JP4211120B2 - Photo-semiconductor electrode, photoelectric conversion device, and photoelectric conversion method - Google Patents

Photo-semiconductor electrode, photoelectric conversion device, and photoelectric conversion method Download PDF

Info

Publication number
JP4211120B2
JP4211120B2 JP04129999A JP4129999A JP4211120B2 JP 4211120 B2 JP4211120 B2 JP 4211120B2 JP 04129999 A JP04129999 A JP 04129999A JP 4129999 A JP4129999 A JP 4129999A JP 4211120 B2 JP4211120 B2 JP 4211120B2
Authority
JP
Japan
Prior art keywords
general formula
photoelectric conversion
formula
semiconductor electrode
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04129999A
Other languages
Japanese (ja)
Other versions
JP2000243463A (en
Inventor
彰 今井
克洋 佐藤
英一 廣瀬
北斗 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP04129999A priority Critical patent/JP4211120B2/en
Publication of JP2000243463A publication Critical patent/JP2000243463A/en
Application granted granted Critical
Publication of JP4211120B2 publication Critical patent/JP4211120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B5/00Dyes with an anthracene nucleus condensed with one or more heterocyclic rings with or without carbocyclic rings
    • C09B5/62Cyclic imides or amidines of peri-dicarboxylic acids of the anthracene, benzanthrene, or perylene series
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • C09B47/12Obtaining compounds having alkyl radicals, or alkyl radicals substituted by hetero atoms, bound to the phthalocyanine skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • C09B47/12Obtaining compounds having alkyl radicals, or alkyl radicals substituted by hetero atoms, bound to the phthalocyanine skeleton
    • C09B47/14Obtaining compounds having alkyl radicals, or alkyl radicals substituted by hetero atoms, bound to the phthalocyanine skeleton having alkyl radicals substituted by halogen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/611Charge transfer complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Description

【0001】
【発明の属する技術分野】
本発明は、金属酸化物半導体の表面に特定の化合物を吸着させた光半導体電極、並びに、それを用いた光電変換装置及び光電変換方法に関する。
【0002】
【従来の技術】
近年、石油、石炭等の化石燃料に代わるエネルギー資源として太陽光の利用が注目されている。光エネルギーを直接、電気エネルギーに変換する装置としては、シリコンやガリウム−ヒ素などの無機半導体上にpn接合を形成した乾式太陽電池がよく知られており、遠隔地用あるいは携帯用電子機器の電源などとして実用化されている。
しかし、これらの太陽電池は、高い変換効率が得られる一方、製造に要するエネルギー及びコストがきわめて高いため、エネルギー資源として用いることが難しいという問題がある。
【0003】
一方、光エネルギーを電気エネルギーに変換する別の方法として、半導体と電解質溶液との界面で起きる光電気化学反応を利用した湿式太陽電池が知られている。ここで用いられる酸化チタン、酸化錫、酸化亜鉛等の金属酸化物半導体は、前述のシリコン、ガリウム−ヒ素などと比較して、はるかに低いエネルギー、コストで製造が可能であり、将来のエネルギー変換材料として期待されている。
ところが、酸化チタンのような安定な金属酸化物半導体は、バンドギャップが3eV以上と広いため、太陽光の約4%の紫外光しか利用できず、このままでは高い変換効率は望めない。そこで、これら金属酸化物半導体の表面に、増感色素として、シアニン色素やキサンテン系色素、クマリン色素などの有機色素(H.Tsubomura, et.al., Nature.,261, 402 (1976)、M.Matsumura, et.al., Bull. Chem.Soc. Jpn. 50, 2533 (1977)、特開平10-92477号公報、特開平10-93118号公報等)を吸着させて分光増感させることが試みられている。
しかしながら、上記シアニン色素やキサンテン系色素、クマリン色素等を用いた場合、光電変換効率が十分でないという問題がある。
【0004】
【発明が解決しようとする課題】
本発明は、前記従来における諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、太陽光を効率的に利用可能でき、光電変換効率、安定性、耐久性等に優れ、安価にかつ容易に製造し得る光半導体電極、並びに、該光半導体電極を用い、光電変換効率に優れる光電変換装置及び光電変換方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記課題を解決するための手段は以下の通りである。即ち、
<1> 金属酸化物半導体の表面に、下記一般式(I)で表されるテトラシアノアントラキノジメタン化合物及び下記一般式(II)で表されるペリレン化合物から選択される少なくとも1種による光電変換層を有することを特徴とする光半導体電極である。
一般式(I)
【0006】
【化12】
【0007】
前記一般式(I)において、R1及びR2は、互いに同一であっても異なっていてもよいアルキル基を表す。nは、0又は1を表す。
【0009】
一般式( II
【化14】
【0010】
前記一般式(II)において、R3及びR4は、下記一般式(III)、( VI 〜(IX)のいずれかで表される基を表し、これらは互いに同一であってもよいし、異なっていてもよく、少なくとも一方は下記一般式(III) 、( VI )、(VII)及び(IX)のいずれかで表される基を表す
一般式(III)
【0011】
【化15】
【0012】
前記一般式(III)において、R5及びR6は、互いに同一であっても異なっていてもよい芳香族基を表し、これらは置換基で置換されていてもよい。A1は、2価の芳香族基を表す。
一般式(VI)
【0016】
般式(VI)
【0017】
【化18】
【0018】
前記一般式(VI)において、A4は、2価の芳香族基をす。
一般式(VII)
【0019】
【化19】
【0020】
前記一般式(VII)において、A5は、単結合を表す。
一般式(VIII)
【0021】
【化20】
【0022】
前記一般式(VIII)において、A6は、2価の脂肪族基又は−Z−(CH −(Zはp−フェニレン基を表す。)を表す。Yは、−COOHを表す。
一般式(IX)
【0023】
【化21】
【0024】
前記一般式(IX)において、Xは、Cu、TiO又はGa(OH)を表す。
<2> 前記一般式(I)で表されるテトラシアノアントラキノジメタン化合物が、下記一般式(I−a)で表されるテトラシアノアントラキノジメタン化合物である前記<1>に記載の光半導体電極である。
一般式(I−a)
【0025】
【化22】
【0026】
前記一般式(I−a)において、Meはメチル基を表す。nは、0又は1を表す。
<3> 金属酸化物半導体が、酸化チタン、酸化スズ、酸化タングステン、酸化亜鉛、酸化インジウム、酸化ニオブ、酸化ニッケル、酸化コバルト及びチタン酸ストロンチウムから選択される少なくとも1種である前記<1>又は<2>に記載の光半導体電極である。
<4> 電解質に接触させた一対の電極と、該一対の電極を通電可能に接続する接続手段とを少なくとも有してなり、該一対の電極の少なくとも一方が、前記<1>から<3>のいずれかに記載の光半導体電極であることを特徴とする光電変換装置である。
<5> 互いに通電可能に接続された一対の電極を電解質に接触させ、該一対の電極の少なくとも一方に光を照射することにより光電変換反応を生じさせる光電変換方法であって、光が照射される電極が、前記<1>から<3>のいずれかに記載の光半導体電極であることを特徴とする光電変換方法である。
【0027】
【発明の実施の形態】
(光半導体電極)
本発明の光半導体電極は、金属酸化物半導体の表面に、下記一般式(I)で表されるテトラシアノアントラキノジメタン化合物及び下記一般式(II)で表されるペリレン化合物から選択される少なくとも1種による光電変換層を有する。
【0028】
―金属酸化物半導体―
前記金属酸化物半導体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、酸化チタン、酸化スズ、酸化タングステン、酸化亜鉛、酸化インジウム、酸化ニオブ、チタン酸ストロンチウム、などが挙げられる。
これらは1種単独で使用してもよいし、2種以上を併用してもよい。本発明においては、これらの中でも、光電変換特性、化学的安定性、製造容易性等の理由から、酸化チタンが特に好ましい。
【0029】
前記金属酸化物半導体の形状、構造、大きさ等については、特に制限はなく、目的に応じて適宜選択することができる。例えば、前記金属酸化物半導体の構造としては、該金属酸化物半導体のみからなる構造であってもよいし、ITOガラス、ネサガラス等の透明電極、白金、銅、黒鉛等の板材、又はメッシュ電極等の導電性基材の上に、該金属酸化物半導体の薄膜層を形成した構造であってもよい。
【0030】
―光電変換層―
前記光電変換層は、前記金属酸化物半導体の表面に、下記一般式(I)で表されるテトラシアノアントラキノジメタン化合物及び下記一般式(II)で表されるペリレン化合物から選択される少なくとも1種が吸着されて形成される。
一般式(I)
【0031】
【化23】
【0032】
前記一般式(I)において、R1及びR2は、互いに同一であっても異なっていてもよいアルキル基を表す。nは、0又は1を表す。
【0033】
一般式(II)
【化25】
【0034】
前記一般式(II)において、R3及びR4は、下記一般式(III)、( VI 〜(IX)のいずれかで表される基を表し、これらは互いに同一であってもよいし、異なっていてもよく、少なくとも一方は下記一般式(III) 、( VI )、(VII)及び(IX)のいずれかで表される基を表す
一般式(III)
【0035】
【化26】
【0036】
前記一般式(III)において、R5及びR6は、互いに同一であっても異なっていてもよい芳香族基を表し、これらは置換基で置換されていてもよい。A1は、2価の芳香族基を表す。
【0040】
般式(VI)
【0041】
【化29】
【0042】
前記一般式(VI)において、A4は、2価の芳香族基をす。
一般式(VII)
【0043】
【化30】
【0044】
前記一般式(VII)において、A5は、単結合を表す。
一般式(VIII)
【0045】
【化31】
【0046】
前記一般式(VIII)において、A6は、2価の脂肪族基又は−Z−(CH −(Zはp−フェニレン基を表す。)を表す。Yは、−COOHを表す。
一般式(IX)
【0047】
【化32】
【0048】
前記一般式(IX)において、Xは、Cu、TiO又はGa(OH)を表す。
【0049】
前記一般式(I)で表されるテトラシアノアントラキノジメタン化合物の好ましい具体例としては、下記化合物(I−1〜14)が挙げられる。なお、n=0の場合の具体例を表1に示し、n=1の場合の具体例を表2に示した。
【0050】
【表1】
【0051】
【表2】
【0052】
本発明においては、これらの中でも、光電変換効率、吸収波長域、製造の容易さ等の点で、下記一般式(I−a)で表されるテトラシアノアントラキノジメタン化合物が特に好ましい(前記例示化合物(I−1)で表される化合物)。
一般式(I−a)
【0053】
【化33】
前記一般式(I−a)において、Meはメチル基を表す。nは、0又は1を表す。
【0054】
前記一般式(I)で表されるテトラシアノアントラキノジメタン化合物は、例えば、特開昭63-104062号公報に記載の、下記一般式(A)で表されるアンスラキノン誘導体と、下記一般式(B)で表されるマロノニトリルとを反応させる方法により、あるいは特開昭58-55450号公報等に記載の方法により、合成することができる。
【0055】
【化34】
【0056】
【化35】
【0057】
前記一般式(I)で表されるテトラシアノアントラキノジメタン化合物は、電子受容性部分と電子供与性部分とを有し、吸収波長域が700nm程度の長波長域まで伸びており、また、発生した電荷を効率よく分離、移動可能であるため、高効率で分光増感することができる。
【0058】
前記一般式(II)で表されるペリレン化合物の好ましい具体例としては、下記化合物(II−1 II −2、 II −4、 II −9、 II −10)が挙げられる。
【0059】
【化36】
【0060】
【化37】
【0062】
【化39】
【0067】
【化44】
【0068】
【化45】
【0072】
【化49】
【0073】
【化49】
【0074】
前記一般式(IX−a)で表されるペリレン化合物の好ましい具体例としては、表3に示す化合物(IX−1〜)が挙げられる。
【0075】
【表3】
【0076】
前記一般式(II)で表されるペリレン化合物において、R3及びR4が同一であり、それぞれ前記一般式(III)、( VI 〜(IX)のいずれかで表される基であるものは、例えば、3,4,9,10-ペリレンテトラカルボン酸無水物と、それぞれ下記一般式(III') 、( VI' )〜(IX')で表される化合物と、を反応させることにより合成することができる。
【0077】
【化50】
【0080】
【化53】
【0081】
【化54】
【0082】
【化55】
【0083】
【化56】
【0084】
また、前記一般式(II)で表されるペリレン化合物において、R3及びR4が互いに異なり、前記一般式(III)、( VI 〜(IX)のいずれかで表される基であるものは、例えば、3,4,9,10-ペリレンテトラカルボン酸無水物と、前記一般式(III') 、( VI' 〜(IX')で表される化合物から選択した2種とを反応させることにより、あるいは、米国特許第4、501、906号明細書等に記載の、3,4,9,10-ペリレンテトラカルボン酸一無水物モノ金属塩と、前記一般式(III') 、( VI' 〜(IX')で表される化合物から選択した2種とを順次反応させることにより、合成することができる。
【0085】
前記一般式(II)で表されるペリレン化合物は、化学的安定性、耐久性に優れ、また前記金属酸化物半導体の表面での保持性に優れており、長期間にわたり安定かつ高効率に分光増感することができる。
【0086】
―光電変換層の形成―
前記光電変換層は、前記一般式(I)で表されるテトラシアノアントラキノジメタン化合物及び前記(II)で表されるペリレン化合物から選択される少なくとも1種を溶媒に添加し、これを溶解した溶液中に、前記金属酸化物半導体を浸漬することにより、該金属酸化物半導体の表面に容易に形成することができる。
【0087】
前記溶媒としては、得に制限はなく、目的に応じて適宜公知の溶媒の中から選択することができ、例えば、メタノール、イソプロピルアルコール等のアルコール系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、N,N-ジメチルホルムアミド、N-メチルピロリドン等のアミド系溶媒、あるいは水、又はこれらの混合溶媒、などが挙げられる。
これらは1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、N,N-ジメチルホルムアミド等のアミド系溶媒が好ましい。
なお、本発明においては、前記一般式(I)で表されるテトラシアノアントラキノジメタン化合物及び前記(II)で表されるペリレン化合物から選択される少なくとも1種の前記溶媒への溶解性を向上させる目的で、酸性物質、塩基性物質などを該溶媒中に添加してもよい。
【0088】
前記浸漬は、室温で行ってもよいし、前記一般式(I)で表されるテトラシアノアントラキノジメタン化合物及び前記(II)で表されるペリレン化合物から選択される少なくとも1種の前記金属酸化物半導体への吸着を促進するため、必要に応じて加熱等してもよい。
【0089】
前記浸漬後は、任意の溶媒等を用いて洗浄した後、乾燥等することにより、前記金属酸化物半導体の表面に、前記一般式(I)で表されるテトラシアノアントラキノジメタン化合物及び前記(II)で表されるペリレン化合物から選択される少なくとも1種が吸着されて形成された光電変換層を有する光半導体電極が得られる。
【0090】
本発明の半導体電極は、広い分野で好適に使用することができ、特に以下の本発明の光電変換装置及び光電変換方法に好適に使用することができる。
【0091】
(光電変換装置)
本発明の光電変換装置は、電解質に接触させた一対の電極と、該一対の電極を通電可能に接続する接続手段とを少なくとも有してなり、更に必要に応じて適宜選択したその他の手段を有していてもよい。
【0092】
前記一対の電極における一方は、前記本発明の光半導体電極であり、他方は対向電極である。
前記対向電極としては、酸化及び還元に対し、安定なものであれば特に制限はなく、目的に応じて公知のものから適宜選択することができ、例えば、白金、金、黒鉛等の板材、ITOガラス、ネサガラス等の透明電極、などが挙げられる。
【0093】
前記接続手段としては、前記一対の電極を通電可能に接続し得る機能を有する限り特に制限はなく、公知のリード線、あるいは各種金属、炭素、金属酸化物等の導電性材料からなる線材、板材、印刷膜又は蒸着膜、などが挙げられる。該接続手段は、前記一対の電極に通電可能に接続される。
【0094】
前記電解質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、塩化カリウム、塩化リチウム、過塩素酸テトラエチルアンモニウム等の塩類、水酸化ナトリウム、炭酸カリウム等のアルカリ類、硫酸、塩酸等の酸類、これらの混合物、あるいはこれらの水溶液、あるいはこれらのアルコール、プロピレンカーボネート等の非水溶媒溶液、などが挙げられる。
本発明においては、光電流特性の安定化を図る等の目的で、前記電解質に、更にヨウ化カリウム、ヨウ素、p-ベンゾキノン等の、可逆的に酸化還元反応を生ずるレドックス剤を添加してもよい。
本発明の光電変換装置は、以下の本発明の光電変換方法に好適に使用することができる。
【0095】
(光電変換方法)
本発明の光電変換方法においては、互いに通電可能に接続された前記一対の電極を前記電解質に接触させ、該一対の電極の少なくとも一方に光を照射することにより光電変換反応を生じさせる
【0096】
前記一対の電極において、光が照射される電極は、前記本発明の光半導体電極であり、他方は前記対向電極である。
【0097】
−光電変換反応−
本発明の光電変換装置及び光電変換方法においては、以下のようにして光電変換反応が生じる。
即ち、まず、前記光半導体電極と前記対向電極とを前記電解質(溶液)中に浸漬する。次に、前記光半導体電極に、前記一般式(I)で表されるテトラシアノアントラキノジメタン化合物及び前記一般式(II)で表されるペリレン化合物から選択される少なくとも1種の吸収波長域の単色光、又はそのいずれかの帯域を包含する白色光又は多色光を照射すると、これらの光エネルギーが電気エネルギーに変換される。
【0098】
本発明の半導体電極並びに該半導体電極を用いた光電変換装置及び光電変換方法によれば、特に照射する光として300〜700nmの可視光を照射しても、良好な光電変換効率が得られ、また、酸化チタン等の金属酸化物半導体単独では利用できない可視光の波長域まで有効に利用することができ、太陽光などの光のエネルギーを効率良く電気エネルギーに変換することができる。
【0099】
【実施例】
以下、本発明の実施例について説明するが、本発明はこれらの実施例に何ら限定されるものではない。
【0100】
(実施例1)
オルトチタン酸テトライソプロピル25mlを、純水150mlと濃硝酸1.54g(比重:1.38)との混合溶液中に、激しく撹拌しながら徐々に添加した。さらに撹拌を続けながら80℃に昇温し、同温度で8時間撹拌を続け、乳白色の安定な酸化チタンコロイド溶液を調製した。この酸化チタンコロイド溶液を30mmHgの減圧下30℃で40mlまで濃縮した。
前記酸化チタンコロイド溶液を、ITOの層が被覆されたガラス基板(以下「ITOガラス基板」と称する)上にスピンコート法でコーティングし、500℃で1時間焼成した。この操作を3回繰り返し、厚みが約1.0μmの酸化チタン層をITOガラス基板上に形成した。得られた酸化チタン膜の結晶構造をX線回折法により確認したところ、アナタース型とルチル型との混合物であった。前記酸化チタン層を担持したITOガラス基板を、金属酸化物半導体として用いた。
【0101】
この金属酸化物半導体を、前記例示化合物(I−1)の100mgをN,N-ジメチルホルムアミド50mlに溶解した溶液に約90℃で12時間浸漬させた後、アセトン、メタノールの順で洗浄し、自然乾燥させた。以上により、前記金属酸化物ン半導体の表面に、前記例示化合物(I−1)による光電変換層を吸着形成した。
【0102】
次に、ガラス基板に被覆されたITOの層部分にリード線を接続した。なお、前記リード線の接続部は、エポキシ樹脂で被覆し固着した。以上により光半導体電極を作製した。
【0103】
図1は、作製した光半導体電極を説明するための概略説明図である。光半導体電極1は、ガラス基材2上に、ITOの層3、酸化チタン層4、及び前記例示化合物(I−1)による光電変換層5を、この順に有してなる。なお、ITOの層3とリード線7との接続部は、固着剤6としてのエポキシ樹脂で被覆され、固着されており、該接続部においては、リード線7はガラス管8中に収容されている。
【0104】
図2は、前記光半導体電極を備えた光電変換装置を用いての光電変換方法を説明するための概略説明図である。ここでは、作製した光半導体電極1、対向電極9として白金電極、及び、参照電極10として飽和カロメル電極、が透明ガラスセル13中、電解質溶液11中に浸漬されている。電解質溶液11は、0.1M-硫酸ナトリウム/0.02M-ヨウ化カリウム水溶液である。各々の電極は、接続手段としてリード線7を介してポテンショスタット12に接続され、通電可能になっている。
【0105】
この光電変換装置において、前記光半導体電極1の電位が参照電極10に対して0Vになるように保持して、白色光(500Wのキセノンランプ、照度4000lux)を光半導体電極の裏側より照射し、この時の光電流の値をポテンショスタットにより測定した。その測定結果を表4に示した。
【0106】
(実施例2)
実施例1において、例示化合物(I−1)を例示化合物(I−3)に代えた外は、実施例1と同様にして光半導体電極及び光電変換装置を作製し、光電変換方法を実施し、光電流の測定を行った。その測定結果を表4に示した。
【0107】
(実施例3)
実施例1において、例示化合物(I−1)を例示化合物(I−)に代えた外は、実施例1と同様にして光半導体電極及び光電変換装置を作製し、光電変換方法を実施し、光電流の測定を行った。その測定結果を表4に示した。
【0108】
(比較例1)
実施例1において、例示化合物(I−1)を用いなかった外は、実施例1と同様にして光半導体電極及び光電変換装置を作製し、光電変換方法を実施し、光電流の測定を行った。その測定結果を表4に示した。
【0109】
(比較例2)
実施例1において、例示化合物(I−1)を2,4,5,7-テトラヨードフルオレセインに代えた外は、実施例 1と同様にして光半導体電極及び光電変換装置を作製し、光電変換方法を実施し、光電流の測定を行った。その測定結果を表4に示した。
【0110】
(比較例3)
実施例1において、例示化合物(I−1)を(テトラカルボキフタロシアニナト)銅(II)に代えた外は、実施例 1と同様にして光半導体電極及び光電変換装置を作製し、光電変換方法を実施し、光電流の測定を行った。その測定結果を表4に示した。
【0111】
【表4】
【0112】
(実施例4)
実施例1において、金属酸化物半導体を、前記例示化合物(I−1)の100mgをN,N-ジメチルホルムアミド50mlに溶解した溶液に約90℃で12時間浸漬させた代わりに、例示化合物(II−4)の50mgを2%水酸化テトラ(n-ブチル)アンモニウム/エタノール溶液50mlに溶解した溶液に70〜80℃で1時間浸漬させた外は実施例1と同様にして光半導体電極及び光電変換装置を作製し、光電変換方法を実施し、光電流の測定を行った。その測定結果を表5に示した。
【0113】
(実施例5)
実施例4において、例示化合物(II−4)を例示化合物(II−9)に代えた外は、実施例4と同様にして光半導体電極及び光電変換装置を作製し、光電変換方法を実施し、光電流の測定を行った。その測定結果を表5に示した。
【0114】
(実施例6)
実施例4において、例示化合物(II−4)を例示化合物(II−10)に代えた外は、実施例4と同様にして光半導体電極及び光電変換装置を作製し、光電変換方法を実施し、光電流の測定を行った。その測定結果を表5に示した。
【0115】
(比較例4)
実施例4において、例示化合物(II−4)を用いなかった外は、実施例4と同様にして光半導体電極及び光電変換装置を作製し、光電変換方法を実施し、光電流の測定を行った。その測定結果を表5に示した。
【0116】
(比較例5)
実施例4において、例示化合物(II−4)を2,4,5,7-テトラヨードフルオレセインに代えた外は、実施例4と同様にして光半導体電極及び光電変換装置を作製し、光電変換方法を実施し、光電流の測定を行った。その測定結果を表5に示した。
【0117】
【表5】
【0118】
(実施例7)
実施例1において、金属酸化物半導体を、前記例示化合物(I−1)の100mgをN,N-ジメチルホルムアミド50mlに溶解した溶液に約90℃で12時間浸漬させた代わりに、例示化合物(IX−)の100mg をN,N-ジメチルホルムアミド50mlに溶解した溶液に80〜100℃で1時間浸漬させた外は実施例1と同様にして光半導体電極及び光電変換装置を作製し、光電変換方法を実施し、光電流の測定を行った。その測定結果を表6に示した。
【0119】
(実施例8)
実施例7において、例示化合物(IX−)を例示化合物(IX−)に代えた外は、実施例7と同様にして光半導体電極及び光電変換装置を作製し、光電変換方法を実施し、光電流の測定を行った。その測定結果を表6に示した。
【0120】
(実施例9)
実施例7において、例示化合物(IX−)を例示化合物(IX−)に代えた外は、実施例7と同様にして光半導体電極及び光電変換装置を作製し、光電変換方法を実施し、光電流の測定を行った。その測定結果を表6に示した。
【0121】
(比較例6)
実施例7において、例示化合物(IX−)を用いなかった外は、実施例7と同様にして光半導体電極及び光電変換装置を作製し、光電変換方法を実施し、光電流の測定を行った。その測定結果を表6に示した。
【0122】
(比較例7)
実施例7において、例示化合物(IX−)を2,4,5,7-テトラヨード-3',4',5',6'-テトラクロロフルオレセインに代えた外は、実施例7と同様にして光半導体電極及び光電変換装置を作製し、光電変換方法を実施し、光電流の測定を行った。その測定結果を表6に示した。
【0123】
(比較例8)
実施例7において、例示化合物(IX−)を(テトラカルボキシフタロシアニナト)銅(II)に代えた外は、実施例7と同様にして光半導体電極及び光電変換装置を作製し、光電変換方法を実施し、光電流の測定を行った。その測定結果を表6に示した。
【0124】
【表6】
【0125】
【発明の効果】
本発明によると、太陽光を効率的に利用可能でき、光電変換効率、安定性、耐久性等に優れ、安価にかつ容易に製造し得る光半導体電極、並びに、該光半導体電極を用い、光電変換効率に優れる光電変換装置及び光電変換方法を提供することができる。
【図面の簡単な説明】
【図1】 図1は、本発明の光半導体電極の概略説明図である。
【図2】 図2は、図1の光半導体電極を備えた光電変換装置を用いての光電変換方法を説明するための概略説明図である。
【図3】 図3は、実施例4の光半導体電極の紫外可視吸収スペクトルである。
【図4】 図4は、実施例7の光半導体電極の紫外可視吸収スペクトルである。
【符号の説明】
1 光半導体電極
2 ガラス基板
3 ITOの層
4 酸化チタン層
5 光電変換層
6 固着剤
7 リード線
8 ガラス管
9 対向電極
10 参照電極
11 電解質溶液
12 ポテンショスタット
13 透明ガラスセル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photo semiconductor electrode in which a specific compound is adsorbed on the surface of a metal oxide semiconductor, and a photoelectric conversion device and a photoelectric conversion method using the same.
[0002]
[Prior art]
In recent years, the use of sunlight has attracted attention as an energy resource to replace fossil fuels such as oil and coal. As a device for directly converting light energy into electric energy, a dry solar cell in which a pn junction is formed on an inorganic semiconductor such as silicon or gallium-arsenic is well known, and it is a power source for remote or portable electronic devices. Has been put to practical use.
However, these solar cells have a problem that, while high conversion efficiency is obtained, energy and cost required for production are extremely high, and thus it is difficult to use as an energy resource.
[0003]
On the other hand, as another method for converting light energy into electric energy, a wet solar cell using a photoelectrochemical reaction occurring at the interface between a semiconductor and an electrolyte solution is known. The metal oxide semiconductors used here, such as titanium oxide, tin oxide, and zinc oxide, can be manufactured at much lower energy and cost than the aforementioned silicon, gallium-arsenide, etc., and future energy conversion Expected as a material.
However, since a stable metal oxide semiconductor such as titanium oxide has a wide band gap of 3 eV or more, only about 4% of ultraviolet light of sunlight can be used, and high conversion efficiency cannot be expected as it is. Therefore, on the surface of these metal oxide semiconductors, organic dyes such as cyanine dyes, xanthene dyes, coumarin dyes (H.Tsubomura, et.al., Nature., 261, 402 (1976), M .Matsumura, et.al., Bull. Chem. Soc. Jpn. 50, 2533 (1977), JP-A-10-92477, JP-A-10-93118, etc.) can be adsorbed and spectrally sensitized. Has been tried.
However, when the above cyanine dye, xanthene dye, coumarin dye or the like is used, there is a problem that the photoelectric conversion efficiency is not sufficient.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to solve the conventional problems and achieve the following objects. That is, the present invention can use sunlight efficiently, is excellent in photoelectric conversion efficiency, stability, durability, etc., and can be manufactured inexpensively and easily, as well as using the optical semiconductor electrode, An object of the present invention is to provide a photoelectric conversion device and a photoelectric conversion method that are excellent in photoelectric conversion efficiency.
[0005]
[Means for Solving the Problems]
Means for solving the above-mentioned problems are as follows. That is,
<1> On the surface of a metal oxide semiconductor, photoelectric conversion by at least one selected from a tetracyanoanthraquinodimethane compound represented by the following general formula (I) and a perylene compound represented by the following general formula (II) An optical semiconductor electrode having a conversion layer.
Formula (I)
[0006]
Embedded image
[0007]
In the general formula (I), R 1 and R 2, to display the good ear alkyl group optionally being the same or different. n represents 0 or 1.
[0009]
General formula ( II )
Embedded image
[0010]
In the general formula (II), R 3 and R 4 represent a group represented by any one of the following general formulas (III) , ( VI ) to (IX), and these may be the same as each other. , At least one of the following general formula (III) , ( VI ), (VII) and (IX) .
Formula (III)
[0011]
Embedded image
[0012]
In Formula (III), R 5 and R 6 represent a good IKaoru aromatic group optionally being the same or different, they may be substituted with a substituent. A 1 represents a divalent Kaoru aromatic group.
General formula (VI)
[0016]
One general formula (VI)
[0017]
Embedded image
[0018]
In the general formula (VI), A 4 is to display the divalent Kaoru aromatic group.
Formula (VII)
[0019]
Embedded image
[0020]
In the general formula (VII), A 5 is to display the single bond.
Formula (VIII)
[0021]
Embedded image
[0022]
In the general formula (VIII), A 6 represents a divalent aliphatic group or —Z— (CH 2 ) 2 — (Z represents a p-phenylene group). Y represents -COO H.
General formula (IX)
[0023]
Embedded image
[0024]
In the general formula (IX), X represents a C u, Ti O or G a (OH).
<2> The tetracyanoanthraquinodimethane compound represented by the general formula (I) is a tetracyanoanthraquinodimethane compound represented by the following general formula (Ia). It is an optical semiconductor electrode.
Formula (Ia)
[0025]
Embedded image
[0026]
In the general formula (Ia), Me represents a methyl group. n represents 0 or 1.
<3> The above <1>, wherein the metal oxide semiconductor is at least one selected from titanium oxide, tin oxide, tungsten oxide, zinc oxide, indium oxide, niobium oxide, nickel oxide, cobalt oxide, and strontium titanate. It is an optical semiconductor electrode as described in <2>.
<4> At least a pair of electrodes brought into contact with the electrolyte and connection means for connecting the pair of electrodes so as to be energized, wherein at least one of the pair of electrodes is from the above <1> to <3> A photoelectric conversion device characterized in that it is an optical semiconductor electrode according to any one of the above.
<5> A photoelectric conversion method for causing a photoelectric conversion reaction by bringing a pair of electrodes connected to each other to be energized into contact with an electrolyte and irradiating at least one of the pair of electrodes with light. The photoelectric conversion method is characterized in that the electrode is an optical semiconductor electrode according to any one of <1> to <3>.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
(Photosemiconductor electrode)
The photo semiconductor electrode of the present invention is selected from a tetracyanoanthraquinodimethane compound represented by the following general formula (I) and a perylene compound represented by the following general formula (II) on the surface of the metal oxide semiconductor. It has at least one type of photoelectric conversion layer.
[0028]
―Metal oxide semiconductor―
The metal oxide semiconductor is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include titanium oxide, tin oxide, tungsten oxide, zinc oxide, indium oxide, niobium oxide, and strontium titanate. Can be mentioned.
These may be used individually by 1 type and may use 2 or more types together. In the present invention, among these, titanium oxide is particularly preferable because of photoelectric conversion characteristics, chemical stability, ease of production, and the like.
[0029]
There is no restriction | limiting in particular about the shape of a metal oxide semiconductor, a structure, a magnitude | size, It can select suitably according to the objective. For example, the structure of the metal oxide semiconductor may be a structure composed only of the metal oxide semiconductor, a transparent electrode such as ITO glass or nesa glass, a plate material such as platinum, copper, or graphite, or a mesh electrode. A structure in which a thin film layer of the metal oxide semiconductor is formed on the conductive substrate may be used.
[0030]
―Photoelectric conversion layer―
The photoelectric conversion layer is at least selected from a tetracyanoanthraquinodimethane compound represented by the following general formula (I) and a perylene compound represented by the following general formula (II) on the surface of the metal oxide semiconductor. One species is adsorbed and formed.
Formula (I)
[0031]
Embedded image
[0032]
In the general formula (I), R 1 and R 2, to display the good ear alkyl group optionally being the same or different. n represents 0 or 1.
[0033]
Formula (II)
Embedded image
[0034]
In the general formula (II), R 3 and R 4 represent a group represented by any one of the following general formulas (III) , ( VI ) to (IX), and these may be the same as each other. , At least one of the following general formula (III) , ( VI ), (VII) and (IX) .
Formula (III)
[0035]
Embedded image
[0036]
In Formula (III), R 5 and R 6 represent a good IKaoru aromatic group optionally being the same or different, they may be substituted with a substituent. A 1 represents a divalent Kaoru aromatic group.
[0040]
One general formula (VI)
[0041]
Embedded image
[0042]
In the general formula (VI), A 4 is to display the divalent Kaoru aromatic group.
Formula (VII)
[0043]
Embedded image
[0044]
In the general formula (VII), A 5 is to display the single bond.
Formula (VIII)
[0045]
Embedded image
[0046]
In the general formula (VIII), A 6 represents a divalent aliphatic group or —Z— (CH 2 ) 2 — (Z represents a p-phenylene group). Y represents -COO H.
General formula (IX)
[0047]
Embedded image
[0048]
In the general formula (IX), X represents a C u, Ti O or G a (OH).
[0049]
Preferable specific examples of the tetracyanoanthraquinodimethane compound represented by the general formula (I) include the following compounds (I-1 to 14 ). Specific examples in the case of n = 0 are shown in Table 1, and specific examples in the case of n = 1 are shown in Table 2.
[0050]
[Table 1]
[0051]
[Table 2]
[0052]
In the present invention, among these, a tetracyanoanthraquinodimethane compound represented by the following general formula (Ia) is particularly preferable in terms of photoelectric conversion efficiency, absorption wavelength range, ease of production, etc. Compound represented by Exemplary Compound (I-1)).
Formula (Ia)
[0053]
Embedded image
In the general formula (Ia), Me represents a methyl group. n represents 0 or 1.
[0054]
Examples of the tetracyanoanthraquinodimethane compound represented by the general formula (I) include an anthraquinone derivative represented by the following general formula (A) described in JP-A No. 63-104062, and the following general formula It can be synthesized by a method of reacting with malononitrile represented by the formula (B) or by a method described in JP-A-58-55450.
[0055]
Embedded image
[0056]
Embedded image
[0057]
The tetracyanoanthraquinodimethane compound represented by the general formula (I) has an electron-accepting moiety and an electron-donating moiety, and the absorption wavelength range extends to a long wavelength range of about 700 nm. Since the generated charges can be separated and moved efficiently, spectral sensitization can be performed with high efficiency.
[0058]
Preferable specific examples of the perylene compound represented by the general formula (II) include the following compounds (II-1 , II- 2, II- 4, II- 9, II- 10 ).
[0059]
Embedded image
[0060]
Embedded image
[0062]
Embedded image
[0067]
Embedded image
[0068]
Embedded image
[0072]
Embedded image
[0073]
Embedded image
[0074]
Preferable specific examples of the perylene compound represented by the general formula (IX-a) include compounds (IX-1 to 3 ) shown in Table 3.
[0075]
[Table 3]
[0076]
In the perylene compound represented by the general formula (II), R 3 and R 4 are the same and each is a group represented by any one of the general formulas (III) , ( VI ) to (IX) Is, for example, 3,4,9,10-perylenetetracarboxylic acid anhydride and the following general formula (III ′) , ( VI ′ ) to (IX ′) can be synthesized by reacting with each other.
[0077]
Embedded image
[0080]
Embedded image
[0081]
Embedded image
[0082]
Embedded image
[0083]
Embedded image
[0084]
In the perylene compound represented by the general formula (II), R 3 and R 4 are different from each other and are groups represented by any one of the general formulas (III) , ( VI ) to (IX). Is, for example, 3,4,9,10-perylenetetracarboxylic acid anhydride and the general formula (III ′) , ( VI ′ ) to (IX ′) by reacting with two kinds selected from the compounds represented by the formulas described in US Pat. No. 4,501,906, etc. , 10-perylenetetracarboxylic acid monoanhydride monometallic salt and the general formula (III ′) , ( VI ′ ) to (IX ′) can be synthesized by sequentially reacting with two kinds selected from the compounds represented by (IX ′).
[0085]
The perylene compound represented by the general formula (II) has excellent chemical stability and durability, and excellent retention on the surface of the metal oxide semiconductor, allowing stable and efficient spectroscopy over a long period of time. It can be sensitized.
[0086]
-Formation of photoelectric conversion layer-
The photoelectric conversion layer is prepared by adding at least one selected from the tetracyanoanthraquinodimethane compound represented by the general formula (I) and the perylene compound represented by the formula (II) to a solvent and dissolving the solvent. The metal oxide semiconductor can be easily formed on the surface of the metal oxide semiconductor by immersing the metal oxide semiconductor in the solution.
[0087]
The solvent is not particularly limited and can be appropriately selected from known solvents according to the purpose. For example, alcohol solvents such as methanol and isopropyl alcohol, ketone solvents such as acetone and methyl ethyl ketone, N Amide solvents such as N-dimethylformamide and N-methylpyrrolidone, water, or a mixed solvent thereof.
These may be used individually by 1 type and may use 2 or more types together. Among these, amide solvents such as N, N-dimethylformamide are preferable.
In the present invention, the solubility in at least one kind of the solvent selected from the tetracyanoanthraquinodimethane compound represented by the general formula (I) and the perylene compound represented by the above (II) is used. For the purpose of improving, an acidic substance, a basic substance or the like may be added to the solvent.
[0088]
The immersion may be performed at room temperature, or at least one metal selected from the tetracyanoanthraquinodimethane compound represented by the general formula (I) and the perylene compound represented by the formula (II). In order to promote adsorption to the oxide semiconductor, heating or the like may be performed as necessary.
[0089]
After the immersion, the tetracyanoanthraquinodimethane compound represented by the general formula (I) and the surface of the metal oxide semiconductor are dried on the surface of the metal oxide semiconductor by washing with an arbitrary solvent and the like. An optical semiconductor electrode having a photoelectric conversion layer formed by adsorbing at least one selected from the perylene compounds represented by (II) is obtained.
[0090]
The semiconductor electrode of the present invention can be suitably used in a wide field, and can be particularly suitably used for the following photoelectric conversion device and photoelectric conversion method of the present invention.
[0091]
(Photoelectric conversion device)
The photoelectric conversion device of the present invention has at least a pair of electrodes brought into contact with an electrolyte and a connection means for connecting the pair of electrodes so as to be energized, and further includes other means appropriately selected as necessary. You may have.
[0092]
One of the pair of electrodes is the optical semiconductor electrode of the present invention, and the other is a counter electrode.
The counter electrode is not particularly limited as long as it is stable against oxidation and reduction, and can be appropriately selected from known materials according to the purpose. For example, a plate material such as platinum, gold, and graphite, ITO Examples thereof include transparent electrodes such as glass and nesa glass.
[0093]
The connecting means is not particularly limited as long as it has a function capable of connecting the pair of electrodes so as to be energized, and is a known lead wire, or a wire or plate made of a conductive material such as various metals, carbon, or metal oxide. , Printed film or vapor-deposited film. The connecting means is connected to the pair of electrodes so as to be energized.
[0094]
The electrolyte is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include salts such as potassium chloride, lithium chloride and tetraethylammonium perchlorate, alkalis such as sodium hydroxide and potassium carbonate, sulfuric acid And acids such as hydrochloric acid, mixtures thereof, aqueous solutions thereof, non-aqueous solvent solutions of alcohols and propylene carbonate, and the like.
In the present invention, a redox agent that reversibly causes a redox reaction, such as potassium iodide, iodine, or p-benzoquinone, may be added to the electrolyte for the purpose of stabilizing the photocurrent characteristics. Good.
The photoelectric conversion device of the present invention can be suitably used for the following photoelectric conversion method of the present invention.
[0095]
(Photoelectric conversion method)
In the photoelectric conversion method of the present invention, the pair of electrodes that are connected to each other to be energized are brought into contact with the electrolyte, and at least one of the pair of electrodes is irradiated with light to cause a photoelectric conversion reaction.
In the pair of electrodes, the electrode irradiated with light is the optical semiconductor electrode of the present invention, and the other is the counter electrode.
[0097]
-Photoelectric conversion reaction-
In the photoelectric conversion device and photoelectric conversion method of the present invention, a photoelectric conversion reaction occurs as follows.
That is, first, the optical semiconductor electrode and the counter electrode are immersed in the electrolyte (solution). Next, at least one absorption wavelength region selected from the tetracyanoanthraquinodimethane compound represented by the general formula (I) and the perylene compound represented by the general formula (II) is used for the optical semiconductor electrode. When monochromatic light, or white light or polychromatic light including any band thereof is irradiated, these light energies are converted into electrical energy.
[0098]
According to the semiconductor electrode of the present invention, and the photoelectric conversion device and photoelectric conversion method using the semiconductor electrode, even when irradiated with visible light of 300 to 700 nm, particularly good photoelectric conversion efficiency is obtained. In addition, it can be effectively used up to a visible light wavelength range that cannot be used by a metal oxide semiconductor such as titanium oxide alone, and light energy such as sunlight can be efficiently converted into electric energy.
[0099]
【Example】
Examples of the present invention will be described below, but the present invention is not limited to these examples.
[0100]
Example 1
25 ml of tetraisopropyl orthotitanate was gradually added to a mixed solution of 150 ml of pure water and 1.54 g of concentrated nitric acid (specific gravity: 1.38) with vigorous stirring. Further, the temperature was raised to 80 ° C. while continuing stirring, and stirring was continued for 8 hours at the same temperature to prepare a milky white stable titanium oxide colloid solution. This titanium oxide colloidal solution was concentrated to 40 ml at 30 ° C. under a reduced pressure of 30 mmHg.
The titanium oxide colloidal solution was coated on a glass substrate coated with an ITO layer (hereinafter referred to as “ITO glass substrate”) by spin coating and baked at 500 ° C. for 1 hour. This operation was repeated three times to form a titanium oxide layer having a thickness of about 1.0 μm on the ITO glass substrate. When the crystal structure of the obtained titanium oxide film was confirmed by X-ray diffraction, it was a mixture of anatase type and rutile type. The ITO glass substrate carrying the titanium oxide layer was used as a metal oxide semiconductor.
[0101]
This metal oxide semiconductor was immersed in a solution of 100 mg of the exemplified compound (I-1) in 50 ml of N, N-dimethylformamide at about 90 ° C. for 12 hours, and then washed with acetone and methanol in this order. Let dry naturally. As described above, the photoelectric conversion layer of the exemplary compound (I-1) was formed by adsorption on the surface of the metal oxide semiconductor.
[0102]
Next, a lead wire was connected to the ITO layer portion coated on the glass substrate. The lead wire connecting portion was covered and fixed with an epoxy resin. The photo semiconductor electrode was produced by the above.
[0103]
FIG. 1 is a schematic explanatory diagram for explaining the produced optical semiconductor electrode. The optical semiconductor electrode 1 comprises, on a glass substrate 2, an ITO layer 3, a titanium oxide layer 4, and a photoelectric conversion layer 5 made of the exemplary compound (I-1) in this order. The connecting portion between the ITO layer 3 and the lead wire 7 is covered and fixed with an epoxy resin as the fixing agent 6, and the lead wire 7 is accommodated in the glass tube 8 in the connecting portion. Yes.
[0104]
FIG. 2 is a schematic explanatory diagram for explaining a photoelectric conversion method using a photoelectric conversion device including the optical semiconductor electrode. Here, the produced optical semiconductor electrode 1, a platinum electrode as the counter electrode 9, and a saturated calomel electrode as the reference electrode 10 are immersed in the electrolyte solution 11 in the transparent glass cell 13. The electrolyte solution 11 is a 0.1M-sodium sulfate / 0.02M-potassium iodide aqueous solution. Each electrode is connected to a potentiostat 12 via a lead wire 7 as connection means, and can be energized.
[0105]
In this photoelectric conversion device, the potential of the optical semiconductor electrode 1 is held at 0 V with respect to the reference electrode 10, and white light (500 W xenon lamp, illuminance 4000 lux) is irradiated from the back side of the optical semiconductor electrode, The value of the photocurrent at this time was measured with a potentiostat. The measurement results are shown in Table 4.
[0106]
(Example 2)
In Example 1, except that Exemplified Compound (I-1) was replaced by Exemplified Compound (I-3), an optical semiconductor electrode and a photoelectric conversion device were prepared in the same manner as in Example 1, and the photoelectric conversion method was carried out. The photocurrent was measured. The measurement results are shown in Table 4.
[0107]
(Example 3)
In Example 1, except that Exemplified Compound (I-1) was replaced by Exemplified Compound (I- 5 ), a photo-semiconductor electrode and a photoelectric conversion device were prepared in the same manner as in Example 1, and the photoelectric conversion method was carried out. The photocurrent was measured. The measurement results are shown in Table 4.
[0108]
(Comparative Example 1)
In Example 1, a photo semiconductor electrode and a photoelectric conversion device were produced in the same manner as in Example 1 except that the exemplary compound (I-1) was not used, the photoelectric conversion method was performed, and the photocurrent was measured. It was. The measurement results are shown in Table 4.
[0109]
(Comparative Example 2)
A photo-semiconductor electrode and a photoelectric conversion device were produced in the same manner as in Example 1 except that Exemplified Compound (I-1) was replaced with 2,4,5,7-tetraiodofluorescein in Example 1, and photoelectric conversion was performed. The method was implemented and the photocurrent was measured. The measurement results are shown in Table 4.
[0110]
(Comparative Example 3)
A photo semiconductor electrode and a photoelectric conversion device were prepared in the same manner as in Example 1 except that the example compound (I-1) in Example 1 was replaced with (tetracarboxphthalocyaninato) copper (II). The method was implemented and the photocurrent was measured. The measurement results are shown in Table 4.
[0111]
[Table 4]
[0112]
(Example 4)
In Example 1, instead of immersing the metal oxide semiconductor in a solution of 100 mg of the exemplified compound (I-1) in 50 ml of N, N-dimethylformamide at about 90 ° C. for 12 hours, the exemplified compound (II -4) in the same manner as in Example 1 except that it was immersed in a solution of 50 mg of 2% tetra (n-butyl) ammonium hydroxide / ethanol in 50 ml of ethanol at 70-80 ° C. for 1 hour. A conversion device was produced, a photoelectric conversion method was performed, and photocurrent was measured. The measurement results are shown in Table 5.
[0113]
(Example 5)
In Example 4, except that Exemplified Compound (II-4) was replaced by Exemplified Compound (II-9), an optical semiconductor electrode and a photoelectric conversion device were produced in the same manner as in Example 4, and the photoelectric conversion method was carried out. The photocurrent was measured. The measurement results are shown in Table 5.
[0114]
(Example 6)
In Example 4, except that Exemplified Compound (II-4) was replaced by Exemplified Compound (II-10), an optical semiconductor electrode and a photoelectric conversion device were prepared in the same manner as in Example 4, and the photoelectric conversion method was carried out. The photocurrent was measured. The measurement results are shown in Table 5.
[0115]
(Comparative Example 4)
In Example 4, a photo semiconductor electrode and a photoelectric conversion device were prepared in the same manner as in Example 4 except that the exemplified compound (II-4) was not used, the photoelectric conversion method was performed, and the photocurrent was measured. It was. The measurement results are shown in Table 5.
[0116]
(Comparative Example 5)
A photo semiconductor electrode and a photoelectric conversion device were produced in the same manner as in Example 4 except that Example Compound (II-4) was replaced with 2,4,5,7-tetraiodofluorescein in Example 4, and photoelectric conversion was performed. The method was implemented and the photocurrent was measured. The measurement results are shown in Table 5.
[0117]
[Table 5]
[0118]
(Example 7)
In Example 1, instead of immersing a metal oxide semiconductor in a solution of 100 mg of the exemplified compound (I-1) in 50 ml of N, N-dimethylformamide at about 90 ° C. for 12 hours, the exemplified compound (IX -1 ) A photo-semiconductor electrode and a photoelectric conversion device were prepared in the same manner as in Example 1 except that 100 mg of 1 ) was immersed in 50 ml of N, N-dimethylformamide at 80 to 100 ° C. for 1 hour. The method was implemented and the photocurrent was measured. The measurement results are shown in Table 6.
[0119]
(Example 8)
In Example 7, except that Exemplified Compound (IX- 1 ) was replaced by Exemplified Compound (IX- 2 ), a photo semiconductor electrode and a photoelectric conversion device were prepared in the same manner as in Example 7, and the photoelectric conversion method was carried out. The photocurrent was measured. The measurement results are shown in Table 6.
[0120]
Example 9
In Example 7, except that Exemplified Compound (IX- 1 ) was replaced by Exemplified Compound (IX- 3 ), an optical semiconductor electrode and a photoelectric conversion device were produced in the same manner as in Example 7, and the photoelectric conversion method was carried out. The photocurrent was measured. The measurement results are shown in Table 6.
[0121]
(Comparative Example 6)
In Example 7, a photo-semiconductor electrode and a photoelectric conversion device were prepared in the same manner as in Example 7 except that the exemplified compound (IX- 1 ) was not used, the photoelectric conversion method was performed, and the photocurrent was measured. It was. The measurement results are shown in Table 6.
[0122]
(Comparative Example 7)
The same procedure as in Example 7 was conducted except that Example Compound (IX- 1 ) was replaced with 2,4,5,7-tetraiodo-3 ′, 4 ′, 5 ′, 6′-tetrachlorofluorescein in Example 7. Then, a photo semiconductor electrode and a photoelectric conversion device were prepared, a photoelectric conversion method was performed, and a photocurrent was measured. The measurement results are shown in Table 6.
[0123]
(Comparative Example 8)
A photo semiconductor electrode and a photoelectric conversion device were produced in the same manner as in Example 7 except that the example compound (IX- 1 ) was replaced with (tetracarboxyphthalocyaninato) copper (II) in Example 7, and photoelectric conversion was performed. The method was implemented and the photocurrent was measured. The measurement results are shown in Table 6.
[0124]
[Table 6]
[0125]
【The invention's effect】
According to the present invention, sunlight can be used efficiently, a photoelectric semiconductor electrode that is excellent in photoelectric conversion efficiency, stability, durability, etc., can be easily manufactured at low cost, and a photoelectric semiconductor using the optical semiconductor electrode. A photoelectric conversion device and a photoelectric conversion method excellent in conversion efficiency can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view of an optical semiconductor electrode of the present invention.
FIG. 2 is a schematic explanatory diagram for explaining a photoelectric conversion method using a photoelectric conversion device including the optical semiconductor electrode of FIG. 1;
FIG. 3 is an ultraviolet-visible absorption spectrum of the optical semiconductor electrode of Example 4.
FIG. 4 is an ultraviolet-visible absorption spectrum of the optical semiconductor electrode of Example 7.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Photo semiconductor electrode 2 Glass substrate 3 ITO layer 4 Titanium oxide layer 5 Photoelectric conversion layer 6 Adhesive agent 7 Lead wire 8 Glass tube 9 Counter electrode 10 Reference electrode 11 Electrolyte solution 12 Potentiostat 13 Transparent glass cell

Claims (5)

金属酸化物半導体の表面に、下記一般式(I)で表されるテトラシアノアントラキノジメタン化合物及び下記一般式(II)で表されるペリレン化合物から選択される少なくとも1種による光電変換層を有することを特徴とする光半導体電極。
一般式(I)
前記一般式(I)において、R1及びR2は、互いに同一であっても異なっていてもよいアルキル基を表す。nは、0又は1を表す。
一般式(II)
前記一般式(II)において、R3及びR4は、下記一般式(III)、(VI)〜(IX)のいずれかで表される基を表し、これらは互いに同一であってもよいし、異なっていてもよく、少なくとも一方は下記一般式(III) 、(VI)、(VII)及び(IX)のいずれかで表される基を表す。
一般式(III)
前記一般式(III)において、R5及びR6は、互いに同一であっても異なっていてもよい芳香族基を表し、これらは置換基で置換されていてもよい。A1は、2価の芳香族基を表す。
一般式(VI)
前記一般式(VI)において、A4は、2価の芳香族基をす。
一般式(VII)
前記一般式(VII)において、A5は、単結合を表す。
一般式(VIII)
前記一般式(VIII)において、A6は、2価の脂肪族基又は−Z−(CH −(Zはp−フェニレン基を表す。)を表す。Yは、−COOHを表す。
一般式(IX)
前記一般式(IX)において、Xは、Cu、TiO又はGa(OH)を表す。
A photoelectric conversion layer comprising at least one selected from a tetracyanoanthraquinodimethane compound represented by the following general formula (I) and a perylene compound represented by the following general formula (II) on the surface of the metal oxide semiconductor: An optical semiconductor electrode comprising:
Formula (I)
In the general formula (I), R 1 and R 2, to display the good ear alkyl group optionally being the same or different. n represents 0 or 1.
Formula (II)
In the general formula (II), R 3 and R 4 represent groups represented by any one of the following general formulas (III) and (VI) to (IX), and these may be the same as each other. May be different, and at least one of them represents a group represented by any one of the following general formulas (III), (VI), (VII) and (IX).
Formula (III)
In Formula (III), R 5 and R 6 represent a good IKaoru aromatic group optionally being the same or different, they may be substituted with a substituent. A 1 represents a divalent Kaoru aromatic group.
General formula (VI)
In the general formula (VI), A 4 is to display the divalent Kaoru aromatic group.
Formula (VII)
In the general formula (VII), A 5 is to display the single bond.
Formula (VIII)
In the general formula (VIII), A 6 represents a divalent aliphatic group or —Z— (CH 2 ) 2 — (Z represents a p-phenylene group). Y represents -COO H.
General formula (IX)
In the general formula (IX), X represents a C u, Ti O or G a (OH).
前記一般式(I)で表されるテトラシアノアントラキノジメタン化合物が、下記一般式(I−a)で表されるテトラシアノアントラキノジメタン化合物である請求項1に記載の光半導体電極。
一般式(I−a)
前記一般式(I−a)において、Meはメチル基を表す。nは、0又は1を表す。
2. The optical semiconductor electrode according to claim 1, wherein the tetracyanoanthraquinodimethane compound represented by the general formula (I) is a tetracyanoanthraquinodimethane compound represented by the following general formula (Ia).
Formula (Ia)
In the general formula (Ia), Me represents a methyl group. n represents 0 or 1.
金属酸化物半導体が、酸化チタン、酸化スズ、酸化タングステン、酸化亜鉛、酸化インジウム、酸化ニオブ、酸化ニッケル、酸化コバルト及びチタン酸ストロンチウムから選択される少なくとも1種である請求項1又は2 に記載の光半導体電極。  3. The metal oxide semiconductor according to claim 1, wherein the metal oxide semiconductor is at least one selected from titanium oxide, tin oxide, tungsten oxide, zinc oxide, indium oxide, niobium oxide, nickel oxide, cobalt oxide, and strontium titanate. Photo semiconductor electrode. 電解質に接触させた一対の電極と、該一対の電極を通電可能に接続する接続手段とを少なくとも有してなり、該一対の電極の少なくとも一方が、請求項1から3のいずれかに記載の光半導体電極であることを特徴とする光電変換装置。  It has at least one pair of electrodes which contacted electrolyte, and the connection means which connects this pair of electrodes so that electricity supply is possible, At least one of this pair of electrodes is in any one of Claims 1-3. A photoelectric conversion device characterized by being an optical semiconductor electrode. 互いに通電可能に接続された一対の電極を電解質に接触させ、該一対の電極の少なくとも一方に光を照射することにより光電変換反応を生じさせる光電変換方法であって、光が照射される電極が、請求項1から3のいずれかに記載の光半導体電極であることを特徴とする光電変換方法。  A photoelectric conversion method for causing a photoelectric conversion reaction by bringing a pair of electrodes connected to each other to be energized into contact with an electrolyte and irradiating at least one of the pair of electrodes with light. A photoelectric conversion method comprising the optical semiconductor electrode according to any one of claims 1 to 3.
JP04129999A 1999-02-19 1999-02-19 Photo-semiconductor electrode, photoelectric conversion device, and photoelectric conversion method Expired - Fee Related JP4211120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04129999A JP4211120B2 (en) 1999-02-19 1999-02-19 Photo-semiconductor electrode, photoelectric conversion device, and photoelectric conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04129999A JP4211120B2 (en) 1999-02-19 1999-02-19 Photo-semiconductor electrode, photoelectric conversion device, and photoelectric conversion method

Publications (2)

Publication Number Publication Date
JP2000243463A JP2000243463A (en) 2000-09-08
JP4211120B2 true JP4211120B2 (en) 2009-01-21

Family

ID=12604600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04129999A Expired - Fee Related JP4211120B2 (en) 1999-02-19 1999-02-19 Photo-semiconductor electrode, photoelectric conversion device, and photoelectric conversion method

Country Status (1)

Country Link
JP (1) JP4211120B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4085421B2 (en) 2002-08-23 2008-05-14 ソニー株式会社 Dye-sensitized photoelectric conversion device and manufacturing method thereof
JP4189199B2 (en) * 2002-10-29 2008-12-03 三井化学株式会社 Organic solar cells
JP2004234988A (en) 2003-01-30 2004-08-19 Sony Corp Photoelectric conversion element and its manufacturing method, electronic device and its manufacturing method, and semiconductor layer and its manufacturing method
JP4963343B2 (en) * 2004-09-08 2012-06-27 日本化薬株式会社 Dye-sensitized photoelectric conversion element
DE102005053995A1 (en) * 2005-11-10 2007-05-24 Basf Ag Use of rylene derivatives as photosensitizers in solar cells
CA2655192A1 (en) 2006-07-05 2008-01-10 Nippon Kayaku Kabushiki Kaisha Dye-sensitized solar cell
WO2009013258A1 (en) 2007-07-23 2009-01-29 Basf Se Use of rylene derivatives as active components in solar cells and photodetectors
CN101802948B (en) 2007-07-23 2014-01-15 巴斯夫欧洲公司 Photovoltaic tandem cell
JP5329849B2 (en) * 2008-06-19 2013-10-30 富士フイルム株式会社 Liquid crystalline organic semiconductor materials and organic electronic devices
DE102009049696A1 (en) 2008-10-16 2010-04-22 Basf Se New hole conductor material containing compounds useful e.g. as semiconductor material, preferably p-semiconductor in a solar cell, preferably dye photovoltaic cell, ionic liquid, solvent for chemical reaction and heat carriers
WO2010094636A1 (en) 2009-02-23 2010-08-26 Basf Se Use of triarylamine derivatives as hole-conducting materials in organic solar cells and organic solar cells containing said triarylamine derivatives
US8609846B2 (en) 2010-12-22 2013-12-17 Basf Se Naphthalene monoimide derivatives and use thereof as photosensitizers in solar cells and photodetectors
US9054325B2 (en) 2012-02-09 2015-06-09 03;Basf Se Rylene monoimide derivatives and use thereof as photosensitizers in solar cells and photodetectors
US20140012002A1 (en) 2012-07-04 2014-01-09 Basf Se Organic dyes comprising a hydrazone moiety and their use in dye-sensitized solar cells
US8816081B2 (en) 2012-08-06 2014-08-26 Basf Se Boron containing perylene monoimides, a process for their production, their use as building blocks for the production of perylene monoimide derivatives, monoimide derivatives and their use in dye-sensitized solar cells
EP2946420A1 (en) 2013-01-15 2015-11-25 Basf Se Triangulene oligomers and polymers and their use as hole conducting material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104061A (en) * 1986-10-22 1988-05-09 Fuji Xerox Co Ltd Organic electronic material
JPH02118578A (en) * 1988-09-13 1990-05-02 Fuji Xerox Co Ltd Electrophotographic sensitive body and image forming method
JP4174842B2 (en) * 1996-12-16 2008-11-05 富士ゼロックス株式会社 Photo-semiconductor electrode, photoelectric conversion device, and photoelectric conversion method
JP3968809B2 (en) * 1996-12-19 2007-08-29 富士ゼロックス株式会社 Photo-semiconductor electrode for wet solar cell, wet solar cell, and photoelectric conversion method
JP3968819B2 (en) * 1997-06-02 2007-08-29 富士ゼロックス株式会社 Photo-semiconductor electrode for wet solar cell, wet solar cell, and photoelectric conversion method
JP4024942B2 (en) * 1998-09-16 2007-12-19 株式会社東芝 Dye-sensitized photochemical cell
JP4026266B2 (en) * 1999-02-19 2007-12-26 富士ゼロックス株式会社 Semiconductor electrode and photovoltaic cell

Also Published As

Publication number Publication date
JP2000243463A (en) 2000-09-08

Similar Documents

Publication Publication Date Title
JP4211120B2 (en) Photo-semiconductor electrode, photoelectric conversion device, and photoelectric conversion method
Tatay et al. Kinetic competition in liquid electrolyte and solid-state cyanine dye sensitized solar cells
Lu et al. Organic dyes incorporating bis-hexapropyltruxeneamino moiety for efficient dye-sensitized solar cells
JP3968809B2 (en) Photo-semiconductor electrode for wet solar cell, wet solar cell, and photoelectric conversion method
JP5135774B2 (en) Photoelectric conversion element and solar cell
JP5206092B2 (en) Photoelectric conversion element and solar cell
JP2000100484A (en) Light semiconductor electrode, photoelectric conversion device and photoelectric conversion method
JPH11204821A (en) Optical semiconductor electrode, photoelectric converter and photoelectric conversion method
JPWO2002011213A1 (en) Dye-sensitized photoelectric conversion element
JP4287655B2 (en) Dye-sensitized photoelectric conversion element
WO2002001667A1 (en) Dye-sensitized photoelectric transducer
JP3968819B2 (en) Photo-semiconductor electrode for wet solar cell, wet solar cell, and photoelectric conversion method
Bisht et al. Fused fluorenylindolenine-donor-based unsymmetrical squaraine dyes for dye-sensitized solar cells
JP2001093589A (en) Optical semiconductor electrode, photoelectric conversion device and photoelectric conversion method
JP2003059547A (en) Dye sensitizing photoelectric transfer element
Kim et al. Enhancement of photovoltaic performance in dye-sensitized solar cells fabricated with dendritic photosensitizer containing site-isolated chromophores
JP2006294360A (en) Dye-sensitized photoelectric transducer
JP5239262B2 (en) Solar cell
JP2004022222A (en) Dye-sensitizing photoelectric converter element
Kathiravan et al. Protoporphyrin IX on TiO2 electrode: A spectroscopic and photovoltaic investigation
JP5168761B2 (en) Semiconductor for photoelectric conversion material, photoelectric conversion element, solar cell, and method for manufacturing semiconductor for photoelectric conversion material
Kim et al. Synthetic strategy of low-bandgap organic sensitizers and their photoelectron injection characteristics
JP5347329B2 (en) Photoelectric conversion element and solar cell
JP5217475B2 (en) Photoelectric conversion element and solar cell
JP5957072B2 (en) Dye-sensitized photoelectric conversion element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees