JP2005197115A - Photoelectric conversion device and solar cell using the same - Google Patents

Photoelectric conversion device and solar cell using the same Download PDF

Info

Publication number
JP2005197115A
JP2005197115A JP2004003153A JP2004003153A JP2005197115A JP 2005197115 A JP2005197115 A JP 2005197115A JP 2004003153 A JP2004003153 A JP 2004003153A JP 2004003153 A JP2004003153 A JP 2004003153A JP 2005197115 A JP2005197115 A JP 2005197115A
Authority
JP
Japan
Prior art keywords
group
photoelectric conversion
carbon atoms
hydrogen atom
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004003153A
Other languages
Japanese (ja)
Inventor
Atsushi Fukui
篤 福井
Reigen Kan
礼元 韓
Kazuhiro Enomoto
和弘 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004003153A priority Critical patent/JP2005197115A/en
Publication of JP2005197115A publication Critical patent/JP2005197115A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized photoelectric conversion device which is lower in price and higher in photoelectric conversion efficiency. <P>SOLUTION: The photoelectric conversion device comprises a semiconductor electrode sensitized by organic dye which is expressed by a general formula (1) (wherein (A) shows a bivalent heterocyclic group, Z shows a bivalent aromatic cyclic group, R<SB>1</SB>is a hydrogen atom or an alkyl group, and R<SB>2</SB>is a hydrogen atom, an alkyl group, a hydroxyl group, an alkoxy group, an aryl group, and a styryl group, and R<SB>1</SB>and R<SB>2</SB>may combine each other to form a carbocyclic compound of 5 cycles or 6 cycles. R<SB>3</SB>, R<SB>4</SB>, R<SB>5</SB>and R<SB>6</SB>show identically or distinctly a hydrogen atom, a halogen atom, an alkyl group, and an alkoxy group. L is a hydrogen atom or an electronic suctional group, while M is a hydrogen atom or a salt forming cation. m is an integer of 0 to 3, and n is an integer of 0 to 4). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、特定の有機増感色素を用いた半導体電極からなる光電変換素子及びそれを用いた太陽電池に関する。更に詳しくは、本発明は、4H−ピラン−4−オン(γ―pyrone)骨格を有するポリメチン色素を増感剤として含む半導体電極からなる高効率色素増感型光電変換素子、及び該素子を用いた太陽電池に関する。   The present invention relates to a photoelectric conversion element comprising a semiconductor electrode using a specific organic sensitizing dye and a solar cell using the photoelectric conversion element. More specifically, the present invention relates to a high-efficiency dye-sensitized photoelectric conversion device comprising a semiconductor electrode containing a polymethine dye having a 4H-pyran-4-one (γ-pyrone) skeleton as a sensitizer, and the element. Related to solar cells.

太陽光発電は、単結晶シリコン太陽電池、多結晶シリコン太陽電池、アモルファスシリコン太陽電池、更にはテルル化カドミウム、セレン化インジウム等の化合物系太陽電池により可能であることが知られており、これら太陽電池の開発が、精力的に行われている。これら太陽電池の中には、すでに実用化されてきているものもある。実用化に際して、更なる製造コストの低減、原材料の安定確保、エネルギーペイバックタイムの期間を短くする等の問題点を克服することが望まれている。   Solar power generation is known to be possible with single crystal silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells, and compound solar cells such as cadmium telluride and indium selenide. Batteries are being developed vigorously. Some of these solar cells have already been put into practical use. In the practical application, it is desired to overcome problems such as further reduction in manufacturing cost, securing of stable raw materials, and shortening the period of energy payback time.

一方、上記以外の太陽電池として、大面積化や低価格化を指向したフタロシアニン顔料を用いた太陽電池が提案されている。しかし、この太陽電池は、光電変換効率が低いという問題がある。   On the other hand, as a solar cell other than the above, a solar cell using a phthalocyanine pigment aimed at increasing the area and reducing the price has been proposed. However, this solar cell has a problem of low photoelectric conversion efficiency.

更に、Nature(737〜740P 353 (1991))(非特許文献1)及びUSP4,927,721号(特許文献1)等に、有機色素によって増感した金属酸化物を半導体電極として用いた光電変換素子及び太陽電池、並びにこれらを作製するための材料及びその製造技術が開示されている。開示された内容は、ルテニウム錯体構造を有する有機色素により増感された酸化チタンからなる半導体微粒子を用いた光電変換素子及び太陽電池に関するものである。ここで開示された太陽電池の特徴は、(1)酸化チタンのような安価な原料を使用できること、(2)用いる色素によっては変換波長を長波長まで利用できるので、より広領域の可視光を電気に変換できること、(3)色素のブレンドにより新規作用が生じる可能性があること、(4)新規増感色素を発見できる可能性があることである。これらの特徴において、上記太陽電池は、従来の太陽電池では考えにくかった新しい着眼点が生まれてきた。しかしながら、太陽電池として実用化するには、まだまだ光電変換効率が低いという問題点が残されている。   Further, Photoelectric conversion using a metal oxide sensitized with an organic dye as a semiconductor electrode in Nature (737-740P 353 (1991)) (Non-patent Document 1) and USP 4,927,721 (Patent Document 1), etc. An element, a solar cell, a material for manufacturing the element, and a manufacturing technique thereof are disclosed. The disclosed content relates to a photoelectric conversion element and a solar cell using semiconductor fine particles made of titanium oxide sensitized with an organic dye having a ruthenium complex structure. The features of the solar cell disclosed here are (1) that an inexpensive raw material such as titanium oxide can be used, and (2) that the conversion wavelength can be used up to a long wavelength depending on the dye used, so that a wider range of visible light can be obtained. It can be converted into electricity, (3) there is a possibility that a new action may be produced by blending the dyes, and (4) there is a possibility that a new sensitizing dye can be discovered. In these features, the above-described solar cell has created a new point of view that was difficult to think of with conventional solar cells. However, there is still a problem that the photoelectric conversion efficiency is still low for practical use as a solar cell.

USP4,927,721号USP 4,927,721 Nature(737〜740P 353 (1991))Nature (737-740P 353 (1991))

本発明の課題は、光電変換効率が優れた色素により増感された半導体電極を用いた高効率の光電変換素子及び太陽電池を提供することにある。   The subject of this invention is providing the highly efficient photoelectric conversion element and solar cell using the semiconductor electrode sensitized with the pigment | dye excellent in photoelectric conversion efficiency.

