JP2000243463A - Optical semiconductor electrode, photoelectric converter and photoelectric conversion method - Google Patents

Optical semiconductor electrode, photoelectric converter and photoelectric conversion method

Info

Publication number
JP2000243463A
JP2000243463A JP11041299A JP4129999A JP2000243463A JP 2000243463 A JP2000243463 A JP 2000243463A JP 11041299 A JP11041299 A JP 11041299A JP 4129999 A JP4129999 A JP 4129999A JP 2000243463 A JP2000243463 A JP 2000243463A
Authority
JP
Japan
Prior art keywords
group
general formula
photoelectric conversion
substituted
optical semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11041299A
Other languages
Japanese (ja)
Other versions
JP4211120B2 (en
Inventor
Akira Imai
彰 今井
Katsuhiro Sato
克洋 佐藤
Hidekazu Hirose
英一 廣瀬
Hokuto Takada
北斗 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP04129999A priority Critical patent/JP4211120B2/en
Publication of JP2000243463A publication Critical patent/JP2000243463A/en
Application granted granted Critical
Publication of JP4211120B2 publication Critical patent/JP4211120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B5/00Dyes with an anthracene nucleus condensed with one or more heterocyclic rings with or without carbocyclic rings
    • C09B5/62Cyclic imides or amidines of peri-dicarboxylic acids of the anthracene, benzanthrene, or perylene series
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • C09B47/12Obtaining compounds having alkyl radicals, or alkyl radicals substituted by hetero atoms, bound to the phthalocyanine skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • C09B47/12Obtaining compounds having alkyl radicals, or alkyl radicals substituted by hetero atoms, bound to the phthalocyanine skeleton
    • C09B47/14Obtaining compounds having alkyl radicals, or alkyl radicals substituted by hetero atoms, bound to the phthalocyanine skeleton having alkyl radicals substituted by halogen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/611Charge transfer complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

PROBLEM TO BE SOLVED: To efficiently utilize sunlight by providing a photoelectric conversion layer of one kind or more of a tetracyanoanthraquinodimetan compound and a perylene compound on the surface of a metal oxide semiconductor. SOLUTION: This tetracyanoanthraquinodimetan compound is shown in a formula I. In the formula I, R1 and R2 are a hydrogen atom, alkyl group, aryl group, aralkyl group, alkoxyalkyl group or acyl group; n is 0 or 1. This perylene compound is shown in a formula II. In the formula II, R3 and R4 are a group represented by a formula III, etc.; when the R3 and R4 are a group represented by the formula III, 1 is 0. In the formula III, R5 and R6 are an aliphatic group, aromatic group or heterocyclic group; these may be substituted by a substituent. A1 represents a bivalent aliphatic group, aromatic group or heterocyclic group; these may be substituted by a substituent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属酸化物半導体
の表面に特定の化合物を吸着させた光半導体電極、並び
に、それを用いた光電変換装置及び光電変換方法に関す
る。
The present invention relates to an optical semiconductor electrode having a specific compound adsorbed on the surface of a metal oxide semiconductor, and a photoelectric conversion device and a photoelectric conversion method using the same.

【0002】[0002]

【従来の技術】近年、石油、石炭等の化石燃料に代わる
エネルギー資源として太陽光の利用が注目されている。
光エネルギーを直接、電気エネルギーに変換する装置と
しては、シリコンやガリウム−ヒ素などの無機半導体上
にpn接合を形成した乾式太陽電池がよく知られており、
遠隔地用あるいは携帯用電子機器の電源などとして実用
化されている。しかし、これらの太陽電池は、高い変換
効率が得られる一方、製造に要するエネルギー及びコス
トがきわめて高いため、エネルギー資源として用いるこ
とが難しいという問題がある。
2. Description of the Related Art In recent years, attention has been paid to the use of sunlight as an energy resource instead of fossil fuels such as oil and coal.
As a device that directly converts light energy into electric energy, a dry solar cell in which a pn junction is formed on an inorganic semiconductor such as silicon or gallium-arsenic is well known.
It has been put to practical use as a power source for remote or portable electronic devices. However, these solar cells have high conversion efficiency, but have the problem that it is difficult to use them as energy resources because the energy and cost required for production are extremely high.

【0003】一方、光エネルギーを電気エネルギーに変
換する別の方法として、半導体と電解質溶液との界面で
起きる光電気化学反応を利用した湿式太陽電池が知られ
ている。ここで用いられる酸化チタン、酸化錫、酸化亜
鉛等の金属酸化物半導体は、前述のシリコン、ガリウム
−ヒ素などと比較して、はるかに低いエネルギー、コス
トで製造が可能であり、将来のエネルギー変換材料とし
て期待されている。ところが、酸化チタンのような安定
な金属酸化物半導体は、バンドギャップが3eV以上と
広いため、太陽光の約4%の紫外光しか利用できず、こ
のままでは高い変換効率は望めない。そこで、これら金
属酸化物半導体の表面に、増感色素として、シアニン色
素やキサンテン系色素、クマリン色素などの有機色素
(H.Tsubomura, et.al., Nature.,261, 402 (1976)、M.M
atsumura, et.al., Bull. Chem.Soc. Jpn. 50, 2533 (1
977)、特開平10-92477号公報、特開平10-93118号公報
等)を吸着させて分光増感させることが試みられてい
る。しかしながら、上記シアニン色素やキサンテン系色
素、クマリン色素等を用いた場合、光電変換効率が十分
でないという問題がある。
On the other hand, as another method for converting light energy into electric energy, a wet solar cell utilizing a photoelectrochemical reaction occurring at an interface between a semiconductor and an electrolyte solution is known. The metal oxide semiconductors used here, such as titanium oxide, tin oxide, and zinc oxide, can be manufactured with much lower energy and cost compared to the aforementioned silicon, gallium-arsenic, etc., and future energy conversion It is expected as a material. However, since a stable metal oxide semiconductor such as titanium oxide has a wide band gap of 3 eV or more, only about 4% of ultraviolet light of sunlight can be used, and high conversion efficiency cannot be expected as it is. Therefore, organic dyes such as cyanine dyes, xanthene dyes, and coumarin dyes are used as sensitizing dyes on the surfaces of these metal oxide semiconductors.
(H.Tsubomura, et.al., Nature., 261, 402 (1976), MM
atsumura, et.al., Bull.Chem.Soc.Jpn. 50, 2533 (1
977), JP-A-10-92477, JP-A-10-93118, etc.) to adsorb and spectrally sensitize. However, when the above-mentioned cyanine dye, xanthene dye, coumarin dye or the like is used, there is a problem that the photoelectric conversion efficiency is not sufficient.

【0004】[0004]

【発明が解決しようとする課題】本発明は、前記従来に
おける諸問題を解決し、以下の目的を達成することを課
題とする。即ち、本発明は、太陽光を効率的に利用可能
でき、光電変換効率、安定性、耐久性等に優れ、安価に
かつ容易に製造し得る光半導体電極、並びに、該光半導
体電極を用い、光電変換効率に優れる光電変換装置及び
光電変換方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems and achieve the following objects. That is, the present invention can efficiently use sunlight, photoelectric conversion efficiency, stability, excellent durability, etc., an optical semiconductor electrode that can be easily manufactured at low cost, and using the optical semiconductor electrode, It is an object to provide a photoelectric conversion device and a photoelectric conversion method which are excellent in photoelectric conversion efficiency.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するため
の手段は以下の通りである。即ち、 <1> 金属酸化物半導体の表面に、下記一般式(I)で
表されるテトラシアノアントラキノジメタン化合物及び
下記一般式(II)で表されるペリレン化合物から選択さ
れる少なくとも1種による光電変換層を有することを特
徴とする光半導体電極である。 一般式(I)
Means for solving the above problems are as follows. That is, <1> at least one selected from a tetracyanoanthraquinodimethane compound represented by the following general formula (I) and a perylene compound represented by the following general formula (II) on the surface of the metal oxide semiconductor An optical semiconductor electrode comprising a photoelectric conversion layer according to claim 1. General formula (I)

【0006】[0006]

【化12】 Embedded image

【0007】前記一般式(I)において、R1及びR
2は、互いに同一であってもよいし、異なっていてもよ
く、水素原子、アルキル基、アリール基、アラルキル
基、アルコキシアルキル基、又は、アシル基を表し、こ
れらは互いに下記構造の環状基を形成していてもよい。
nは、0又は1を表す。
In the general formula (I), R 1 and R
2 may be the same as or different from each other, and represent a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, an alkoxyalkyl group, or an acyl group. It may be formed.
n represents 0 or 1.

【0008】[0008]

【化13】 Embedded image

【0009】一般式(II)Formula (II)

【化14】 Embedded image

【0010】前記一般式(II)において、R3及びR
4は、下記一般式(III)〜(IX)のいずれかで表される
基を表し、これらは互いに同一であってもよいし、異な
っていてもよく、少なくとも一方は下記一般式(III)〜
(VII)及び(IX)のいずれかで表される基を表す。l
は、R3及びR4が、下記一般式(III)〜(VIII)のいずれ
かで表される基である場合には0を表し、下記一般式
(IX)で表される基である場合には0〜12を表す。 一般式(III)
In the general formula (II), R 3 and R
4 represents a group represented by any of the following formulas (III) to (IX), which may be the same or different from each other, and at least one of which is represented by the following formula (III) ~
Represents a group represented by any of (VII) and (IX). l
Represents 0 when R 3 and R 4 are groups represented by any of the following general formulas (III) to (VIII), and represents a group represented by the following general formula (IX) Represents 0 to 12. General formula (III)

【0011】[0011]

【化15】 Embedded image

【0012】前記一般式(III)において、R5及びR
6は、互いに同一であってもよいし、異なっていてもよ
く、脂肪族基、芳香族基又は複素環基を表し、これらは
置換基で置換されていてもよい。A1は、2価の脂肪族
基、芳香族基又は複素環基を表し、これらは置換基で置
換されていてもよい。 一般式(IV)
In the general formula (III), R 5 and R
6 may be the same as or different from each other, and represent an aliphatic group, an aromatic group, or a heterocyclic group, which may be substituted with a substituent. A 1 represents a divalent aliphatic group, aromatic group or heterocyclic group, which may be substituted with a substituent. General formula (IV)

【0013】[0013]

【化16】 Embedded image

【0014】前記一般式(IV)において、A2は、2価
の脂肪族基、芳香族基又は複素環基を表し、これらは置
換基で置換されていてもよい。R7及びR8は、互いに同
一であってもよいし、異なっていてもよく、水素原子、
ハロゲン原子、炭素数1〜20のアルキル基、−(CH
2pCOOR18、−(CH2pSO319、又は、−
(CH2p2021を表す。R18、R19、R20及びR21
は、水素原子又は炭素数1〜20のアルキル基を表す。
pは、0〜20の整数を表す。 一般式(V)
In the general formula (IV), A 2 represents a divalent aliphatic group, aromatic group or heterocyclic group, which may be substituted with a substituent. R 7 and R 8 may be the same or different from each other, and represent a hydrogen atom,
A halogen atom, an alkyl group having 1 to 20 carbon atoms,-(CH
2) p COOR 18, - ( CH 2) p SO 3 R 19, or -
(CH 2 ) p represents R 20 R 21 . R 18 , R 19 , R 20 and R 21
Represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
p represents an integer of 0 to 20. General formula (V)

【0015】[0015]

【化17】 Embedded image

【0016】前記一般式(V)において、A3は、単結
合、又は、2価の脂肪族基、芳香族基若しくは複素環基
を表し、これらは置換基で置換されていてもよい。R9
は、脂肪族基、芳香族基若しくは複素環基を表し、これ
らは置換基で置換されていてもよい。R10は、水素原
子、ハロゲン原子、炭素数1〜20のアルキル基、−
(CH2pCOOR18、−(CH2pSO319、又
は、−(CH2pNR2021を表す。R18、R19、R20
及びR21は、水素原子又は炭素数1〜20のアルキル基
を表す。pは、0〜20の整数を表す。 一般式(VI)
In the general formula (V), A 3 represents a single bond, a divalent aliphatic group, an aromatic group or a heterocyclic group, which may be substituted with a substituent. R 9
Represents an aliphatic group, an aromatic group or a heterocyclic group, which may be substituted with a substituent. R 10 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms,-
Represents (CH 2 ) p COOR 18 , — (CH 2 ) p SO 3 R 19 , or — (CH 2 ) p NR 20 R 21 . R 18 , R 19 , R 20
And R 21 represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. p represents an integer of 0 to 20. General formula (VI)

【0017】[0017]

【化18】 Embedded image

【0018】前記一般式(VI)において、A4は、2価
の脂肪族基、芳香族基又は複素環基を表し、これらは置
換基で置換されていてもよい。Xは、酸素原子、硫黄原
子又は>NR22を表す。R11及びR12は、水素原子、ハ
ロゲン原子、炭素数1〜20のアルキル基、−(C
2pCOOR18、−(CH2pSO319、又は、−
(CH2pNR2021を表す。R18、R19、R20、R21
及びR22は、水素原子又は炭素数1〜20のアルキル基
を表す。pは、0〜20の整数を表す。 一般式(VII)
In the general formula (VI), A 4 represents a divalent aliphatic group, aromatic group or heterocyclic group, which may be substituted with a substituent. X represents an oxygen atom, a sulfur atom or> NR 22. R 11 and R 12 represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms,-(C
H 2 ) p COOR 18 ,-(CH 2 ) p SO 3 R 19 , or-
It represents a (CH 2) p NR 20 R 21. R 18 , R 19 , R 20 , R 21
And R 22 represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. p represents an integer of 0 to 20. General formula (VII)

【0019】[0019]

【化19】 Embedded image

【0020】前記一般式(VII)において、A5は、単結
合、又は、2価の脂肪族基、芳香族基若しくは複素環基
を表し、これらは置換基で置換されていてもよい。R13
は、2価の脂肪族基、芳香族基又は複素環基を表し、こ
れらは置換基で置換されていてもよい。R14は、水素原
子、ハロゲン原子、炭素数1〜20のアルキル基、−
(CH2pCOOR18、−(CH2pSO319、又
は、−(CH2pNR202 1を表す。R18、R19、R20
及びR21は、水素原子又は炭素数1〜20のアルキル基
を表す。pは、0〜20の整数を表す。 一般式(VIII)
In the general formula (VII), A 5 represents a single bond or a divalent aliphatic group, aromatic group or heterocyclic group, which may be substituted with a substituent. R 13
Represents a divalent aliphatic group, an aromatic group or a heterocyclic group, which may be substituted with a substituent. R 14 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms,-
(CH 2) p COOR 18, - (CH 2) p SO 3 R 19, or, - (CH 2) represents a p NR 20 R 2 1. R 18 , R 19 , R 20
And R 21 represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. p represents an integer of 0 to 20. General formula (VIII)

【0021】[0021]

【化20】 Embedded image

【0022】前記一般式(VIII)において、A6は、2価
の脂肪族基、芳香族基又は複素環基を表し、これらは置
換基で置換されていてもよい。Yは、−COOH、−S
OOH、又は、−NH2を表す。 一般式(IX)
In the general formula (VIII), A 6 represents a divalent aliphatic group, aromatic group or heterocyclic group, which may be substituted with a substituent. Y is -COOH, -S
OOH, or represents -NH 2. General formula (IX)

【0023】[0023]

【化21】 Embedded image

【0024】前記一般式(IX)において、Xは、水素原
子2個、又は、Mg、Zn、Fe、Co、Ni、Cu、
Ru、Sn、SnO、TiO、VO、Al(OH)、G
a(OH)若しくはIn(OH)を表す。R15、R16
びR17は、水素原子、ハロゲン原子、炭素数1〜12の
アルキル基、−(CH2mCOOH、又は、−(C
2mNH2を表す。m及びnは、0〜12の整数を表
す。 <2> 前記一般式(I)で表されるテトラシアノアント
ラキノジメタン化合物が、下記一般式(I−a)で表され
るテトラシアノアントラキノジメタン化合物である前記
<1>に記載の光半導体電極である。 一般式(I−a)
In the general formula (IX), X represents a hydrogen atom
2 elements, or Mg, Zn, Fe, Co, Ni, Cu,
Ru, Sn, SnO, TiO, VO, Al (OH), G
a (OH) or In (OH). R15, R16Passing
And R17Is a hydrogen atom, a halogen atom, a C1-12
Alkyl group,-(CHTwo)mCOOH or-(C
H Two)mNHTwoRepresents m and n represent an integer of 0 to 12
You. <2> Tetracyanoant represented by the general formula (I)
Laquinodimethane compound is represented by the following general formula (Ia)
Wherein the tetracyanoanthraquinodimethane compound is
An optical semiconductor electrode according to <1>. General formula (Ia)

【0025】[0025]

【化22】 Embedded image

【0026】前記一般式(I−a)において、Meはメ
チル基を表す。nは、0又は1を表す。 <3> 金属酸化物半導体が、酸化チタン、酸化スズ、
酸化タングステン、酸化亜鉛、酸化インジウム、酸化ニ
オブ、酸化ニッケル、酸化コバルト及びチタン酸ストロ
ンチウムから選択される少なくとも1種である前記<1
>又は<2>に記載の光半導体電極である。 <4> 電解質に接触させた一対の電極と、該一対の電
極を通電可能に接続する接続手段とを少なくとも有して
なり、該一対の電極の少なくとも一方が、前記<1>か
ら<3>のいずれかに記載の光半導体電極であることを
特徴とする光電変換装置である。 <5> 互いに通電可能に接続された一対の電極を電解
質に接触させ、該一対の電極の少なくとも一方に光を照
射することにより光電変換反応を生じさせる光電変換方
法であって、光が照射される電極が、前記<1>から<
3>のいずれかに記載の光半導体電極であることを特徴
とする光電変換方法である。
In the general formula (Ia), Me represents a methyl group. n represents 0 or 1. <3> When the metal oxide semiconductor is titanium oxide, tin oxide,
<1 which is at least one selected from tungsten oxide, zinc oxide, indium oxide, niobium oxide, nickel oxide, cobalt oxide and strontium titanate
> Or <2>. <4> At least a pair of electrodes brought into contact with the electrolyte and a connecting means for connecting the pair of electrodes so as to be able to conduct electricity, and at least one of the pair of electrodes is in the range of <1> to <3>. A photoelectric conversion device characterized in that it is the optical semiconductor electrode according to any one of the above. <5> A photoelectric conversion method in which a pair of electrodes connected to each other so as to be able to conduct electricity are brought into contact with an electrolyte, and at least one of the pair of electrodes is irradiated with light to cause a photoelectric conversion reaction. Electrodes are <1> to <
3> A photoelectric conversion method characterized by being the optical semiconductor electrode according to any one of the above.

【0027】[0027]

【発明の実施の形態】(光半導体電極)本発明の光半導
体電極は、金属酸化物半導体の表面に、下記一般式(I)
で表されるテトラシアノアントラキノジメタン化合物及
び下記一般式(II)で表されるペリレン化合物から選択
される少なくとも1種による光電変換層を有する。
BEST MODE FOR CARRYING OUT THE INVENTION (Optosemiconductor electrode) An optical semiconductor electrode of the present invention comprises a metal oxide semiconductor having the following general formula (I)
And a perylene compound represented by the following general formula (II).

【0028】―金属酸化物半導体― 前記金属酸化物半導体としては、特に制限はなく、目的
に応じて適宜選択することができ、例えば、酸化チタ
ン、酸化スズ、酸化タングステン、酸化亜鉛、酸化イン
ジウム、酸化ニオブ、チタン酸ストロンチウム、などが
挙げられる。これらは1種単独で使用してもよいし、2
種以上を併用してもよい。本発明においては、これらの
中でも、光電変換特性、化学的安定性、製造容易性等の
理由から、酸化チタンが特に好ましい。
—Metal Oxide Semiconductor— The metal oxide semiconductor is not particularly limited and can be appropriately selected depending on the intended purpose. For example, titanium oxide, tin oxide, tungsten oxide, zinc oxide, indium oxide, Examples include niobium oxide and strontium titanate. These may be used alone or may be used alone.
More than one species may be used in combination. In the present invention, among these, titanium oxide is particularly preferable for reasons such as photoelectric conversion characteristics, chemical stability, and ease of production.

【0029】前記金属酸化物半導体の形状、構造、大き
さ等については、特に制限はなく、目的に応じて適宜選
択することができる。例えば、前記金属酸化物半導体の
構造としては、該金属酸化物半導体のみからなる構造で
あってもよいし、ITOガラス、ネサガラス等の透明電
極、白金、銅、黒鉛等の板材、又はメッシュ電極等の導
電性基材の上に、該金属酸化物半導体の薄膜層を形成し
た構造であってもよい。
The shape, structure, size and the like of the metal oxide semiconductor are not particularly limited, and can be appropriately selected according to the purpose. For example, the structure of the metal oxide semiconductor may be a structure composed of only the metal oxide semiconductor, a transparent electrode such as ITO glass, Nesa glass, a plate material such as platinum, copper, graphite, or a mesh electrode. A structure in which a thin film layer of the metal oxide semiconductor is formed on the conductive base material described above.

【0030】―光電変換層― 前記光電変換層は、前記金属酸化物半導体の表面に、下
記一般式(I)で表されるテトラシアノアントラキノジメ
タン化合物及び下記一般式(II)で表されるペリレン化
合物から選択される少なくとも1種が吸着されて形成さ
れる。 一般式(I)
—Photoelectric Conversion Layer— The photoelectric conversion layer is formed on the surface of the metal oxide semiconductor by a tetracyanoanthraquinodimethane compound represented by the following general formula (I) and a general formula (II) shown below. At least one selected from perylene compounds is adsorbed. General formula (I)

【0031】[0031]

【化23】 Embedded image

【0032】前記一般式(I)において、R1及びR
2は、互いに同一であってもよいし、異なっていてもよ
く、水素原子、アルキル基、アリール基、アラルキル
基、アルコキシアルキル基、又は、アシル基を表し、こ
れらは互いに下記構造の環状基を形成していてもよい。
nは、0又は1を表す。
In the general formula (I), R 1 and R
2 may be the same as or different from each other, and represent a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, an alkoxyalkyl group, or an acyl group. It may be formed.
n represents 0 or 1.

【0033】[0033]

【化24】 一般式(II)Embedded image General formula (II)

【化25】 Embedded image

【0034】前記一般式(II)において、R3及びR
4は、下記一般式(III)〜(IX)のいずれかで表される
基を表し、これらは互いに同一であってもよいし、異な
っていてもよく、少なくとも一方は下記一般式(III)〜
(VII)及び(IX)のいずれかで表される基を表す。l
は、R3及びR4が、下記一般式(III)〜(VIII)のいずれ
かで表される基である場合には0を表し、下記一般式
(IX)で表される基である場合には0〜 を表す。 一般式(III)
In the general formula (II), RThreeAnd R
FourIs represented by any of the following general formulas (III) to (IX)
Represents a group, which may be the same or different
May be, at least one of the following general formula (III) ~
Represents a group represented by any of (VII) and (IX). l
Is RThreeAnd RFourIs any of the following general formulas (III) to (VIII)
When it is a group represented by the formula, it represents 0, and has the following general formula
In the case of a group represented by (IX), 0 to Represents General formula (III)

【0035】[0035]

【化26】 Embedded image

【0036】前記一般式(III)において、R5及びR
6は、互いに同一であってもよいし、異なっていてもよ
く、脂肪族基、芳香族基又は複素環基を表し、これらは
置換基で置換されていてもよい。A1は、2価の脂肪族
基、芳香族基又は複素環基を表し、これらは置換基で置
換されていてもよい。 一般式(IV)
In the general formula (III), R 5 and R
6 may be the same as or different from each other, and represent an aliphatic group, an aromatic group, or a heterocyclic group, which may be substituted with a substituent. A 1 represents a divalent aliphatic group, aromatic group or heterocyclic group, which may be substituted with a substituent. General formula (IV)

【0037】[0037]

【化27】 Embedded image

【0038】前記一般式(IV)において、A2は、2価
の脂肪族基、芳香族基又は複素環基を表し、これらは置
換基で置換されていてもよい。R7及びR8は、互いに同
一であってもよいし、異なっていてもよく、水素原子、
ハロゲン原子、炭素数1〜20のアルキル基、−(CH
2pCOOR18、−(CH2pSO319、又は、−
(CH2pNR2021を表す。R18、R19、R20及びR
21は、水素原子又は炭素数1〜20のアルキル基を表
す。pは、0〜20の整数を表す。 一般式(V)
In the general formula (IV), A 2 represents a divalent aliphatic group, aromatic group or heterocyclic group, which may be substituted with a substituent. R 7 and R 8 may be the same or different from each other, and represent a hydrogen atom,
A halogen atom, an alkyl group having 1 to 20 carbon atoms,-(CH
2) p COOR 18, - ( CH 2) p SO 3 R 19, or -
It represents a (CH 2) p NR 20 R 21. R 18 , R 19 , R 20 and R
21 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. p represents an integer of 0 to 20. General formula (V)

【0039】[0039]

【化28】 Embedded image

【0040】前記一般式(V)において、A3は、単結
合、又は、2価の脂肪族基、芳香族基若しくは複素環基
を表し、これらは置換基で置換されていてもよい。R9
は、脂肪族基、芳香族基若しくは複素環基を表し、これ
らは置換基で置換されていてもよい。R10は、水素原
子、ハロゲン原子、炭素数1〜20のアルキル基、−
(CH2pCOOR18、−(CH2pSO319、又
は、−(CH2pNR2021を表す。R18、R19、R20
及びR21は、水素原子又は炭素数1〜20のアルキル基
を表す。pは、0〜20の整数を表す。 一般式(VI)
In the general formula (V), A 3 represents a single bond, a divalent aliphatic group, an aromatic group or a heterocyclic group, which may be substituted with a substituent. R 9
Represents an aliphatic group, an aromatic group or a heterocyclic group, which may be substituted with a substituent. R 10 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms,-
Represents (CH 2 ) p COOR 18 , — (CH 2 ) p SO 3 R 19 , or — (CH 2 ) p NR 20 R 21 . R 18 , R 19 , R 20
And R 21 represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. p represents an integer of 0 to 20. General formula (VI)

【0041】[0041]

【化29】 Embedded image

【0042】前記一般式(VI)において、A4は、2価
の脂肪族基、芳香族基又は複素環基を表し、これらは置
換基で置換されていてもよい。Xは、酸素原子、硫黄原
子又は>NR22を表す。R11及びR12は、水素原子、ハ
ロゲン原子、炭素数1〜20のアルキル基、−(C
2pCOOR18、−(CH2pSO319、又は、−
(CH2pNR2021を表す。R18、R19、R20、R21
及びR22は、水素原子又は炭素数1〜20のアルキル基
を表す。pは、0〜20の整数を表す。 一般式(VII)
In the general formula (VI), A 4 represents a divalent aliphatic group, aromatic group or heterocyclic group, which may be substituted with a substituent. X represents an oxygen atom, a sulfur atom or> NR 22. R 11 and R 12 represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms,-(C
H 2 ) p COOR 18 ,-(CH 2 ) p SO 3 R 19 , or-
It represents a (CH 2) p NR 20 R 21. R 18 , R 19 , R 20 , R 21
And R 22 represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. p represents an integer of 0 to 20. General formula (VII)

【0043】[0043]

【化30】 Embedded image

【0044】前記一般式(VII)において、A5は、単結
合、又は、2価の脂肪族基、芳香族基若しくは複素環基
を表し、これらは置換基で置換されていてもよい。R13
は、2価の脂肪族基、芳香族基又は複素環基を表し、こ
れらは置換基で置換されていてもよい。R14は、水素原
子、ハロゲン原子、炭素数1〜20のアルキル基、−
(CH2pCOOR18、−(CH2pSO319、又
は、−(CH2pNR202 1を表す。R18、R19、R20
及びR21は、水素原子又は炭素数1〜20のアルキル基
を表す。pは、0〜20の整数を表す。 一般式(VIII)
In the general formula (VII), A 5 represents a single bond, a divalent aliphatic group, an aromatic group or a heterocyclic group, which may be substituted with a substituent. R 13
Represents a divalent aliphatic group, an aromatic group or a heterocyclic group, which may be substituted with a substituent. R 14 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms,-
(CH 2) p COOR 18, - (CH 2) p SO 3 R 19, or, - (CH 2) represents a p NR 20 R 2 1. R 18 , R 19 , R 20
And R 21 represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. p represents an integer of 0 to 20. General formula (VIII)

【0045】[0045]

【化31】 Embedded image

【0046】前記一般式(VIII)において、A6は、2価
の脂肪族基、芳香族基又は複素環基を表し、これらは置
換基で置換されていてもよい。Yは、−COOH、−S
OOH、又は、−NH2を表す。 一般式(IX)
In the general formula (VIII), A 6 represents a divalent aliphatic group, aromatic group or heterocyclic group, which may be substituted with a substituent. Y is -COOH, -S
OOH, or represents -NH 2. General formula (IX)

【0047】[0047]

【化32】 Embedded image

【0048】前記一般式(IX)において、Xは、水素原
子2個、又は、Mg、Zn、Fe、Co、Ni、Cu、
Ru、Sn、SnO、TiO、VO、Al(OH)、G
a(OH)若しくはIn(OH)を表す。R15、R16
びR17は、水素原子、ハロゲン原子、炭素数1〜12の
アルキル基、−(CH2mCOOH、又は、−(C
2mNH2を表す。m及びnは、0〜12の整数を表
す。
In the general formula (IX), X represents a hydrogen atom
2 elements, or Mg, Zn, Fe, Co, Ni, Cu,
Ru, Sn, SnO, TiO, VO, Al (OH), G
a (OH) or In (OH). R15, R16Passing
And R17Is a hydrogen atom, a halogen atom, a C1-12
Alkyl group,-(CHTwo)mCOOH or-(C
H Two)mNHTwoRepresents m and n represent an integer of 0 to 12
You.

【0049】前記一般式(I)で表されるテトラシアノ
アントラキノジメタン化合物の好ましい具体例として
は、下記化合物(I−1〜30)が挙げられる。なお、
n=0の場合の具体例を表1に示し、n=1の場合の具
体例を表2に示した。
Preferred specific examples of the tetracyanoanthraquinodimethane compound represented by the general formula (I) include the following compounds (I-1 to 30). In addition,
Table 1 shows a specific example when n = 0, and Table 2 shows a specific example when n = 1.

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【表2】 [Table 2]

【0052】本発明においては、これらの中でも、光電
変換効率、吸収波長域、製造の容易さ等の点で、下記一
般式(I−a)で表されるテトラシアノアントラキノジメ
タン化合物が特に好ましい(前記例示化合物(I−1)
で表される化合物)。 一般式(I−a)
In the present invention, among these, a tetracyanoanthraquinodimethane compound represented by the following general formula (Ia) is particularly preferred in terms of photoelectric conversion efficiency, absorption wavelength range, ease of production, and the like. Preferred (the above exemplified compound (I-1)
Compound represented by). General formula (Ia)

【0053】[0053]

【化33】 前記一般式(I−a)において、Meはメチル基を表
す。nは、0又は1を表す。
Embedded image In the general formula (Ia), Me represents a methyl group. n represents 0 or 1.

【0054】前記一般式(I)で表されるテトラシアノ
アントラキノジメタン化合物は、例えば、特開昭63-104
062号公報に記載の、下記一般式(A)で表されるアン
スラキノン誘導体と、下記一般式(B)で表されるマロ
ノニトリルとを反応させる方法により、あるいは特開昭
58-55450号公報等に記載の方法により、合成することが
できる。
The tetracyanoanthraquinodimethane compound represented by the general formula (I) is described in, for example, JP-A-63-104.
No. 062, a method of reacting an anthraquinone derivative represented by the following general formula (A) with malononitrile represented by the following general formula (B),
The compound can be synthesized by the method described in JP-A-58-55450.

【0055】[0055]

【化34】 Embedded image

【0056】[0056]

【化35】 Embedded image

【0057】前記一般式(I)で表されるテトラシアノ
アントラキノジメタン化合物は、電子受容性部分と電子
供与性部分とを有し、吸収波長域が700nm程度の長波長
域まで伸びており、また、発生した電荷を効率よく分
離、移動可能であるため、高効率で分光増感することが
できる。
The tetracyanoanthraquinodimethane compound represented by the general formula (I) has an electron-accepting portion and an electron-donating portion, and has an absorption wavelength range extending to a long wavelength range of about 700 nm. In addition, since the generated charges can be efficiently separated and moved, spectral sensitization can be performed with high efficiency.

【0058】前記一般式(II)で表されるペリレン化合
物の好ましい具体例としては、下記化合物(II−1〜1
3)が挙げられる。
Preferred specific examples of the perylene compound represented by the general formula (II) include the following compounds (II-1 to 1)
3).

【0059】[0059]

【化36】 Embedded image

【0060】[0060]

【化37】 Embedded image

【0061】[0061]

【化38】 Embedded image

【0062】[0062]

【化39】 Embedded image

【0063】[0063]

【化40】 Embedded image

【0064】[0064]

【化41】 Embedded image

【0065】[0065]

【化42】 Embedded image

【0066】[0066]

【化43】 Embedded image

【0067】[0067]

【化44】 Embedded image

【0068】[0068]

【化45】 Embedded image

【0069】[0069]

【化46】 Embedded image

【0070】[0070]

【化47】 Embedded image

【0071】[0071]

【化48】 Embedded image

【0072】また、本発明において、前記一般式(II)
で表されるペリレン化合物としては、下記一般式(IX−
a)が挙げられる。 一般式(IX−a)
In the present invention, the compound represented by the general formula (II)
The perylene compound represented by the following general formula (IX-
a). General formula (IX-a)

【0073】[0073]

【化49】 Embedded image

【0074】前記一般式(IX−a)で表されるペリレン
化合物の好ましい具体例としては、表3に示す化合物
(IX−1〜23)が挙げられる。
Preferred specific examples of the perylene compound represented by the general formula (IX-a) include the compounds (IX-1 to 23) shown in Table 3.

