等の他のパワー素子にも適用できる。また、一対のIGBTチップ101と還流ダイオードチップ102を接続した場合を示したが、複数のチップ対を並列に接続することもできる。   In the present embodiment, the case where the IGBT chip 101 is used is shown, but the present invention can also be applied to other power elements such as MOSFETs. Moreover, although the case where a pair of IGBT chip | tip 101 and the free-wheeling diode chip | tip 102 was connected was shown, several chip | tip pairs can also be connected in parallel.

実施の形態4.
図5は本実施の形態4に係るパワー半導体モジュールを示す断面図である。実施の形態1と同一の構成には同一の符号を付し、重複する説明は省略する。IGBTチップ101のエミッタ電極115(図2参照)に加圧電極401(第1加圧電極)が接合されている。そして還流ダイオードチップ102のアノード電極(図示せず)上に加圧電極402(第2加圧電極)が接合されている。この加圧電極401,402は、IGBTチップ101及び還流ダイオードチップ102の材料と熱膨張係数が近く、熱伝導率が高いモリブデン等の材料から形成されている。
Embodiment 4 FIG.
FIG. 5 is a sectional view showing a power semiconductor module according to the fourth embodiment. The same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted. A pressure electrode 401 (first pressure electrode) is joined to the emitter electrode 115 (see FIG. 2) of the IGBT chip 101. A pressurizing electrode 402 (second pressurizing electrode) is joined to an anode electrode (not shown) of the reflux diode chip 102. The pressurizing electrodes 401 and 402 are made of a material such as molybdenum having a thermal expansion coefficient close to that of the material of the IGBT chip 101 and the reflux diode chip 102 and having a high thermal conductivity.

本実施の形態に係るエミッタ電極端子403は、一部がIGBTチップ101及び還流ダイオードチップ102上に張り出すように張出部が形成されている。そして、加圧電極401とエミッタ電極端子403の張出部間に加圧部材404(第1加圧部材)が介挿されている。この加圧部材404は、例えばバネ鋼を材料とするバネである。そして、加圧電極401及びエミッタ電極端子403の張出部を加圧することで、加圧電極401・エミッタ電極端子403間を接続している。   The emitter electrode terminal 403 according to the present embodiment has an overhanging portion so that a part of the emitter electrode terminal 403 overhangs the IGBT chip 101 and the reflux diode chip 102. A pressurizing member 404 (first pressurizing member) is interposed between the projecting portions of the pressurizing electrode 401 and the emitter electrode terminal 403. The pressure member 404 is a spring made of spring steel, for example. The pressure electrode 401 and the emitter electrode terminal 403 are pressurized to connect the pressure electrode 401 and the emitter electrode terminal 403.

加圧電極402(第2加圧電極)とエミッタ電極端子403の張出部間にもまた加圧部材405(第2加圧部材)が介挿されている。そして、加圧電極402及びエミッタ電極端子403の張出部を加圧することで、加圧電極402・エミッタ電極端子403間を接続している。   A pressure member 405 (second pressure member) is also inserted between the pressure electrode 402 (second pressure electrode) and the protruding portion of the emitter electrode terminal 403. The pressure electrode 402 and the emitter electrode terminal 403 are pressurized to connect the pressure electrode 402 and the emitter electrode terminal 403.

以上のように構成されているので、実施の形態3と同様にIGBTチップ101のスイッチングにより発生する熱応力を加圧部材404,405の伸縮により吸収することが出来る。また、実施の形態2と同様に、加圧電極401とエミッタ電極115(図2参照)、及び加圧電極402とアノード電極(図示せず)との接合部の電流密度及び接触抵抗が小さく抑えられる。その結果、電気的接続部の長期信頼性をさらに向上させることができる。   Since it is configured as described above, the thermal stress generated by the switching of the IGBT chip 101 can be absorbed by the expansion and contraction of the pressure members 404 and 405 as in the third embodiment. Further, as in the second embodiment, the current density and the contact resistance at the junction between the pressure electrode 401 and the emitter electrode 115 (see FIG. 2) and between the pressure electrode 402 and the anode electrode (not shown) are kept small. It is done. As a result, the long-term reliability of the electrical connection portion can be further improved.

なお、本実施の形態では、IGBTチップを用いた場合を示したが、MOSFET等の他のパワー素子にも適用できる。また、一対のIGBTチップ101と還流ダイオードチップ102を接続した場合を示したが、複数のチップ対を並列に接続することもできる。   In the present embodiment, an IGBT chip is used, but the present invention can also be applied to other power elements such as MOSFETs. Moreover, although the case where a pair of IGBT chip | tip 101 and the free-wheeling diode chip | tip 102 was connected was shown, several chip | tip pairs can also be connected in parallel.

実施の形態5.
図6は本実施の形態5に係るパワー半導体モジュールの構成を示す断面図である。実施の形態1と同一の構成には同一の符号を付し、重複する説明は省略する。コレクタ電極端子を兼ねるベース板503の外部への引出部、及びエミッタ電極端子505の引出部が、差込み式コネクタ部502,504となっている。差込み式コネクタ部502,504の開口部には、外部配線との接続時に接触抵抗を抑えるため、金メッキされたコネクタ加圧部材501が備えられている。
Embodiment 5 FIG.
FIG. 6 is a cross-sectional view showing the configuration of the power semiconductor module according to the fifth embodiment. The same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted. A lead-out portion of the base plate 503 that also serves as a collector electrode terminal and a lead-out portion of the emitter electrode terminal 505 form plug-in connector portions 502 and 504. The opening portions of the plug-in connector portions 502 and 504 are provided with a gold-plated connector pressing member 501 in order to suppress contact resistance when connected to external wiring.

本実施の形態では、実施の形態1と同様にチップ占有面積を従来の約半分にできる。そのため、パワー半導体モジュールの小型化、及び製造コストを削減により低価格化が可能となる。また、コレクタ電極端子(ベース板503)及びエミッタ電極端子403は差込み式コネクタ部502,504を備えている。そのため、外部配線との脱着を容易に行うことができる。さらに、外部配線と接続するために従来技術では必須のネジが不要となる。   In the present embodiment, as in the first embodiment, the chip occupation area can be reduced to about half of the conventional one. Therefore, it is possible to reduce the price by reducing the size of the power semiconductor module and reducing the manufacturing cost. The collector electrode terminal (base plate 503) and the emitter electrode terminal 403 are provided with plug-in connector portions 502 and 504. For this reason, it is possible to easily attach and detach the external wiring. Furthermore, in order to connect with external wiring, the screw which is essential in the prior art becomes unnecessary.

なお、本実施の形態では、IGBTチップ101を用いた場合を示したが、MOSFET等の他のパワー素子にも適用できる。また、一対のIGBTチップ101と還流ダイオードチップ102を接続した場合を示したが、複数のチップを並列に接続することもできる。さらに、実施の形態1から4に示された構成に適用することもできる。   In the present embodiment, the case where the IGBT chip 101 is used is shown, but the present invention can also be applied to other power elements such as MOSFETs. Moreover, although the case where a pair of IGBT chip | tip 101 and the free-wheeling diode chip | tip 102 was connected was shown, a several chip | tip can also be connected in parallel. Further, the present invention can be applied to the configurations shown in the first to fourth embodiments.

実施の形態6.
図7,8は、本実施の形態6に係るパワー半導体モジュールの端面図と上面図をそれぞれ示す。図7は、図8のB−B線端面図に相当している。また本実施の形態は、IGBTチップ101と還流ダイオードチップ102の一対の組を4組並列接続された例を示している。実施の形態1と同一の構成には同一の符号を付し、重複する説明は省略する。
Embodiment 6 FIG.
7 and 8 show an end view and a top view of the power semiconductor module according to the sixth embodiment, respectively. FIG. 7 corresponds to the end view taken along the line BB of FIG. The present embodiment shows an example in which four pairs of a pair of IGBT chip 101 and freewheeling diode chip 102 are connected in parallel. The same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

導電性材料から構成されたベース板601が、モジュールケース109の上下略中央部に設置されている。ベース板601の一端が、エポキシ樹脂等からなる絶縁体603を介してエミッタ電極端子604に接続されている。またベース板601の他端は、エポキシ樹脂等からなる絶縁体605を介してエミッタ電極端子606に接続されている。エミッタ電極端子604,606は、モジュールケース109側壁の上下略中央部に設置されている。そして、エミッタ電極端子604,606の一部分は、モジュールケース109の外部に引き出されている。   A base plate 601 made of a conductive material is installed at the substantially upper and lower central portions of the module case 109. One end of the base plate 601 is connected to the emitter electrode terminal 604 via an insulator 603 made of epoxy resin or the like. The other end of the base plate 601 is connected to the emitter electrode terminal 606 via an insulator 605 made of epoxy resin or the like. The emitter electrode terminals 604 and 606 are installed at the substantially vertical center of the side wall of the module case 109. A part of the emitter electrode terminals 604 and 606 is drawn out of the module case 109.

ベース板601の一方主面の中心部には、エポキシ樹脂等からなる絶縁体607を介してゲート電極端子608の一端が接合されている(図7,8参照)。ゲート電極端子608の他端はモジュールケース109の外部に引き出されている。また、ベース板601の一方主面には、2つのコレクタ電極端子602の一端がさらに接合されている。コレクタ電極端子602の他端は、モジュールケース109の外部に引き出されている。   One end of a gate electrode terminal 608 is joined to the central portion of one main surface of the base plate 601 via an insulator 607 made of epoxy resin or the like (see FIGS. 7 and 8). The other end of the gate electrode terminal 608 is drawn out of the module case 109. One end of the two collector electrode terminals 602 is further joined to one main surface of the base plate 601. The other end of the collector electrode terminal 602 is drawn out of the module case 109.

2つのコレクタ電極端子602は、図8中上下方向に、ゲート電極端子608に関して対向位置に平行に配置されている(図8参照)。さらにベース板601の一方主面には、4つのIGBTチップ101が2行2列に配置されている。これらのIGBTチップは、B−B線に関して対称に、ゲート電極端子608及びコレクタ電極端子602に対称に配置されている(図8参照)。それぞれのIGBTチップ101のコレクタ電極面がベース板601に接合されている。そして、それぞれのIGBTチップ101のゲート電極114が、ゲート電極端子608とアルミワイヤ110によって接続されている。   The two collector electrode terminals 602 are arranged in the vertical direction in FIG. 8 and parallel to the opposing positions with respect to the gate electrode terminal 608 (see FIG. 8). Further, four IGBT chips 101 are arranged in two rows and two columns on one main surface of the base plate 601. These IGBT chips are arranged symmetrically with respect to the BB line and symmetrically with respect to the gate electrode terminal 608 and the collector electrode terminal 602 (see FIG. 8). The collector electrode surface of each IGBT chip 101 is joined to the base plate 601. The gate electrode 114 of each IGBT chip 101 is connected to the gate electrode terminal 608 by the aluminum wire 110.

ベース板601の他方主面には、IGBTチップ101に対応する位置に4つの還流ダイオードチップ102がそれぞれ配置されている。ベース板601には、ベース板601内部に水管611を通すための2つの通水孔609が設けられている(図8参照)。この2つの通水孔609はベース板601の図7中上下中央部に設けられている。そして、IGBTチップ101の下部を通るように、左右対称な位置に設けられている。水管611の両端には水管継ぎ手610が設けられており、冷却水を供給する給水管と接続できる構成となっている。   On the other main surface of the base plate 601, four free-wheeling diode chips 102 are arranged at positions corresponding to the IGBT chips 101, respectively. The base plate 601 is provided with two water passage holes 609 for allowing the water pipe 611 to pass inside the base plate 601 (see FIG. 8). The two water passage holes 609 are provided in the upper and lower central portions of the base plate 601 in FIG. And it is provided in the left-right symmetrical position so that the lower part of IGBT chip | tip 101 may be passed. Water pipe joints 610 are provided at both ends of the water pipe 611, and can be connected to a water supply pipe that supplies cooling water.

従来技術では、ベース板の下部にヒートシンクを備えることでモジュールケース外部への放熱が可能である。一方、実施の形態1から5に開示した発明では、ベース板の両主面に半導体チップ101を備えているため、ベース板の下部にヒートシンクを備えることができない。そのため、熱がモジュールケース内部に溜まり易くなる。本実施の形態ではベース板が水管601を備えており、水冷フィンを兼用している。この水管601に冷却水を流すことで放熱をすることができる。そして、ベース板601とIGBTチップ101及び還流ダイオードチップ102間の接触熱抵抗を低減することができる。その結果、本実施の形態に係るパワー半導体モジュールは、大電流が流れるような用途にも使用することができる。また、新たに冷却器を備える必要がなく、パワー半導体モジュールを備えるシステムにおいて、小型軽量化が可能となる。   In the prior art, heat radiation to the outside of the module case is possible by providing a heat sink at the bottom of the base plate. On the other hand, in the invention disclosed in the first to fifth embodiments, since the semiconductor chip 101 is provided on both main surfaces of the base plate, a heat sink cannot be provided on the lower portion of the base plate. Therefore, heat tends to accumulate inside the module case. In the present embodiment, the base plate includes a water pipe 601 and also serves as a water cooling fin. Heat can be radiated by flowing cooling water through the water pipe 601. Further, the contact thermal resistance between the base plate 601 and the IGBT chip 101 and the reflux diode chip 102 can be reduced. As a result, the power semiconductor module according to the present embodiment can be used for applications in which a large current flows. In addition, it is not necessary to provide a new cooler, and a system including a power semiconductor module can be reduced in size and weight.

本実施の形態では、実施の形態1の構成を例として説明したが、実施の形態2〜5にも適用することが出来る。例えば図9は、実施の形態2の構成を本実施の形態に係る発明に適用した構成を示している。図7のエミッタ電極端子604,606に代えて、IGBTチップ101及び還流ダイオードチップ102上に張り出した部位を備えるエミッタ電極端子612,613が備えられている。そして、IGBTチップ101のエミッタ電極115(図2参照)、及び還流ダイオードチップ102のアノード電極(図示せず)上に加圧電極401,402がそれぞれ接合されている。   In the present embodiment, the configuration of the first embodiment has been described as an example, but the present invention can also be applied to the second to fifth embodiments. For example, FIG. 9 shows a configuration in which the configuration of the second embodiment is applied to the invention according to the present embodiment. In place of the emitter electrode terminals 604 and 606 in FIG. 7, emitter electrode terminals 612 and 613 having portions protruding on the IGBT chip 101 and the reflux diode chip 102 are provided. Pressurizing electrodes 401 and 402 are joined to the emitter electrode 115 (see FIG. 2) of the IGBT chip 101 and the anode electrode (not shown) of the reflux diode chip 102, respectively.

そして、加圧電極401,402とエミッタ電極端子612,613の張出部間に加圧部材404,405が介挿されている。そして、加圧電極401,402及びエミッタ電極端子612,613を加圧することで、加圧電極・エミッタ電極端子間を接続している。以上のように構成することで、熱応力を緩和することができ電気的接続部の長期信頼性をさらに高めることができる。   Pressure members 404 and 405 are interposed between the overhang portions of the pressure electrodes 401 and 402 and the emitter electrode terminals 612 and 613. The pressurizing electrodes 401 and 402 and the emitter electrode terminals 612 and 613 are pressurized to connect the pressurizing electrode and the emitter electrode terminal. By comprising as mentioned above, a thermal stress can be relieved and the long-term reliability of an electrical connection part can further be improved.

なお、本実施の形態では、IGBTチップ101を用いた場合を示したが、MOSFET等の他のパワー素子にも適用できる。そして、複数のIGBTチップ101と還流ダイオードチップ102を接続した場合を示したが、一対のチップにも適用できる。   In the present embodiment, the case where the IGBT chip 101 is used is shown, but the present invention can also be applied to other power elements such as MOSFETs. The case where a plurality of IGBT chips 101 and the free-wheeling diode chip 102 are connected is shown, but the present invention can also be applied to a pair of chips.

実施の形態7.
図10は本実施の形態に係るパワー半導体モジュールを示す図である。本実施の形態では、ベース板701の一端に風冷フィン部702が設けられている。そして、ベース板701の表面にはコレクタ電極端子703が接合されており、モジュールケース109の外部に一端が引き出されている。その他の構成は実施の形態1と同様であり、同一の構成には同一の符号を付し、重複する説明は省略する。
Embodiment 7 FIG.
FIG. 10 is a diagram showing a power semiconductor module according to the present embodiment. In the present embodiment, an air cooling fin portion 702 is provided at one end of the base plate 701. A collector electrode terminal 703 is joined to the surface of the base plate 701, and one end is drawn to the outside of the module case 109. Other configurations are the same as those of the first embodiment, and the same components are denoted by the same reference numerals, and redundant description is omitted.

本実施の形態では、風冷フィン部702とベース板701とが一体化されている。従ってパワー半導体モジュールの駆動により発生する熱を、すみやかに外部に放熱できる。そして、ベース板701とIGBTチップ101及び還流ダイオードチップ102間の接触熱抵抗を低減することができる。その結果、消費電力が大きく、発熱量の大きな用途へ使用範囲の拡大が図れる。   In the present embodiment, the air cooling fin portion 702 and the base plate 701 are integrated. Therefore, the heat generated by driving the power semiconductor module can be quickly radiated to the outside. Then, the contact thermal resistance between the base plate 701, the IGBT chip 101, and the reflux diode chip 102 can be reduced. As a result, power consumption is large and the range of use can be expanded to applications that generate a large amount of heat.

なお、本実施の形態ではIGBTチップ101を用いた例を示したが、MOSFET等の他のパワー素子にも適用できる。また、一対のIGBTチップ101と還流ダイオードチップ102を接続した例を示したが、複数のチップを並列に接続することもできる。   In the present embodiment, an example using the IGBT chip 101 is shown, but the present invention can also be applied to other power elements such as MOSFETs. Moreover, although the example which connected a pair of IGBT chip | tip 101 and the free-wheeling diode chip | tip 102 was shown, a some chip | tip can also be connected in parallel.

また、実施の形態1の構成を例としたが、実施の形態2〜4の構成を本実施の形態に適用することもできる。図11は実施の形態2の構成を適用した例を示している。このような構成にすることで、IGBTチップ101のスイッチングにより発生する熱応力を加圧部材402の伸縮により吸収することが出来る。また、加圧電極401とエミッタ電極115、及び加圧電極401とアノード電極(図示せず)との接合部の電流密度及び接触抵抗が小さく抑えられる。その結果、電気的接続部の長期信頼性をさらに向上させることができる。   Moreover, although the configuration of the first embodiment is taken as an example, the configurations of the second to fourth embodiments can be applied to the present embodiment. FIG. 11 shows an example in which the configuration of the second embodiment is applied. With such a configuration, the thermal stress generated by the switching of the IGBT chip 101 can be absorbed by the expansion and contraction of the pressing member 402. Further, the current density and the contact resistance at the junction between the pressurizing electrode 401 and the emitter electrode 115 and between the pressurizing electrode 401 and the anode electrode (not shown) can be kept small. As a result, the long-term reliability of the electrical connection portion can be further improved.

実施の形態8.
図12は本実施の形態に係るパワー半導体モジュールを示す図である。本実施の形態では、ベース板802の一端にヒートパイプ部801が設けられている。その他の構成は実施の形態7と同様であり、同一の構成には同一の符号を付し、重複する説明は省略する。
Embodiment 8 FIG.
FIG. 12 shows a power semiconductor module according to the present embodiment. In this embodiment, a heat pipe portion 801 is provided at one end of the base plate 802. Other configurations are the same as those of the seventh embodiment, and the same components are denoted by the same reference numerals, and redundant description is omitted.

本実施の形態では、ヒートパイプ部801とベース板802とが一体化されている。従って半導体モジュールの駆動により発生する熱を、すみやかに外部に放熱できる。そして、ベース板802とIGBTチップ101及び還流ダイオードチップ102間の接触熱抵抗を低減することができる。その結果、消費電力が大きく発熱量の大きな用途へ使用範囲の拡大が図れる。   In the present embodiment, the heat pipe portion 801 and the base plate 802 are integrated. Therefore, heat generated by driving the semiconductor module can be quickly radiated to the outside. Further, the contact thermal resistance between the base plate 802, the IGBT chip 101, and the reflux diode chip 102 can be reduced. As a result, the range of use can be expanded to applications where the power consumption is large and the calorific value is large.

なお、本実施の形態ではIGBTチップ101を用いた例を示したが、MOSFET等の他のパワー素子にも適用できる。また、一対のIGBTチップ101と還流ダイオードチップ102を接続した例を示したが、複数のチップを並列に接続することもできる。   In the present embodiment, an example using the IGBT chip 101 is shown, but the present invention can also be applied to other power elements such as MOSFETs. Moreover, although the example which connected a pair of IGBT chip | tip 101 and the free-wheeling diode chip | tip 102 was shown, a some chip | tip can also be connected in parallel.

また、実施の形態1の構成を例として説明したが、実施の形態2〜4の構成を本実施の形態に適用することもできる。図13は実施の形態2の構成を適用した例を示す。IGBTチップ101のスイッチングにより発生する熱応力を加圧部材402の伸縮により吸収することが出来る。また、加圧電極401とエミッタ電極(図示せず)、及び加圧電極401とアノード電極(図示せず)との接合部の電流密度及び接触抵抗が小さく抑えられる。その結果、電気的接続部の長期信頼性をさらに向上させることができる。   Moreover, although the configuration of the first embodiment has been described as an example, the configurations of the second to fourth embodiments can be applied to the present embodiment. FIG. 13 shows an example in which the configuration of the second embodiment is applied. Thermal stress generated by switching of the IGBT chip 101 can be absorbed by expansion and contraction of the pressure member 402. Further, the current density and the contact resistance at the junction between the pressurizing electrode 401 and the emitter electrode (not shown) and between the pressurizing electrode 401 and the anode electrode (not shown) can be kept small. As a result, the long-term reliability of the electrical connection portion can be further improved.

実施の形態1に係るパワー半導体モジュールの構成を示す断面図である。1 is a cross-sectional view showing a configuration of a power semiconductor module according to a first embodiment. 実施の形態1に係るパワー半導体モジュールの構成を示す上面図である。1 is a top view showing a configuration of a power semiconductor module according to a first embodiment. 実施の形態2に係るパワー半導体モジュールの構成を示す断面図である。FIG. 6 is a cross-sectional view showing a configuration of a power semiconductor module according to a second embodiment. 実施の形態3に係るパワー半導体モジュールの構成を示す断面図である。FIG. 6 is a cross-sectional view illustrating a configuration of a power semiconductor module according to a third embodiment. 実施の形態4に係るパワー半導体モジュールの構成を示す断面図である。FIG. 6 is a cross-sectional view showing a configuration of a power semiconductor module according to a fourth embodiment. 実施の形態5に係るパワー半導体モジュールの構成を示す断面図である。FIG. 9 is a cross-sectional view showing a configuration of a power semiconductor module according to a fifth embodiment. 実施の形態6に係るパワー半導体モジュールの構成を示す端面図である。FIG. 10 is an end view showing a configuration of a power semiconductor module according to a sixth embodiment. 実施の形態6に係るパワー半導体モジュールの構成を示す上面図である。FIG. 10 is a top view showing a configuration of a power semiconductor module according to a sixth embodiment. 実施の形態6に係るパワー半導体モジュールの変形例を示す端面図である。FIG. 10 is an end view showing a modification of the power semiconductor module according to the sixth embodiment. 実施の形態7に係るパワー半導体モジュールの構成を示す断面図である。FIG. 10 is a cross-sectional view showing a configuration of a power semiconductor module according to a seventh embodiment. 実施の形態7に係るパワー半導体モジュールの変形例を示す断面図である。FIG. 10 is a cross-sectional view showing a modification of the power semiconductor module according to the seventh embodiment. 実施の形態8に係るパワー半導体モジュールの構成を示す断面図である。FIG. 10 is a cross-sectional view showing a configuration of a power semiconductor module according to an eighth embodiment. 実施の形態8に係るパワー半導体モジュールの変形例を示す断面図である。FIG. 16 is a cross-sectional view showing a modification of the power semiconductor module according to the eighth embodiment.

符号の説明Explanation of symbols

101 IGBTチップ、102 還流ダイオードチップ、103 ベース板、105 ゲート電極端子、106 エミッタ電極端子、201 ブスバー電極、301 ベンド付きブスバー電極、401,404 加圧電極、402,405 加圧部材、501 コネクタ加圧部材、502,504 差込み式コネクタ部、601 水冷フィン兼用ベース板、609 通水孔、610 水管継ぎ手、611 水管、702 風冷フィン部、801 ヒートパイプ部。
101 IGBT chip, 102 freewheel diode chip, 103 base plate, 105 gate electrode terminal, 106 emitter electrode terminal, 201 bus bar electrode, 301 bus bar electrode with bend, 401, 404 pressure electrode, 402, 405 pressure member, 501 connector added Pressure member, 502, 504 plug-in connector part, 601 water cooling fin combined base plate, 609 water passage hole, 610 water pipe joint, 611 water pipe, 702 air cooling fin part, 801 heat pipe part.

Claims (8)

パワー半導体素子と、
前記パワー半導体素子の電流入力電極・電流出力電極間に接続されたダイオード素子とを樹脂ケース内に備えるパワー半導体モジュールであって、
前記パワー半導体素子の電流入力電極面と前記ダイオード素子のカソード電極面とが対向するように、前記パワー半導体素子と前記ダイオード素子がそれぞれ表面と裏面に接合された導電性のベース板
を備えることを特徴とするパワー半導体モジュール。
A power semiconductor element;
A power semiconductor module provided in a resin case with a diode element connected between a current input electrode and a current output electrode of the power semiconductor element,
The power semiconductor element and the diode element are each provided with a conductive base plate bonded to the front surface and the back surface so that the current input electrode surface of the power semiconductor element and the cathode electrode surface of the diode element face each other. A featured power semiconductor module.
前記樹脂ケース内外に延在する電流出力端子と、
前記電流出力端子と前記パワー半導体素子の前記電流出力電極、及び前記電流出力端子と前記ダイオード素子のアノード電極とを接続するブスバー電極と
をさらに備えることを特徴とする請求項1に記載のパワー半導体モジュール。
A current output terminal extending into and out of the resin case;
2. The power semiconductor according to claim 1, further comprising: the current output terminal and the current output electrode of the power semiconductor element; and a bus bar electrode connecting the current output terminal and the anode electrode of the diode element. module.
前記ブスバー電極は、ベンド部を備えていることを特徴とする請求項2に記載のパワー半導体モジュール。   The power semiconductor module according to claim 2, wherein the bus bar electrode includes a bend portion. 前記電流出力電極に接合された第1加圧電極と、
前記第1加圧電極・前記電流出力端子間に介挿され、前記第1加圧電極と前記電流出力端子とを加圧することにより接続する第1加圧部材と、
前記アノード電極に接合された第2加圧電極と、
前記第2加圧電極・前記電流出力端子間に介挿され、前記第2加圧電極と前記電流出力端子とを加圧することにより接続する第2加圧部材と、
を備えることを特徴とする請求項2に記載のパワー半導体モジュール。
A first pressure electrode joined to the current output electrode;
A first pressure member interposed between the first pressure electrode and the current output terminal, and connected by pressurizing the first pressure electrode and the current output terminal;
A second pressure electrode joined to the anode electrode;
A second pressure member interposed between the second pressure electrode and the current output terminal and connected by pressurizing the second pressure electrode and the current output terminal;
The power semiconductor module according to claim 2, further comprising:
前記ベース板は前記樹脂ケース内外に延在し、前記電流出力端子、及び前記ベース板が、前記樹脂ケース外の端部において、差込式コネクタ部を備えることを特徴とする請求項2から4の何れかに記載のパワー半導体モジュール。   5. The base plate extends in and out of the resin case, and the current output terminal and the base plate include a plug-in connector portion at an end portion outside the resin case. The power semiconductor module according to any one of the above. 前記ベース板が水冷フィンを兼用することを特徴とする請求項1から5の何れかに記載のパワー半導体モジュール。   6. The power semiconductor module according to claim 1, wherein the base plate also serves as a water cooling fin. 前記ベース板は前記樹脂ケース内外に延在し、前記樹脂ケース外において前記ベース板が空冷フィンを備えることを特徴とする請求項1から4の何れかに記載のパワー半導体モジュール。   5. The power semiconductor module according to claim 1, wherein the base plate extends inside and outside the resin case, and the base plate includes air cooling fins outside the resin case. 前記ベース板は前記樹脂ケース内外に延在し、前記樹脂ケース外において前記ベース板がヒートパイプを備えることを特徴とする請求項1から4の何れかに記載のパワー半導体モジュール。
5. The power semiconductor module according to claim 1, wherein the base plate extends inside and outside the resin case, and the base plate includes a heat pipe outside the resin case.
JP2004000253A 2004-01-05 2004-01-05 Power semiconductor module Expired - Lifetime JP4336205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004000253A JP4336205B2 (en) 2004-01-05 2004-01-05 Power semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004000253A JP4336205B2 (en) 2004-01-05 2004-01-05 Power semiconductor module

Publications (2)

Publication Number Publication Date
JP2005197340A true JP2005197340A (en) 2005-07-21
JP4336205B2 JP4336205B2 (en) 2009-09-30

Family

ID=34816151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004000253A Expired - Lifetime JP4336205B2 (en) 2004-01-05 2004-01-05 Power semiconductor module

Country Status (1)

Country Link
JP (1) JP4336205B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281149A (en) * 2006-04-05 2007-10-25 Toyota Central Res & Dev Lab Inc Mos semiconductor device
WO2008102914A1 (en) * 2007-02-22 2008-08-28 Toyota Jidosha Kabushiki Kaisha Semiconductor power converting device and method for manufacturing the same
JP2010062492A (en) * 2008-09-08 2010-03-18 Denso Corp Semiconductor device
CN102208403A (en) * 2011-05-24 2011-10-05 嘉兴斯达半导体有限公司 Half-bridge power module
US20120223322A1 (en) * 2011-03-02 2012-09-06 International Rectifier Corporation III-Nitride Transistor Stacked with Diode in a Package
US9570439B2 (en) 2015-03-13 2017-02-14 Kabushiki Kaisha Toshiba Semiconductor device and semiconductor package

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110246835B (en) * 2019-05-22 2020-08-18 西安交通大学 Three-dimensional integrated high-voltage silicon carbide module packaging structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281149A (en) * 2006-04-05 2007-10-25 Toyota Central Res & Dev Lab Inc Mos semiconductor device
WO2008102914A1 (en) * 2007-02-22 2008-08-28 Toyota Jidosha Kabushiki Kaisha Semiconductor power converting device and method for manufacturing the same
US8058554B2 (en) 2007-02-22 2011-11-15 Toyota Jidosha Kabushiki Kaisha Semiconductor power conversion apparatus and method of manufacturing the same
JP2010062492A (en) * 2008-09-08 2010-03-18 Denso Corp Semiconductor device
US20120223322A1 (en) * 2011-03-02 2012-09-06 International Rectifier Corporation III-Nitride Transistor Stacked with Diode in a Package
US8963338B2 (en) * 2011-03-02 2015-02-24 International Rectifier Corporation III-nitride transistor stacked with diode in a package
CN102208403A (en) * 2011-05-24 2011-10-05 嘉兴斯达半导体有限公司 Half-bridge power module
US9570439B2 (en) 2015-03-13 2017-02-14 Kabushiki Kaisha Toshiba Semiconductor device and semiconductor package
US9853023B2 (en) 2015-03-13 2017-12-26 Kabushiki Kaisha Toshiba Semiconductor device and semiconductor package

Also Published As

Publication number Publication date
JP4336205B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
US10490494B2 (en) Semiconductor device
JP6075380B2 (en) Semiconductor device
TWI608589B (en) Semiconductor device and alternator using the same
JP4640213B2 (en) Power semiconductor device and inverter bridge module using the same
US20150371937A1 (en) Semiconductor device
JP5863602B2 (en) Power semiconductor device
WO2005119896A1 (en) Inverter device
JP4640425B2 (en) Power converter
WO2018131276A1 (en) Semiconductor device
JP6003624B2 (en) Semiconductor module
JP2012004543A (en) Semiconductor unit, and semiconductor device using the same
WO2014030254A1 (en) Semiconductor device
JP2007068302A (en) Power semiconductor device and semiconductor power converter
JP2011036016A (en) Power converter
JP2020009834A (en) Semiconductor device
KR101734712B1 (en) Power module
EP2120260B1 (en) Semiconductor unit with temperature sensor
JP6381764B1 (en) Semiconductor power module
JP4336205B2 (en) Power semiconductor module
US20170201083A1 (en) Power Converter Provided with Dual Function Bus Bars
JP6520871B2 (en) Semiconductor module
JP2007215302A (en) Inverter apparatus
JPH0529667A (en) Thermoelectric conversion module
JP4594831B2 (en) Power semiconductor device
JP2009021445A (en) Inverter apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4336205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term