前記課題を解決すべく、種々検討した結果、本発明に至ったものである。
かくして本発明によれば、下記一般式(1)
As a result of various studies to solve the above problems, the present invention has been achieved.
Thus, according to the present invention, the following general formula (1)

Figure 2005197115
Figure 2005197115

(式中、Aは置換基を有していてもよい2価の炭素数4又は5の複素環基を示し、Zは置換基を有していてもよい炭素数6〜24の2価の芳香環基を示し、R1は水素原子又は炭素数1から4のアルキル基、R2は水素原子、炭素数1から4のアルキル基、水酸基、炭素数1から4のアルコキシ基、置換基を有していてもよい炭素数6から12のアリール基、置換基を有していていもよいスチリル基であり、R1とR2は互いに結合して5員環、6員環の炭素環式化合物を形成してもよい。R3、R4、R5及びR6は、同一又は異なって、水素原子、ハロゲン原子、炭素数1から4のアルキル基、炭素数1から4のアルコキシ基を示す。Lは水素原子又は電子吸引性基であり、Mは水素原子又は塩形成カチオンである。mは0〜3の整数、nは0〜4の整数である。)
で表わされる有機色素により増感された半導体電極からなることを特徴とする光電変換素子が提供される。
(In the formula, A represents a divalent heterocyclic group having 4 or 5 carbon atoms which may have a substituent, and Z represents a divalent divalent having 6 to 24 carbon atoms which may have a substituent. R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R 2 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, or a substituent. An aryl group having 6 to 12 carbon atoms which may have a styryl group which may have a substituent, and R 1 and R 2 are bonded to each other to form a 5-membered or 6-membered carbocyclic ring R 3 , R 4 , R 5 and R 6 may be the same or different and each represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. L is a hydrogen atom or an electron-withdrawing group, M is a hydrogen atom or a salt-forming cation, m is an integer of 0 to 3, and n is To 4 of an integer.)
The photoelectric conversion element characterized by comprising the semiconductor electrode sensitized with the organic pigment | dye represented by these is provided.

更に、本発明によれば、上記光電変換素子を構成要素として含む太陽電池が提供される。   Furthermore, according to this invention, the solar cell which contains the said photoelectric conversion element as a component is provided.

本発明によれば、特定の有機色素(以下、単に色素という)を光増感剤とすることにより、安価で、光電変換効率が高い色素増感型光電変換素子が提供される。また、これを用いることにより光電変換効率の高い太陽電池を容易に提供できる。   According to the present invention, by using a specific organic dye (hereinafter simply referred to as a dye) as a photosensitizer, a dye-sensitized photoelectric conversion element that is inexpensive and has high photoelectric conversion efficiency is provided. Moreover, a solar cell with high photoelectric conversion efficiency can be easily provided by using this.

本発明において、色素増感された半導体電極は、電子写真における感光体と類似の役割を担っている。具体的には、色素増感された半導体電極は、光を吸収することで、電子とホールを電荷分離させる役割を担っている。色素増感された半導体電極では、色素部分で光が吸収され、電子及びホールが発生する。半導体部分では、発生した電子が伝達される。   In the present invention, the dye-sensitized semiconductor electrode plays a role similar to that of a photoreceptor in electrophotography. Specifically, the dye-sensitized semiconductor electrode plays a role of charge separation of electrons and holes by absorbing light. In the dye-sensitized semiconductor electrode, light is absorbed by the dye portion, and electrons and holes are generated. In the semiconductor portion, generated electrons are transmitted.

本発明に使用できる半導体としては、酸化チタン(TiO2)、酸化亜鉛(ZnO)、酸化錫(SnO2)、酸化鉄(Fe23)、酸化ニオブ(Nb25)、硫化カドミウム(CdS)、硫化鉛(PbS)、硫化亜鉛(ZnS)、リン化インジウム(InP)、銅−インジウムの硫化物(CuInS2)等が挙げられる。この内、酸化チタン(TiO2)、酸化亜鉛(ZnO)、酸化錫(SnO2)、酸化ニオブ(Nb25)が好ましい。 Examples of the semiconductor that can be used in the present invention include titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), iron oxide (Fe 2 O 3 ), niobium oxide (Nb 2 O 5 ), cadmium sulfide ( CdS), lead sulfide (PbS), zinc sulfide (ZnS), indium phosphide (InP), copper-indium sulfide (CuInS 2 ), and the like. Of these, titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), and niobium oxide (Nb 2 O 5 ) are preferable.

半導体は、単結晶、多結晶のいずれの結晶系を有していてもよい。この内、結晶成長が容易であり、製造コストが低い等の観点より、多結晶半導体であることが好ましい。更に、半導体は粒子状であることが好ましく、特にナノからマイクロスケールの微粉末の多結晶半導体が好ましい。また、2種類以上の粒子サイズの異なる粒子を混合して用いてもよい。更に、異なる材料からなる粒子を混合してもよい。   The semiconductor may have a single crystal system or a polycrystalline system. Among these, a polycrystalline semiconductor is preferable from the viewpoint of easy crystal growth and low manufacturing cost. Further, the semiconductor is preferably in the form of particles, and a nano- to micro-scale fine powder polycrystalline semiconductor is particularly preferable. Further, two or more kinds of particles having different particle sizes may be mixed and used. Further, particles made of different materials may be mixed.

粒子サイズの異なる半導体粒子を使用する場合、粒子サイズの大きい半導体粒子と小さい半導体粒子の平均粒径が、10倍以上の差がある方がよい。具体的には、100〜500nmの平均粒径の半導体粒子と、5〜50nmの平均粒径の半導体粒子を使用することが好ましい。平均粒径の大きい粒子は、主に光捕捉率をあげる目的で、平均粒径の小さい粒子は、主に、色素の吸着点をより多くすることで、色素吸着性を向上させる目的を有している。また、異なる材料からなる半導体粒子を混合する場合、吸着作用の強い材料を小粒径にした方が効果的である。   When semiconductor particles having different particle sizes are used, it is preferable that the average particle size of the semiconductor particles having a large particle size and the semiconductor particles having a small particle size have a difference of 10 times or more. Specifically, it is preferable to use semiconductor particles having an average particle diameter of 100 to 500 nm and semiconductor particles having an average particle diameter of 5 to 50 nm. Particles with a large average particle size are mainly for the purpose of increasing the light capture rate, and particles with a small average particle size have the purpose of mainly improving the dye adsorption property by increasing the number of dye adsorption points. ing. Further, when mixing semiconductor particles made of different materials, it is more effective to make the material having a strong adsorption action a small particle size.

半導体粒子は、各種文献等に記載されている方法に準じて製造できる。例えば「新合成法:ゾルーゲル法による単分散粒子の合成とサイズ形態制御」第35巻、第9号、1012〜1018頁(1995)等に記載された方法が代表的なものとして挙げられる。また、Degussa社が開発した塩化物(商品名 P25)を高温加水分解することにより半導体粒子を得る方法も挙げられる。   The semiconductor particles can be produced according to methods described in various documents. For example, a method described in “New Synthesis Method: Synthesis of Monodispersed Particles by Sol-Gel Method and Size Form Control” Vol. 35, No. 9, pages 1012 to 1018 (1995) and the like can be mentioned as a representative example. Moreover, the method of obtaining a semiconductor particle by hydrolyzing the chloride (brand name P25) which the Degussa company developed is also mentioned.

特に、酸化チタンは、アナターゼ型とルチル型の2種類の結晶系があり、その製法や熱履歴によりいずれの形もとりうる。一般に入手可能なものは、これらの混合体である。アナターゼ型の酸化チタンは、ルチル型より光吸収の長波端波長が短く、紫外光による光電変換効率の低下を起こす度合いが少なく、色素をより増感させやすい。そのため、酸化チタンは、アナターゼ型の含有率の高いものが好まし。特に、80重量%以上アナターゼ型の酸化チタンをことが好ましい。   In particular, titanium oxide has two types of crystal systems, anatase type and rutile type, and can take either form depending on its production method and thermal history. Generally available are mixtures of these. Anatase type titanium oxide has a shorter wavelength of light absorption than rutile type, has a lower degree of decrease in photoelectric conversion efficiency due to ultraviolet light, and more easily sensitizes a dye. Therefore, titanium oxide with high anatase type content is preferred. In particular, anatase type titanium oxide is preferably 80% by weight or more.

次に、本発明に使用できる一般式(1)の色素について説明する。
一般式(1)において、R1は、水素原子、炭素数1から4のアルキル基である。炭素数1から4のアルキル基としては、直鎖状又は分岐状であってもよく、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基が挙げられる。この内、水素原子又はメチル基が好ましい。
Next, the dye of the general formula (1) that can be used in the present invention will be described.
In the general formula (1), R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. The alkyl group having 1 to 4 carbon atoms may be linear or branched, and is a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, A tert-butyl group is mentioned. Among these, a hydrogen atom or a methyl group is preferable.

2は、水素原子、炭素数1から4のアルキル基、水酸基、炭素数1から4のアルコキシ基、置換基を有していてもよい炭素数6から12のアリール基、置換基を有していていもよいスチリル基である。炭素数1から4のアルキル基としては、上記R1に記載したものと同様のアルキル基が挙げられる。炭素数1から4のアルコキシ基としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基が挙げられる。炭素数6から12のアリール基としては、フェニル基、ナフチル基等が挙げられる。また、アリール基及びスチリル基に結合可能な置換基としては、メチル基、エチル基等の低級アルキル基や、フッ素原子、塩素原子、臭素原子等のハロゲン原子が挙げられる。 R 2 has a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 to 12 carbon atoms which may have a substituent, and a substituent. It may be a styryl group. Examples of the alkyl group having 1 to 4 carbon atoms include the same alkyl groups as those described for R 1 above. Examples of the alkoxy group having 1 to 4 carbon atoms include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, and tert-butoxy group. Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group and a naphthyl group. Examples of the substituent that can be bonded to the aryl group and styryl group include lower alkyl groups such as a methyl group and an ethyl group, and halogen atoms such as a fluorine atom, a chlorine atom, and a bromine atom.

更に、R1とR2とが互いに結合しあって5員環、6員環を形成してもよい。具体的には、R1とR2がアルキル基の場合、それが結合する炭素原子と共に、ベンゼン環、シクロペンタンジエン等の5員環又は6員環を形成していてもよい。 Further, R 1 and R 2 may be bonded to each other to form a 5-membered ring or a 6-membered ring. Specifically, when R 1 and R 2 are alkyl groups, a 5-membered or 6-membered ring such as a benzene ring or cyclopentanediene may be formed together with the carbon atom to which they are bonded.

Lは、水素原子又は電子吸引性基である。電子吸引性基としては、一般的に有機化学のテキストに記載されているものが挙げられる。具体的には、シアノ基、塩素のようなハロゲン原子、トリフロロメチル基、ニトロ基、フェニル基、アルコキシカルボキシル基、カルボキシル基、及びアルコキシカルボキシル基又はエステル化されたカルボキシル基等が挙げられる。この中でもシアノ基、トリフロロメチル基、またはトリフロロメチル基を含有するエステル体(例えば、α,α,α-トリフロロアルキルオキシカルボニル基)等の電子吸引性の強い置換基が好ましいものとして挙げられる。   L is a hydrogen atom or an electron-withdrawing group. Examples of the electron attractive group include those generally described in organic chemistry texts. Specific examples include a cyano group, a halogen atom such as chlorine, a trifluoromethyl group, a nitro group, a phenyl group, an alkoxycarboxyl group, a carboxyl group, an alkoxycarboxyl group, or an esterified carboxyl group. Among them, a substituent having a strong electron-withdrawing property such as a cyano group, a trifluoromethyl group, or an ester body containing a trifluoromethyl group (for example, α, α, α-trifluoroalkyloxycarbonyl group) is preferable. It is done.

Mは、水素原子又は塩形成カチオンである。具体的には、アンモニウムイオン、ナトリウムイオン、カリウムイオン等が挙げられる。   M is a hydrogen atom or a salt-forming cation. Specific examples include ammonium ions, sodium ions, potassium ions, and the like.

3、R4、R5、R6は、同一又は異なって、水素原子、ハロゲン原子、炭素数1から4のアルキル基、炭素数1から4のアルコキシ基である。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられる。炭素数1から4のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基が挙げられる。炭素数1から4のアルコキシ基としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基が挙げられる。炭素数6から12のアリール基としては、フェニル基、ナフチル基等が挙げられる。 R 3 , R 4 , R 5 and R 6 are the same or different and are a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom. Examples of the alkyl group having 1 to 4 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group. Examples of the alkoxy group having 1 to 4 carbon atoms include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, and tert-butoxy group. Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group and a naphthyl group.

Aは置換基を有していてもよい2価の炭素数4又は5の複素環基を示し、Zは置換基を有していてもよい炭素数6〜24の2価の芳香環基を示す。   A represents a divalent heterocyclic group having 4 or 5 carbon atoms that may have a substituent, and Z represents a divalent aromatic ring group having 6 to 24 carbon atoms that may have a substituent. Show.

Zは、ベンゼン、ナフタレン、アントラセン、ピレン等の縮合ベンゼン環、チアゾリン、チアゾール、ベンゾチアゾール、オキサゾール、ベンゾオキサゾール、セレナゾール、ベンゾセレナゾール、キノリン、インドレニン、ベンゾイミダゾール等の環状構造を含む複素環に由来する2価の基が挙げられる。   Z is a condensed benzene ring such as benzene, naphthalene, anthracene or pyrene, or a heterocyclic ring containing a cyclic structure such as thiazoline, thiazole, benzothiazole, oxazole, benzoxazole, selenazole, benzoselenazole, quinoline, indolenine or benzimidazole. Examples thereof include a derived divalent group.

Aは、チオフェン、フラン等の複素環に由来する2価の基が挙げられる。
Z及びAに結合可能な置換基としては、炭素数1〜6のアルキル基が挙げられる。具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基及びその構造異性体、n−ヘキシル基及びその構造異性体等が挙げられる。これら置換基は、Z及びAの置換可能箇所を複数置換していてもよい。
A includes a divalent group derived from a heterocyclic ring such as thiophene and furan.
Examples of the substituent that can be bonded to Z and A include an alkyl group having 1 to 6 carbon atoms. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group and structural isomers thereof, n-hexyl Groups and structural isomers thereof. These substituents may be substituted in plural places where Z and A can be substituted.

mは0〜3の整数であり、nは0〜4の整数である。
これらの色素の代表的なものについて具体的構造を以下に記載する。
m is an integer of 0 to 3, and n is an integer of 0 to 4.
Specific structures of typical examples of these dyes are described below.

Figure 2005197115
Figure 2005197115

Figure 2005197115
Figure 2005197115

Figure 2005197115
Figure 2005197115

Figure 2005197115
Figure 2005197115

Figure 2005197115
Figure 2005197115

上記化合物1、3〜6、7、9〜11、13、15〜17中、−COOHはアルカリ金属塩やアンモニウム塩であってもよい。化合物2、8及び12中、−COONa又は−COO-NH4 +は−COOHであってもよい。 In the compounds 1, 3-6, 7, 9-11, 13, 15-17, -COOH may be an alkali metal salt or an ammonium salt. In compounds 2, 8, and 12, -COONa or -COO - NH 4 + may be -COOH.

更に、上記色素は、水和物であってもよい。   Further, the dye may be a hydrate.

なお、上記色素は、公知の方法により製造することができる。その一例として、以下の反応式に示す製法が挙げられる。   In addition, the said pigment | dye can be manufactured by a well-known method. As an example, there is a production method shown in the following reaction formula.

中間体である式(C)の合成は、H.E.Carter,Org.React.3(1932)198、L.F.Tietze and U.Beifuss,Comp.Org.Syn.2(1991)341に記載の方法に準拠して製造することができる。   The synthesis of intermediate (C) as an intermediate is E. Carter, Org. React. 3 (1932) 198, L.M. F. Tietze and U. Beifuss, Comp. Org. Syn. 2 (1991) 341.

まず、式(A)に示す活性メチレン誘導体と、γ−ピラン誘導体とを、アルコール等の有機溶媒に溶解し、触媒としてアミンを加えた後、100℃前後の温度で数時間加熱することで化合物(C)を得る。   First, an active methylene derivative represented by the formula (A) and a γ-pyran derivative are dissolved in an organic solvent such as alcohol, an amine is added as a catalyst, and then heated for several hours at a temperature of about 100 ° C. (C) is obtained.

Figure 2005197115
Figure 2005197115

次に、中間体の式(D)は、ジアニル法により合成することができる。式(D)に無水酢酸を加えて加熱することで化合物(E)を得る。得られた化合物(E)に、上記化合物(C)とトリアルキルアミンとを加え、不活性ガスを吹込みながら還流を行なう。反応終了後、反応物を常温に冷却してから一晩攪拌する。反応物を単離することで一般式(1)に示す化合物を得ることができる。この反応式を下記する。   The intermediate formula (D) can then be synthesized by the dianyl method. Compound (E) is obtained by adding acetic anhydride to Formula (D) and heating. The compound (C) and trialkylamine are added to the obtained compound (E), and reflux is performed while blowing an inert gas. After the reaction is complete, the reaction is cooled to room temperature and stirred overnight. A compound represented by the general formula (1) can be obtained by isolating the reaction product. This reaction formula is shown below.

Figure 2005197115
Figure 2005197115

上記色素を半導体に吸着さすことにより半導体電極が得られる。吸着方法としては、色素を有機溶剤に溶解させて溶液を得、よく乾燥した半導体粒子を数時間室温で溶液に浸漬する方法が一般的である。色素の溶解性を向上する方法としては、少し溶解温度を上げる方法、2種類以上の異なる溶剤を混合する方法等が挙げられる。   A semiconductor electrode is obtained by adsorbing the dye to a semiconductor. The adsorption method is generally a method in which a dye is dissolved in an organic solvent to obtain a solution, and well-dried semiconductor particles are immersed in the solution for several hours at room temperature. Examples of the method for improving the solubility of the dye include a method of slightly increasing the dissolution temperature, a method of mixing two or more different solvents, and the like.

半導体粒子を導電性支持体に塗布する場合は、色素の吸着は半導体粒子に導電性支持体に塗布する前に行っても、塗布後に行ってもよい。色素の吸着性の面から、半導体粒子を塗布した後に色素を吸着させた方が好ましい。導電性支持体上に塗布した半導体粒子からなる膜に色素を吸着させる方法は、色素溶液中に、よく乾燥した膜を浸漬さすか、もしくは色素溶液を膜上に塗布して吸着させる方法が用いることができる。   When the semiconductor particles are applied to the conductive support, the dye adsorption may be performed before or after the semiconductor particles are applied to the conductive support. In view of the adsorptivity of the dye, it is preferable to adsorb the dye after coating the semiconductor particles. As a method of adsorbing the dye on the film made of semiconductor particles coated on the conductive support, a method of immersing a well-dried film in the dye solution or applying the dye solution on the film and adsorbing is used. be able to.

未吸着の色素は、素子機能の乱れを引き起こすため、吸着工程後、速やかに洗浄により除去することが好ましい。洗浄溶剤は色素溶解性の比較的低いものを用いるのがよい。また、アセトンのような比較的乾燥しやすい溶剤を用いることが好ましい。   Since the unadsorbed dye causes disorder of the element function, it is preferable to remove it by washing immediately after the adsorption process. A cleaning solvent having a relatively low dye solubility is preferably used. It is also preferable to use a solvent that is relatively easy to dry, such as acetone.

色素の吸着量は、少ないと増感効果が不十分になる。逆に多いと、半導体に吸着していない色素が浮遊して、これが増感効果を減じ、その結果、光電変換効率低下をもたらす原因となる。   If the amount of dye adsorbed is small, the sensitizing effect becomes insufficient. On the other hand, when the amount is large, the dye not adsorbed on the semiconductor floats, which reduces the sensitization effect and, as a result, causes a decrease in photoelectric conversion efficiency.

色素同志の会合を防止し、色素に一定の方向性をもたらすために、共吸着性の比較的低分子の化合物を加えてもよい。共吸着性の化合物としては、カルボキシル基及びカルボン酸無水物基を有するコール酸のようなステロイド化合物が挙げられる。   In order to prevent the association between the dyes and to provide a certain direction to the dye, a coadsorbing relatively low molecular weight compound may be added. Examples of the co-adsorbing compound include steroid compounds such as cholic acid having a carboxyl group and a carboxylic anhydride group.

また、余分な色素の除去後、吸着状態をより安定にするために半導体の表面を有機塩基性化合物により処理して、残存する未吸着色素を除去してもよい。有機塩基性化合物としては、ピリジン、キノリン、これらの誘導体等が挙げられる。有機塩基性化合物が、液体の場合はそのまま用いてもよいが、固体の場合は溶剤に溶解して用いてもよい。この溶剤は、色素溶解に使用した溶剤と同じであることが好ましい。   In addition, after removing the extra dye, the surface of the semiconductor may be treated with an organic basic compound to remove the remaining unadsorbed dye in order to make the adsorption state more stable. Examples of the organic basic compound include pyridine, quinoline, and derivatives thereof. When the organic basic compound is liquid, it may be used as it is, but when it is solid, it may be dissolved in a solvent. This solvent is preferably the same as the solvent used for dissolving the dye.

なお、使用する色素にもよるが、色素の吸着量は、1×10-10〜1×10-8mol/mm2の範囲であることが好ましい。1×10-10mol/mm2未満の場合、十分な光電変換効率を得ることが困難であるので好ましくなく、1×10-8mol/mm2より多い場合、未吸着の色素が残存する場合があるので好ましくない。 Although depending on the dye used, the adsorption amount of the dye is preferably in the range of 1 × 10 −10 to 1 × 10 −8 mol / mm 2 . When it is less than 1 × 10 −10 mol / mm 2, it is not preferable because it is difficult to obtain sufficient photoelectric conversion efficiency, and when it is more than 1 × 10 −8 mol / mm 2 , unadsorbed dye remains. This is not preferable.

半導体電極は、通常、導電性支持体上に形成されている。この導電性支持体としては、金属のようにそれ自体が導電性を有する材料からなる支持体、表面に導電層が形成されたガラスやプラスチック等の支持体が利用できる。好ましい導電層としては、白金、銀、銅、アルミニウム、インジウム等の金属、導電性カーボン、インジウム錫複合酸化物、フッ素をドープした酸化錫等からなる層が挙げられる。これらの導電層の膜厚は0.02〜2μm程度が好ましい。導電性支持体は、表面抵抗が低い程よい。好ましい表面抵抗は40Ω/cm2以下である。 The semiconductor electrode is usually formed on a conductive support. As the conductive support, there can be used a support made of a material that itself has conductivity, such as a metal, or a support such as glass or plastic having a conductive layer formed on the surface. As a preferable conductive layer, a layer made of a metal such as platinum, silver, copper, aluminum, or indium, conductive carbon, indium tin composite oxide, fluorine-doped tin oxide, or the like can be given. The thickness of these conductive layers is preferably about 0.02 to 2 μm. The lower the surface resistance of the conductive support, the better. A preferable surface resistance is 40 Ω / cm 2 or less.

導電性支持体は、実質的に透明であることが好ましい。この点及び機械的な強度を考慮にいれると、フッ素をドープした酸化錫からなる導電層をソーダ石灰フロートガラスからなる透明性基板上に積層したものが好ましい。   The conductive support is preferably substantially transparent. In consideration of this point and mechanical strength, it is preferable to laminate a conductive layer made of tin oxide doped with fluorine on a transparent substrate made of soda-lime float glass.

また、コストの低減、フレキシブル性の向上等を考慮にいれると、透明ポリマーシートからなる支持体上に上記導電層を設けてもよい。透明ポリマーシートとしては、テトラアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリフェニレンスルファイド(PPS)、ポリカーボネート(PC)、ポリアリレート(PA)、ポリエーテルイミド(PEI)、フェノキシ樹脂等が挙げられる。   In consideration of cost reduction and improvement in flexibility, the conductive layer may be provided on a support made of a transparent polymer sheet. Examples of the transparent polymer sheet include tetraacetyl cellulose (TAC), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polycarbonate (PC), polyarylate (PA), polyetherimide (PEI), and phenoxy resin. .

導電性支持体の抵抗をさげるために金属リード線を導電層の上又は下に形成してもよい。金属リード線の材質としては、白金、銀、銅、アルミニウム、インジウム、ニッケル等がこのましい。例えば、金属リード線を支持体上にスパッター、蒸着等で設置し、その上に酸化錫、ITO等の導電層を設けてもよい。なお、金属リード線を入射光量が低下しないように形成することが好ましい。   Metal leads may be formed above or below the conductive layer to reduce the resistance of the conductive support. As the material of the metal lead wire, platinum, silver, copper, aluminum, indium, nickel and the like are preferable. For example, a metal lead wire may be installed on the support by sputtering or vapor deposition, and a conductive layer such as tin oxide or ITO may be provided thereon. It is preferable to form the metal lead wire so that the amount of incident light does not decrease.

本発明の光電変換素子は、上記半導体電極を構成要素として含む。光電変化素子は、通常、上記半導体電極、電解質層及び電解質層を介して半導体電極と対向する対極とからなる。   The photoelectric conversion element of this invention contains the said semiconductor electrode as a component. The photoelectric change element usually comprises a semiconductor electrode, an electrolyte layer, and a counter electrode facing the semiconductor electrode via the electrolyte layer.

対極としては、導電性基板上に薄膜状にコートした白金、ロジウム、ルテニウム、カーボンからなる電極、酸化物半導体電極等が挙げられる。好ましくは、白金又はカーボンからなる電極である。   Examples of the counter electrode include platinum, rhodium, ruthenium, and carbon electrodes coated with a thin film on a conductive substrate, and oxide semiconductor electrodes. Preferably, the electrode is made of platinum or carbon.

電解質層としては、ヨウ化リチウム、ヨウ化テトラアルキルアンモニウム、ヨウ化イミダゾリウム等の電解質と溶剤とからなるレドックス電解溶液中に、ゲル化剤を加えることによりゲル化した固体化電解質からなる層が挙げられる。ここで溶剤としては、基本的には、熱、pH等に安定で、かつ、電解質を溶解する親水性でない溶剤(特に、水酸基をもたない溶剤)であることが好ましい。一般的には、電子吸引性を有するアセトニトリル等が好ましい。このレドックス電解溶液の電解質濃度は、約0.1〜2.0mol/Lが適当である。   As the electrolyte layer, there is a layer made of a solidified electrolyte that is gelled by adding a gelling agent to a redox electrolytic solution composed of an electrolyte such as lithium iodide, tetraalkylammonium iodide, imidazolium iodide and a solvent. Can be mentioned. Here, the solvent is basically preferably a non-hydrophilic solvent (particularly a solvent having no hydroxyl group) that is stable to heat, pH and the like and dissolves the electrolyte. In general, acetonitrile having electron withdrawing property is preferable. The electrolyte concentration of this redox electrolytic solution is suitably about 0.1 to 2.0 mol / L.

また、レドックス電解溶液の代わりに、ポリエチレンオキシド誘導体、ポリ弗化ビニリデン誘導体等の固体ポリマーを熱溶融させ、室温時固体化させることで所望形状の電解質層としてもよい。更には、ポリチオフェン誘導体、ポリピロール誘導体等のP型半導体樹脂を電解質層として用いてもよい。更にはこれら電解質層の構成樹脂を適時混合してもよい。   Further, instead of the redox electrolytic solution, a solid polymer such as a polyethylene oxide derivative or a polyvinylidene fluoride derivative may be melted by heat and solidified at room temperature to form an electrolyte layer having a desired shape. Furthermore, a P-type semiconductor resin such as a polythiophene derivative or a polypyrrole derivative may be used as the electrolyte layer. Furthermore, these constituent resins of the electrolyte layer may be mixed as appropriate.

更に、半導体薄膜電極と対極の接触を防止するために、スペーサーを介在させてもよい。スペーサーとしてはポリエチレンのような高分子フイルムが挙げられる。このスペーサーの膜厚は10〜100μmぐらいが適当である。   Furthermore, a spacer may be interposed in order to prevent contact between the semiconductor thin film electrode and the counter electrode. Examples of the spacer include a polymer film such as polyethylene. The thickness of the spacer is suitably about 10 to 100 μm.

本発明によれば、上記半導体電極からなる光電変換素子を構成要素として含む太陽電池が提供される。   According to this invention, the solar cell which contains the photoelectric conversion element which consists of the said semiconductor electrode as a component is provided.

合成例
上記化合物−2の合成例を示す。
Synthesis example The synthesis example of the said compound-2 is shown.

まず、活性メチレン誘導体(A)0.462g(3mmol)と2―メチル−γ−ピラン誘導体(B)0.414g(3mmol)をエタノールに溶解させた。得られた溶液中にピペリジンを触媒として加え、100℃で約5時間攪拌さすことにより化合物(C)を得た。   First, 0.462 g (3 mmol) of an active methylene derivative (A) and 0.414 g (3 mmol) of a 2-methyl-γ-pyran derivative (B) were dissolved in ethanol. Piperidine was added to the obtained solution as a catalyst, and the mixture was stirred at 100 ° C. for about 5 hours to obtain compound (C).

これを反応式であらわすと次のようになる。   This can be represented by the following reaction formula.

Figure 2005197115
Figure 2005197115

次に、2−メチル−ベンゾチアゾールとヨウ化メチルから得られる1−エチル−2−メチルベンゾチアゾリウムアイオダイドに、ジフェニルホルムアミジンを加えて加熱し、2-アニリノビニル-3エチル-ベンゾチアゾリウムアイオダイド(D)を得た。2−アニリノビニル−3−エチル−ベンゾチアゾールアイオダイト(D)1.021g(2.5mmol)に無水酢酸0.13g(1.25mmol)を加えて加熱することで化合物(E)を得た。得られた化合物(E)に、化合物(C)0.488g(2.0mmol)とトリエチルアミンとを加え、アルゴンガスを吹込みながら還流を行なった。反応終了後、反応混合物を常温に冷却してから一晩攪拌した。反応混合物を濾過し、濾液中の溶媒を蒸発させて固体を得た。この固体をカラムクロマトグラフィーで精製し、0.597gの化合物−2を得た(収率72%)。   Next, 1-ethyl-2-methylbenzothiazolium iodide obtained from 2-methyl-benzothiazole and methyl iodide is added with diphenylformamidine and heated to give 2-anilinovinyl-3ethyl-benzothiazo. Lithium iodide (D) was obtained. Compound (E) was obtained by adding 0.13 g (1.25 mmol) of acetic anhydride to 1.021 g (2.5 mmol) of 2-anilinovinyl-3-ethyl-benzothiazole iodide (D) and heating. To the obtained compound (E), 0.488 g (2.0 mmol) of compound (C) and triethylamine were added and refluxed while blowing argon gas. After completion of the reaction, the reaction mixture was cooled to room temperature and stirred overnight. The reaction mixture was filtered and the solvent in the filtrate was evaporated to give a solid. This solid was purified by column chromatography to obtain 0.597 g of compound-2 (yield 72%).

Figure 2005197115
Figure 2005197115

なお、化合物−2の同定は元素分析により行った。
元素分析:C22H19N2NaO3S
計算値(%) C, 63.76; H, 4.62; N, 6.76
実測値(%) C, 63.25; H, 4.82; N, 6.88
化合物−1、化合物−3〜化合物−14に関しても同様に合成を行った。元素分析の結果を以下に示す。
Compound 2 was identified by elemental analysis.
Elemental analysis: C22H19N2NaO3S
Calculated (%) C, 63.76; H, 4.62; N, 6.76
Found (%) C, 63.25; H, 4.82; N, 6.88
Compound-1 and compound-3 to compound-14 were synthesized in the same manner. The results of elemental analysis are shown below.

化合物−1
元素分析:C20H16N2O4
計算値(%)C, 68.96; H, 4.63; N, 8.04
実測値(%)C, 69.42; H, 4.40; N, 7.89
化合物−3
元素分析:C23H23NO6
計算値(%)C, 67.47; H, 5.66; N, 3.42
実測値(%)C, 68.22; H, 5.43; N, 3.19
Compound-1
Elemental analysis: C20H16N2O4
Calculated (%) C, 68.96; H, 4.63; N, 8.04
Found (%) C, 69.42; H, 4.40; N, 7.89
Compound-3
Elemental analysis: C23H23NO6
Calculated (%) C, 67.47; H, 5.66; N, 3.42
Found (%) C, 68.22; H, 5.43; N, 3.19

化合物−4
元素分析:C28H22N2O3Se
計算値(%)C, 65.50; H, 4.32; N, 5.46
実測値(%)C, 64.21; H, 4.63; N, 5.99
化合物−5
元素分析:C26H28N2O4
計算値(%)C, 72.20; H, 6.53; N, 6.48
実測値(%)C, 72.54; H, 6.44; N, 6.33
Compound-4
Elemental analysis: C28H22N2O3Se
Calculated (%) C, 65.50; H, 4.32; N, 5.46
Found (%) C, 64.21; H, 4.63; N, 5.99
Compound-5
Elemental analysis: C26H28N2O4
Calculated (%) C, 72.20; H, 6.53; N, 6.48
Found (%) C, 72.54; H, 6.44; N, 6.33

化合物−6
元素分析:C25H23N2NaO4
計算値(%)C, 68.48; H, 5.29; N, 6.39
実測値(%)C, 67.98; H, 5.49; N, 6.48
化合物−7
元素分析:C25H24N2O3S
計算値(%)C, 69.42; H, 5.59; N, 6.48
実測値(%)C, 68.45; H, 5.73; N, 6.91
Compound-6
Elemental analysis: C25H23N2NaO4
Calculated (%) C, 68.48; H, 5.29; N, 6.39
Found (%) C, 67.98; H, 5.49; N, 6.48
Compound-7
Elemental analysis: C25H24N2O3S
Calculated (%) C, 69.42; H, 5.59; N, 6.48
Found (%) C, 68.45; H, 5.73; N, 6.91

化合物−8
元素分析:C24H29N3O7
計算値(%)C, 61.14; H, 6.20; N, 8.91
実測値(%)C, 60.65; H, 6.37; N, 9.56
化合物−9
元素分析:C33H30F3NO3Se
計算値(%)C, 63.46; H, 4.84; N, 2.24
実測値(%)C, 63.34; H, 5.01; N, 2.20
Compound-8
Elemental analysis: C24H29N3O7
Calculated (%) C, 61.14; H, 6.20; N, 8.91
Found (%) C, 60.65; H, 6.37; N, 9.56
Compound-9
Elemental analysis: C33H30F3NO3Se
Calculated (%) C, 63.46; H, 4.84; N, 2.24
Found (%) C, 63.34; H, 5.01; N, 2.20

化合物−10
元素分析:C35H36F3NO5
計算値(%)C, 69.18; H, 5.97; N, 2.31
実測値(%)C, 69.34; H, 5.31; N, 2.43
化合物−11
元素分析:C27H24N2O3S2
計算値(%)C, 66.37; H, 4.95; N, 5.73
実測値(%)C, 66.00; H, 5.34; N, 5.88
Compound-10
Elemental analysis: C35H36F3NO5
Calculated (%) C, 69.18; H, 5.97; N, 2.31
Found (%) C, 69.34; H, 5.31; N, 2.43
Compound-11
Elemental analysis: C27H24N2O3S2
Calculated (%) C, 66.37; H, 4.95; N, 5.73
Found (%) C, 66.00; H, 5.34; N, 5.88

化合物−12
元素分析:C25H24N2O8
計算値(%)C, 62.49; H, 5.03; N, 5.83
実測値(%)C, 62.22; H, 5.14; N, 5.97
化合物−13
元素分析:C33H30F3NO3S
計算値(%)C, 68.61; H, 5.23; N, 2.42
実測値(%)C, 68.40; H, 5.66; N, 2.69
Compound-12
Elemental analysis: C25H24N2O8
Calculated (%) C, 62.49; H, 5.03; N, 5.83
Found (%) C, 62.22; H, 5.14; N, 5.97
Compound-13
Elemental analysis: C33H30F3NO3S
Calculated (%) C, 68.61; H, 5.23; N, 2.42
Found (%) C, 68.40; H, 5.66; N, 2.69

化合物−14
元素分析:C33H30N2O3S3
計算値(%)C, 66.19; H, 5.05; N, 4.68
実測値(%)C, 66.88; H, 4.81; N, 4.44
化合物−15
元素分析:C21H18N2O4
計算値(%)C, 69.60; H, 5.01; N, 7.73
実測値(%)C, 69.42; H, 4.40; N, 7.89
Compound-14
Elemental analysis: C33H30N2O3S3
Calculated (%) C, 66.19; H, 5.05; N, 4.68
Found (%) C, 66.88; H, 4.81; N, 4.44
Compound-15
Elemental analysis: C21H18N2O4
Calculated (%) C, 69.60; H, 5.01; N, 7.73
Found (%) C, 69.42; H, 4.40; N, 7.89

化合物−16
元素分析:C24H25NO6
計算値(%)C, 68.07; H, 5.95; N, 3.31
実測値(%)C, 68.22; H, 5.43; N, 3.19
化合物−17
元素分析:C37H40F3NO5
計算値(%)C, 69.91; H, 6.34; N, 2.20
実測値(%)C, 69.34; H, 5.31; N, 2.43
Compound-16
Elemental analysis: C24H25NO6
Calculated (%) C, 68.07; H, 5.95; N, 3.31
Found (%) C, 68.22; H, 5.43; N, 3.19
Compound-17
Elemental analysis: C37H40F3NO5
Calculated (%) C, 69.91; H, 6.34; N, 2.20
Found (%) C, 69.34; H, 5.31; N, 2.43

実施例1〜8及び比較例1〜2
(有機太陽電池の作製)
上記化合物の内8種と下記で表される化合物18及び19(比較例1及び2)を増感色素として吸着させたナノポーラス酸化チタン薄膜電極(厚さ14μm)、ヨウ素イオンレドックス電解溶液(0.3molヨウ化テトラアルキルアンモニウム+0.03molヨウ素をプロピレンカーボネート:アセトニトリル容積比=1:1の混合溶剤に溶解した溶液)、ポリエチレンスペーサー(厚さ30μm)及び白金対極からなる色素増感型太陽電池を作製した。
Examples 1-8 and Comparative Examples 1-2
(Production of organic solar cells)
Nanoporous titanium oxide thin film electrode (thickness: 14 μm) adsorbed as sensitizing dyes, 8 kinds of the above compounds and compounds 18 and 19 (Comparative Examples 1 and 2) shown below, iodine ion redox electrolytic solution (0. 3 mol tetraalkylammonium iodide + 0.03 mol iodine dissolved in propylene carbonate: acetonitrile volume ratio = 1: 1 mixed solvent), polyethylene spacer (thickness 30 μm), and dye-sensitized solar cell made of platinum counter electrode did.

Figure 2005197115
Figure 2005197115

これら各工程についてより具体的に説明する。
・酸化チタン薄膜電極の作製方法
(酸化チタン分散液の調製)
酸化チタンSSP―M(堺化学製:アナターゼタイプ)を純水で、数回洗浄し、これを内側をテフロン(登録商標)ライニングしたステンレス製べッセルに入れ、約3倍の重量の純水及び分散剤TORITONN X-100(ALDRICH社)を1重量%ほど加えた。次いで、直径0.5mmのガラスビーズを加えて、ペイントシェイカー(RED―DEVIL社製)により約1時間分散した。得られた分散液から、ガラスビーズを濾過して取り除いた。このようにして平均粒径0.3μmの粒子を含む酸化チタン分散液を作製した。またX線回析装置を用いてアナターゼ、ルチルのそれぞれのピーク強度比より酸化チタンSSP−Mのアナターゼ化率を求めた結果、アナターゼ化率100%であった。
Each of these steps will be described more specifically.
・ Production method of titanium oxide thin film electrode (Preparation of titanium oxide dispersion)
Titanium oxide SSP-M (manufactured by Sakai Chemical Co., Ltd .: Anatase type) was washed several times with pure water, and the inside was put into a stainless steel vessel lined with Teflon (registered trademark). About 1% by weight of a dispersant TORITONN X-100 (ALDRICH) was added. Next, glass beads having a diameter of 0.5 mm were added and dispersed for about 1 hour by a paint shaker (made by RED-DEVIL). Glass beads were removed by filtration from the resulting dispersion. In this way, a titanium oxide dispersion containing particles having an average particle size of 0.3 μm was prepared. Moreover, as a result of calculating | requiring the anataseization rate of the titanium oxide SSP-M from each peak intensity ratio of anatase and a rutile using the X ray diffraction apparatus, it was 100% of anatase conversion rate.

(酸化チタン薄膜電極の作製)
フッ素をドープした酸化錫からなる導電膜を備えた導電性ガラス(サイズ:25mm×100mm)の導電膜側にクリアランス150μmのアプリケーターを用いて前記分散液を塗布した。塗布後室温下で約1時間風乾した後、電気炉(ヤマト科学社製)中、450℃で、30分間焼成し、TiO2電極を得た。この電極を取り出し室温下まで冷却後、上記化合物の内の8種を増感色素としてTiO2電極に吸着させたナノポーラス酸化チタン薄膜電極(厚さ14μm)を作製した。
(Preparation of titanium oxide thin film electrode)
The dispersion was applied to the conductive film side of conductive glass (size: 25 mm × 100 mm) provided with a conductive film made of fluorine-doped tin oxide using an applicator having a clearance of 150 μm. After the coating, it was air-dried at room temperature for about 1 hour, and then baked at 450 ° C. for 30 minutes in an electric furnace (manufactured by Yamato Scientific Co., Ltd.) to obtain a TiO 2 electrode. The electrode was taken out and cooled to room temperature, and then a nanoporous titanium oxide thin film electrode (thickness: 14 μm) was prepared by adsorbing 8 kinds of the above compounds as sensitizing dyes on a TiO 2 electrode.

なお、各色素はエタノール/DMF(1/1容積比)に溶かし、更にこれら色素溶液に、色素mol比でコール酸0.4molを添加した溶液を用いて5時間以上浸漬し、次いで湿度30%で自然乾燥した。   Each dye was dissolved in ethanol / DMF (1/1 volume ratio), and further immersed in these dye solutions for 5 hours or more using a solution in which 0.4 mol of cholic acid was added at a dye mol ratio, and then the humidity was 30%. Dried naturally.

作製した太陽電池に対して、太陽光とほぼ同じ光強度であるAM1.5(100mW/cm2)の光を照射し、その時発生した電気量及び光電変換効率を測定し、表1に記載した。また、表1にはこれら色素のアルコール溶液中での吸収極大波長についても記載した。なお、光電変換率は、光照射した結果生じた電気量を電流−電圧測定装置にて求め、電気量から光電変換率を求めた。 The produced solar cell was irradiated with light of AM1.5 (100 mW / cm 2 ), which has almost the same light intensity as sunlight, and the amount of electricity generated at that time and the photoelectric conversion efficiency were measured and listed in Table 1. . Table 1 also shows the maximum absorption wavelength of these dyes in an alcohol solution. In addition, the photoelectric conversion rate calculated | required the electric quantity produced as a result of light irradiation with the electric current-voltage measuring apparatus, and calculated | required the photoelectric conversion ratio from the electric quantity.

Figure 2005197115
Figure 2005197115

上記表1から、実施例1の色素を含む半導体電極を備えた太陽電池は、光電変換効率が高いことがわかる。   From Table 1 above, it can be seen that the solar cell provided with the semiconductor electrode containing the pigment of Example 1 has high photoelectric conversion efficiency.

Claims (6)

下記一般式(1)
Figure 2005197115
(式中、Aは置換基を有していてもよい2価の炭素数4又は5の複素環基を示し、Zは置換基を有していてもよい炭素数6〜24の2価の芳香環基を示し、R1は水素原子又は炭素数1から4のアルキル基、R2は水素原子、炭素数1から4のアルキル基、水酸基、炭素数1から4のアルコキシ基、置換基を有していてもよい炭素数6から12のアリール基、置換基を有していていもよいスチリル基であり、R1とR2は互いに結合して5員環、6員環の炭素環式化合物を形成してもよい。R3、R4、R5及びR6は、同一又は異なって、水素原子、ハロゲン原子、炭素数1から4のアルキル基、炭素数1から4のアルコキシ基を示す。Lは水素原子又は電子吸引性基であり、Mは水素原子又は塩形成カチオンである。mは0〜3の整数、nは0〜4の整数である。)
で表わされる有機色素により増感された半導体電極からなることを特徴とする光電変換素子。
The following general formula (1)
Figure 2005197115
(In the formula, A represents a divalent heterocyclic group having 4 or 5 carbon atoms which may have a substituent, and Z represents a divalent divalent having 6 to 24 carbon atoms which may have a substituent. R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R 2 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, or a substituent. An aryl group having 6 to 12 carbon atoms which may have a styryl group which may have a substituent, and R 1 and R 2 are bonded to each other to form a 5-membered or 6-membered carbocyclic ring R 3 , R 4 , R 5 and R 6 may be the same or different and each represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. L is a hydrogen atom or an electron-withdrawing group, M is a hydrogen atom or a salt-forming cation, m is an integer of 0 to 3, and n is To 4 of an integer.)
A photoelectric conversion element comprising a semiconductor electrode sensitized by an organic dye represented by the formula:
前記Lが、シアノ基、トリフロロメチル基、カルボキシル基又はエステル化されたカルボキシル基である請求項1に記載の光電変換素子。   The photoelectric conversion element according to claim 1, wherein L is a cyano group, a trifluoromethyl group, a carboxyl group, or an esterified carboxyl group. 前記エステル化されたカルボキシル基が、α,α,α-トリフロロアルキルオキシカルボニル基である請求項2に記載の光電変換素子。   The photoelectric conversion element according to claim 2, wherein the esterified carboxyl group is an α, α, α-trifluoroalkyloxycarbonyl group. 前記Aが、チオフェン又はフランに由来する2価の基である請求項1〜3のいずれか1つに記載の光電変換素子。   The photoelectric conversion element according to claim 1, wherein A is a divalent group derived from thiophene or furan. 半導体が、少なくとも金属酸化物からなる微粒子を含む請求項1〜4のいずれか1つに記載の光電変換素子。   The photoelectric conversion element according to claim 1, wherein the semiconductor includes fine particles made of at least a metal oxide. 請求項1〜5のいずれか1つに記載の光電変換素子を構成要素として含む太陽電池。   The solar cell which contains the photoelectric conversion element as described in any one of Claims 1-5 as a component.
JP2004003153A 2004-01-08 2004-01-08 Photoelectric conversion device and solar cell using the same Pending JP2005197115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004003153A JP2005197115A (en) 2004-01-08 2004-01-08 Photoelectric conversion device and solar cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004003153A JP2005197115A (en) 2004-01-08 2004-01-08 Photoelectric conversion device and solar cell using the same

Publications (1)

Publication Number Publication Date
JP2005197115A true JP2005197115A (en) 2005-07-21

Family

ID=34818145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004003153A Pending JP2005197115A (en) 2004-01-08 2004-01-08 Photoelectric conversion device and solar cell using the same

Country Status (1)

Country Link
JP (1) JP2005197115A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310097A (en) * 2005-04-28 2006-11-09 Konica Minolta Holdings Inc Semiconductor for photoelectric conversion material, photoelectric conversion element, and solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310097A (en) * 2005-04-28 2006-11-09 Konica Minolta Holdings Inc Semiconductor for photoelectric conversion material, photoelectric conversion element, and solar cell

Similar Documents

Publication Publication Date Title
JP4925224B2 (en) Organic compound and semiconductor thin film electrode, photoelectric conversion element and photoelectrochemical solar cell using the same
JPH11214731A (en) Photoelectric conversion element and opto-electrochemical battery
JPH11214730A (en) Photoelectric conversion element and opto-electric chemical battery
JPH11238905A (en) Photoelectric converter element and photoelectrochemical cell
JP2004095450A (en) Semiconductor thin film electrode using organic dye as photosensitizer, photoelectric conversion element, and optical electrochemical solar battery
JPH11204821A (en) Optical semiconductor electrode, photoelectric converter and photoelectric conversion method
JP5713285B2 (en) Metal complex, dye-sensitized oxide semiconductor electrode, and dye-sensitized solar cell
JP2000243463A (en) Optical semiconductor electrode, photoelectric converter and photoelectric conversion method
JPH10334954A (en) Photosemiconductor electrode, potoelectric conversion device and potoelectric conversion method
JP4509066B2 (en) Photosensitizer, semiconductor electrode and photoelectric conversion element
JP2005032475A (en) Semiconductor thin film electrode using organic dye as photosensitizer, photoelectric conversion element using the same, and photo-electrochemical solar cell
JP5185503B2 (en) Photoelectric conversion material, semiconductor electrode, and photoelectric conversion element using the same
JP5458406B2 (en) ORGANIC DYE COMPOUND AND SEMICONDUCTOR THIN FILM ELECTRODE, PHOTOELECTRIC CONVERSION ELEMENT, PHOTOELECTROCHEMICAL SOLAR CELL
JP5405155B2 (en) Photoelectrochemical cell
JPH1167285A (en) Photoelectric conversion element and photo electrochemical cell
JP5004575B2 (en) Photosensitizer, semiconductor electrode and photoelectric conversion element using the same
JP2000150007A (en) Photoelectric conversion element, its manufacture, and photo electrochemical battery
JP2005197117A (en) Photoelectric conversion device and solar cell using the same
JP2005197115A (en) Photoelectric conversion device and solar cell using the same
JP2003234133A (en) Semiconductor electrode, photoelectric conversion element and photoelectrochemical solar battery having styryl series dye as photo-sensitizer
JP4610158B2 (en) Photoelectric conversion element
JP5166708B2 (en) Photoelectric conversion material and semiconductor electrode
JPH1197725A (en) Photoelectric conversion element and photoelectric chemical cell
JP2006073375A (en) Semiconductor electrode, photoelectric conversion element using organic dye as photosensitizer, and solar cell using these
JP4430371B2 (en) Ruthenium complex, dye-sensitized oxide semiconductor electrode and dye-sensitized solar cell using the same