【0075】[0075]

【表3】 なお、表3において、「H2」は、2個の水素原子を表
す。
[Table 3] In Table 3, “H2” represents two hydrogen atoms.

【0076】前記一般式(II)で表されるペリレン化合
物において、R3及びR4が同一であり、それぞれ前記一
般式(III)〜(IX)のいずれかで表される基であるもの
は、例えば、3,4,9,10-ペリレンテトラカルボン酸無水
物と、それぞれ下記一般式(III')〜(IX')で表される化
合物と、を反応させることにより合成することができ
る。
In the perylene compound represented by the general formula (II), those in which R 3 and R 4 are the same and are each a group represented by any of the general formulas (III) to (IX) are For example, it can be synthesized by reacting 3,4,9,10-perylenetetracarboxylic anhydride with compounds represented by the following general formulas (III ′) to (IX ′).

【0077】[0077]

【化50】 Embedded image

【0078】[0078]

【化51】 Embedded image

【0079】[0079]

【化52】 Embedded image

【0080】[0080]

【化53】 Embedded image

【0081】[0081]

【化54】 Embedded image

【0082】[0082]

【化55】 Embedded image

【0083】[0083]

【化56】 Embedded image

【0084】また、前記一般式(II)で表されるペリレ
ン化合物において、R3及びR4が互いに異なり、前記一
般式(III)〜(IX)のいずれかで表される基であるもの
は、例えば、3,4,9,10-ペリレンテトラカルボン酸無水
物と、前記一般式(III')〜(IX')で表される化合物から
選択した2種とを反応させることにより、あるいは、米
国特許第4、501、906号明細書等に記載の、3,4,9,10-ペリ
レンテトラカルボン酸一無水物モノ金属塩と、前記一般
式(III')〜(IX')で表される化合物から選択した2種と
を順次反応させることにより、合成することができる。
In the perylene compound represented by the general formula (II), those in which R 3 and R 4 are different from each other and are a group represented by any of the general formulas (III) to (IX) For example, by reacting 3,4,9,10-perylenetetracarboxylic anhydride and two kinds selected from the compounds represented by the general formulas (III ′) to (IX ′), or U.S. Pat.No.4,501,906, etc., 3,4,9,10-perylenetetracarboxylic monoanhydride monometal salt, and represented by the general formulas (III ') to (IX') The compound can be synthesized by sequentially reacting two kinds selected from the compounds to be prepared.

【0085】前記一般式(II)で表されるペリレン化合
物は、化学的安定性、耐久性に優れ、また前記金属酸化
物半導体の表面での保持性に優れており、長期間にわた
り安定かつ高効率に分光増感することができる。
The perylene compound represented by the general formula (II) is excellent in chemical stability and durability, and excellent in retention on the surface of the metal oxide semiconductor, and is stable and highly stable for a long period of time. Efficiency can be spectrally sensitized.

【0086】―光電変換層の形成― 前記光電変換層は、前記一般式(I)で表されるテトラ
シアノアントラキノジメタン化合物及び前記(II)で表
されるペリレン化合物から選択される少なくとも1種を
溶媒に添加し、これを溶解した溶液中に、前記金属酸化
物半導体を浸漬することにより、該金属酸化物半導体の
表面に容易に形成することができる。
—Formation of Photoelectric Conversion Layer— The photoelectric conversion layer is at least one selected from the tetracyanoanthraquinodimethane compound represented by the general formula (I) and the perylene compound represented by the above (II). By adding a seed to a solvent and immersing the metal oxide semiconductor in a solution in which the seed is dissolved, the metal oxide semiconductor can be easily formed on the surface of the metal oxide semiconductor.

【0087】前記溶媒としては、得に制限はなく、目的
に応じて適宜公知の溶媒の中から選択することができ、
例えば、メタノール、イソプロピルアルコール等のアル
コール系溶媒、アセトン、メチルエチルケトン等のケト
ン系溶媒、N,N-ジメチルホルムアミド、N-メチルピロリ
ドン等のアミド系溶媒、あるいは水、又はこれらの混合
溶媒、などが挙げられる。これらは1種単独で使用して
もよいし、2種以上を併用してもよい。これらの中で
も、N,N-ジメチルホルムアミド等のアミド系溶媒が好ま
しい。なお、本発明においては、前記一般式(I)で表
されるテトラシアノアントラキノジメタン化合物及び前
記(II)で表されるペリレン化合物から選択される少な
くとも1種の前記溶媒への溶解性を向上させる目的で、
酸性物質、塩基性物質などを該溶媒中に添加してもよ
い。
The solvent is not particularly limited and can be appropriately selected from known solvents according to the purpose.
For example, methanol, alcohol solvents such as isopropyl alcohol, acetone, ketone solvents such as methyl ethyl ketone, N, N-dimethylformamide, amide solvents such as N-methylpyrrolidone, or water, or a mixed solvent thereof, and the like. Can be These may be used alone or in combination of two or more. Among these, amide solvents such as N, N-dimethylformamide are preferred. In the present invention, the solubility in at least one kind of the solvent selected from the tetracyanoanthraquinodimethane compound represented by the general formula (I) and the perylene compound represented by the above (II) is determined. For the purpose of improvement,
An acidic substance, a basic substance, and the like may be added to the solvent.

【0088】前記浸漬は、室温で行ってもよいし、前記
一般式(I)で表されるテトラシアノアントラキノジメ
タン化合物及び前記(II)で表されるペリレン化合物か
ら選択される少なくとも1種の前記金属酸化物半導体へ
の吸着を促進するため、必要に応じて加熱等してもよ
い。
The immersion may be performed at room temperature, or at least one selected from the tetracyanoanthraquinodimethane compound represented by the general formula (I) and the perylene compound represented by the above (II). In order to promote the adsorption to the metal oxide semiconductor, heating or the like may be performed as necessary.

【0089】前記浸漬後は、任意の溶媒等を用いて洗浄
した後、乾燥等することにより、前記金属酸化物半導体
の表面に、前記一般式(I)で表されるテトラシアノア
ントラキノジメタン化合物及び前記(II)で表されるペ
リレン化合物から選択される少なくとも1種が吸着され
て形成された光電変換層を有する光半導体電極が得られ
る。
After the immersion, the metal oxide semiconductor is washed with an arbitrary solvent or the like and then dried, so that the surface of the metal oxide semiconductor is coated on the surface of the tetracyanoanthraquinodimethane represented by the general formula (I). An optical semiconductor electrode having a photoelectric conversion layer formed by adsorbing at least one selected from a compound and a perylene compound represented by the above (II) is obtained.

【0090】本発明の半導体電極は、広い分野で好適に
使用することができ、特に以下の本発明の光電変換装置
及び光電変換方法に好適に使用することができる。
The semiconductor electrode of the present invention can be suitably used in a wide range of fields, and particularly, can be suitably used for the following photoelectric conversion device and photoelectric conversion method of the present invention.

【0091】(光電変換装置)本発明の光電変換装置
は、電解質に接触させた一対の電極と、該一対の電極を
通電可能に接続する接続手段とを少なくとも有してな
り、更に必要に応じて適宜選択したその他の手段を有し
ていてもよい。
(Photoelectric Conversion Device) The photoelectric conversion device of the present invention comprises at least a pair of electrodes brought into contact with an electrolyte, and a connecting means for connecting the pair of electrodes so as to be able to conduct electricity. And other means appropriately selected.

【0092】前記一対の電極における一方は、前記本発
明の光半導体電極であり、他方は対向電極である。前記
対向電極としては、酸化及び還元に対し、安定なもので
あれば特に制限はなく、目的に応じて公知のものから適
宜選択することができ、例えば、白金、金、黒鉛等の板
材、ITOガラス、ネサガラス等の透明電極、などが挙げ
られる。
One of the pair of electrodes is the optical semiconductor electrode of the present invention, and the other is a counter electrode. The counter electrode is not particularly limited as long as it is stable to oxidation and reduction, and can be appropriately selected from known ones according to the purpose.For example, plate materials such as platinum, gold, and graphite, and ITO Transparent electrodes such as glass and Nesa glass.

【0093】前記接続手段としては、前記一対の電極を
通電可能に接続し得る機能を有する限り特に制限はな
く、公知のリード線、あるいは各種金属、炭素、金属酸
化物等の導電性材料からなる線材、板材、印刷膜又は蒸
着膜、などが挙げられる。該接続手段は、前記一対の電
極に通電可能に接続される。
The connection means is not particularly limited as long as it has a function of connecting the pair of electrodes so as to be able to conduct electricity, and is made of a known lead wire or a conductive material such as various metals, carbon and metal oxides. Examples include a wire, a plate, a printed film or a deposited film. The connection means is electrically connected to the pair of electrodes.

【0094】前記電解質としては、特に制限はなく、目
的に応じて適宜選択することができ、例えば、塩化カリ
ウム、塩化リチウム、過塩素酸テトラエチルアンモニウ
ム等の塩類、水酸化ナトリウム、炭酸カリウム等のアル
カリ類、硫酸、塩酸等の酸類、これらの混合物、あるい
はこれらの水溶液、あるいはこれらのアルコール、プロ
ピレンカーボネート等の非水溶媒溶液、などが挙げられ
る。本発明においては、光電流特性の安定化を図る等の
目的で、前記電解質に、更にヨウ化カリウム、ヨウ素、
p-ベンゾキノン等の、可逆的に酸化還元反応を生ずるレ
ドックス剤を添加してもよい。本発明の光電変換装置
は、以下の本発明の光電変換方法に好適に使用すること
ができる。
The electrolyte is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include salts such as potassium chloride, lithium chloride and tetraethylammonium perchlorate, and alkalis such as sodium hydroxide and potassium carbonate. Or an acid such as sulfuric acid or hydrochloric acid, a mixture thereof, or an aqueous solution thereof, or a non-aqueous solvent solution such as an alcohol or propylene carbonate thereof. In the present invention, for the purpose of stabilizing the photocurrent characteristics and the like, the electrolyte further contains potassium iodide, iodine,
A redox agent such as p-benzoquinone that causes a reversible redox reaction may be added. The photoelectric conversion device of the present invention can be suitably used for the following photoelectric conversion method of the present invention.

【0095】(光電変換方法)本発明の光電変換方法に
おいては、互いに通電可能に接続された前記一対の電極
を前記電解質に接触させ、該一対の電極の少なくとも一
方に光を照射することにより光電変換反応を生じさせる
(Photoelectric Conversion Method) In the photoelectric conversion method of the present invention, the pair of electrodes connected to each other so as to be able to conduct electricity are brought into contact with the electrolyte, and at least one of the pair of electrodes is irradiated with light. Cause a conversion reaction

【0096】前記一対の電極において、光が照射される
電極は、前記本発明の光半導体電極であり、他方は前記
対向電極である。
In the pair of electrodes, the electrode irradiated with light is the optical semiconductor electrode of the present invention, and the other is the counter electrode.

【0097】−光電変換反応− 本発明の光電変換装置及び光電変換方法においては、以
下のようにして光電変換反応が生じる。即ち、まず、前
記光半導体電極と前記対向電極とを前記電解質(溶液)
中に浸漬する。次に、前記光半導体電極に、前記一般式
(I)で表されるテトラシアノアントラキノジメタン化
合物及び前記一般式(II)で表されるペリレン化合物か
ら選択される少なくとも1種の吸収波長域の単色光、又
はそのいずれかの帯域を包含する白色光又は多色光を照
射すると、これらの光エネルギーが電気エネルギーに変
換される。
-Photoelectric Conversion Reaction- In the photoelectric conversion device and the photoelectric conversion method of the present invention, a photoelectric conversion reaction occurs as follows. That is, first, the optical semiconductor electrode and the counter electrode are connected to the electrolyte (solution).
Soak in. Next, the optical semiconductor electrode is provided with at least one absorption wavelength range selected from the tetracyanoanthraquinodimethane compound represented by the general formula (I) and the perylene compound represented by the general formula (II). Irradiation with monochromatic light, or white light or polychromatic light including any band thereof, converts these light energies into electric energy.

【0098】本発明の半導体電極並びに該半導体電極を
用いた光電変換装置及び光電変換方法によれば、特に照
射する光として300〜700nmの可視光を照射しても、良好
な光電変換効率が得られ、また、酸化チタン等の金属酸
化物半導体単独では利用できない可視光の波長域まで有
効に利用することができ、太陽光などの光のエネルギー
を効率良く電気エネルギーに変換することができる。
According to the semiconductor electrode and the photoelectric conversion device and the photoelectric conversion method using the semiconductor electrode of the present invention, good photoelectric conversion efficiency can be obtained even when irradiating visible light having a wavelength of 300 to 700 nm. In addition, it can be effectively used up to a wavelength range of visible light that cannot be used alone with a metal oxide semiconductor such as titanium oxide, and light energy such as sunlight can be efficiently converted to electric energy.

【0099】[0099]

【実施例】以下、本発明の実施例について説明するが、
本発明はこれらの実施例に何ら限定されるものではな
い。
Hereinafter, embodiments of the present invention will be described.
The present invention is not limited to these examples.

【0100】(実施例1)オルトチタン酸テトライソプ
ロピル25mlを、純水150mlと濃硝酸1.54g(比重:1.38)と
の混合溶液中に、激しく撹拌しながら徐々に添加した。
さらに撹拌を続けながら80℃に昇温し、同温度で8時
間撹拌を続け、乳白色の安定な酸化チタンコロイド溶液
を調製した。この酸化チタンコロイド溶液を30mmHgの減
圧下30℃で40mlまで濃縮した。前記酸化チタンコロイ
ド溶液を、ITOの層が被覆されたガラス基板(以下「I
TOガラス基板」と称する)上にスピンコート法でコー
ティングし、500℃で1時間焼成した。この操作を3回繰
り返し、厚みが約1.0μmの酸化チタン層をITOガラス
基板上に形成した。得られた酸化チタン膜の結晶構造を
X線回折法により確認したところ、アナタース型とルチ
ル型との混合物であった。前記酸化チタン層を担持した
ITOガラス基板を、金属酸化物半導体として用いた。
Example 1 25 ml of tetraisopropyl orthotitanate was gradually added to a mixed solution of 150 ml of pure water and 1.54 g of concentrated nitric acid (specific gravity: 1.38) with vigorous stirring.
The temperature was raised to 80 ° C. while further stirring, and the stirring was continued at the same temperature for 8 hours to prepare a milky white stable colloidal titanium oxide solution. This titanium oxide colloid solution was concentrated to 30 ml at 30 ° C. under a reduced pressure of 30 mmHg. The titanium oxide colloid solution was applied to a glass substrate coated with an ITO layer (hereinafter referred to as “I”).
(Referred to as “TO glass substrate”) by spin coating and baked at 500 ° C. for 1 hour. This operation was repeated three times to form a titanium oxide layer having a thickness of about 1.0 μm on the ITO glass substrate. The crystal structure of the obtained titanium oxide film
When confirmed by X-ray diffraction, it was a mixture of an anatase type and a rutile type. Carrying the titanium oxide layer
An ITO glass substrate was used as a metal oxide semiconductor.

【0101】この金属酸化物半導体を、前記例示化合物
(I−1)の100mgをN,N-ジメチルホルムアミド50mlに溶
解した溶液に約90℃で12時間浸漬させた後、アセトン、
メタノールの順で洗浄し、自然乾燥させた。以上によ
り、前記金属酸化物ン半導体の表面に、前記例示化合物
(I−1)による光電変換層を吸着形成した。
The metal oxide semiconductor was prepared by using the above-mentioned compound
After immersing 100 mg of (I-1) in a solution of 50 ml of N, N-dimethylformamide at about 90 ° C. for 12 hours, acetone,
Washed in order of methanol and air dried. As described above, the photoelectric conversion layer of the exemplified compound (I-1) was formed by adsorption on the surface of the metal oxide semiconductor.

【0102】次に、ガラス基板に被覆されたITOの層
部分にリード線を接続した。なお、前記リード線の接続
部は、エポキシ樹脂で被覆し固着した。以上により光半
導体電極を作製した。
Next, a lead wire was connected to the ITO layer portion coated on the glass substrate. The connection portion of the lead wire was covered with an epoxy resin and fixed. Thus, an optical semiconductor electrode was manufactured.

【0103】図1は、作製した光半導体電極を説明する
ための概略説明図である。光半導体電極1は、ガラス基
材2上に、ITOの層3、酸化チタン層4、及び前記例示
化合物(I−1)による光電変換層5を、この順に有して
なる。なお、ITOの層3とリード線7との接続部は、
固着剤6としてのエポキシ樹脂で被覆され、固着されて
おり、該接続部においては、リード線7はガラス管8中
に収容されている。
FIG. 1 is a schematic explanatory view for explaining the fabricated optical semiconductor electrode. The optical semiconductor electrode 1 has an ITO layer 3, a titanium oxide layer 4, and a photoelectric conversion layer 5 made of the exemplified compound (I-1) on a glass substrate 2 in this order. The connection between the ITO layer 3 and the lead wire 7 is as follows.
It is covered and fixed with an epoxy resin as a fixing agent 6, and a lead wire 7 is accommodated in a glass tube 8 at the connection portion.

【0104】図2は、前記光半導体電極を備えた光電変
換装置を用いての光電変換方法を説明するための概略説
明図である。ここでは、作製した光半導体電極1、対向
電極9として白金電極、及び、参照電極10として飽和カ
ロメル電極、が透明ガラスセル13中、電解質溶液11中
に浸漬されている。電解質溶液11は、0.1M-硫酸ナト
リウム/0.02M-ヨウ化カリウム水溶液である。各々の電
極は、接続手段としてリード線7を介してポテンショス
タット12に接続され、通電可能になっている。
FIG. 2 is a schematic diagram for explaining a photoelectric conversion method using a photoelectric conversion device provided with the optical semiconductor electrode. Here, the fabricated optical semiconductor electrode 1, the platinum electrode as the counter electrode 9, and the saturated calomel electrode as the reference electrode 10 are immersed in the transparent glass cell 13 and the electrolyte solution 11. The electrolyte solution 11 is a 0.1 M sodium sulfate / 0.02 M potassium iodide aqueous solution. Each of the electrodes is connected to a potentiostat 12 via a lead wire 7 as a connection means, so that the electrodes can be energized.

【0105】この光電変換装置において、前記光半導体
電極1の電位が参照電極10に対して0Vになるように
保持して、白色光(500Wのキセノンランプ、照度4000lu
x)を光半導体電極の裏側より照射し、この時の光電流の
値をポテンショスタットにより測定した。その測定結果
を表4に示した。
In this photoelectric conversion device, the potential of the optical semiconductor electrode 1 is maintained at 0 V with respect to the reference electrode 10 so that white light (500 W xenon lamp, illuminance 4000 Lu
x) was irradiated from the back side of the optical semiconductor electrode, and the value of the photocurrent at this time was measured with a potentiostat. Table 4 shows the measurement results.

【0106】(実施例2)実施例1において、例示化合
物(I−1)を例示化合物(I−3)に代えた外は、実施例
1と同様にして光半導体電極及び光電変換装置を作製
し、光電変換方法を実施し、光電流の測定を行った。そ
の測定結果を表4に示した。
Example 2 The procedure of Example 1 was repeated except that the example compound (I-1) was replaced by the example compound (I-3).
An optical semiconductor electrode and a photoelectric conversion device were prepared in the same manner as in 1, the photoelectric conversion method was performed, and the photocurrent was measured. Table 4 shows the measurement results.

【0107】(実施例3)実施例1において、例示化合
物(I−1)を例示化合物(I−7)に代えた外は、実施例
1と同様にして光半導体電極及び光電変換装置を作製
し、光電変換方法を実施し、光電流の測定を行った。そ
の測定結果を表4に示した。
Example 3 An optical semiconductor electrode and a photoelectric conversion device were produced in the same manner as in Example 1 except that the exemplified compound (I-1) was replaced with the exemplified compound (I-7). Then, the photoelectric conversion method was performed, and the photocurrent was measured. Table 4 shows the measurement results.

【0108】(比較例1)実施例1において、例示化合
物(I−1)を用いなかった外は、実施例1と同様にして
光半導体電極及び光電変換装置を作製し、光電変換方法
を実施し、光電流の測定を行った。その測定結果を表4
に示した。
(Comparative Example 1) An optical semiconductor electrode and a photoelectric conversion device were produced in the same manner as in Example 1 except that the exemplified compound (I-1) was not used, and the photoelectric conversion method was performed. Then, the photocurrent was measured. Table 4 shows the measurement results.
It was shown to.

【0109】(比較例2)実施例1において、例示化合
物(I−1)を2,4,5,7-テトラヨードフルオレセインに代
えた外は、実施例 1と同様にして光半導体電極及び光電
変換装置を作製し、光電変換方法を実施し、光電流の測
定を行った。その測定結果を表4に示した。
(Comparative Example 2) An optical semiconductor electrode and a photoelectric conversion device were prepared in the same manner as in Example 1 except that Example Compound (I-1) was replaced with 2,4,5,7-tetraiodofluorescein. A converter was manufactured, a photoelectric conversion method was performed, and a photocurrent was measured. Table 4 shows the measurement results.

【0110】(比較例3)実施例1において、例示化合
物(I−1)を(テトラカルボキフタロシアニナト)銅(II)
に代えた外は、実施例 1と同様にして光半導体電極及び
光電変換装置を作製し、光電変換方法を実施し、光電流
の測定を行った。その測定結果を表4に示した。
Comparative Example 3 In Example 1, the exemplified compound (I-1) was replaced with (tetracarboxphthalocyaninato) copper (II)
A photo-semiconductor electrode and a photoelectric conversion device were produced in the same manner as in Example 1, except that the photo-electric conversion method was performed, and the photocurrent was measured. Table 4 shows the measurement results.

【0111】[0111]

【表4】 [Table 4]

【0112】(実施例4)実施例1において、金属酸化
物半導体を、前記例示化合物(I−1)の100mgをN,N-ジ
メチルホルムアミド50mlに溶解した溶液に約90℃で12時
間浸漬させた代わりに、例示化合物(II−4)の50mgを
2%水酸化テトラ(n-ブチル)アンモニウム/エタノール
溶液50mlに溶解した溶液に70〜80℃で1時間浸漬させた
外は実施例1と同様にして光半導体電極及び光電変換装
置を作製し、光電変換方法を実施し、光電流の測定を行
った。その測定結果を表5に示した。
Example 4 In Example 1, the metal oxide semiconductor was immersed in a solution of 100 mg of the exemplified compound (I-1) in 50 ml of N, N-dimethylformamide at about 90 ° C. for 12 hours. Instead of Example 1 except that 50 mg of the exemplary compound (II-4) was immersed in a solution of 50% of a 2% tetra (n-butyl) ammonium hydroxide / ethanol solution at 70 to 80 ° C. for 1 hour. Similarly, an optical semiconductor electrode and a photoelectric conversion device were manufactured, a photoelectric conversion method was performed, and a photocurrent was measured. Table 5 shows the measurement results.

【0113】(実施例5)実施例4において、例示化合
物(II−4)を例示化合物(II−9)に代えた外は、実
施例4と同様にして光半導体電極及び光電変換装置を作
製し、光電変換方法を実施し、光電流の測定を行った。
その測定結果を表5に示した。
Example 5 An optical semiconductor electrode and a photoelectric conversion device were produced in the same manner as in Example 4, except that Example Compound (II-4) was replaced with Example Compound (II-9). Then, the photoelectric conversion method was performed, and the photocurrent was measured.
Table 5 shows the measurement results.

【0114】(実施例6)実施例4において、例示化合
物(II−4)を例示化合物(II−10)に代えた外は、
実施例4と同様にして光半導体電極及び光電変換装置を
作製し、光電変換方法を実施し、光電流の測定を行っ
た。その測定結果を表5に示した。
Example 6 In Example 4, except that the exemplified compound (II-4) was replaced by the exemplified compound (II-10),
An optical semiconductor electrode and a photoelectric conversion device were manufactured in the same manner as in Example 4, the photoelectric conversion method was performed, and the photocurrent was measured. Table 5 shows the measurement results.

【0115】(比較例4)実施例4において、例示化合
物(II−4)を用いなかった外は、実施例4と同様にし
て光半導体電極及び光電変換装置を作製し、光電変換方
法を実施し、光電流の測定を行った。その測定結果を表
5に示した。
(Comparative Example 4) An optical semiconductor electrode and a photoelectric conversion device were prepared in the same manner as in Example 4 except that the exemplified compound (II-4) was not used, and the photoelectric conversion method was performed. Then, the photocurrent was measured. Table 5 shows the measurement results.

【0116】(比較例5)実施例4において、例示化合
物(II−4)を2,4,5,7-テトラヨードフルオレセインに
代えた外は、実施例4と同様にして光半導体電極及び光
電変換装置を作製し、光電変換方法を実施し、光電流の
測定を行った。その測定結果を表5に示した。
Comparative Example 5 An optical semiconductor electrode and a photoelectric conversion device were prepared in the same manner as in Example 4 except that the compound (II-4) was replaced by 2,4,5,7-tetraiodofluorescein. A converter was manufactured, a photoelectric conversion method was performed, and a photocurrent was measured. Table 5 shows the measurement results.

【0117】[0117]

【表5】 [Table 5]

【0118】(実施例7)実施例1において、金属酸化
物半導体を、前記例示化合物(I−1)の100mgをN,N-ジ
メチルホルムアミド50mlに溶解した溶液に約90℃で12時
間浸漬させた代わりに、例示化合物(IX−4)の100mg
をN,N-ジメチルホルムアミド50mlに溶解した溶液に80〜
100℃で1時間浸漬させた外は実施例1と同様にして光半
導体電極及び光電変換装置を作製し、光電変換方法を実
施し、光電流の測定を行った。その測定結果を表6に示
した。
(Example 7) In Example 1, the metal oxide semiconductor was immersed in a solution of 100 mg of the exemplified compound (I-1) in 50 ml of N, N-dimethylformamide at about 90 ° C. for 12 hours. Instead, 100 mg of Exemplified Compound (IX-4)
80 to a solution of N, N-dimethylformamide in 50 ml
Except for immersion at 100 ° C. for 1 hour, an optical semiconductor electrode and a photoelectric conversion device were prepared in the same manner as in Example 1, a photoelectric conversion method was performed, and a photocurrent was measured. Table 6 shows the measurement results.

【0119】(実施例8)実施例7において、例示化合
物(IX−4)を例示化合物(IX−7)に代えた外は、実
施例7と同様にして光半導体電極及び光電変換装置を作
製し、光電変換方法を実施し、光電流の測定を行った。
その測定結果を表6に示した。
Example 8 An optical semiconductor electrode and a photoelectric conversion device were produced in the same manner as in Example 7, except that Example Compound (IX-4) was replaced with Example Compound (IX-7). Then, the photoelectric conversion method was performed, and the photocurrent was measured.
Table 6 shows the measurement results.

【0120】(実施例9)実施例7において、例示化合
物(IX−4)を例示化合物(IX−9)に代えた外は、実
施例7と同様にして光半導体電極及び光電変換装置を作
製し、光電変換方法を実施し、光電流の測定を行った。
その測定結果を表6に示した。
Example 9 An optical semiconductor electrode and a photoelectric conversion device were fabricated in the same manner as in Example 7, except that Example Compound (IX-4) was replaced with Example Compound (IX-9). Then, the photoelectric conversion method was performed, and the photocurrent was measured.
Table 6 shows the measurement results.

【0121】(比較例6)実施例7において、例示化合
物(IX−4)を用いなかった外は、実施例7と同様にし
て光半導体電極及び光電変換装置を作製し、光電変換方
法を実施し、光電流の測定を行った。その測定結果を表
6に示した。
(Comparative Example 6) An optical semiconductor electrode and a photoelectric conversion device were prepared in the same manner as in Example 7 except that the exemplified compound (IX-4) was not used, and the photoelectric conversion method was performed. Then, the photocurrent was measured. Table 6 shows the measurement results.

【0122】(比較例7)実施例7において、例示化合
物(IX−4)を2,4,5,7-テトラヨード-3',4',5',6'-テ
トラクロロフルオレセインに代えた外は、実施例7と同
様にして光半導体電極及び光電変換装置を作製し、光電
変換方法を実施し、光電流の測定を行った。その測定結
果を表6に示した。
(Comparative Example 7) In Example 7, Compound (IX-4) was replaced with 2,4,5,7-tetraiodo-3 ′, 4 ′, 5 ′, 6′-tetrachlorofluorescein. In the same manner as in Example 7, an optical semiconductor electrode and a photoelectric conversion device were manufactured, a photoelectric conversion method was performed, and a photocurrent was measured. Table 6 shows the measurement results.

【0123】(比較例8)実施例7において、例示化合
物(IX−4)を(テトラカルボキシフタロシアニナト)銅
(II)に代えた外は、実施例7と同様にして光半導体電極
及び光電変換装置を作製し、光電変換方法を実施し、光
電流の測定を行った。その測定結果を表6に示した。
Comparative Example 8 In Example 7, the exemplified compound (IX-4) was replaced with (tetracarboxyphthalocyaninato) copper.
Except for replacing (II), an optical semiconductor electrode and a photoelectric conversion device were prepared in the same manner as in Example 7, the photoelectric conversion method was performed, and the photocurrent was measured. Table 6 shows the measurement results.

【0124】[0124]

【表6】 [Table 6]

【0125】[0125]

【発明の効果】本発明によると、太陽光を効率的に利用
可能でき、光電変換効率、安定性、耐久性等に優れ、安
価にかつ容易に製造し得る光半導体電極、並びに、該光
半導体電極を用い、光電変換効率に優れる光電変換装置
及び光電変換方法を提供することができる。
According to the present invention, an optical semiconductor electrode which can efficiently utilize sunlight, is excellent in photoelectric conversion efficiency, stability, durability and the like, can be manufactured at low cost and easily, and the optical semiconductor. By using an electrode, a photoelectric conversion device and a photoelectric conversion method which are excellent in photoelectric conversion efficiency can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は、本発明の光半導体電極の概略説明図
である。
FIG. 1 is a schematic explanatory view of an optical semiconductor electrode of the present invention.

【図2】 図2は、図1の光半導体電極を備えた光電変
換装置を用いての光電変換方法を説明するための概略説
明図である。
FIG. 2 is a schematic explanatory diagram for explaining a photoelectric conversion method using a photoelectric conversion device including the optical semiconductor electrode of FIG. 1;

【図3】 図3は、実施例4の光半導体電極の紫外可視
吸収スペクトルである。
FIG. 3 is an ultraviolet-visible absorption spectrum of the optical semiconductor electrode of Example 4.

【図4】 図4は、実施例7の光半導体電極の紫外可視
吸収スペクトルである。
FIG. 4 is an ultraviolet-visible absorption spectrum of the optical semiconductor electrode of Example 7.

【符号の説明】[Explanation of symbols]

1 光半導体電極 2 ガラス基板 3 ITOの層 4 酸化チタン層 5 光電変換層 6 固着剤 7 リード線 8 ガラス管 9 対向電極 10 参照電極 11 電解質溶液 12 ポテンショスタット 13 透明ガラスセル Reference Signs List 1 optical semiconductor electrode 2 glass substrate 3 ITO layer 4 titanium oxide layer 5 photoelectric conversion layer 6 fixing agent 7 lead wire 8 glass tube 9 counter electrode 10 reference electrode 11 electrolyte solution 12 potentiostat 13 transparent glass cell

───────────────────────────────────────────────────── フロントページの続き (72)発明者 廣瀬 英一 神奈川県南足柄市竹松1600番地 富士ゼロ ックス株式会社内 (72)発明者 高田 北斗 神奈川県南足柄市竹松1600番地 富士ゼロ ックス株式会社内 Fターム(参考) 5F051 AA14 5H032 AA06 AS16 EE02 EE20  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Eiichi Hirose 1600 Takematsu, Minamiashigara-shi, Kanagawa Prefecture Inside Fuji Xerox Co., Ltd. (Reference) 5F051 AA14 5H032 AA06 AS16 EE02 EE20

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属酸化物半導体の表面に、下記一般式
(I)で表されるテトラシアノアントラキノジメタン化合
物及び下記一般式(II)で表されるペリレン化合物から
選択される少なくとも1種による光電変換層を有するこ
とを特徴とする光半導体電極。 一般式(I) 【化1】 前記一般式(I)において、R1及びR2は、互いに同一
であってもよいし、異なっていてもよく、水素原子、ア
ルキル基、アリール基、アラルキル基、アルコキシアル
キル基、又は、アシル基を表し、これらは互いに下記構
造の環状基を形成していてもよい。nは、0又は1を表
す。 【化2】 一般式(II) 【化3】 前記一般式(II)において、R3及びR4は、下記一般式
(III)〜(IX)のいずれかで表される基を表し、これら
は互いに同一であってもよいし、異なっていてもよく、
少なくとも一方は下記一般式(III)〜(VII)及び(IX)の
いずれかで表される基を表す。lは、R3及びR4が、下
記一般式(III)〜(VIII)のいずれかで表される基である
場合には0を表し、下記一般式(IX)で表される基であ
る場合には0〜12を表す。 一般式(III) 【化4】 前記一般式(III)において、R5及びR6は、互いに同一
であってもよいし、異なっていてもよく、脂肪族基、芳
香族基又は複素環基を表し、これらは置換基で置換され
ていてもよい。A1は、2価の脂肪族基、芳香族基又は
複素環基を表し、これらは置換基で置換されていてもよ
い。 一般式(IV) 【化5】 前記一般式(IV)において、A2は、2価の脂肪族基、
芳香族基又は複素環基を表し、これらは置換基で置換さ
れていてもよい。R7及びR8は、互いに同一であっても
よいし、異なっていてもよく、水素原子、ハロゲン原
子、炭素数1〜20のアルキル基、−(CH2pCOO
18、−(CH2pSO319、又は、−(CH2p
2021を表す。R18、R19、R20及びR21は、水素原
子又は炭素数1〜20のアルキル基を表す。pは、0〜
20の整数を表す。 一般式(V) 【化6】 前記一般式(V)において、A3は、単結合、又は、2
価の脂肪族基、芳香族基若しくは複素環基を表し、これ
らは置換基で置換されていてもよい。R9は、脂肪族
基、芳香族基若しくは複素環基を表し、これらは置換基
で置換されていてもよい。R10は、水素原子、ハロゲン
原子、炭素数1〜20のアルキル基、−(CH2pCO
OR18、−(CH2pSO319、又は、−(CH2p
NR2021を表す。R18、R19、R20及びR21は、水素
原子又は炭素数1〜20のアルキル基を表す。pは、0
〜20の整数を表す。 一般式(VI) 【化7】 前記一般式(VI)において、A4は、2価の脂肪族基、
芳香族基又は複素環基を表し、これらは置換基で置換さ
れていてもよい。Xは、酸素原子、硫黄原子又は>NR
22を表す。R11及びR12は、水素原子、ハロゲン原子、
炭素数1〜20のアルキル基、−(CH2pCOO
18、−(CH2pSO319、又は、−(CH2p
2021を表す。R18、R19、R20、R21及びR22は、
水素原子又は炭素数1〜20のアルキル基を表す。p
は、0〜20の整数を表す。 一般式(VII) 【化8】 前記一般式(VII)において、A5は、単結合、又は、2
価の脂肪族基、芳香族基若しくは複素環基を表し、これ
らは置換基で置換されていてもよい。R13は、2価の脂
肪族基、芳香族基又は複素環基を表し、これらは置換基
で置換されていてもよい。R14は、水素原子、ハロゲン
原子、炭素数1〜20のアルキル基、−(CH2pCO
OR18、−(CH2pSO319、又は、−(CH2p
NR202 1を表す。R18、R19、R20及びR21は、水素
原子又は炭素数1〜20のアルキル基を表す。pは、0
〜20の整数を表す。 一般式(VIII) 【化9】 前記一般式(VIII)において、A6は、2価の脂肪族基、
芳香族基又は複素環基を表し、これらは置換基で置換さ
れていてもよい。Yは、−COOH、−SOOH、又
は、−NH2を表す。 一般式(IX) 【化10】 前記一般式(IX)において、Xは、水素原子2個、又
は、Mg、Zn、Fe、Co、Ni、Cu、Ru、S
n、SnO、TiO、VO、Al(OH)、Ga(O
H)若しくはIn(OH)を表す。R15、R16及びR17
は、水素原子、ハロゲン原子、炭素数1〜12のアルキ
ル基、−(CH2mCOOH、又は、−(CH 2mNH
2を表す。m及びnは、0〜12の整数を表す。
1. The following general formula:
Tetracyanoanthraquinodimethane compound represented by (I)
And perylene compounds represented by the following general formula (II)
Having a photoelectric conversion layer of at least one selected from
An optical semiconductor electrode characterized by the following. General formula (I)In the general formula (I), R1And RTwoAre identical to each other
May be different from each other, and a hydrogen atom, a
Alkyl group, aryl group, aralkyl group, alkoxyalkyl
Represents a kill group or an acyl group.
May be formed. n represents 0 or 1
You. Embedded imageGeneral formula (II)In the general formula (II), RThreeAnd RFourIs the following general formula
Represents a group represented by any of (III) to (IX),
May be the same or different from each other,
At least one of the following general formulas (III) to (VII) and (IX)
Represents a group represented by any of l is RThreeAnd RFourBut below
A group represented by any of the general formulas (III) to (VIII)
In this case, it represents 0, and is a group represented by the following general formula (IX).
In this case, it represents 0 to 12. General formula (III)In the general formula (III), RFiveAnd R6Are identical to each other
May be different from each other,
Represents an aromatic group or a heterocyclic group, which are substituted with a substituent.
May be. A1Is a divalent aliphatic group, an aromatic group or
Represents a heterocyclic group, which may be substituted with a substituent.
No. General formula (IV)In the general formula (IV), ATwoIs a divalent aliphatic group,
Represents an aromatic group or a heterocyclic group, which are substituted with a substituent.
It may be. R7And R8Are the same as each other
Good or different, hydrogen atom, halogen atom
, An alkyl group having 1 to 20 carbon atoms,-(CHTwo)pCOO
R18,-(CHTwo)pSOThreeR19Or-(CHTwo)pN
R20Rtwenty oneRepresents R18, R19, R20And Rtwenty oneIs a hydrogen source
And represents an alkyl group having 1 to 20 carbon atoms. p is 0 to
Represents an integer of 20. General formula (V)In the general formula (V), AThreeIs a single bond or 2
Represents a divalent aliphatic, aromatic or heterocyclic group,
May be substituted with a substituent. R9Is aliphatic
Group, aromatic group or heterocyclic group,
May be substituted. RTenIs a hydrogen atom, a halogen
Atom, alkyl group having 1 to 20 carbon atoms,-(CHTwo)pCO
OR18,-(CHTwo)pSOThreeR19Or-(CHTwo)p
NR20Rtwenty oneRepresents R18, R19, R20And Rtwenty oneIs hydrogen
Represents an atom or an alkyl group having 1 to 20 carbon atoms. p is 0
Represents an integer of -20. General formula (VI)In the general formula (VI), AFourIs a divalent aliphatic group,
Represents an aromatic group or a heterocyclic group, which are substituted with a substituent.
It may be. X represents an oxygen atom, a sulfur atom or> NR
twenty twoRepresents R11And R12Is a hydrogen atom, a halogen atom,
An alkyl group having 1 to 20 carbon atoms,-(CHTwo)pCOO
R18,-(CHTwo)pSOThreeR19Or-(CHTwo)pN
R20Rtwenty oneRepresents R18, R19, R20, Rtwenty oneAnd Rtwenty twoIs
Represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. p
Represents an integer of 0 to 20. General formula (VII)In the general formula (VII), AFiveIs a single bond or 2
Represents a divalent aliphatic, aromatic or heterocyclic group,
May be substituted with a substituent. R13Is divalent fat
Represents an aliphatic group, an aromatic group, or a heterocyclic group;
May be substituted. R14Is a hydrogen atom, a halogen
Atom, alkyl group having 1 to 20 carbon atoms,-(CHTwo)pCO
OR18,-(CHTwo)pSOThreeR19Or-(CHTwo)p
NR20RTwo 1Represents R18, R19, R20And Rtwenty oneIs hydrogen
Represents an atom or an alkyl group having 1 to 20 carbon atoms. p is 0
Represents an integer of -20. General formula (VIII)In the general formula (VIII), A6Is a divalent aliphatic group,
Represents an aromatic group or a heterocyclic group, which are substituted with a substituent.
It may be. Y is -COOH, -SOOH, or
Is -NHTwoRepresents General formula (IX)In the general formula (IX), X represents two hydrogen atoms,
Represents Mg, Zn, Fe, Co, Ni, Cu, Ru, S
n, SnO, TiO, VO, Al (OH), Ga (O
H) or In (OH). R15, R16And R17
Is a hydrogen atom, a halogen atom, an alkyl having 1 to 12 carbons.
Group,-(CHTwo)mCOOH or-(CH Two)mNH
TwoRepresents m and n represent the integer of 0-12.
【請求項2】 前記一般式(I)で表されるテトラシアノ
アントラキノジメタン化合物が、下記一般式(I−a)で
表されるテトラシアノアントラキノジメタン化合物であ
る請求項1に記載の光半導体電極。 一般式(I−a) 【化11】 前記一般式(I−a)において、Meはメチル基を表
す。nは、0又は1を表す。
2. The tetracyanoanthraquinodimethane compound represented by the general formula (I) is a tetracyanoanthraquinodimethane compound represented by the following general formula (Ia). Optical semiconductor electrodes. General formula (Ia) In the general formula (Ia), Me represents a methyl group. n represents 0 or 1.
【請求項3】 金属酸化物半導体が、酸化チタン、酸化
スズ、酸化タングステン、酸化亜鉛、酸化インジウム、
酸化ニオブ、酸化ニッケル、酸化コバルト及びチタン酸
ストロンチウムから選択される少なくとも1種である請
求項1又は2に記載の光半導体電極。
3. The method according to claim 1, wherein the metal oxide semiconductor is titanium oxide, tin oxide, tungsten oxide, zinc oxide, indium oxide,
3. The optical semiconductor electrode according to claim 1, which is at least one selected from niobium oxide, nickel oxide, cobalt oxide, and strontium titanate.
【請求項4】 電解質に接触させた一対の電極と、該一
対の電極を通電可能に接続する接続手段とを少なくとも
有してなり、該一対の電極の少なくとも一方が、請求項
1から3のいずれかに記載の光半導体電極であることを
特徴とする光電変換装置。
4. The battery according to claim 1, further comprising at least a pair of electrodes brought into contact with the electrolyte, and connection means for connecting the pair of electrodes so as to be able to conduct electricity. A photoelectric conversion device, which is the optical semiconductor electrode according to any one of the above.
【請求項5】 互いに通電可能に接続された一対の電極
を電解質に接触させ、該一対の電極の少なくとも一方に
光を照射することにより光電変換反応を生じさせる光電
変換方法であって、光が照射される電極が、請求項1か
ら3のいずれかに記載の光半導体電極であることを特徴
とする光電変換方法。
5. A photoelectric conversion method in which a pair of electrodes connected to each other so as to be able to conduct electricity are brought into contact with an electrolyte, and at least one of the pair of electrodes is irradiated with light to cause a photoelectric conversion reaction. A photoelectric conversion method, wherein the irradiated electrode is the optical semiconductor electrode according to claim 1.
JP04129999A 1999-02-19 1999-02-19 Photo-semiconductor electrode, photoelectric conversion device, and photoelectric conversion method Expired - Fee Related JP4211120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04129999A JP4211120B2 (en) 1999-02-19 1999-02-19 Photo-semiconductor electrode, photoelectric conversion device, and photoelectric conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04129999A JP4211120B2 (en) 1999-02-19 1999-02-19 Photo-semiconductor electrode, photoelectric conversion device, and photoelectric conversion method

Publications (2)

Publication Number Publication Date
JP2000243463A true JP2000243463A (en) 2000-09-08
JP4211120B2 JP4211120B2 (en) 2009-01-21

Family

ID=12604600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04129999A Expired - Fee Related JP4211120B2 (en) 1999-02-19 1999-02-19 Photo-semiconductor electrode, photoelectric conversion device, and photoelectric conversion method

Country Status (1)

Country Link
JP (1) JP4211120B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152815A (en) * 2002-10-29 2004-05-27 Mitsui Chemicals Inc Organic solar cell
JP2006079898A (en) * 2004-09-08 2006-03-23 Nippon Kayaku Co Ltd Dye-sensitized photoelectric conversion element
WO2007054470A1 (en) * 2005-11-10 2007-05-18 Basf Se Use of rylene derivatives as photosensitizers in solar cells
WO2008004580A1 (en) 2006-07-05 2008-01-10 Nippon Kayaku Kabushiki Kaisha Dye-sensitized solar cell
JP2010003831A (en) * 2008-06-19 2010-01-07 Fujifilm Corp Mesomorphism organic semiconductor material and organic electronic device
DE102009049696A1 (en) 2008-10-16 2010-04-22 Basf Se New hole conductor material containing compounds useful e.g. as semiconductor material, preferably p-semiconductor in a solar cell, preferably dye photovoltaic cell, ionic liquid, solvent for chemical reaction and heat carriers
WO2010094636A1 (en) 2009-02-23 2010-08-26 Basf Se Use of triarylamine derivatives as hole-conducting materials in organic solar cells and organic solar cells containing said triarylamine derivatives
US7820471B2 (en) 2003-01-30 2010-10-26 Sony Corporation Photoelectric conversion element and process for fabricating the same, electronic apparatus and process for fabricating the same, and semiconductor layer and process for forming the same
US8083971B2 (en) 2007-07-23 2011-12-27 Basf Se Use of rylene derivatives as active components in solar cells and photodetectors
US8563855B2 (en) 2007-07-23 2013-10-22 Basf Se Tandem photovoltaic cell
US8563854B2 (en) 2002-08-23 2013-10-22 Sony Corporation Dye-sensitized photoelectric conversion apparatus and manufacturing method thereof
US8609846B2 (en) 2010-12-22 2013-12-17 Basf Se Naphthalene monoimide derivatives and use thereof as photosensitizers in solar cells and photodetectors
US8816081B2 (en) 2012-08-06 2014-08-26 Basf Se Boron containing perylene monoimides, a process for their production, their use as building blocks for the production of perylene monoimide derivatives, monoimide derivatives and their use in dye-sensitized solar cells
US9054325B2 (en) 2012-02-09 2015-06-09 03;Basf Se Rylene monoimide derivatives and use thereof as photosensitizers in solar cells and photodetectors
US9385326B2 (en) 2013-01-15 2016-07-05 Basf Se Triangulene oligomers and polymers and their use as hole conducting material
US9831042B2 (en) 2012-07-04 2017-11-28 Basf Se Organic dyes comprising a hydrazone moiety and their use in dye-sensitized solar cells

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104061A (en) * 1986-10-22 1988-05-09 Fuji Xerox Co Ltd Organic electronic material
JPH02118578A (en) * 1988-09-13 1990-05-02 Fuji Xerox Co Ltd Electrophotographic sensitive body and image forming method
JPH10189065A (en) * 1996-12-19 1998-07-21 Fuji Xerox Co Ltd Semiconductor photoelectrode, photoelectric transfer device and photoelectric transfer method
JPH10233238A (en) * 1996-12-16 1998-09-02 Fuji Xerox Co Ltd Optical semiconductor electrode, photoelectric transducer, and photoelectric transfer
JPH10334954A (en) * 1997-06-02 1998-12-18 Fuji Xerox Co Ltd Photosemiconductor electrode, potoelectric conversion device and potoelectric conversion method
JP2000090989A (en) * 1998-09-16 2000-03-31 Toshiba Corp Coloring matter sensitized photochemical cell
JP2000243464A (en) * 1999-02-19 2000-09-08 Fuji Xerox Co Ltd Semiconductor electrode and photoelectric cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104061A (en) * 1986-10-22 1988-05-09 Fuji Xerox Co Ltd Organic electronic material
JPH02118578A (en) * 1988-09-13 1990-05-02 Fuji Xerox Co Ltd Electrophotographic sensitive body and image forming method
JPH10233238A (en) * 1996-12-16 1998-09-02 Fuji Xerox Co Ltd Optical semiconductor electrode, photoelectric transducer, and photoelectric transfer
JPH10189065A (en) * 1996-12-19 1998-07-21 Fuji Xerox Co Ltd Semiconductor photoelectrode, photoelectric transfer device and photoelectric transfer method
JPH10334954A (en) * 1997-06-02 1998-12-18 Fuji Xerox Co Ltd Photosemiconductor electrode, potoelectric conversion device and potoelectric conversion method
JP2000090989A (en) * 1998-09-16 2000-03-31 Toshiba Corp Coloring matter sensitized photochemical cell
JP2000243464A (en) * 1999-02-19 2000-09-08 Fuji Xerox Co Ltd Semiconductor electrode and photoelectric cell

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563854B2 (en) 2002-08-23 2013-10-22 Sony Corporation Dye-sensitized photoelectric conversion apparatus and manufacturing method thereof
JP2004152815A (en) * 2002-10-29 2004-05-27 Mitsui Chemicals Inc Organic solar cell
US7820471B2 (en) 2003-01-30 2010-10-26 Sony Corporation Photoelectric conversion element and process for fabricating the same, electronic apparatus and process for fabricating the same, and semiconductor layer and process for forming the same
JP2006079898A (en) * 2004-09-08 2006-03-23 Nippon Kayaku Co Ltd Dye-sensitized photoelectric conversion element
KR20080075864A (en) * 2005-11-10 2008-08-19 바스프 에스이 Use of rylene derivatives as photosensitizers in solar cells
JP2009515846A (en) * 2005-11-10 2009-04-16 ビーエーエスエフ ソシエタス・ヨーロピア Use of rylene derivatives as photosensitizers in solar cells.
WO2007054470A1 (en) * 2005-11-10 2007-05-18 Basf Se Use of rylene derivatives as photosensitizers in solar cells
KR101583382B1 (en) 2005-11-10 2016-01-07 바스프 에스이 Use of rylene derivatives as photosensitizers in solar cells
CN101351524B (en) * 2005-11-10 2015-01-21 巴斯夫欧洲公司 Use of rylene derivatives as photosensitizers in solar cells
US8231809B2 (en) 2005-11-10 2012-07-31 Basf Aktiengesellschaft Use of rylene derivatives as photosensitizers in solar cells
US8501046B2 (en) 2005-11-10 2013-08-06 Basf Se Use of rylene derivatives as photosensitizers in solar cells
WO2008004580A1 (en) 2006-07-05 2008-01-10 Nippon Kayaku Kabushiki Kaisha Dye-sensitized solar cell
US8083971B2 (en) 2007-07-23 2011-12-27 Basf Se Use of rylene derivatives as active components in solar cells and photodetectors
US8563855B2 (en) 2007-07-23 2013-10-22 Basf Se Tandem photovoltaic cell
JP2010003831A (en) * 2008-06-19 2010-01-07 Fujifilm Corp Mesomorphism organic semiconductor material and organic electronic device
DE102009049696A1 (en) 2008-10-16 2010-04-22 Basf Se New hole conductor material containing compounds useful e.g. as semiconductor material, preferably p-semiconductor in a solar cell, preferably dye photovoltaic cell, ionic liquid, solvent for chemical reaction and heat carriers
WO2010094636A1 (en) 2009-02-23 2010-08-26 Basf Se Use of triarylamine derivatives as hole-conducting materials in organic solar cells and organic solar cells containing said triarylamine derivatives
US8609846B2 (en) 2010-12-22 2013-12-17 Basf Se Naphthalene monoimide derivatives and use thereof as photosensitizers in solar cells and photodetectors
US9054325B2 (en) 2012-02-09 2015-06-09 03;Basf Se Rylene monoimide derivatives and use thereof as photosensitizers in solar cells and photodetectors
US9831042B2 (en) 2012-07-04 2017-11-28 Basf Se Organic dyes comprising a hydrazone moiety and their use in dye-sensitized solar cells
US8816081B2 (en) 2012-08-06 2014-08-26 Basf Se Boron containing perylene monoimides, a process for their production, their use as building blocks for the production of perylene monoimide derivatives, monoimide derivatives and their use in dye-sensitized solar cells
US9105410B2 (en) 2012-08-06 2015-08-11 Basf Se Boron containing perylene monoimides, a process for their production, their use as building blocks for the production of perylene monoimide derivatives, monoimide derivatives and their use in dye-sensitized solar cells
US9624375B2 (en) 2012-08-06 2017-04-18 Basf Se Boron containing perylene monoimides, a process for their production, their use as building blocks for the production of perylene monoimide derivatives, monoimide derivatives and their use in dye-sensitized solar cells
US9385326B2 (en) 2013-01-15 2016-07-05 Basf Se Triangulene oligomers and polymers and their use as hole conducting material

Also Published As

Publication number Publication date
JP4211120B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
JP5940089B2 (en) Naphthalene monoimide derivatives and their use as photosensitizers in solar cells and photodetectors
JP2000100484A (en) Light semiconductor electrode, photoelectric conversion device and photoelectric conversion method
JP5135774B2 (en) Photoelectric conversion element and solar cell
JPH11204821A (en) Optical semiconductor electrode, photoelectric converter and photoelectric conversion method
JP3968809B2 (en) Photo-semiconductor electrode for wet solar cell, wet solar cell, and photoelectric conversion method
JP2000243463A (en) Optical semiconductor electrode, photoelectric converter and photoelectric conversion method
JP5206092B2 (en) Photoelectric conversion element and solar cell
WO2002001667A1 (en) Dye-sensitized photoelectric transducer
JP4287655B2 (en) Dye-sensitized photoelectric conversion element
JP2008186752A (en) Photoelectric conversion element and solar cell
JP3968819B2 (en) Photo-semiconductor electrode for wet solar cell, wet solar cell, and photoelectric conversion method
JP2001093589A (en) Optical semiconductor electrode, photoelectric conversion device and photoelectric conversion method
JP2004022222A (en) Dye-sensitizing photoelectric converter element
JP5168761B2 (en) Semiconductor for photoelectric conversion material, photoelectric conversion element, solar cell, and method for manufacturing semiconductor for photoelectric conversion material
JP5347329B2 (en) Photoelectric conversion element and solar cell
JP5458406B2 (en) ORGANIC DYE COMPOUND AND SEMICONDUCTOR THIN FILM ELECTRODE, PHOTOELECTRIC CONVERSION ELEMENT, PHOTOELECTROCHEMICAL SOLAR CELL
JPH1167285A (en) Photoelectric conversion element and photo electrochemical cell
JP2005032475A (en) Semiconductor thin film electrode using organic dye as photosensitizer, photoelectric conversion element using the same, and photo-electrochemical solar cell
JP2002100417A (en) Photosemiconductor electrode and photoelectric transfer device
JP5298654B2 (en) Photoelectrode, method for producing dye-sensitized solar cell including the same, and dye-sensitized solar cell
JP2009187821A (en) Photoelectric conversion element and solar cell
JP2000082506A (en) Photosemiconductor electrode, photoelectric conversion device and photoelectric conversion method
JP4605111B2 (en) Photoelectric conversion element and dye-sensitized solar cell
JP5332114B2 (en) Photoelectric conversion element and solar cell
JP5151192B2 (en) Perylene derivative and photoelectric conversion element using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees