JP5458406B2 - ORGANIC DYE COMPOUND AND SEMICONDUCTOR THIN FILM ELECTRODE, PHOTOELECTRIC CONVERSION ELEMENT, PHOTOELECTROCHEMICAL SOLAR CELL - Google Patents

ORGANIC DYE COMPOUND AND SEMICONDUCTOR THIN FILM ELECTRODE, PHOTOELECTRIC CONVERSION ELEMENT, PHOTOELECTROCHEMICAL SOLAR CELL Download PDF

Info

Publication number
JP5458406B2
JP5458406B2 JP2009281927A JP2009281927A JP5458406B2 JP 5458406 B2 JP5458406 B2 JP 5458406B2 JP 2009281927 A JP2009281927 A JP 2009281927A JP 2009281927 A JP2009281927 A JP 2009281927A JP 5458406 B2 JP5458406 B2 JP 5458406B2
Authority
JP
Japan
Prior art keywords
group
ring
dye
organic
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009281927A
Other languages
Japanese (ja)
Other versions
JP2011122088A (en
Inventor
長利 甲村
浩二郎 原
雪華 張
力 宮坂
健次郎 手島
和志 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Peccell Technologies Inc
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Peccell Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Peccell Technologies Inc filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009281927A priority Critical patent/JP5458406B2/en
Publication of JP2011122088A publication Critical patent/JP2011122088A/en
Application granted granted Critical
Publication of JP5458406B2 publication Critical patent/JP5458406B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、光電気化学をメカニズムとする色素増感太陽電池の技術に関し、特に当該太陽電池の半導体薄膜電極に用いる有機色素に関する。   The present invention relates to a technology of a dye-sensitized solar cell that uses photoelectrochemistry as a mechanism, and particularly to an organic dye that is used for a semiconductor thin film electrode of the solar cell.

近年のエネルギー問題および環境問題に鑑みて、化石燃料に代わる再生可能なエネルギーの利用が期待されており、太陽光発電技術が特に注目を集めている。大規模発電用には、シリコンに代表されるように、無機半導体を用いた太陽電池に関する研究開発が盛んであるが、低コスト化や資源的問題から、有機系太陽電池の研究開発も同時に進んでいる。有機系太陽電池には、有機化合物を半導体として用いる有機薄膜太陽電池や、光電気化学をメカニズムとする色素増感太陽電池がある。
色素増感太陽電池の心臓部である色素において、現在一般に用いられているのは希少金属を用いるルテニウム錯体色素であるが、これは、光電変換効率・耐久性に優れてはいるものの、希少金属であるゆえに、色素増感太陽電池の実用化のための色素の安定供給に疑問がある。かたや希少金属を全く使用しないメタルフリーな有機色素において、ここ10年で様々な有機色素化合物が開発され、その性能が飛躍的に向上してはいるものの、光電変換効率および耐久性についてはルテニウム色素に及ばないのが現状である。中でも有望視されている有機色素は、カルバゾール系有機色素(特許文献1、非特許文献1、非特許文献2)やインドリン系有機色素(三菱製紙株式会社・ケミクレア株式会社等から市販:製品名D149)(特許文献2)である。
また、最近ではガラス基板の代わりにプラスチック基板を用いたフレキシブルな色素増感太陽電池の開発も行われている。それに用いる酸化チタン半導体電極は、通常のガラス基板で用いられる酸化チタン半導体電極を作製する際の450℃から500℃に焼成する過程を経ることができず、100℃から150℃と比較的低温で焼成する必要があり、プラスチック基板専用の比較的低温で十分焼成可能な酸化チタン材料も開発されてきている。(特許文献3、特許文献4、非特許文献3、非特許文献4)それに応じて、色素においてもこのようなプラスチック太陽電池用の酸化チタン材料に適合する色素の開発が待たれている。
In view of recent energy problems and environmental problems, the use of renewable energy instead of fossil fuels is expected, and solar power generation technology is particularly attracting attention. For large-scale power generation, research and development related to solar cells using inorganic semiconductors, as represented by silicon, is thriving, but research and development of organic solar cells have also advanced at the same time due to cost reductions and resource issues. It is out. Organic solar cells include organic thin-film solar cells that use organic compounds as semiconductors and dye-sensitized solar cells that use photoelectrochemistry as a mechanism.
Of the dyes that are the heart of dye-sensitized solar cells, ruthenium complex dyes that use rare metals are generally used at present, but they are rare metals, although they have excellent photoelectric conversion efficiency and durability. Therefore, there is a question about the stable supply of dyes for practical use of dye-sensitized solar cells. For metal-free organic dyes that do not use any rare metals, various organic dye compounds have been developed in the last 10 years, and their performance has improved dramatically, but the photoelectric conversion efficiency and durability are ruthenium dyes. The current situation is less than that. Among them, organic pigments that are considered promising are carbazole organic pigments (Patent Document 1, Non-Patent Document 1, Non-Patent Document 2) and indoline organic pigments (commercially available from Mitsubishi Paper Industries Co., Ltd., Chemicrea Co., Ltd.): Product name D149 (Patent Document 2).
Recently, a flexible dye-sensitized solar cell using a plastic substrate instead of a glass substrate has been developed. The titanium oxide semiconductor electrode used for it cannot pass through the process of baking from 450 ° C. to 500 ° C. when producing a titanium oxide semiconductor electrode used in a normal glass substrate, and it is at a relatively low temperature of 100 ° C. to 150 ° C. Titanium oxide materials that need to be fired and that can be fired sufficiently at a relatively low temperature for plastic substrates have been developed. (Patent Document 3, Patent Document 4, Non-Patent Document 3, Non-Patent Document 4) Accordingly, the development of a dye suitable for such a titanium oxide material for plastic solar cells is awaited.

PCT/JP2007/056383PCT / JP2007 / 056383 特許4326272号Japanese Patent No.4326272 公開 2005-056627号 (2005/03/03)Published 2005-056627 (2005/03/03) 公開 2006-076855号 (2006/03/23)Published 2006-076855 (2006/03/23)

J. Am. Chem. Soc., 128, 14256-14257 (2006)J. Am. Chem. Soc., 128, 14256-14257 (2006) J. Mater. Chem., 19, 4829-4836 (2009)J. Mater. Chem., 19, 4829-4836 (2009) Chem. Lett., 36, 190-191 (2007).Chem. Lett., 36, 190-191 (2007). Electrochem. Soc., 154, A455-A461 (2007).Electrochem. Soc., 154, A455-A461 (2007).

従来、プラスチック基板を用いたフレキシブル色素増感太陽電池に用いられている色素はルテニウム錯体色素であり、この性能に匹敵する有機色素は存在しない。もし有用な有機色素が開発されれば、フレキシブル色素増感太陽電池の研究開発が加速され、実用化にますます近づくものと思われる。本発明は、カルバゾール系などの有機色素の基本骨格を有し、低温焼成型酸化チタンとの相性が良好な新規有機色素を新たに開発し、それをプラスチック基板半導体薄膜電極用の有機色素として用いることにより、ルテニウム錯体色素を用いた場合に比べて太陽電池特性を向上させることを課題とする。   Conventionally, a dye used for a flexible dye-sensitized solar cell using a plastic substrate is a ruthenium complex dye, and there is no organic dye comparable to this performance. If useful organic dyes are developed, research and development of flexible dye-sensitized solar cells will be accelerated, and it will be closer to practical use. The present invention newly develops a new organic dye having a basic skeleton of an organic dye such as a carbazole type and having good compatibility with low-temperature-fired titanium oxide, and uses it as an organic dye for a plastic substrate semiconductor thin film electrode Thus, it is an object to improve solar cell characteristics as compared with the case of using a ruthenium complex dye.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、有機色素の基本骨格を有し、無機酸化物半導体に結合する吸着基としてアミド結合を有するカルボン酸基を有する有機化合物を開発し、当該有機化合物を有機色素として用いたガラス基板もしくはプラスチック基板半導体薄膜電極、該電極を用いた光電変換素子、及び該素子を用いた光電気化学太陽電池を作製し、その太陽エネルギー変換特性を評価した結果、前記課題を解決できることを見出して、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have obtained an organic compound having a basic skeleton of an organic dye and having a carboxylic acid group having an amide bond as an adsorbing group bonded to an inorganic oxide semiconductor. Developed a glass substrate or plastic substrate semiconductor thin film electrode using the organic compound as an organic dye, a photoelectric conversion element using the electrode, and a photoelectrochemical solar cell using the element, and its solar energy conversion characteristics As a result of evaluation, it was found that the above problems could be solved, and the present invention was completed.

すなわち、この出願によれば、以下の発明が提供される。
〈1〉下記一般式(1)で表される有機化合物。

Figure 0005458406
(式中、Aは電子供与性を持つ炭素環又は複素環、Lはチオフェン環、フラン環、ピロール環もしくはこれらが縮環した複素環の中から選ばれる少なくとも1種の複素環を含む電子伝達性連結基、Rは電子伝達性連結基に結合している置換基、RおよびRはアミド基とカルボキシル基との連結アルキレン基に結合している水素原子もしくは置換基、Mは水素原子又は塩形成陽イオンを示す。nは1〜6、mは1〜3の整数を示す。)
〈2〉〈1〉に記載の有機化合物からなることを特徴とする有機色素。
〈3〉〈2〉に記載の有機色素として用いることを特徴とする半導体薄膜電極。
〈4〉〈3〉に記載の半導体薄膜電極を用いることを特徴とする光電変換素子。
〈5〉〈4〉に記載の光電変換素子を用いることを特徴とする光電気化学太陽電池。 That is, according to this application, the following invention is provided.
<1> An organic compound represented by the following general formula (1).
Figure 0005458406
(Wherein A is an electron-donating carbocyclic or heterocyclic ring, L is a thiophene ring, a furan ring, a pyrrole ring or an electron transfer containing at least one heterocyclic ring selected from these condensed heterocyclic rings) A linking group, R is a substituent bonded to the electron transfer linking group, R 1 and R 2 are a hydrogen atom or substituent bonded to a linking alkylene group of an amide group and a carboxyl group, and M is a hydrogen atom. Or a salt-forming cation, n is 1 to 6, and m is an integer of 1 to 3.)
<2> An organic dye comprising the organic compound according to <1>.
<3> A semiconductor thin film electrode, which is used as the organic dye according to <2>.
<4> A photoelectric conversion element using the semiconductor thin film electrode according to <3>.
<5> A photoelectrochemical solar cell using the photoelectric conversion element according to <4>.

本発明による有機化合物を有機色素として光電変換素子に用いると、従来のシアノアクリル酸型吸着基を持つ有機色素を用いた場合に比べ、光電変換効率を向上させることができる。特にプラスチック基板を用いたフレキシブル色素増感太陽電池においてはその効果が顕著であり、従来のルテニウム錯体色素を用いた場合の光電変換効率を上回る効率が観測される。具体的には、従来型では色素分子の電子伝達経路が直接無機酸化物半導体表面と結合しているため、無機酸化物半導体に注入された電子が酸化物半導体中に拡散する際に色素カチオン側に戻ってしまう再還元反応が起きやすく、結果、開放電圧が低下してしまうが、本発明では、その電子伝達経路が電子伝達性のない連結基により無機酸化物半導体と結合する吸着基であるカルボキシル基と分離されているため、色素カチオンの再還元反応が阻害され、結果、高い開放電圧を実現する。また、プラスチック基板を用いたフレキシブル色素増感太陽電池においては、低温焼成型無機酸化物半導体への電子注入効率ならびに外部量子効率が改善し、ルテニウム錯体色素を含め、従来の色素に比べて短絡電流密度も向上し、その結果、該光電変換素子を構成要素として含む?光電気化学太陽電池の性能を大幅に高めることができる。   When the organic compound according to the present invention is used as an organic dye for a photoelectric conversion element, the photoelectric conversion efficiency can be improved as compared with the case of using an organic dye having a conventional cyanoacrylic acid-type adsorbing group. In particular, the effect is remarkable in a flexible dye-sensitized solar cell using a plastic substrate, and an efficiency exceeding the photoelectric conversion efficiency when a conventional ruthenium complex dye is used is observed. Specifically, in the conventional type, the electron transfer path of the dye molecule is directly bonded to the surface of the inorganic oxide semiconductor, so that when the electrons injected into the inorganic oxide semiconductor diffuse into the oxide semiconductor, the dye cation side However, in the present invention, the electron transfer path is an adsorbing group that binds to the inorganic oxide semiconductor through a linking group having no electron transfer property. Since it is separated from the carboxyl group, the re-reduction reaction of the dye cation is inhibited, and as a result, a high open circuit voltage is realized. In flexible dye-sensitized solar cells using plastic substrates, the efficiency of electron injection into externally fired inorganic oxide semiconductors and the external quantum efficiency are improved, and the short-circuit current is higher than that of conventional dyes, including ruthenium complex dyes. As a result, the photoelectric conversion element is included as a constituent element. The performance of the photoelectrochemical solar cell can be greatly enhanced.

本発明の光電気化学太陽電池の構成図の一例を示す。An example of the block diagram of the photoelectrochemical solar cell of this invention is shown.

前記一般式(1)において、Aは電子供与性を持つ炭素環又は複素環を示す。この場合、従来公知の各種の炭素環又は複素環から誘導された環構造であることができる。また環構造には単環及び多環が含有され、多環の場合、縮合多環および鎖上多環が含有される。前記単環において、その環構成元素数は4〜8、好ましくは5〜6である。前記縮合多環において、その単環の結合数は2〜6、好ましくは2〜4である。炭素環には、芳香族炭素環及び脂肪族炭素環が含有される。複素環には、芳香族複素環及び脂肪族複素環が含有される。複素環は、その構成元素として、硫黄、酸素、窒素、セレン等のヘテロ原子を1つ又は複数(2〜5)含有する環状化合物である。環中に2つ以上のヘテロ原子が含まれる場合、そのヘテロ原子は同一又は異なっていてもよい。さらに、複素環には、ベンゼン環、ナフタレン環等の炭素環や、他の複素環が縮合していてもよい。   In the general formula (1), A represents a carbocyclic or heterocyclic ring having an electron donating property. In this case, it can be a ring structure derived from various conventionally known carbocycles or heterocycles. The ring structure includes monocyclic and polycyclic rings, and in the case of polycyclic rings, condensed polycyclic rings and polycyclic rings are included. In the monocyclic ring, the number of ring constituent elements is 4 to 8, preferably 5 to 6. In the condensed polycycle, the number of single-ring bonds is 2 to 6, preferably 2 to 4. The carbocycle includes an aromatic carbocycle and an aliphatic carbocycle. The heterocyclic ring includes an aromatic heterocyclic ring and an aliphatic heterocyclic ring. The heterocyclic ring is a cyclic compound containing one or more (2 to 5) heteroatoms such as sulfur, oxygen, nitrogen and selenium as constituent elements. When two or more heteroatoms are included in the ring, the heteroatoms may be the same or different. Furthermore, the heterocyclic ring may be condensed with a benzene ring, a carbocyclic ring such as a naphthalene ring, or another heterocyclic ring.

Aの具体例として、以下のものを例示することができる。芳香族炭素環として、ベンゼン環、ナフタレン環、アントラセン環、フェナンスレン環等、脂肪族炭素環として、シクロブテン環、シクロブタン環、シクロペンテン環、シクロペンタン環、シクロヘキセン環、シクロヘキサン環等が挙げられる。芳香族複素環として、ピリジン環、キノキサリン環、プリン環、オキサゾール環、ベンゾオキサゾール環、ナフトオキサゾール環、チアゾール環、ベンゾチアゾール環、ナフトオキサゾール環、セレナゾール環、ベンゾセレナゾール環、ナフトセレナゾール環、イミダゾール環、ベンゾイミダゾール環、ナフトイミダゾール環、キノリン環、アクリジン環等、脂肪族複素環として、ピラゾリン環、ピロリジン環、ピペリジン環、インドリン環、ピラン環、イミダゾリジン環、チアゾリン環、イミダゾリン環、オキサゾリン環等が挙げられる。なお、Aにおいて、その存在する構造異性体は限定されず、各種の構造異性体を用いることができる。   The following can be illustrated as a specific example of A. Examples of the aromatic carbocycle include a benzene ring, a naphthalene ring, an anthracene ring, and a phenanthrene ring. Examples of the aliphatic carbocycle include a cyclobutene ring, a cyclobutane ring, a cyclopentene ring, a cyclopentane ring, a cyclohexene ring, and a cyclohexane ring. As aromatic heterocycles, pyridine ring, quinoxaline ring, purine ring, oxazole ring, benzoxazole ring, naphthoxazole ring, thiazole ring, benzothiazole ring, naphthoxazole ring, selenazole ring, benzoselenazole ring, naphthoselenazole ring, Examples of aliphatic heterocycles such as imidazole ring, benzimidazole ring, naphthimidazole ring, quinoline ring, acridine ring, pyrazoline ring, pyrrolidine ring, piperidine ring, indoline ring, pyran ring, imidazolidine ring, thiazoline ring, imidazoline ring, oxazoline A ring etc. are mentioned. In A, the existing structural isomers are not limited, and various structural isomers can be used.

前記環Aには、1つ又は複数の置換基が結合していてもよい。このような置換基としては、例えば、メチル基、ヘキシル基などの直鎖型又はイソブチル基、2−エチルオクチル基などの分岐型の炭素数1〜20、好ましくは1〜12のアルキル基;メトキシ基、ブトキシ基などの炭素数1〜20、好ましくは1〜12のアルコキシ基;フェニル基、ナフチル基などの炭素数3〜20、好ましくは5〜12のアリール基;メチルアミノ基、オクチルアミノ基などの炭素数1〜20、好ましくは1〜12のアルキル基を有するモノアルキルアミノ基、ジエチルアミノ基などの炭素数1〜20、好ましくは1〜12のアルキル基を有するジアルキルアミノ基;ピペリジル基などの環構成元素数5〜8、好ましくは5〜6の環状アミノ基;クロロ基、ブロモ基、ヨード基などのハロゲン基;水酸基;ニトロ基;アミノ基が挙げられる。
上記Aのうち、色素増感太陽電池の増感色素として用いられる有機色素化合物の観点から、カルバゾール環、インドール環、チエノインドール環、インドリン環が好ましく、特にカルバゾール環が好ましい。
One or more substituents may be bonded to the ring A. Examples of such a substituent include linear alkyl groups such as a methyl group and hexyl group or branched alkyl groups having 1 to 20 carbon atoms such as an isobutyl group and 2-ethyloctyl group, preferably 1 to 12; methoxy An alkoxy group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms such as a butoxy group; an aryl group having 3 to 20 carbon atoms, preferably 5 to 12 carbon atoms such as a phenyl group or a naphthyl group; a methylamino group or an octylamino group A dialkylamino group having an alkyl group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms such as a monoalkylamino group having 1 to 12 carbon atoms, preferably 1 to 12 alkyl groups, and a diethylamino group, such as a piperidyl group A cyclic amino group having 5 to 8, preferably 5 to 6 ring constituent elements; a halogen group such as a chloro group, a bromo group or an iodo group; a hydroxyl group; a nitro group; Roh group, and the like.
Among the above A, from the viewpoint of an organic dye compound used as a sensitizing dye of a dye-sensitized solar cell, a carbazole ring, an indole ring, a thienoindole ring, and an indoline ring are preferable, and a carbazole ring is particularly preferable.

前記一般式(1)において、Lは電子伝達性連結基を示す。この場合の電子伝達性連結基とはその連結基の一方の側の電子を他方の側へ伝達する作用を有する連結基を意味し、このような連結基は従来良く知られているものである。この連結基には、チオフェン環、フラン環、ピロール環もしくはこれらが縮環した複素環の中から選ばれる少なくとも1種の複素環を含む構造を持つものが含有される。
一般式(1)において、nは1〜6、好ましくは2〜4の整数を示す。電子伝達性連結基の数(n)においては、色素増感太陽電池に用いられる有機色素化合物として長波長光をより効率良く吸収する吸収波長帯を持つものが好ましいため少なくとも1つ以上は必要であり、また7以上の多すぎる場合においては、合成がさらに煩雑になる上、光電変換特性の顕著な向上も見られない。
In the general formula (1), L represents an electron transfer linking group. In this case, the electron transfer linking group means a linking group having a function of transferring electrons on one side of the linking group to the other side, and such a linking group is well known in the art. . This linking group includes those having a structure containing at least one heterocyclic ring selected from a thiophene ring, a furan ring, a pyrrole ring, or a heterocyclic ring condensed with these.
In General formula (1), n shows 1-6, Preferably the integer of 2-4 is shown. In the number (n) of electron transporting linking groups, it is preferable that the organic dye compound used in the dye-sensitized solar cell has an absorption wavelength band that absorbs long wavelength light more efficiently. In addition, when the number is 7 or more, synthesis is further complicated and no significant improvement in photoelectric conversion characteristics is observed.

複素環を含む電子伝達性連結基の具体例を示すと、以下の通りである。   Specific examples of the electron-transporting linking group containing a heterocyclic ring are as follows.

(1)チオフェン環を含む連結基
この連結基としては下記一般式(2)で表されるものを示すことができる。

Figure 0005458406
式中、nは1〜12、好ましくは1〜8の整数を示す。RとRは、水素原子または置換基を示す。このような置換基の例として、メチル基、ヘキシル基などの直鎖型又はイソブチル基、2−エチルオクチル基などの分岐型の炭素数1〜20、好ましくは1〜12のアルキル基;メトキシ基、ブトキシ基などの炭素数1〜20、好ましくは1〜12アルコキシ基;フェニル基、ナフチル基などの炭素数3〜20、好ましくは5〜12のアリール基;メチルアミノ基、オクチルアミノ基などの炭素数1〜20、好ましくは1〜12のアルキル基を有するモノアルキルアミノ基、ジエチルアミノ基などの炭素数1〜20、好ましくは1〜12のアルキル基を有するジアルキルアミノ基;ピペリジル基などの環構成元素数5〜8、好ましくは5〜6の環状アミノ基;クロロ基、ブロモ基、ヨード基などのハロゲン基;水酸基;シアノ基;ニトロ基;アミノ基が含有される。 (1) A linking group containing a thiophene ring As this linking group, one represented by the following general formula (2) can be shown.
Figure 0005458406
In the formula, n represents an integer of 1 to 12, preferably 1 to 8. R 3 and R 4 represent a hydrogen atom or a substituent. Examples of such substituents include linear alkyl groups such as methyl and hexyl groups or branched alkyl groups having 1 to 20, preferably 1 to 12, carbon atoms such as isobutyl and 2-ethyloctyl groups; methoxy groups An aryl group having 1 to 20 carbon atoms, such as a butoxy group, preferably 1 to 12 carbon atoms; an aryl group having 3 to 20 carbon atoms such as a phenyl group or a naphthyl group, preferably 5 to 12; a methylamino group or an octylamino group A dialkylamino group having an alkyl group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms such as a monoalkylamino group having 1 to 12 carbon atoms, preferably 1 to 12 alkyl groups, and a diethylamino group; a ring such as a piperidyl group Cyclic amino group having 5 to 8, preferably 5 to 6 constituent elements; halogen group such as chloro group, bromo group and iodo group; hydroxyl group; cyano group; nitro group; Amino groups are contained.

(2)フラン環を含む連結基
この連結基としては下記一般式(3)で表されるものを示すことができる。

Figure 0005458406
式中、n、R、Rは、前記と同じ。 (2) Linking group containing a furan ring Examples of the connecting group include those represented by the following general formula (3).
Figure 0005458406
In the formula, n, R 3 and R 4 are the same as described above.

(3)ピロール環を含む連結基
この連結基としては下記一般式(4)で表されるものを示すことができる。

Figure 0005458406
式中、n、R、Rは、前記と同じ。Xは水素原子又は置換基を有していてもよい炭化水素基を示す。この場合の炭化水素基には、脂肪族炭化水素基及び芳香族炭化水素基が含有される。脂肪族炭化水素基において、炭素数1〜12、好ましくは1〜8のアルキル基、炭素数3〜12、好ましくは4〜8のシクロアルキル基、炭素数2〜12、好ましくは2〜8のアルケニル基、炭素数3〜12、好ましくは4〜8にシクロアルケニル基が含有される。芳香族炭化水素基においては、その炭素数は6〜18、好ましくは6〜12である。芳香族炭化水素基には、炭素数6〜18、好ましくは6〜12のアリール基及び炭素数7〜18、好ましくは7〜12のアリールアルキル基が含有される。 (3) Linking group containing a pyrrole ring Examples of the connecting group include those represented by the following general formula (4).
Figure 0005458406
In the formula, n, R 3 and R 4 are the same as described above. X represents a hydrogen atom or a hydrocarbon group which may have a substituent. In this case, the hydrocarbon group includes an aliphatic hydrocarbon group and an aromatic hydrocarbon group. In the aliphatic hydrocarbon group, an alkyl group having 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, preferably 4 to 8 carbon atoms, and 2 to 12 carbon atoms, preferably 2 to 8 carbon atoms. An alkenyl group, a cycloalkenyl group containing 3 to 12 carbon atoms, preferably 4 to 8 carbon atoms. In an aromatic hydrocarbon group, the carbon number is 6-18, Preferably it is 6-12. The aromatic hydrocarbon group contains an aryl group having 6 to 18 carbon atoms, preferably 6 to 12 carbon atoms, and an arylalkyl group having 7 to 18 carbon atoms, preferably 7 to 12 carbon atoms.

Lとしては、前記した連結基が全て使用できるが、A環から反対側の電子吸引性基であるシアノアクリルアミド部位までの電子の流れを円滑にするという観点からみて、一般式(2)で示されるチオフェン環が好ましく用いられる。   As L, all of the above-described linking groups can be used, but from the viewpoint of facilitating the flow of electrons from the A ring to the cyanoacrylamide moiety which is the opposite electron-withdrawing group, it is represented by the general formula (2). The thiophene ring is preferably used.

前述一般式(1)において、アミド結合はカルボキシル基とアルキレン基−(CR)−で連結されており、mは1〜3、好ましくは1〜2の整数を示す。mが1以上であることにより、励起された色素から酸化チタンへ注入された電子が色素カチオンへ再結合することが妨げられ開放電圧の向上に寄与するが、mが3より大きくなると、π共役部位と酸化チタン層が離れすぎているために、励起された色素から酸化チタンへの電子注入が起きなくなるおそれがある。RとRは、水素原子または置換基を示す。このような置換基の例として、メチル基、ヘキシル基などの直鎖型又はイソブチル基、2−エチルオクチル基などの分岐型の炭素数1〜20、好ましくは1〜12のアルキル基;メトキシ基、ブトキシ基などの炭素数1〜20、好ましくは1〜12アルコキシ基;フェニル基、ナフチル基などの炭素数3〜20、好ましくは5〜12のアリール基;メチルアミノ基、オクチルアミノ基などの炭素数1〜20、好ましくは1〜12のアルキル基を有するモノアルキルアミノ基、ジエチルアミノ基などの炭素数1〜20、好ましくは1〜12のアルキル基を有するジアルキルアミノ基;ピペリジル基などの環構成元素数5〜8、好ましくは5〜6の環状アミノ基;クロロ基、ブロモ基、ヨード基などのハロゲン基;水酸基;シアノ基;ニトロ基;アミノ基が含有される。 In the above general formula (1), the amide bond is linked by a carboxyl group and an alkylene group — (CR 1 R 2 ) m —, and m is an integer of 1 to 3, preferably 1 or 2. When m is 1 or more, electrons injected from the excited dye into titanium oxide are prevented from recombining with the dye cation, which contributes to the improvement of the open-circuit voltage. Since the site | part and the titanium oxide layer are too far apart, there exists a possibility that the electron injection from the excited pigment | dye to titanium oxide may not occur. R 1 and R 2 represent a hydrogen atom or a substituent. Examples of such substituents include linear alkyl groups such as methyl and hexyl groups or branched alkyl groups having 1 to 20, preferably 1 to 12, carbon atoms such as isobutyl and 2-ethyloctyl groups; methoxy groups An aryl group having 1 to 20 carbon atoms, such as a butoxy group, preferably 1 to 12 carbon atoms; an aryl group having 3 to 20 carbon atoms such as a phenyl group or a naphthyl group, preferably 5 to 12; a methylamino group or an octylamino group A dialkylamino group having an alkyl group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms such as a monoalkylamino group having 1 to 12 carbon atoms, preferably 1 to 12 alkyl groups, and a diethylamino group; a ring such as a piperidyl group Cyclic amino group having 5 to 8, preferably 5 to 6 constituent elements; halogen group such as chloro group, bromo group and iodo group; hydroxyl group; cyano group; nitro group; Amino groups are contained.

前述一般式(1)において、Mは水素原子又は塩形成陽イオンを表す。この場合の塩形成性陽イオンには、リチウム、ナトリウム、カリウム等のアルカリ金属や、カルシウム、マグネシウム等のアルカリ土類金属、その他の金属から誘導されたカチオンの他、アンモニウムカチオン、アミン由来の有機アンモニウムカチオン等が含有される。
次に、前記一般式(1)で表される化合物(有機色素)の具体例を以下に示すが、本発明は、これらの化合物に限定されない。
In the general formula (1), M represents a hydrogen atom or a salt-forming cation. The salt-forming cations in this case include alkali cations such as lithium, sodium and potassium, alkaline earth metals such as calcium and magnesium, cations derived from other metals, ammonium cations, and organic compounds derived from amines. An ammonium cation and the like are contained.
Next, specific examples of the compound (organic dye) represented by the general formula (1) are shown below, but the present invention is not limited to these compounds.

Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406

本発明に係る前記一般式(1)で示される化合物の合成方法は、特に限定されず、たとえば、次のような方法により合成することができる。詳細な合成方法は各色素分子によって若干異なるが、基本的には3段階の経路にて合成される。まず第1段階として、ヨウ素原子や臭素原子が結合したAに相当する複素環と、別途合成したLに相当するチオフェン環やフラン環などの電子伝達性連結基のホウ酸エステル誘導体とをスズキカップリング反応によって結合させる。第2段階として、AとLが結合した中間体にVilsmeier試薬を作用させることにより、チオフェン環やフラン環などの電子伝達性連結基LのAの複素環と結合している側と逆側にアルデヒドを導入する。第3段階は、そのアルデヒド誘導体と別途合成したシアノ酢酸誘導体とをピペリジンなどの塩基存在条件下において反応させると、対応する有機色素化合物が得られる。第1段階および第2段階に関しては、非特許文献(J. Am. Chem. Soc., 128, 14256 (2006)もしくはChem. Mater 21, 3993 (2008)) に既に記載されている従来方法によることができる。また、第3段階の合成は、具体的には、実施例3〜8に記載するような方法で行うことができる。シアノ酢酸誘導体の製造は、公知の方法によって製造することができるが、たとえば、購入可能な原料となるシアノ酢酸とアミノ酸エステルとの縮合反応、続く脱保護反応により合成される。   The method for synthesizing the compound represented by the general formula (1) according to the present invention is not particularly limited. For example, the compound can be synthesized by the following method. The detailed synthesis method is slightly different depending on each dye molecule, but basically, the synthesis is performed by a three-step route. First, as a first step, a Suzuki ring containing a heterocyclic ring corresponding to A to which an iodine atom or a bromine atom is bonded, and a boric acid ester derivative of an electron transfer linking group such as a thiophene ring or a furan ring corresponding to L, which are separately synthesized, are used. Bond by ring reaction. As a second step, by causing a Vilsmeier reagent to act on an intermediate in which A and L are bonded, a side opposite to the side bonded to the A heterocycle of an electron transfer linking group L such as a thiophene ring or a furan ring is provided. Introduce aldehyde. In the third step, when the aldehyde derivative and a separately synthesized cyanoacetic acid derivative are reacted in the presence of a base such as piperidine, a corresponding organic dye compound is obtained. Regarding the first stage and the second stage, the conventional method already described in non-patent literature (J. Am. Chem. Soc., 128, 14256 (2006) or Chem. Mater 21, 3993 (2008)) Can do. In addition, the synthesis in the third stage can be performed specifically by the method as described in Examples 3 to 8. The cyanoacetic acid derivative can be produced by a known method. For example, the cyanoacetic acid derivative is synthesized by a condensation reaction of cyanoacetic acid and an amino acid ester, which are commercially available raw materials, followed by a deprotection reaction.

本発明に係る一般式(1)で示される有機化合物は、半導体薄膜電極を形成するための有機色素として有効に利用することができる。
この場合、半導体薄膜電極の基板としては、従来公知のものがそのまま適用することができる。たとえば、フッ素あるいはアンチモンドープの酸化スズ(NESA)、スズドープの酸化インジウム(ITO)、アルミニウムドープの酸化亜鉛などの導電性透明酸化物半導体薄膜をコートしたガラスあるいはプラスチック基板である。または鉄、アルミニウムおよびチタンからなる群より選ばれる金属を60質量%以上含む金属箔からなる不透明導電性基板を用いることができる。好ましくは、フッ素ドープの酸化スズ薄膜コートガラスである。半導体薄膜電極の基板に金属箔からなる不透明導電性基板を用いる場合は、対極としては光透過性基板を用いる。
The organic compound represented by the general formula (1) according to the present invention can be effectively used as an organic dye for forming a semiconductor thin film electrode.
In this case, a conventionally known substrate can be applied as it is as the substrate of the semiconductor thin film electrode. For example, a glass or plastic substrate coated with a conductive transparent oxide semiconductor thin film such as fluorine or antimony-doped tin oxide (NESA), tin-doped indium oxide (ITO), or aluminum-doped zinc oxide. Alternatively, an opaque conductive substrate made of a metal foil containing 60% by mass or more of a metal selected from the group consisting of iron, aluminum, and titanium can be used. Preferred is a fluorine-doped tin oxide thin film coated glass. When an opaque conductive substrate made of a metal foil is used for the semiconductor thin film electrode substrate, a light transmissive substrate is used as the counter electrode.

本発明に係る半導体薄膜電極は、化合物半導体ナノ粒子から成りナノポーラス構造を有する形態のものが好ましい。
化合物半導体材料は、例えば、TiO2、ZnO、In2O3、SnO2、ZrO2、Ta2O5、Nb2O5、Fe2O3、Ga2O3、WO3、SrTiO3などの金属酸化物および複合酸化物、AgI、AgBr、CuI、CuBrなどの金属ハロゲン化物、さらに、ZnS、TiS2、ZnO、In2S3、SnS、SnS2、ZrS2、Ag2S、PbS、CdS、TaS2、CuS、Cu2S、WS2、MoS2、CuInS2などの金属硫化物、CdSe、TiSe2、ZrSe2、Bi2Se3、In2Se3、SnSe、SnSe2、Ag2Se、TaSe2、CuSe、Cu2Se、WSe2、MoSe2、CuInSe2、CdTe、TiTe2、ZrTe2、Bi2Te3、In2Te3、SnTe、SnTe2、Ag2Te、TaTe2、CuTe、Cu2Te、WTe2、MoTe2などの金属セレン化物ならび金属テルル化物などを挙げることができるが、これらに限定されない。好ましくは、TiO2、ZnO、SnO2などの酸化物半導体材料である。
The semiconductor thin film electrode according to the present invention is preferably in the form of compound semiconductor nanoparticles and a nanoporous structure.
Compound semiconductor materials include, for example, TiO 2 , ZnO, In 2 O 3 , SnO 2 , ZrO 2 , Ta 2 O 5 , Nb 2 O 5 , Fe 2 O 3 , Ga 2 O 3 , WO 3 , SrTiO 3, etc. metal oxides and complex oxides, AgI, AgBr, CuI, metal halides such as CuBr, further, ZnS, TiS 2, ZnO, in 2 S 3, SnS, SnS 2, ZrS 2, Ag 2 S, PbS, CdS , TaS 2 , CuS, Cu 2 S, WS 2 , MoS 2, CuInS 2 and other metal sulfides, CdSe, TiSe 2 , ZrSe 2 , Bi 2 Se 3 , In 2 Se 3 , SnSe, SnSe 2 , Ag 2 Se , TaSe 2 , CuSe, Cu 2 Se, WSe 2 , MoSe 2 , CuInSe 2 , CdTe, TiTe 2 , ZrTe 2 , Bi 2 Te 3 , In 2 Te 3 , SnTe, SnTe 2 , Ag 2 Te, TaTe 2 , CuTe Examples thereof include, but are not limited to, metal selenides such as Cu 2 Te, WTe 2 and MoTe 2 and metal tellurides. An oxide semiconductor material such as TiO 2 , ZnO, SnO 2 is preferable.

例えば、酸化チタン粒子は、P25(Degussa、あるいは日本エアロジル)、ST-01(石原産業)、SP-210(昭和電工)といった市販のものを用いても良いし、J. Am. Ceram. Soc., 80, 3157 (1997) に記載されているように、ゾル・ゲル法によりチタン・アルコキシドなどから加水分解、オートクレービングなどを経て得られた結晶性の酸化チタン粒子を用いても良い。好ましくは、チタン・アルコキシドからゾル・ゲル法により得られた酸化チタン粒子である。   For example, commercially available titanium oxide particles such as P25 (Degussa or Nippon Aerosil), ST-01 (Ishihara Sangyo), SP-210 (Showa Denko) may be used, or J. Am. Ceram. Soc. 80, 3157 (1997), crystalline titanium oxide particles obtained by hydrolysis, autoclaving, etc. from titanium alkoxide by a sol-gel method may be used. Titanium oxide particles obtained from a titanium alkoxide by a sol-gel method are preferred.

前記半導体薄膜を構成する半導体ナノ粒子の粒子径は、5〜1000 nm、好ましくは、10〜300 nmである。   The particle diameter of the semiconductor nanoparticles constituting the semiconductor thin film is 5 to 1000 nm, preferably 10 to 300 nm.

例えば、酸化物半導体を用いた半導体薄膜電極を作製する方法には、以下のような方法があるが、それらに限定されない。酸化物半導体ナノ粒子を、水、ポリエチレングリコールなどのポリマー、界面活性剤などとよく混合し、スラリーとし、ドクターブレード法と呼ばれる方法により基板上に塗布する。また、バインダーであるポリマーと高粘性有機溶媒と混合し、それをスクリーン印刷法により基板上に塗布しても良い。酸化物半導体を塗布した基板を、空気中あるいは酸素中、450〜500℃で焼成することにより、酸化物半導体薄膜電極が得られる。
前記半導体薄膜電極の膜厚は、通常、0.5〜100 μmであり、好ましくは、5〜20 μmである。
For example, a method for manufacturing a semiconductor thin film electrode using an oxide semiconductor includes the following methods, but is not limited thereto. Oxide semiconductor nanoparticles are mixed well with water, a polymer such as polyethylene glycol, a surfactant, and the like to form a slurry, which is applied onto a substrate by a method called a doctor blade method. Alternatively, a polymer as a binder and a highly viscous organic solvent may be mixed and applied to the substrate by a screen printing method. An oxide semiconductor thin film electrode can be obtained by baking the substrate coated with the oxide semiconductor at 450 to 500 ° C. in air or oxygen.
The film thickness of the semiconductor thin film electrode is usually 0.5 to 100 μm, preferably 5 to 20 μm.

前記有機色素増感剤の半導体電極表面上への吸着は、色素の溶液中に半導体薄膜電極を浸し、室温で1時間以上放置、あるいは加熱条件下で10分から1時間放置することによりおこなう。好ましくは、室温で6時間以上放置する方法である。   Adsorption of the organic dye sensitizer onto the surface of the semiconductor electrode is performed by immersing the semiconductor thin film electrode in a dye solution and allowing it to stand at room temperature for 1 hour or more, or for 10 minutes to 1 hour under heating conditions. Preferably, the method is left at room temperature for 6 hours or more.

前記色素吸着の際の溶媒は、メタノール、エタノール、n-プロパノール。イソプロパノール、n-ブタノール、t-ブタノールなどのアルコール溶媒、クロロホルム、アセトン、アセトニトリル、テトラヒドロフラン、ジメチルスルホキシド、ジメチルホルムアミド、ベンゼン、トルエン、キシレン、クロロベンゼン、ジクロロベンゼンなどの有機溶媒、ならびに、それらの混合溶媒である。好ましくは、エタノール、クロロホルム、t-ブタノール-アセトニトリル混合溶媒である。   The solvent for the dye adsorption is methanol, ethanol, or n-propanol. Alcohol solvents such as isopropanol, n-butanol, t-butanol, organic solvents such as chloroform, acetone, acetonitrile, tetrahydrofuran, dimethyl sulfoxide, dimethylformamide, benzene, toluene, xylene, chlorobenzene, dichlorobenzene, and mixed solvents thereof is there. Preferred is a mixed solvent of ethanol, chloroform, and t-butanol-acetonitrile.

前記色素溶液の色素濃度は、通常、0.05〜0.5 mMであり、好ましくは、0.2〜0.3 mMである。   The dye concentration of the dye solution is usually 0.05 to 0.5 mM, preferably 0.2 to 0.3 mM.

前記色素吸着の際には、半導体電極上での色素同士の会合を防ぎ、効率よく色素から半導体へ電子移動反応をおこすために、コール酸、デオキシコール酸、ケノデオキシコール酸、タウロケノデオキシコール酸などのコール酸誘導体やそのナトリウム塩、トリトンXなどの界面活性剤、さらにグルコースなどを色素溶液中に溶解し、色素と共吸着させても良い。共吸着体の色素溶液中の濃度は、通常1〜100 mM、好ましくは、5〜20 mMである。   When the dye is adsorbed, a call such as cholic acid, deoxycholic acid, chenodeoxycholic acid, taurochenodeoxycholic acid is used in order to prevent association between the dyes on the semiconductor electrode and to cause an electron transfer reaction from the dye to the semiconductor efficiently. An acid derivative, its sodium salt, a surfactant such as Triton X, and glucose may be dissolved in the dye solution and co-adsorbed with the dye. The concentration of the coadsorbent in the dye solution is usually 1 to 100 mM, preferably 5 to 20 mM.

本発明の光電変換素子ならびに光電気化学太陽電池に用いられる電解液には、レドックスイオン対が含まれる。レドックスイオン対は、I-/I3 -、Br-/Br2、Fe2+/ Fe3+、Sn2+/ Sn4+、Cr2+/ Cr3+、V2+/ V3+、S2-/S2 -、アントラキノン、フェロセンなどが挙げられるが、これらに限定されない。電解質としては、ヨウ素レドックスの場合では、これらのイオンを含むイミダゾリウム誘導体(ヨウ化メチルプロピルイミダゾリウム、ヨウ化メチルブチルイミダゾリウム、ヨウ化、エチルメチルイミダゾリウム、ヨウ化ジメチルプロピルイミダゾリウムなど)、ヨウ化リチウム、ヨウ化カリウム、ヨウ化テトラアルキルアンモニウム塩とヨウ素の混合物、臭素レドックスの場合では、これらのイオンを含む臭化リチウム、臭化カリウム、臭化テトラアルキルアンモニウムおよび臭素の混合物を用いる。好ましくは、ヨウ素レドックスのヨウ化リチウム、テトラアルキルアンモニウムやヨウ化イミダゾリウム誘導体である。 The electrolyte solution used for the photoelectric conversion element and the photoelectrochemical solar cell of the present invention includes a redox ion pair. Redox ion pairs are I / I 3 , Br / Br 2 , Fe 2+ / Fe 3+ , Sn 2+ / Sn 4+ , Cr 2+ / Cr 3+ , V 2+ / V 3+ , Examples thereof include, but are not limited to, S 2− / S 2 , anthraquinone, and ferrocene. As an electrolyte, in the case of iodine redox, imidazolium derivatives containing these ions (methylpropyl imidazolium iodide, methyl butyl imidazolium iodide, iodide, ethyl methyl imidazolium, dimethylpropyl imidazolium iodide, etc.), In the case of lithium iodide, potassium iodide, tetraalkylammonium iodide and iodine, and bromine redox, a mixture of lithium bromide, potassium bromide, tetraalkylammonium bromide and bromine containing these ions is used. Preferred are lithium iodide, tetraalkylammonium and imidazolium iodide derivatives of iodine redox.

前記レドックス電解質の濃度は、通常、0.02〜1 M、好ましくは、0.03〜0.5 Mである。   The concentration of the redox electrolyte is usually 0.02 to 1 M, preferably 0.03 to 0.5 M.

前記レドックス電解液に用いる溶媒は、メタノール、エタノール、イソプロパノールなどのアルコール溶媒、アセトニトリル、メトキシアセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル系溶媒、エチレンカーボネート、プロピレンカーボネートなどのカーボネート系溶媒、ジメチルスルホキシド、ジメチルホルムアミド、テトラヒドロフラン、ニトロメタン、n-メチルピロリドンなどの有機溶媒、あるいは、それらの混合溶媒である。   Solvents used in the redox electrolyte include alcohol solvents such as methanol, ethanol and isopropanol, nitrile solvents such as acetonitrile, methoxyacetonitrile, propionitrile and methoxypropionitrile, carbonate solvents such as ethylene carbonate and propylene carbonate, dimethyl An organic solvent such as sulfoxide, dimethylformamide, tetrahydrofuran, nitromethane, n-methylpyrrolidone, or a mixed solvent thereof.

本発明の光電変換素子ならび光電気化学太陽電池に用いるレドックス電解液には、光電変換特性向上のために、J. Am. Chem. Soc., 115, 6382 (1993) 等のようにt-ブチルピリジンなどのピリジン誘導体といった塩基性添加物を加えても良い。その際の添加物の電解液中の濃度は、通常、0.05〜1 M、好ましくは、0.1〜0.5 Mである。   The redox electrolyte used in the photoelectric conversion element and the photoelectrochemical solar cell of the present invention has t-butyl as shown in J. Am. Chem. Soc., 115, 6382 (1993), etc., for the purpose of improving photoelectric conversion characteristics. Basic additives such as pyridine derivatives such as pyridine may be added. The concentration of the additive in the electrolyte at that time is usually 0.05 to 1 M, preferably 0.1 to 0.5 M.

前記溶媒を用いたレドックス電解液の代わりに、溶媒を含まないヨウ化1-エチル-3-メチルイミダゾリウム、ヨウ化1-n-プロピル-3-メチルイミダゾリウム、ヨウ化1-n-ブチル-3-メチルイミダゾリウム、ヨウ化1-n-ヘキシル-3-メチルイミダゾリウムなどの常温溶融塩(イオン液体)であるイミダゾリウム誘導体のヨウ化物とヨウ素との混合物を電解液として用いても良い(例えば、Chem. Commun., 374 (2002), J. Phys. Chem. B, 107, 4374 (2003) )。   Instead of the redox electrolyte using the solvent, 1-ethyl-3-methylimidazolium iodide, 1-n-propyl-3-methylimidazolium iodide, 1-n-butyl iodide, which does not contain a solvent, are used. Mixtures of iodide and iodine of imidazolium derivatives that are room temperature molten salts (ionic liquids) such as 3-methylimidazolium and 1-n-hexyl-3-methylimidazolium iodide may be used as the electrolyte ( For example, Chem. Commun., 374 (2002), J. Phys. Chem. B, 107, 4374 (2003)).

前記のような常温溶融塩電解液を用いる場合は、Chem. Commun., 374 (2002)等に用いられる各種ゲル化剤を用いて電解質を擬固体化しても良い。   When using the room temperature molten salt electrolyte as described above, the electrolyte may be pseudo-solidified using various gelling agents used in Chem. Commun., 374 (2002).

本発明の光電変換素子ならびに光電気化学太陽電池に用いるレドックス電解液の代わりに、J. Photochem. Photobiol. A: Chem., 117, 137 (1998)等で用いられるCuI、CuBr、CuSCNなどの無機p型半導体ホール輸送材料、あるいは、スピロピラン誘導体(Natrure, 395, 583 (1998))、ポリピロール誘導体(Sol. Energy Mater. Sol. Cells, 55, 113 (1998) )、ポリチオフェンなどの有機低分子あるいは有機高分子のホール輸送材料を用いても良い。   Instead of the redox electrolyte used in the photoelectric conversion element and the photoelectrochemical solar cell of the present invention, inorganic materials such as CuI, CuBr, and CuSCN used in J. Photochem. Photobiol. A: Chem., 117, 137 (1998), etc. p-type semiconductor hole transport materials or organic low-molecular or organic compounds such as spiropyran derivatives (Natrure, 395, 583 (1998)), polypyrrole derivatives (Sol. Energy Mater. Sol. Cells, 55, 113 (1998)), polythiophene A polymer hole transport material may be used.

本発明の光電変換素子ならびに光電気化学太陽電池に用いる対極は、透明導電性酸化物コートガラスあるいはプラスチック基板上、または鉄、アルミニウムおよびチタンからなる群より選ばれる金属を60質量%以上含む金属箔上にPt、Rh、Ruなどの貴金属、あるいは、カーボン、酸化物半導体、有機高分子材料などを薄膜状にコートした基板が用いられるが、これらに限定されない。好ましくは、Ptあるいはカーボン電極である。対極として不透明な基板を用いる場合は、半導体薄膜電極の基板に導電性透明基板を用いる。   The counter electrode used for the photoelectric conversion element and the photoelectrochemical solar cell of the present invention is a metal foil containing 60% by mass or more of a metal selected from the group consisting of iron, aluminum and titanium on a transparent conductive oxide-coated glass or plastic substrate. A substrate on which a noble metal such as Pt, Rh, or Ru, or carbon, an oxide semiconductor, an organic polymer material, or the like is coated in a thin film is used, but is not limited thereto. Pt or a carbon electrode is preferable. When an opaque substrate is used as the counter electrode, a conductive transparent substrate is used as the semiconductor thin film electrode substrate.

本発明の光電変換素子ならびに光電気化学太陽電池に用いられるスペーサーは、ポリエチレン、ポリプロピレン、エチレンビニルアセテート、熱あるいは光可塑性樹脂などのポリマーフィルムであり、その膜厚は、通常、15〜120 μmであり、好ましくは、15〜30 μmである。
図1に、上記のようにして作製される光電気化学太陽電池の構造の例を示す。図1において、1は白金スパッタ導電性ガラスもしくはプラスチック、2はレドックス電解液層、3は封止剤、4は色素吸着半導体薄膜電極、5は導電性透明ガラスもしくはプラスチックである。なお実施例11で作製した光電気化学太陽電池もこの構造を有していた。
The spacer used in the photoelectric conversion element and the photoelectrochemical solar cell of the present invention is a polymer film such as polyethylene, polypropylene, ethylene vinyl acetate, heat or a thermoplastic resin, and the film thickness is usually 15 to 120 μm. Yes, preferably 15-30 μm.
FIG. 1 shows an example of the structure of a photoelectrochemical solar cell produced as described above. In FIG. 1, 1 is a platinum sputtered conductive glass or plastic, 2 is a redox electrolyte layer, 3 is a sealant, 4 is a dye-adsorbing semiconductor thin film electrode, and 5 is a conductive transparent glass or plastic. Note that the photoelectrochemical solar cell produced in Example 11 also had this structure.

次に本発明を実施例により記述する。なお(21)〜(31)の化合物は、後記において具体的に示されている。以下の実施例においては、適宜、それぞれの式番号をもってそれらの式で示される化合物を示す。   The invention will now be described by way of examples. The compounds (21) to (31) are specifically shown in the following description. In the following examples, the compounds represented by the formulas are shown with the respective formula numbers as appropriate.

実施例1(化合物No(24)の合成)
グリシンターシャリーブチルエステル塩酸塩(22)500mg、トリエチルアミン0.4mL、シアノ酢酸(21)240mg、1−ヒドロキシベンゾトリアゾール500mgをN,N−ジメチルホルムアミド10mLに溶解させた。次いで、溶液を0℃に冷却し、ジシクロヘキシルカルボジイミド630mgを加えた。反応溶液を0℃で1時間、次いで室温で一晩攪拌する。一晩攪拌後の反応溶液に水20mLと酢酸エチル20mLを加え、析出した不溶物をろ過し、有機層を10%の炭酸水素ナトリウム水溶液で3回、次いで水および飽和食塩水で洗浄し、無水硫酸マグネシウムにて乾燥した。溶媒を減圧下で留去し、得られた粗生成物をカラムクロマトグラフィー(シリカゲル:ヘキサン/酢酸エチル=1/1)にて精製し、(23)で表される目的化合物のエステル誘導体を白色粉末として500mg得た。収率は85%であった。
エステル誘導体(23)のH NMRデータ(400MHz, CDCl3):δ 6.92 (1H, t, J = 4.8 Hz), 3.97 (2H, d, J = 4.8 Hz), 3.49 (2H, s), 1.48 (9H, s); 13C NMRデータ(100MHz, CDCl3):δ 167.2, 160.5, 113.5, 81.8, 41.4, 26.9, 24.7.
Example 1 (Synthesis of Compound No (24))
Glycine tertiary butyl ester hydrochloride (22) 500 mg, triethylamine 0.4 mL, cyanoacetic acid (21) 240 mg, and 1-hydroxybenzotriazole 500 mg were dissolved in N, N-dimethylformamide 10 mL. The solution was then cooled to 0 ° C. and 630 mg of dicyclohexylcarbodiimide was added. The reaction solution is stirred at 0 ° C. for 1 hour and then at room temperature overnight. To the reaction solution after stirring overnight, 20 mL of water and 20 mL of ethyl acetate were added, the precipitated insoluble matter was filtered, and the organic layer was washed three times with a 10% aqueous sodium bicarbonate solution, then with water and saturated brine, Dried with magnesium sulfate. The solvent was distilled off under reduced pressure, and the resulting crude product was purified by column chromatography (silica gel: hexane / ethyl acetate = 1/1), and the ester derivative of the target compound represented by (23) was white. 500 mg was obtained as a powder. The yield was 85%.
1 H NMR data (400 MHz, CDCl 3 ) of the ester derivative (23): δ 6.92 (1H, t, J = 4.8 Hz), 3.97 (2H, d, J = 4.8 Hz), 3.49 (2H, s), 1.48 (9H, s); 13 C NMR data (100 MHz, CDCl 3 ): δ 167.2, 160.5, 113.5, 81.8, 41.4, 26.9, 24.7.

(23)で表されるエステル誘導体500mgをジクロロメタン15mLに溶解させ、反応溶液を0℃に冷却した。そこへトリフルオロ酢酸15mLを滴下し、反応溶液を0℃で1時間、次いで室温で2時間攪拌した。攪拌後、溶媒を減圧下で留去し、得られた粗生成物をカラムクロマトグラフィー(シリカゲル:酢酸エチル)にて精製し、(24)で表される目的化合物のカルボン酸誘導体を白色粉末として125mg得た。収率は28%であった。
カルボン酸誘導体(24)のH NMRデータ(400MHz, THF-d8):δ 7.72 (1H, t, J = 5.6 Hz), 3.95 (2H, d, J = 5.6 Hz), 3.51 (2H, s); 13C NMRデータ(100MHz, THF-d8):δ 169.0, 160.8, 113.4, 39.6, 23.3.
500 mg of the ester derivative represented by (23) was dissolved in 15 mL of dichloromethane, and the reaction solution was cooled to 0 ° C. Thereto was added dropwise 15 mL of trifluoroacetic acid, and the reaction solution was stirred at 0 ° C. for 1 hour and then at room temperature for 2 hours. After stirring, the solvent was distilled off under reduced pressure, and the resulting crude product was purified by column chromatography (silica gel: ethyl acetate), and the carboxylic acid derivative of the target compound represented by (24) was obtained as a white powder. 125 mg was obtained. The yield was 28%.
1 H NMR data (400 MHz, THF-d 8 ) of the carboxylic acid derivative (24): δ 7.72 (1H, t, J = 5.6 Hz), 3.95 (2H, d, J = 5.6 Hz), 3.51 (2H, s ); 13 C NMR data (100 MHz, THF-d 8 ): δ 169.0, 160.8, 113.4, 39.6, 23.3.

実施例2(化合物No(27)の合成)
ベータアラニンターシャリーブチルエステル塩酸塩(25)1g、トリエチルアミン0.8mL、シアノ酢酸(21)468mg、1−ヒドロキシベンゾトリアゾール781mgをN,N−ジメチルホルムアミド20mLに溶解させた。次いで、溶液を0℃に冷却し、ジシクロヘキシルカルボジイミド1.34gを加えた。反応溶液を0℃で1時間、次いで室温で一晩攪拌する。一晩攪拌後の反応溶液に水20mLと酢酸エチル20mLを加え、析出した不溶物をろ過し、有機層を10%の炭酸水素ナトリウム水溶液で3回、次いで水および飽和食塩水で洗浄し、無水硫酸マグネシウムにて乾燥した。溶媒を減圧下で留去し、得られた粗生成物をカラムクロマトグラフィー(シリカゲル:ヘキサン/酢酸エチル=1/1)にて精製し、(26)で表される目的化合物のエステル誘導体を白色粉末として1.04g得た。収率は89%であった。
エステル誘導体(26)のH NMRデータ(400MHz, CDCl3):δ 7.24 (1H, t, J = 5.2 Hz), 3.43 (2H, q), 3.42 (2H, s), 2.41 (2H, t, J = 6.4 Hz),1.37 (9H, s); 13C NMRデータ(100 MHz, CDCl3):δ 170.2, 160.8, 113.9, 80.1, 34.7, 33.6, 26.9, 24.8.
Example 2 (Synthesis of Compound No (27))
Beta-alanine tertiary butyl ester hydrochloride (25) 1 g, triethylamine 0.8 mL, cyanoacetic acid (21) 468 mg, and 1-hydroxybenzotriazole 781 mg were dissolved in N, N-dimethylformamide 20 mL. The solution was then cooled to 0 ° C. and 1.34 g of dicyclohexylcarbodiimide was added. The reaction solution is stirred at 0 ° C. for 1 hour and then at room temperature overnight. To the reaction solution after stirring overnight, 20 mL of water and 20 mL of ethyl acetate were added, the precipitated insoluble matter was filtered, and the organic layer was washed three times with a 10% aqueous sodium bicarbonate solution, then with water and saturated brine, Dried with magnesium sulfate. The solvent was distilled off under reduced pressure, and the resulting crude product was purified by column chromatography (silica gel: hexane / ethyl acetate = 1/1), and the ester derivative of the target compound represented by (26) was white. As a powder, 1.04 g was obtained. The yield was 89%.
1 H NMR data (400 MHz, CDCl 3 ) of ester derivative (26): δ 7.24 (1H, t, J = 5.2 Hz), 3.43 (2H, q), 3.42 (2H, s), 2.41 (2H, t, J = 6.4 Hz), 1.37 (9H, s); 13 C NMR data (100 MHz, CDCl 3 ): δ 170.2, 160.8, 113.9, 80.1, 34.7, 33.6, 26.9, 24.8.

(26)で表されるエステル誘導体1gをジクロロメタン20mLに溶解させ、反応溶液を0℃に冷却した。そこへトリフルオロ酢酸20mLを滴下し、反応溶液を0℃で1時間、次いで室温で2時間攪拌した。攪拌後、溶媒を減圧下で留去し、得られた粗生成物をカラムクロマトグラフィー(シリカゲル:酢酸エチル)にて精製し、(27)で表される目的化合物のカルボン酸誘導体を白色粉末として355mg得た。収率は48%であった。
カルボン酸誘導体(27)のH NMRデータ(400MHz, THF-d8):δ 7.79 (1H, t, J = 5.6 Hz), 3.50 (2H, s), 3.45 (2H, q), 2.51 (2H, t, J = 5.6); 13C NMRデータ(100MHz, THF-d8):δ 171.7, 161.3, 113.8, 34.5, 32.0, 23.8.
1 g of the ester derivative represented by (26) was dissolved in 20 mL of dichloromethane, and the reaction solution was cooled to 0 ° C. 20 mL of trifluoroacetic acid was added dropwise thereto, and the reaction solution was stirred at 0 ° C. for 1 hour and then at room temperature for 2 hours. After stirring, the solvent was distilled off under reduced pressure, and the resulting crude product was purified by column chromatography (silica gel: ethyl acetate), and the target carboxylic acid derivative represented by (27) was obtained as a white powder. 355 mg was obtained. The yield was 48%.
1 H NMR data of carboxylic acid derivative (27) (400 MHz, THF-d 8 ): δ 7.79 (1H, t, J = 5.6 Hz), 3.50 (2H, s), 3.45 (2H, q), 2.51 (2H , t, J = 5.6); 13 C NMR data (100 MHz, THF-d 8 ): δ 171.7, 161.3, 113.8, 34.5, 32.0, 23.8.

実施例3(化合物No(8)の合成)
(28)で表されるアルデヒド160mgと(24)で表されるカルボン酸誘導体100mg をアセトニトリル5mLおよびトルエン2mLの混合溶媒に溶解させ、ピペリジン0.5mL存在下、反応溶液を15時間加熱還流する。 冷却後クロロホルムで希釈し、クロロホルム層を1Mの塩酸、水、飽和食塩水の順で洗浄し、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去し、得られた粗生成物をカラムクロマトグラフィー(シリカゲル:クロロホルム→クロロホルム/エタノール=10/1→クロロホルム/エタノール/酢酸=50/10/1)にて精製し、目的である色素化合物(8)を75mg得た。収率は41%であった。
色素化合物(8)のH NMRデータ(400MHz, THF-d8):δ 8.52 (1H, s), 8.42 (1H, d, J = 1.2 Hz), 8.19 (1H, d, J = 7.6 Hz), 7.77 (1H, d, J = 7.6 Hz), 7.70 (1H, t, J = 5.6 Hz), 7.56-7.52 (2H, m), 7.46 (1H, t, J = 7.6 Hz), 7.36 (1H, s), 7.25 (1H, s), 7.23 (1H, t, J = 7.6 Hz), 7.15 (1H, s), 7.13 (1H, s), 4.47 (2H, q, J = 7.2 Hz), 4.07 (2H, d, J = 5.6 Hz), 2.96-2.86 (8H, m), 1.85-1.67 (8H, m), 1.56-1.33 (27H, m), 0.98-0.93 (12H, m).
Example 3 (Synthesis of Compound No (8))
160 mg of the aldehyde represented by (28) and 100 mg of the carboxylic acid derivative represented by (24) are dissolved in a mixed solvent of 5 mL of acetonitrile and 2 mL of toluene, and the reaction solution is heated to reflux for 15 hours in the presence of 0.5 mL of piperidine. After cooling, the mixture was diluted with chloroform, and the chloroform layer was washed with 1M hydrochloric acid, water and saturated brine in that order, and dried over sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting crude product was purified by column chromatography (silica gel: chloroform → chloroform / ethanol = 10/1 → chloroform / ethanol / acetic acid = 50/10/1). 75 mg of the dye compound (8) was obtained. The yield was 41%.
1 H NMR data of dye compound (8) (400 MHz, THF-d 8 ): δ 8.52 (1H, s), 8.42 (1H, d, J = 1.2 Hz), 8.19 (1H, d, J = 7.6 Hz) , 7.77 (1H, d, J = 7.6 Hz), 7.70 (1H, t, J = 5.6 Hz), 7.56-7.52 (2H, m), 7.46 (1H, t, J = 7.6 Hz), 7.36 (1H, s), 7.25 (1H, s), 7.23 (1H, t, J = 7.6 Hz), 7.15 (1H, s), 7.13 (1H, s), 4.47 (2H, q, J = 7.2 Hz), 4.07 ( 2H, d, J = 5.6 Hz), 2.96-2.86 (8H, m), 1.85-1.67 (8H, m), 1.56-1.33 (27H, m), 0.98-0.93 (12H, m).

実施例4(化合物No(9)の合成)
(28)で表されるアルデヒド350mgと(27)で表されるカルボン酸誘導体250mg をアセトニトリル3mLおよびトルエン3mLの混合溶媒に溶解させ、ピペリジン0.5mL存在下、反応溶液を15時間加熱還流する。 冷却後クロロホルムで希釈し、クロロホルム層を1Mの塩酸、水、飽和食塩水の順で洗浄し、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去し、得られた粗生成物をカラムクロマトグラフィー(シリカゲル:クロロホルム→クロロホルム/エタノール=10/1→クロロホルム/エタノール/酢酸=50/10/1)にて精製し、目的である色素化合物(9)を158mg得た。収率は39%であった。
色素化合物(9)のH NMRデータ(400MHz, THF-d8):8.51 (1H, s), 8.43 (1H, d, J = 1.2 Hz), 8.19 (1H, d, J = 7.6 Hz), 7.76 (1H, d, J = 7.6 Hz), 7.60 (1H, t, J = 5.6 Hz), 7.51 (2H, d, J = 7.6 Hz), 7.46 (1H, t, J = 7.6 Hz), 7.35 (1H, s), 7.22 (1H, t, J = 7.6 Hz), 7.21 (1H, s), 7.13(1H, s), 7.12 (1H, s), 4.44 (2H, q, J = 7.2 Hz), 3.64 (2H, q), 2.94-2.83 (8H, m), 2.63 (2H, t, J = 6.0 Hz), 1.84-1.65 (8H, m), 1.55-1.33 (27H, m), 0.99-0.93 (12H, m).
Example 4 (Synthesis of Compound No (9))
350 mg of the aldehyde represented by (28) and 250 mg of the carboxylic acid derivative represented by (27) are dissolved in a mixed solvent of 3 mL of acetonitrile and 3 mL of toluene, and the reaction solution is heated to reflux for 15 hours in the presence of 0.5 mL of piperidine. After cooling, the mixture was diluted with chloroform, and the chloroform layer was washed with 1M hydrochloric acid, water and saturated brine in that order, and dried over sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting crude product was purified by column chromatography (silica gel: chloroform → chloroform / ethanol = 10/1 → chloroform / ethanol / acetic acid = 50/10/1). 158 mg of the dye compound (9) was obtained. The yield was 39%.
1 H NMR data (400 MHz, THF-d 8 ) of the dye compound (9): 8.51 (1H, s), 8.43 (1H, d, J = 1.2 Hz), 8.19 (1H, d, J = 7.6 Hz), 7.76 (1H, d, J = 7.6 Hz), 7.60 (1H, t, J = 5.6 Hz), 7.51 (2H, d, J = 7.6 Hz), 7.46 (1H, t, J = 7.6 Hz), 7.35 ( 1H, s), 7.22 (1H, t, J = 7.6 Hz), 7.21 (1H, s), 7.13 (1H, s), 7.12 (1H, s), 4.44 (2H, q, J = 7.2 Hz), 3.64 (2H, q), 2.94-2.83 (8H, m), 2.63 (2H, t, J = 6.0 Hz), 1.84-1.65 (8H, m), 1.55-1.33 (27H, m), 0.99-0.93 ( 12H, m).

実施例5(化合物No(10)の合成)
(29)で表されるアルデヒド150mgと(24)で表されるカルボン酸誘導体80mg をアセトニトリル4mLおよびトルエン2mLの混合溶媒に溶解させ、ピペリジン0.5mL存在下、反応溶液を15時間加熱還流する。 冷却後クロロホルムで希釈し、クロロホルム層を1Mの塩酸、水、飽和食塩水の順で洗浄し、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去し、得られた粗生成物をカラムクロマトグラフィー(シリカゲル:クロロホルム→クロロホルム/エタノール=10/1)にて精製し、目的である色素化合物(10)を106mg得た。収率は62%であった。
色素化合物(10)のH NMRデータ(400MHz, THF-d8):δ 8.51 (1H, s), 8.50 (1H, d, J = 1.6 Hz), 8.43 (1H, d, J = 1.6 Hz), 7.77 (1H, dd, J1 = 8.4 Hz, J2 = 1.6 Hz), 7.73 (1H, dd, J1 = 8.4 Hz, J2 = 1.6 Hz), 7.69 (2H, d, J = 8.8 Hz), 7.66 (1H, t, J = 5.6 Hz), 7.54 (1H, d, J = 4.4 Hz), 7.52 (1H, d, J = 4.8 Hz), 7.38 (1H, s), 7.22 (1H, s), 7.15 (1H, s), 7.02 (2H, d, J = 8.8 Hz), 4.46 (2H, q, J =7.6 Hz), 4.09 (2H, d, J = 5.6 Hz), 4.04 (2H, t, J = 7.4 Hz), 2.95-2.83 (6H, m), 1.87-1.66 (8H, m), 1.59-1.35 (27H, m), 0.99-0.93 (12H, m).
Example 5 (Synthesis of Compound No (10))
150 mg of the aldehyde represented by (29) and 80 mg of the carboxylic acid derivative represented by (24) are dissolved in a mixed solvent of 4 mL of acetonitrile and 2 mL of toluene, and the reaction solution is heated to reflux for 15 hours in the presence of 0.5 mL of piperidine. After cooling, the mixture was diluted with chloroform, and the chloroform layer was washed with 1M hydrochloric acid, water and saturated brine in that order, and dried over sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting crude product was purified by column chromatography (silica gel: chloroform → chloroform / ethanol = 10/1) to obtain 106 mg of the target dye compound (10). The yield was 62%.
1 H NMR data of dye compound (10) (400 MHz, THF-d 8 ): δ 8.51 (1H, s), 8.50 (1H, d, J = 1.6 Hz), 8.43 (1H, d, J = 1.6 Hz) , 7.77 (1H, dd, J 1 = 8.4 Hz, J 2 = 1.6 Hz), 7.73 (1H, dd, J 1 = 8.4 Hz, J 2 = 1.6 Hz), 7.69 (2H, d, J = 8.8 Hz) , 7.66 (1H, t, J = 5.6 Hz), 7.54 (1H, d, J = 4.4 Hz), 7.52 (1H, d, J = 4.8 Hz), 7.38 (1H, s), 7.22 (1H, s) , 7.15 (1H, s), 7.02 (2H, d, J = 8.8 Hz), 4.46 (2H, q, J = 7.6 Hz), 4.09 (2H, d, J = 5.6 Hz), 4.04 (2H, t, J = 7.4 Hz), 2.95-2.83 (6H, m), 1.87-1.66 (8H, m), 1.59-1.35 (27H, m), 0.99-0.93 (12H, m).

実施例6(化合物No(11)の合成)
(29)で表されるアルデヒド300mgと(27)で表されるカルボン酸誘導体150mg をアセトニトリル5mLおよびトルエン2mLの混合溶媒に溶解させ、ピペリジン0.5mL存在下、反応溶液を15時間加熱還流する。 冷却後クロロホルムで希釈し、クロロホルム層を1Mの塩酸、水、飽和食塩水の順で洗浄し、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去し、得られた粗生成物をカラムクロマトグラフィー(シリカゲル:クロロホルム→クロロホルム/エタノール=10/1)にて精製し、目的である色素化合物(11)を200mg得た。収率は58%であった。
色素化合物(11)のH NMRデータ(400MHz, THF-d8):δ 8.50 (1H, s), 8.49 (1H, d, J = 1.6 Hz), 8.42 (1H, d, J = 1.6 Hz), 7.76 (1H, dd, J1 = 8.4 Hz, J2 = 1.6 Hz), 7.71 (1H, dd, J1 = 8.4 Hz, J2 = 1.6 Hz), 7.69 (2H, d, J = 8.8 Hz), 7.57(1H, t, J = 5.6 Hz), 7.53 (1H, d, J = 3.6 Hz), 7.50 (1H, d, J = 3.2 Hz), 7.37 (1H, s), 7.20 (1H, s), 7.13 (1H, s), 7.02 (2H, d, J = 8.8 Hz), 4.43 (2H, q, J =7.2 Hz), 4.03 (2H, t, J = 6.4 Hz), 3.65 (2H, q), 2.93-2.82 (6H, m), 2.62 (2H, t, J = 6.8 Hz), 1.86-1.65 (8H, m), 1.56-1.49 (6H, m), 1.45-1.36 (21H, m), 0.99-0.93 (12H, m).
Example 6 (Synthesis of Compound No (11))
300 mg of the aldehyde represented by (29) and 150 mg of the carboxylic acid derivative represented by (27) are dissolved in a mixed solvent of 5 mL of acetonitrile and 2 mL of toluene, and the reaction solution is heated to reflux for 15 hours in the presence of 0.5 mL of piperidine. After cooling, the mixture was diluted with chloroform, and the chloroform layer was washed with 1M hydrochloric acid, water and saturated brine in that order, and dried over sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting crude product was purified by column chromatography (silica gel: chloroform → chloroform / ethanol = 10/1) to obtain 200 mg of the target dye compound (11). The yield was 58%.
1 H NMR data of dye compound (11) (400 MHz, THF-d 8 ): δ 8.50 (1H, s), 8.49 (1H, d, J = 1.6 Hz), 8.42 (1H, d, J = 1.6 Hz) , 7.76 (1H, dd, J 1 = 8.4 Hz, J 2 = 1.6 Hz), 7.71 (1H, dd, J 1 = 8.4 Hz, J 2 = 1.6 Hz), 7.69 (2H, d, J = 8.8 Hz) , 7.57 (1H, t, J = 5.6 Hz), 7.53 (1H, d, J = 3.6 Hz), 7.50 (1H, d, J = 3.2 Hz), 7.37 (1H, s), 7.20 (1H, s) , 7.13 (1H, s), 7.02 (2H, d, J = 8.8 Hz), 4.43 (2H, q, J = 7.2 Hz), 4.03 (2H, t, J = 6.4 Hz), 3.65 (2H, q) , 2.93-2.82 (6H, m), 2.62 (2H, t, J = 6.8 Hz), 1.86-1.65 (8H, m), 1.56-1.49 (6H, m), 1.45-1.36 (21H, m), 0.99 -0.93 (12H, m).

実施例7(化合物No(12)の合成)
(30)で表されるアルデヒド140mgと(24)で表されるカルボン酸誘導体48mg をアセトニトリル1mLおよびトルエン2mLの混合溶媒に溶解させ、ピペリジン0.5mL存在下、反応溶液を15時間加熱還流する。 冷却後クロロホルムで希釈し、クロロホルム層を1Mの塩酸、水、飽和食塩水の順で洗浄し、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去し、得られた粗生成物をカラムクロマトグラフィー(シリカゲル:クロロホルム→クロロホルム/エタノール=10/1→クロロホルム/エタノール/酢酸=50/10/1)にて精製し、目的である色素化合物(12)を77mg得た。収率は48%であった。
色素化合物(12)のH NMRデータ(400MHz, THF-d8):δ 8.51 (1H, s), 8.50 (1H, d, J = 1.6 Hz), 8.43 (1H, d, J = 1.6 Hz), 7.77 (1H, dd, J1 = 8.4 Hz, J2 = 1.6 Hz), 7.74-7.69 (3H, m), 7.66 (1H, t, J = 5.6 Hz), 7.55 (1H, d, J = 5.6 Hz), 7.52 (1H, d, J = 5.6 Hz), 7.38 (1H, s), 7.22 (1H, s), 7.14 (1H, s), 7.04 (2H, d, J = 8.8 Hz), 4.46 (2H, q, J =7.2 Hz), 4.09 (2H, d, J = 5.6 Hz), 3.86 (3H, s), 2.95-2.83 (6H, m), 1.85-1.66 (6H, m), 1.59-1.36 (21H, m), 0.98-0.93 (9H, m).
Example 7 (Synthesis of Compound No (12))
140 mg of the aldehyde represented by (30) and 48 mg of the carboxylic acid derivative represented by (24) are dissolved in a mixed solvent of 1 mL of acetonitrile and 2 mL of toluene, and the reaction solution is heated to reflux for 15 hours in the presence of 0.5 mL of piperidine. After cooling, the mixture was diluted with chloroform, and the chloroform layer was washed with 1M hydrochloric acid, water and saturated brine in that order, and dried over sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting crude product was purified by column chromatography (silica gel: chloroform → chloroform / ethanol = 10/1 → chloroform / ethanol / acetic acid = 50/10/1). 77 mg of a dye compound (12) was obtained. The yield was 48%.
1 H NMR data (400 MHz, THF-d 8 ) of dye compound (12): δ 8.51 (1H, s), 8.50 (1H, d, J = 1.6 Hz), 8.43 (1H, d, J = 1.6 Hz) , 7.77 (1H, dd, J 1 = 8.4 Hz, J 2 = 1.6 Hz), 7.74-7.69 (3H, m), 7.66 (1H, t, J = 5.6 Hz), 7.55 (1H, d, J = 5.6 Hz), 7.52 (1H, d, J = 5.6 Hz), 7.38 (1H, s), 7.22 (1H, s), 7.14 (1H, s), 7.04 (2H, d, J = 8.8 Hz), 4.46 ( 2H, q, J = 7.2 Hz), 4.09 (2H, d, J = 5.6 Hz), 3.86 (3H, s), 2.95-2.83 (6H, m), 1.85-1.66 (6H, m), 1.59-1.36 (21H, m), 0.98-0.93 (9H, m).

実施例8(化合物No(14)の合成)
(31)で表されるアルデヒド140mgと(24)で表されるカルボン酸誘導体60mg をアセトニトリル2mLおよびトルエン2mLの混合溶媒に溶解させ、ピペリジン0.5mL存在下、反応溶液を15時間加熱還流する。 冷却後クロロホルムで希釈し、クロロホルム層を1Mの塩酸、水、飽和食塩水の順で洗浄し、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去し、得られた粗生成物をカラムクロマトグラフィー(シリカゲル:クロロホルム→クロロホルム/エタノール=10/1)にて精製し、目的である色素化合物(14)を45mg得た。収率は27%であった。
色素化合物(14)のH NMRデータ(400MHz, THF-d8):δ 8.51 (1H, s), 7.68 (1H, d, J = 7.6 Hz), 7.66 (1H, t, J = 5.6 Hz), 7.48 (1H, d, J = 7.6 Hz), 7.44 (1H, s), 7.28-7.23 (3H, m), 7.14 (1H, s), 7.12 (1H, t, J = 7.6), 4.42 (2H, q, J = 7.2 Hz), 4.07 (2H, d, J = 5.6 Hz), 2.93 (2H, t, J = 8.0 Hz), 2.87 (4H, t, J = 7.6 Hz), 1.81-1.67 (6H, m), 1.56-1.36 (21H, m), 0.97-0.92 (9H, m).
Example 8 (Synthesis of Compound No (14))
140 mg of the aldehyde represented by (31) and 60 mg of the carboxylic acid derivative represented by (24) are dissolved in a mixed solvent of 2 mL of acetonitrile and 2 mL of toluene, and the reaction solution is heated to reflux for 15 hours in the presence of 0.5 mL of piperidine. After cooling, the mixture was diluted with chloroform, and the chloroform layer was washed with 1M hydrochloric acid, water and saturated brine in that order, and dried over sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting crude product was purified by column chromatography (silica gel: chloroform → chloroform / ethanol = 10/1) to obtain 45 mg of the target dye compound (14). The yield was 27%.
1 H NMR data of dye compound (14) (400 MHz, THF-d 8 ): δ 8.51 (1H, s), 7.68 (1H, d, J = 7.6 Hz), 7.66 (1H, t, J = 5.6 Hz) , 7.48 (1H, d, J = 7.6 Hz), 7.44 (1H, s), 7.28-7.23 (3H, m), 7.14 (1H, s), 7.12 (1H, t, J = 7.6), 4.42 (2H , q, J = 7.2 Hz), 4.07 (2H, d, J = 5.6 Hz), 2.93 (2H, t, J = 8.0 Hz), 2.87 (4H, t, J = 7.6 Hz), 1.81-1.67 (6H , m), 1.56-1.36 (21H, m), 0.97-0.92 (9H, m).

Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406

実施例9
(1)有機色素吸着酸化チタン薄膜ガラス電極の作製
チタン・テトライソプロポキシドの加水分解により作製した酸化チタンコロイドをオートクレービングすることにより結晶性の酸化チタンナノ粒子を得た。これに、バインダーとしてエチルセルロース、溶媒としてα−テルピネオールを混合した有機性のペーストを作製した。あるいは、市販の酸化チタンペースト(たとえば、Solaronix社製)を用いても良い。上記酸化チタンペーストをスクリーン印刷法により、酸化スズコート導電性ガラス上に塗布し、空気中500℃で1〜2時間焼成することにより、膜厚が3〜20ミクロンの酸化チタン薄膜電極を得た。この電極を、0.3mMの有機色素溶液(溶媒は、トルエン、ルテニウム錯体色素(36)においてはt‐ブチルアルコール:アセトニトリル=1:1)に浸漬し、室温で10時間以上放置することにより、有機色素吸着酸化チタン薄膜電極を得た。
Example 9
(1) Preparation of Organic Dye-Adsorbed Titanium Oxide Thin Film Glass Electrode Crystalline titanium oxide nanoparticles were obtained by autoclaving a titanium oxide colloid prepared by hydrolysis of titanium / tetraisopropoxide. An organic paste was prepared by mixing ethyl cellulose as a binder and α-terpineol as a solvent. Alternatively, a commercially available titanium oxide paste (for example, manufactured by Solaronix) may be used. The titanium oxide paste was applied onto tin oxide-coated conductive glass by screen printing and baked at 500 ° C. for 1 to 2 hours in air to obtain a titanium oxide thin film electrode having a thickness of 3 to 20 microns. By immersing this electrode in a 0.3 mM organic dye solution (the solvent is toluene, t-butyl alcohol: acetonitrile = 1: 1 in the ruthenium complex dye (36)) and leaving it at room temperature for 10 hours or more, An organic dye-adsorbed titanium oxide thin film electrode was obtained.

(2)有機色素吸着酸化チタン薄膜プラスチック電極の作製
低温成膜用酸化チタンペーストPECC-C01-06(ペクセル・テクノロジーズ社製)を、ITO-PENフィルム(シート抵抗13ohm/□、フィルム厚み200 μm)の上にドクターブレード法で塗布し、室温で乾燥後、150℃で10分間加熱乾燥した。乾燥後の酸化チタン膜の厚みは6μmであった。この電極を、0.3mMの有機色素溶液(溶媒はトルエン、ルテニウム錯体色素(36)においてはt-ブチルアルコール:アセトニトリル=1:1)に浸漬し、40度で30分間放置することにより、有機色素吸着酸化チタンプラスチック電極を得た。
(2) Fabrication of organic dye-adsorbed titanium oxide thin film plastic electrode Titanium oxide paste PECC-C01-06 (manufactured by Pexel Technologies) for low-temperature film formation, ITO-PEN film (sheet resistance 13 ohm / □, film thickness 200 μm) It was coated on the top by a doctor blade method, dried at room temperature, and then heated and dried at 150 ° C. for 10 minutes. The thickness of the dried titanium oxide film was 6 μm. This electrode was immersed in a 0.3 mM organic dye solution (the solvent was toluene, and t-butyl alcohol: acetonitrile = 1: 1 in the ruthenium complex dye (36)), and left at 40 ° C. for 30 minutes, whereby organic A dye-adsorbed titanium oxide plastic electrode was obtained.

(3)ガラス電極を用いた光電気化学太陽電池の作製と光電変換特性の評価
前記(1)で作製した酸化チタン薄膜電極(膜厚6ミクロン)に表1記載の色素を吸着させ、白金をスパッタした酸化スズコート導電性ガラスを対極として、ポリエチレンフィルムスペーサーを挟んで重ね合わせ、その隙間に電解液である0.6 Mヨウ化1,2-ジメチル-3-プロピルイミダゾリウム−0.1 Mヨウ化リチウム−0.05 Mヨウ素−0.5 M t-ブチルピリジンのアセトニトリル溶液を注入し、ゼムクリップでとめセルを作製した。セルの光電変換特性の測定は、光源としてキセノンランプとAMフィルターからなるソーラーシミュレーターを用い、光電流電圧特性は、ソースメーターを用いて測定した。
(3) Preparation of photoelectrochemical solar cell using glass electrode and evaluation of photoelectric conversion characteristics The dye described in Table 1 was adsorbed on the titanium oxide thin film electrode (film thickness: 6 microns) prepared in (1) above, and platinum was Sputtered tin oxide coated conductive glass is used as a counter electrode, and a polyethylene film spacer is sandwiched between them, and the electrolyte solution is 0.6 M 1,2-dimethyl-3-propylimidazolium iodide-0.1 M lithium iodide-0.05. An acetonitrile solution of M iodine-0.5 M t-butylpyridine was injected, and a stopper cell was prepared with a gem clip. The photoelectric conversion characteristics of the cell were measured using a solar simulator consisting of a xenon lamp and an AM filter as a light source, and the photocurrent voltage characteristics were measured using a source meter.

(4)プラスチック電極を用いた光電気化学太陽電池の作製と光電変換特性の評価
前記(2)で作製した酸化チタンプラスチック電極(膜厚5ミクロン)に表1記載の色素を吸着させ、白金をスパッタした酸化スズコート導電性ガラスを対極として、アイオノマーフィルム(厚み25ミクロン)を挟んで重ね合わせ、その隙間に電解液である0.4M ヨウ化テトラブチルアンモニウム‐0.3M 1−メチルベンゾイミダゾール‐0.04M ヨウ素のγ―ブチロラクトン:メトキシプロピオニトリル=1:1溶液を注入し、ゼムクリップでとめセルを作製した。セルの光電変換特性の測定は、光源としてキセノンランプとAMフィルタからなるソーラーシミュレータを用い、光電流電圧特性は、ソースメータを用いて測定した。 本評価で用いた電解液組成は、ITO−PENフィルムを用いた光電気化学太陽電池において、ITO−PENの耐久性が高い電解液である。(例えば、Solar Energy Materials & Solar Cells 93 (2009) 836-839.)
(4) Production of photoelectrochemical solar cell using plastic electrode and evaluation of photoelectric conversion characteristics The dye described in Table 1 was adsorbed to the titanium oxide plastic electrode (film thickness 5 microns) produced in (2) above, and platinum was Sputtered tin oxide coated conductive glass is used as a counter electrode, and an ionomer film (thickness: 25 microns) is sandwiched between them, and 0.4M tetrabutylammonium iodide-0.3M 1-methylbenzimidazole-0 as electrolyte is placed in the gap. .04M Iodine γ-Butyrolactone: Methoxypropionitrile = 1: 1 solution was injected, and a stop cell was prepared with a Zem clip. The photoelectric conversion characteristics of the cell were measured using a solar simulator composed of a xenon lamp and an AM filter as a light source, and the photocurrent voltage characteristics were measured using a source meter. The electrolytic solution composition used in this evaluation is an electrolytic solution having high durability of ITO-PEN in a photoelectrochemical solar cell using an ITO-PEN film. (For example, Solar Energy Materials & Solar Cells 93 (2009) 836-839.)

Figure 0005458406
Figure 0005458406

Figure 0005458406
Figure 0005458406

Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
ここで、TBAはテトラブチルアンモニウムカチオンを示す。
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Figure 0005458406
Here, TBA represents a tetrabutylammonium cation.

表1には、本発明により合成した新規有機色素および比較例としてアクセプター部位が従来のシアノアクリル酸である有機色素(32)−(35)とルテニウム錯体色素(36)による光増感ガラス電極を用いた光電気化学太陽電池の光電変換特性を示した。表1のように、本発明により合成した新規の有機色素を用いた光電気化学太陽電池では、従来の有機色素を用いた場合に比べ、開放電圧の値が高く、ルテニウム錯体色素を用いた場合のそれと同等の値を示した。従来の有機色素ではπ共役系が直接酸化チタンと結合しているために、酸化チタンに注入された電子が色素カチオンに戻る再結合が起こりやすいと考えられるが、本発明により合成した新規有機色素では、色素分子内のπ共役が酸化チタンと直接結合していないために、再結合が起こりにくく、それにより開放電圧の向上に繋がったものと考えられる。短絡電流密度に関しては、逆にπ共役系と酸化チタンが離れている分、酸化チタンへの電子注入効率が低下し、結果短絡電流密度が従来の有機色素と比べて低下している。開放電圧の向上と短絡電流密度の低下により、結果的に変換効率に関しては同等の値を示している。   Table 1 shows a novel organic dye synthesized according to the present invention and a photosensitized glass electrode using a conventional organic dye (32)-(35) and ruthenium complex dye (36) whose acceptor site is cyanoacrylic acid as a comparative example. The photoelectric conversion characteristics of the used photoelectrochemical solar cell are shown. As shown in Table 1, the photoelectrochemical solar cell using the novel organic dye synthesized according to the present invention has a higher open-circuit voltage value than the conventional organic dye, and the ruthenium complex dye is used. The value equivalent to that of was shown. In conventional organic dyes, since the π-conjugated system is directly bonded to titanium oxide, it is considered that electrons injected into titanium oxide are likely to recombine back to the dye cation. However, the novel organic dye synthesized by the present invention Then, since the π conjugation in the dye molecule is not directly bonded to titanium oxide, recombination hardly occurs, which is considered to have led to an improvement in open circuit voltage. Concerning the short-circuit current density, on the contrary, the efficiency of electron injection into titanium oxide is reduced by the distance between the π-conjugated system and titanium oxide, and as a result, the short-circuit current density is lower than that of conventional organic dyes. As a result, the conversion efficiency shows the same value due to the improvement of the open circuit voltage and the decrease of the short circuit current density.

表2には、本発明により合成した新規有機色素および比較例としてアクセプター部位が従来のシアノアクリル酸である有機色素(32)−(35)とルテニウム錯体色素(36)による光増感プラスチック電極を用いた光電気化学太陽電池の光電変換特性を示した。本発明の有機色素(9)及び(11)においては、従来の有機色素を用いた太陽電池の光電変換特性の全ての要素(短絡電流密度、開放電圧、形状因子)について向上し、さらにルテニウム錯体色素(36)を用いた場合と比較しても、それを上回る光電変換特性を示した。一般にプラスチック電極に用いる低温焼成型酸化チタン膜への電子注入効率は、ルテニウム錯体色素においても有機色素においても、ガラス電極に用いる高温焼成型酸化チタンに比べると非常に低かったが、本発明における新規有機色素においては、電子注入効率が向上し、その結果、高い短絡電流密度が実現している。開放電圧に関しても、光増感ガラス電極を用いた光電気化学太陽電池に関して上記理由により向上したものと考えられる。また、これまでこの系においてルテニウム錯体色素を用いた太陽電池の光電変換特性を上回る有機色素は存在しなかったが、本発明においてはそれを提供できることを証明した。   Table 2 shows new organic dyes synthesized according to the present invention and, as a comparative example, photosensitized plastic electrodes using organic dyes (32)-(35) and ruthenium complex dyes (36) whose acceptor sites are conventional cyanoacrylic acid. The photoelectric conversion characteristics of the used photoelectrochemical solar cell are shown. In the organic dyes (9) and (11) of the present invention, all elements (short-circuit current density, open-circuit voltage, form factor) of the photoelectric conversion characteristics of solar cells using conventional organic dyes are improved, and further a ruthenium complex. Even when compared with the case of using the dye (36), a photoelectric conversion characteristic exceeding that was shown. In general, the efficiency of electron injection into a low-temperature-fired titanium oxide film used for plastic electrodes was much lower in both ruthenium complex dyes and organic dyes than in high-temperature fired titanium oxide used in glass electrodes. In the organic dye, the electron injection efficiency is improved, and as a result, a high short-circuit current density is realized. Regarding the open circuit voltage, it is considered that the photoelectrochemical solar cell using the photosensitized glass electrode has been improved for the above reason. Moreover, until now there has been no organic dye exceeding the photoelectric conversion characteristics of solar cells using a ruthenium complex dye in this system, but it has been proved that the present invention can provide it.

本発明は、色素増感太陽電池の心臓部として有効な色素を提供するものである。色素増感太陽電池の用途としては、電卓やパソコンといった民生用電源として期待されている。その中で求められている技術の一つとしてフレキシブル性が挙げられ、プラスチック基板を用いた色素増感太陽電池の開発および実用化が期待されている。本発明は、そのプラスチック基板を用いた色素増感太陽電池に特に有効な色素としての有機化合物を提供するものである。   The present invention provides a dye effective as the heart of a dye-sensitized solar cell. Dye-sensitized solar cells are expected to be used as consumer power supplies such as calculators and personal computers. One of the required technologies is flexibility, and the development and practical application of dye-sensitized solar cells using plastic substrates is expected. The present invention provides an organic compound as a dye particularly effective for a dye-sensitized solar cell using the plastic substrate.

1 白金スパッタ導電性ガラスもしくはプラスチックもしくは金属
2 レドックス電解液層
3 封止剤
4 色素吸着半導体薄膜電極
5 導電性透明ガラスもしくはプラスチックもしくは金属
DESCRIPTION OF SYMBOLS 1 Platinum sputtering conductive glass, plastic, or metal 2 Redox electrolyte layer 3 Sealant 4 Dye adsorption semiconductor thin film electrode 5 Conductive transparent glass, plastic, or metal

Claims (5)

下記一般式(1)で表される有機化合物。
Figure 0005458406
(式中、Aは電子供与性を持つ炭素環又は複素環、Lはチオフェン環、フラン環、ピロール環もしくはこれらが縮環した複素環の中から選ばれる少なくとも1種の複素環を含む電子伝達性連結基、Rは電子伝達性連結基に結合している置換基、RおよびRはアミド基とカルボキシル基との連結アルキレン基に結合している水素原子もしくは置換基、Mは水素原子又は塩形成陽イオンを示す。nは1〜6、mは1〜3の整数を示す。)
An organic compound represented by the following general formula (1).
Figure 0005458406
(Wherein A is an electron-donating carbocyclic or heterocyclic ring, L is a thiophene ring, a furan ring, a pyrrole ring or an electron transfer containing at least one heterocyclic ring selected from these condensed heterocyclic rings) A linking group, R is a substituent bonded to the electron transfer linking group, R 1 and R 2 are a hydrogen atom or substituent bonded to a linking alkylene group of an amide group and a carboxyl group, and M is a hydrogen atom. Or a salt-forming cation, n is 1 to 6, and m is an integer of 1 to 3.)
請求項1に記載の有機化合物からなることを特徴とする有機色素。   An organic dye comprising the organic compound according to claim 1. 請求項2に記載の有機色素として用いることを特徴とする半導体薄膜電極。   A semiconductor thin film electrode, which is used as the organic dye according to claim 2. 請求項3に記載の半導体薄膜電極を用いることを特徴とする光電変換素子。   A photoelectric conversion element using the semiconductor thin film electrode according to claim 3. 請求項4に記載の光電変換素子を用いることを特徴とする光電気化学太陽電池。   A photoelectrochemical solar cell using the photoelectric conversion element according to claim 4.
JP2009281927A 2009-12-11 2009-12-11 ORGANIC DYE COMPOUND AND SEMICONDUCTOR THIN FILM ELECTRODE, PHOTOELECTRIC CONVERSION ELEMENT, PHOTOELECTROCHEMICAL SOLAR CELL Expired - Fee Related JP5458406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009281927A JP5458406B2 (en) 2009-12-11 2009-12-11 ORGANIC DYE COMPOUND AND SEMICONDUCTOR THIN FILM ELECTRODE, PHOTOELECTRIC CONVERSION ELEMENT, PHOTOELECTROCHEMICAL SOLAR CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009281927A JP5458406B2 (en) 2009-12-11 2009-12-11 ORGANIC DYE COMPOUND AND SEMICONDUCTOR THIN FILM ELECTRODE, PHOTOELECTRIC CONVERSION ELEMENT, PHOTOELECTROCHEMICAL SOLAR CELL

Publications (2)

Publication Number Publication Date
JP2011122088A JP2011122088A (en) 2011-06-23
JP5458406B2 true JP5458406B2 (en) 2014-04-02

Family

ID=44286287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009281927A Expired - Fee Related JP5458406B2 (en) 2009-12-11 2009-12-11 ORGANIC DYE COMPOUND AND SEMICONDUCTOR THIN FILM ELECTRODE, PHOTOELECTRIC CONVERSION ELEMENT, PHOTOELECTROCHEMICAL SOLAR CELL

Country Status (1)

Country Link
JP (1) JP5458406B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2551865A3 (en) * 2011-07-29 2016-05-25 Konica Minolta Business Technologies, Inc. Photoelectric conversion element and solar cell
EP2781555A4 (en) 2011-11-18 2015-10-07 Adeka Corp Novel compound and support supporting this novel compound
EP2824101B1 (en) * 2012-03-07 2018-05-09 Adeka Corporation Novel compound, and support material having said novel compound supported thereon
JP6035966B2 (en) * 2012-08-03 2016-11-30 株式会社豊田中央研究所 Composite, photoelectrode, dye-sensitized solar cell, and dye-sensitized solar cell module

Also Published As

Publication number Publication date
JP2011122088A (en) 2011-06-23

Similar Documents

Publication Publication Date Title
JP4925224B2 (en) Organic compound and semiconductor thin film electrode, photoelectric conversion element and photoelectrochemical solar cell using the same
JP4542741B2 (en) Semiconductor thin film electrode, photoelectric conversion element and photoelectrochemical solar cell using organic dye as photosensitizer
Qu et al. New diketo-pyrrolo-pyrrole (DPP) sensitizer containing a furan moiety for efficient and stable dye-sensitized solar cells
Tang et al. New starburst sensitizer with carbazole antennas for efficient and stable dye-sensitized solar cells
JP4841248B2 (en) Dye-sensitized photoelectric conversion element
JP5138371B2 (en) Dye-sensitized photoelectric conversion element
CN101570644B (en) Pure organic dye adopting multiple heterocycles and derivants thereof as conjugated unit and dye-sensitized solar cell prepared thereby
Maeda et al. Linearly π-extended squaraine dyes enable the spectral response of dye-sensitized solar cells in the NIR region over 800 nm
Iqbal et al. Impact of hydroxy and octyloxy substituents of phenothiazine based dyes on the photovoltaic performance
JP6278504B2 (en) Novel compound and photoelectric conversion element using the same
JP2009048925A (en) Dye-sensitized photoelectric conversion element
Abdellah et al. Influence of carbonyl group on photocurrent density of novel fluorene based D-π-A photosensitizers: Synthesis, photophysical and photovoltaic studies
Chiu et al. A new series of azobenzene-bridged metal-free organic dyes and application on DSSC
JP5458406B2 (en) ORGANIC DYE COMPOUND AND SEMICONDUCTOR THIN FILM ELECTRODE, PHOTOELECTRIC CONVERSION ELEMENT, PHOTOELECTROCHEMICAL SOLAR CELL
JP2006294360A (en) Dye-sensitized photoelectric transducer
Sivanadanam et al. Effect of π-spacers on the photovoltaic properties of D–π–A based organic dyes
JP5794589B2 (en) Dye-sensitized solar cell and sensitizing dye
JP2012051952A (en) Pigment, photoelectric element and photoelectrochemical battery
JP6253167B2 (en) Photoelectric conversion element, dye-sensitized solar cell, ruthenium complex dye and dye solution
JP2014186995A (en) Transparent dye-sensitized solar cell and dye-sensitized solar cell module
Wang et al. Organic sensitizers featuring tetrathienosilole core for efficient and robust dye-sensitized solar cells
JP6004808B2 (en) Sensitizing dye for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar cell
JP6616907B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, and oxide semiconductor electrode
JP6176682B2 (en) Organic Dye Compound Using Triphenylamine with Bulky Substituent as Electron Donating Group, Semiconductor Thin Film Electrode, Photoelectric Conversion Device, and Photoelectrochemical Solar Cell Using the Same
JP4739693B2 (en) Photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131226

R150 Certificate of patent or registration of utility model

Ref document number: 5458406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees