JP4024942B2 - Dye-sensitized photochemical cell - Google Patents

Dye-sensitized photochemical cell Download PDF

Info

Publication number
JP4024942B2
JP4024942B2 JP26129498A JP26129498A JP4024942B2 JP 4024942 B2 JP4024942 B2 JP 4024942B2 JP 26129498 A JP26129498 A JP 26129498A JP 26129498 A JP26129498 A JP 26129498A JP 4024942 B2 JP4024942 B2 JP 4024942B2
Authority
JP
Japan
Prior art keywords
dye
photochemical
transparent semiconductor
sensitized
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26129498A
Other languages
Japanese (ja)
Other versions
JP2000090989A (en
Inventor
正敏 櫻井
勝之 内藤
昭宏 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26129498A priority Critical patent/JP4024942B2/en
Publication of JP2000090989A publication Critical patent/JP2000090989A/en
Application granted granted Critical
Publication of JP4024942B2 publication Critical patent/JP4024942B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光化学電池に係り、特に表面に色素を担持した半導体電極を用いる色素増感型光化学電池に関する。
【0002】
【従来の技術】
一般に、透明半導体層表面に色素を担持させてなる電極を用いた光化学電池には、例えば、特開平1−220380号公報または特表平5−504023号公報に記載されているように微粒子状の金属酸化物を焼結することにより得られる微細構造をもつ半導体電極が用いられる。
【0003】
すなわち、光化学電池に用いられてきた半導体電極の製造に当たっては、例えば酸化チタン膜の場合、まず、チタニウムイソプロポキシドなどの有機チタン化合物を含む溶媒に電極を浸漬し、引き上げた後、電極を焼結して半導体膜を得る。次いで、得られた半導体膜表面に色素を吸着させた後、液状のキャリア移動層を介して対向電極で挟み込むことにより湿式光化学電池が得られる。
【0004】
最近では、広い波長範囲の光を有効に光電変換して、高い光電変換効率を得ることが望まれている。
【0005】
【発明が解決しようとする課題】
本発明は、広い波長範囲の光を高い変換効率で光電変換し得る色素増幅型光化学電池を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明は、光の透過方向に積層された2つ以上の光化学電池ユニットを具備し、前記光化学電池ユニットは、入射側に設けられた色素増感透明半導体電極、前記色素増感透明半導体電極に離間して配置され、透明導電性層からなる対向電極、および、前記色素増感透明半導体電極と前記対向電極とに挟持されたキャリア移動層を有し、前記色素増感透明半導体電極は、透明基板上に設けられた透明電極、この透明電極上に形成された透明半導体層および、この透明半導体層に吸着されるとともに前記キャリア移動層に接触する増感色素により構成され、各光化学電池ユニットの色素増感透明半導体電極に含まれる増感色素の吸収波長が異なることを特徴とする色素増感型透明半導体電池を提供する。
【0007】
以下、本発明の色素増感型透明半導体電池を詳細に説明する。
【0008】
従来の単一層の増感色素を用いた光化学電池では、その増感色素の吸収波長より長波長の光は吸収せず、より広い波長領域を吸収するためにより長波長側に吸収波長をもたせた場合には、それだけ低エネルギーの光しか取り出せない。したがって、光電変換効率を高めるには限界があった。
【0009】
本発明においては、増感色素以外の全ての部材、すなわち透明電極、透明半導体層、キャリア移動層および対向電極を、透明な部材で構成することにより光化学電池ユニットを作製し、異なる吸収波長の増感色素を含んだ2つ以上の光化学電池ユニットを光入射方向に対して重ねることによって、積層型光化学電池を得た。かかる構成としたことにより、入射光中の各波長の光をそれぞれの増感色素に吸着させ、効率よく光電変換することが可能となった。
【0010】
図1には、本発明の光化学電池の一例の構成を表す断面図を示す。
【0011】
図示する光化学電池70は、第1の光化学電池ユニット78と第2の光化学電池ユニット88とが光透過方向に積層された構造である。第1の光化学電池ユニット78は、第1の色素増感透明半導体電極75および第1の対向電極76と、これらの電極に挟持された第1のキャリア移動層77とを有し、第2の光化学電池ユニット88は、第2の色素増感透明半導体電極85、および透明基板89に形成された第2の対向電極86とを有している。各光化学電池ユニットにおいては、色素増感透明半導体電極が入射側となるように配置される。
【0012】
第1の光化学電池ユニット78における第1の色素増感透明半導体電極75は、透明基板71上に形成された透明電極72および透明半導体層73と、この透明半導体層に吸着した第1の増感色素74により構成され、第2の光化学電池ユニット88における第2の色素増感透明半導体電極85もまた、透明基板81上に形成された透明電極82および透明半導体層83と、この透明半導体層に吸着した第2の増感色素84により構成されている。
【0013】
本発明の光化学電池を構成するための透明電極、透明半導体、キャリア移動層および対向電極としては、次のようなものを用いることができる。
【0014】
透明電極に用いられる材料としては、可視光領域の吸収が少なく、導電性のフッ素やインジウム、アルミニウムなどをドープした酸化スズ、酸化亜鉛などが好ましい。
【0015】
半導体層として使用し得る材料は、n型p型ともに可視光領域の吸収が少ない半導体で、金属酸化物半導体では遷移金属の酸化物、遷移金属の酸化物、例えば、チタン、ジルコニウム、ハフニウム、ストロンチウム、亜鉛、インジウム、イットリウム、ランタン、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステンの酸化物、およびこれらの酸化物が好ましい。SrTiO3、CaTiO3、BaTiO3、MgTiO3、SrNb26のようなペロブスカイト、あるいはこれらの複合酸化物または酸化物混合物、GaNなどが好ましい。特に透明p型半導体層としては、CuAlO2などが好ましい。
【0016】
透明半導体層には増感色素が吸着される。増感色素としては、ルテニウム−トリス、ルテニウム−ビス、オスミウム−トリス、オスミウム−ビス型の遷移金属錯体、またはルテニウム−シス−ジアクア−ビピリジル錯体、または各種金属フタロシアニン、ペリレンテトラカルボン酸、ポルフィリン、またはペリレンやコロネンなど多環芳香族化合物、またはテトラチアフルバレンやテトラシアノキノジメタンなど電荷移動錯体材料であることが好ましい。
【0017】
キャリア移動層としては、液体イオン移動層、固体イオン移動層、固体ホールもしくは電子移動層が用いられる。液体イオン移動層としては、ヨウ化物、臭化物、ヒドロキノンなどのイオンキャリアを含むアセトニトリルやエチレンカーボネートもしくはその混合液が好ましい。
【0018】
対向電極は、例えばフッ素ドープされた酸化スズにより形成することができる。
【0019】
ただし、本発明の光化学電池においては、各光化学電池ユニットの色素増感透明半導体電極に含まれる増感色素の吸収波長は、それぞれ異なっていることが必要である。すなわち、第1の光化学電池ユニット78を構成する第1の色素増感透明半導体電極75に含まれる第1の増感色素74と、第2の光化学電池ユニット88を構成する第2の色素増感透明半導体電極85に含まれる第2の増感色素84とは、吸収波長が異なっている。
【0020】
また、本発明の光化学電池において、広い波長範囲の光を高い変換効率で光電変換するためには、光の入射方向に遠い層の増感色素ほど吸収波長を長波長側にもたせることが好ましい。例えば、第1の光化学ユニット78側から光を入射する場合、入射方向側の増感色素74は、光源から遠くに設けられた増感色素84より短波長の光を吸収して、それより長波長の光を下の層に透過することが好ましい。
【0021】
第2の光化学電池ユニットの上に第3の光化学電池ユニットさらに積層して3層構造とする場合も、前述と同様に、第2の光化学電池ユニットにおける増感色素は、第1層の増感色素の次に短波長の光を吸収して、それより長波長の光を第3の光化学電池ユニット層に透過するように増感色素を選択する。
【0022】
なお、吸収係数が互いに105cm-1以上の波長領域をもたない複数の増感色素を用いる場合には、吸収波長に応じて増感色素の積層順を決定することは必ずしも必要ではない。こうした増感色素を用いる場合には、各層を重ねる順番は、前述した光の入射方向から遠い層の増感色素ほど吸収波長を長波長にもたせるという規則に従わずに重ねても、各層の増感色素は効率的に光を吸収することができる。
【0023】
2種類の増感色素を用いた構造より、3種類の増感色素を用いたほうが好ましく、より多くの種類の増感色素を用いたより多くの光化学電池ユニットを積層した構造とすることによって、より広い波長範囲の光を吸収できるので高い光電変換効率が得られる。
【0024】
このようなそれぞれ異なる吸収スペクトルの増感色素をもつ光化学電池ユニットを重ねる場合、各層の開放端電圧と短絡電流はそれぞれ異なるため、高い開放端電圧のためには各電池を直列に、高い短絡電流のためには各層を並列に接続する。
【0025】
本発明において、異なる吸収波長を有する複数の増感色素をそれぞれ含有する複数の光化学電池ユニットを光透過方向に積層することにより光化学電池を構成しているので、広い波長範囲の光を高い変換効率で光電変換することが可能となった。
【0026】
【発明の実施の形態】
以下、具体例を示して本発明をさらに詳細に説明する。
【0027】
(実施例6)
まず、第1の増感色素(ルテニウム錯体)が担持された色素増感透明半導体電極を作製して、第1の色素増感透明半導体電極を得た。具体的には、粒子径15nmのTiO2微粒子を水に懸濁させて懸濁液を調製し、この懸濁液を、フッ素ドープした酸化スズ透明電極上に塗布した。その後、450℃で焼成して透明半導体層としてのTiO2膜を形成した。このTiO2膜は、膜厚10μmであり、ラフネスファクターは1000であった。得られたTiO2膜を増感色素としてのシス−ビス(イソチオシアナート)ビス(2,2’ビピリジル−4,4’−ジカルボキシレート)ルテニウムのエタノール溶液中に浸漬させ、溶液の沸点温度にて30分間加熱還流することにより第1の色素増感透明半導体電極を得た。
【0028】
また、増感色素をペリレンジイミドに変更した以外は、同様の手順で第2の色素増感透明半導体電極を作製した。この第2の色素増感透明半導体電極の裏面には、フッ素ドープされた酸化スズにより透明電極を形成して第1の対向電極を設けた。
【0029】
一方、(C374NIおよびI2を等量ずつ含むアセトニトリルとエチレンカーボネートとを体積比率にしてそれぞれ20%および80%混合して、電解液を調製した。この電解液を、空孔率50%膜厚10μmのポリオレフィン微多孔質セパレーターとともに、前述の第1および第2の色素増感透明半導体電極で挟み込んで第1のキャリア移動層を形成した。さらに、第2の対向電極としてのITO電極が形成されたガラス基板と第2の色素増感透明半導体電極とで、前述と同様の電解液等を挟み込んで第2のキャリア移動層を形成し、これらの側面を樹脂で封入した。次いで、リード線を設けて図1に示すような2層型光化学電池を得た。
【0030】
ここで用いた第1および第2の増感色素の吸収スペクトルを、図2のグラフに示す。図2のグラフ中、曲線eは、第1の色素増感透明半導体電極に担持された第1の増感色素であるルテニウム錯体の吸収スペクトルを表し、曲線fは、第2の色素増感透明半導体電極に担持された第2の増感色素であるペリレンジイミドの吸収スペクトルを表す。
【0031】
(実施例7)
第1の増感色素としてアントラキノン系イエロー色素を用いた以外は、前述の実施例6と同様にして第1の色素増感透明半導体電極を作製し、第2の増感色素としてアントラキノン系マゼンタ色素を用いた以外は、前述の実施例6と同様にして第2の色素増感透明半導体電極を作製した。さらに、第3の増感色素としてアントラキノン系シアン色素を用いた以外は、第2の色素増感透明半導体電極と同様にして第3の色素増感透明半導体電極を得た。
【0032】
第1の色素増感透明半導体電極と第2の色素増感透明半導体層との間、および第2の色素増感透明半導体電極と第3の色素増感透明半導体電極との間には、前述の実施例6の場合と同様にしてそれぞれ第1および第2のキャリア移動層を形成した。さらに、第3の対向電極としてのITO電極が形成されたガラス基板と第3の色素増感透明半導体電極とで、前述と同様の電解液等を挟み込んで第3のキャリア移動層を形成し、これらの側面を樹脂で封入した。次いで、リード線を設けて図3に示すような3層型光化学電池を得た。
【0033】
図示する光化学電池100は、第2の光化学電池ユニット88上に第3の光化学電池ユニット98が積層されている以外は、図1に示したものと同様の構成である。すなわち、第3の光化学電池ユニット98においては、透明基板91、透明電極92、透明半導体層93および増感色素94からなる第3の色素増感透明半導体電極95と、ガラス基板99に形成された第3の対向電極97とにより第3のキャリア移動層96が挟持されている。
【0034】
本実施例においては、第1の増感色素74としてアントラキノン系イエロー色素を用い、第2の増感色素としてアントラキノン系マゼンタ色素を用い、第3の増感色素としてアントラキノン系シアン色素を用いている。これらの増感色素の吸収スペクトルを図4のグラフに示す。図4のグラフ中、曲線gはアントラキノン系イエロー色素の吸収スペクトルを表し、曲線hはアントラキノン系マゼンタ色素の吸収スペクトルを表し、曲線iはアントラキノン系シアン色素の吸収スペクトルを表す。
【0035】
(実施例8)
第1の増感色素としてアントラキノン系シアン色素を用い、第3の増感色素としてアントラキノン系イエロー色素を用いた以外は、前述の実施例7と同様の手順で3層型光化学電池を得た。
【0036】
図4のグラフに示したように、アントラキノン系イエロー色素の吸収スペクトル、アントラキノン系マゼンタ色素の吸収スペクトル、およびアントラキノン系シアン色素の吸収スペクトルは、それぞれ独立したピークを有しており、しかも105cm-1の重なりをもたないので、増感色素層の順番を変更することができる。
【0037】
(比較例1)
前述の実施例6と同様の手順で色素増感型透明半導体電極を作製し、ITO基板表面に白金を蒸着して対向電極を作製した。
【0038】
こうして得られた色素増感透明半導体電極と対向電極とで、前述の実施例6と同様の組成の電解液および微多孔質セパレーターを挟み込み、これらの側面を樹脂で封入した後、リード線を取り付けて本比較例の光化学電池を得た。
【0039】
実施例6ないし8および比較例1の各々の光化学電池について、ワコム社製疑似太陽光源を用いて、750mW/cm2の光量で光照射を行い、その開放端電圧および光電変換効率をケースレー社のソースメジャーユニット236により計測した。実施例6〜8の光化学電池については、開放端電圧も測定した。
【0040】
実施例6〜8の光化学電池と、比較例1の光化学電池の開放端電圧、短絡電流を、光電変換効率とともに下記表1にまとめる。
【0041】
【表1】

Figure 0004024942
表1に示されるように、本発明の積層増感型光化学電池(実施例6〜8)は、2種類以上の増感色素が含まれているので、従来の増感型太陽電池より高い光電変換効率が得られる。
【0042】
【発明の効果】
以上説明したように、本発明によれば、広い波長範囲の光を高い変換効率で光電変換し得る色素増幅型光化学電池が提供される。
【0043】
本発明の色素増感型光化学電池は、入射光エネルギーを有効に光電変換することができ、その工業的価値は絶大である。
【図面の簡単な説明】
【図1】本発明の色素増感型光化学電池の一例の構成を表す断面図。
【図2】実施例6の積層増感型光化学電池に用いた2種類の増感色素の吸収波長と、その吸光度の関係とを表すグラフ図。
【図3】本発明の色素増感型光化学電池の他の例の構成を表す断面図。
【図4】実施例7の積層増感型光化学電池に用いた3種類の増感色素の吸収波長と吸光度の関係とを表すグラフ図。
【符号の説明】
70…光化学電池; 71,81,91…透明基板
72,82,92…透明電極; 73,83,93…透明半導体層
74,84,94…増感色素; 75,85,95…色素増感透明半導体電極
76,86,96…対向電極; 77,87,97…キャリア移動層
78,88,98…光化学電池ユニット; 89,99…ガラス基板
100…光化学電池。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photochemical cell, and more particularly to a dye-sensitized photochemical cell using a semiconductor electrode carrying a dye on its surface.
[0002]
[Prior art]
In general, in a photochemical battery using an electrode in which a pigment is supported on the surface of a transparent semiconductor layer, for example, as described in JP-A-1-220380 or JP-T-5-504023, A semiconductor electrode having a microstructure obtained by sintering a metal oxide is used.
[0003]
That is, in the production of a semiconductor electrode that has been used for a photochemical battery, for example, in the case of a titanium oxide film, first, the electrode is immersed in a solvent containing an organic titanium compound such as titanium isopropoxide, pulled up, and then fired. As a result, a semiconductor film is obtained. Next, after a dye is adsorbed on the surface of the obtained semiconductor film, a wet photochemical battery is obtained by sandwiching it with a counter electrode through a liquid carrier moving layer.
[0004]
Recently, it has been desired to effectively photoelectrically convert light in a wide wavelength range to obtain high photoelectric conversion efficiency.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a dye amplification type photochemical cell capable of photoelectrically converting light in a wide wavelength range with high conversion efficiency.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention comprises two or more photochemical battery units stacked in the light transmission direction, the photochemical battery unit comprising a dye-sensitized transparent semiconductor electrode provided on the incident side, A dye-sensitized transparent semiconductor electrode, and a counter electrode made of a transparent conductive layer, and a carrier moving layer sandwiched between the dye-sensitized transparent semiconductor electrode and the counter electrode; The sensitized transparent semiconductor electrode comprises a transparent electrode provided on a transparent substrate, a transparent semiconductor layer formed on the transparent electrode, and a sensitizing dye adsorbed on the transparent semiconductor layer and in contact with the carrier moving layer. Provided is a dye-sensitized transparent semiconductor battery that is configured and has different absorption wavelengths of sensitizing dyes contained in the dye-sensitized transparent semiconductor electrode of each photochemical battery unit.
[0007]
Hereinafter, the dye-sensitized transparent semiconductor battery of the present invention will be described in detail.
[0008]
In conventional photochemical cells using a single-layer sensitizing dye, light longer than the absorption wavelength of the sensitizing dye is not absorbed, and an absorption wavelength is provided on the longer wavelength side in order to absorb a wider wavelength region. In some cases, only low energy light can be extracted. Therefore, there is a limit to increasing the photoelectric conversion efficiency.
[0009]
In the present invention, a photochemical battery unit is prepared by constituting all members other than the sensitizing dye, that is, the transparent electrode, the transparent semiconductor layer, the carrier moving layer, and the counter electrode, with a transparent member, and increasing the different absorption wavelengths. Two or more photochemical battery units containing dyes were stacked in the light incident direction to obtain a stacked photochemical battery. By adopting such a configuration, light of each wavelength in incident light can be adsorbed to each sensitizing dye, and photoelectric conversion can be efficiently performed.
[0010]
In FIG. 1, sectional drawing showing the structure of an example of the photochemical battery of this invention is shown.
[0011]
The illustrated photochemical cell 70 has a structure in which a first photochemical cell unit 78 and a second photochemical cell unit 88 are stacked in the light transmission direction. The first photochemical cell unit 78 includes a first dye-sensitized transparent semiconductor electrode 75 and a first counter electrode 76, and a first carrier moving layer 77 sandwiched between these electrodes, The photochemical battery unit 88 has a second dye-sensitized transparent semiconductor electrode 85 and a second counter electrode 86 formed on the transparent substrate 89. In each photochemical battery unit, the dye-sensitized transparent semiconductor electrode is disposed on the incident side.
[0012]
The first dye-sensitized transparent semiconductor electrode 75 in the first photochemical battery unit 78 includes a transparent electrode 72 and a transparent semiconductor layer 73 formed on the transparent substrate 71, and a first sensitization adsorbed on the transparent semiconductor layer. The second dye-sensitized transparent semiconductor electrode 85, which is composed of the dye 74 and is formed in the second photochemical battery unit 88, also has a transparent electrode 82 and a transparent semiconductor layer 83 formed on the transparent substrate 81, and the transparent semiconductor layer. It is constituted by the adsorbed second sensitizing dye 84.
[0013]
The following can be used as a transparent electrode, a transparent semiconductor, a carrier moving layer, and a counter electrode for constituting the photochemical battery of the present invention.
[0014]
As a material used for the transparent electrode, tin oxide, zinc oxide or the like doped with conductive fluorine, indium, aluminum or the like is preferable because it absorbs less in the visible light region.
[0015]
The material that can be used for the semiconductor layer is a semiconductor that has low absorption in the visible light region in both the n-type and p-type. In the case of a metal oxide semiconductor, an oxide of a transition metal, an oxide of a transition metal, such as titanium, zirconium, hafnium, strontium Zinc, indium, yttrium, lanthanum, vanadium, niobium, tantalum, chromium, molybdenum, tungsten oxides, and oxides thereof are preferable. A perovskite such as SrTiO 3 , CaTiO 3 , BaTiO 3 , MgTiO 3 , SrNb 2 O 6 , or a composite oxide or oxide mixture thereof, GaN, or the like is preferable. In particular, CuAlO 2 or the like is preferable as the transparent p-type semiconductor layer.
[0016]
A sensitizing dye is adsorbed on the transparent semiconductor layer. Sensitizing dyes include ruthenium-tris, ruthenium-bis, osmium-tris, osmium-bis type transition metal complexes, or ruthenium-cis-diaqua-bipyridyl complexes, or various metal phthalocyanines, perylenetetracarboxylic acids, porphyrins, or A polycyclic aromatic compound such as perylene or coronene, or a charge transfer complex material such as tetrathiafulvalene or tetracyanoquinodimethane is preferable.
[0017]
As the carrier transfer layer, a liquid ion transfer layer, a solid ion transfer layer, a solid hole, or an electron transfer layer is used. As the liquid ion transfer layer, acetonitrile, ethylene carbonate or a mixture thereof containing an ion carrier such as iodide, bromide, hydroquinone or the like is preferable.
[0018]
The counter electrode can be made of, for example, fluorine-doped tin oxide.
[0019]
However, in the photochemical battery of the present invention, the absorption wavelengths of the sensitizing dyes contained in the dye-sensitized transparent semiconductor electrode of each photochemical battery unit must be different from each other. That is, the first dye sensitizing dye 74 included in the first dye-sensitized transparent semiconductor electrode 75 constituting the first photochemical battery unit 78 and the second dye sensitizing constituting the second photochemical battery unit 88. The absorption wavelength is different from that of the second sensitizing dye 84 included in the transparent semiconductor electrode 85.
[0020]
Moreover, in the photochemical cell of the present invention, in order to photoelectrically convert light in a wide wavelength range with high conversion efficiency, it is preferable that the sensitizing dye in a layer farther in the light incident direction has an absorption wavelength on the longer wavelength side. For example, when light is incident from the first photochemical unit 78 side, the sensitizing dye 74 on the incident direction side absorbs light having a shorter wavelength than the sensitizing dye 84 provided far from the light source, and is longer than that. It is preferable to transmit light having a wavelength to the lower layer.
[0021]
Even when the third photochemical battery unit is further laminated on the second photochemical battery unit to form a three-layer structure, the sensitizing dye in the second photochemical battery unit is sensitized in the first layer as described above. A sensitizing dye is selected so as to absorb light having a shorter wavelength next to the dye and transmit light having a longer wavelength to the third photochemical battery unit layer.
[0022]
In addition, when using a plurality of sensitizing dyes whose absorption coefficients do not have a wavelength region of 10 5 cm −1 or more, it is not always necessary to determine the stacking order of the sensitizing dyes according to the absorption wavelength. . When such a sensitizing dye is used, the order in which the layers are stacked is not limited to the above-described rule that the absorption wavelength of the sensitizing dye in the layer farther from the light incident direction is set to a longer wavelength. The dye is capable of absorbing light efficiently.
[0023]
It is more preferable to use three types of sensitizing dyes than a structure using two types of sensitizing dyes. By making a structure in which more photochemical battery units using more types of sensitizing dyes are laminated, High photoelectric conversion efficiency can be obtained because light in a wide wavelength range can be absorbed.
[0024]
When stacking photochemical battery units with sensitizing dyes having different absorption spectra, the open-circuit voltage and short-circuit current of each layer are different. For this purpose, the layers are connected in parallel.
[0025]
In the present invention, since a photochemical cell is configured by laminating a plurality of photochemical cell units each containing a plurality of sensitizing dyes having different absorption wavelengths in the light transmission direction, light having a wide wavelength range has high conversion efficiency. It became possible to perform photoelectric conversion.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to specific examples.
[0027]
(Example 6)
First, a dye-sensitized transparent semiconductor electrode carrying a first sensitizing dye (ruthenium complex) was produced to obtain a first dye-sensitized transparent semiconductor electrode. Specifically, TiO 2 fine particles having a particle diameter of 15 nm were suspended in water to prepare a suspension, and this suspension was applied onto a fluorine-doped tin oxide transparent electrode. Then, to form a TiO 2 film as the transparent semiconductor layer and baked at 450 ° C.. This TiO 2 film had a thickness of 10 μm and a roughness factor of 1000. The obtained TiO 2 film was immersed in an ethanol solution of cis-bis (isothiocyanate) bis (2,2′bipyridyl-4,4′-dicarboxylate) ruthenium as a sensitizing dye, and the boiling temperature of the solution The first dye-sensitized transparent semiconductor electrode was obtained by heating at reflux for 30 minutes.
[0028]
Moreover, the 2nd dye-sensitized transparent semiconductor electrode was produced in the same procedure except having changed the sensitizing dye into perylene diimide. On the back surface of the second dye-sensitized transparent semiconductor electrode, a transparent electrode was formed from fluorine-doped tin oxide to provide a first counter electrode.
[0029]
On the other hand, acetonitrile and ethylene carbonate containing equal amounts of (C 3 H 7 ) 4 NI and I 2 were mixed at a volume ratio of 20% and 80%, respectively, to prepare an electrolytic solution. This electrolyte solution was sandwiched between the above-described first and second dye-sensitized transparent semiconductor electrodes together with a polyolefin microporous separator having a porosity of 50% and a film thickness of 10 μm to form a first carrier transfer layer. Further, a second carrier transport layer is formed by sandwiching an electrolyte solution similar to the above between the glass substrate on which the ITO electrode as the second counter electrode is formed and the second dye-sensitized transparent semiconductor electrode, These side surfaces were encapsulated with resin. Next, lead wires were provided to obtain a two-layer photochemical battery as shown in FIG.
[0030]
The absorption spectra of the first and second sensitizing dyes used here are shown in the graph of FIG. In the graph of FIG. 2, the curve e represents the absorption spectrum of the ruthenium complex, which is the first sensitizing dye supported on the first dye-sensitized transparent semiconductor electrode, and the curve f represents the second dye-sensitized transparent film. 2 represents an absorption spectrum of perylene diimide as a second sensitizing dye supported on a semiconductor electrode.
[0031]
(Example 7)
A first dye-sensitized transparent semiconductor electrode was prepared in the same manner as in Example 6 except that an anthraquinone yellow dye was used as the first sensitizing dye, and an anthraquinone magenta dye was used as the second sensitizing dye. A second dye-sensitized transparent semiconductor electrode was produced in the same manner as in Example 6 except that was used. Furthermore, a third dye-sensitized transparent semiconductor electrode was obtained in the same manner as the second dye-sensitized transparent semiconductor electrode, except that an anthraquinone cyan dye was used as the third sensitizing dye.
[0032]
Between the first dye-sensitized transparent semiconductor electrode and the second dye-sensitized transparent semiconductor layer and between the second dye-sensitized transparent semiconductor electrode and the third dye-sensitized transparent semiconductor electrode, The first and second carrier transport layers were formed in the same manner as in Example 6. Further, a third carrier moving layer is formed by sandwiching an electrolyte solution similar to the above between the glass substrate on which the ITO electrode as the third counter electrode is formed and the third dye-sensitized transparent semiconductor electrode, These side surfaces were encapsulated with resin. Next, lead wires were provided to obtain a three-layer photochemical battery as shown in FIG.
[0033]
The illustrated photochemical cell 100 has the same configuration as that shown in FIG. 1 except that a third photochemical cell unit 98 is stacked on the second photochemical cell unit 88. That is, in the third photochemical battery unit 98, the transparent substrate 91, the transparent electrode 92, the transparent semiconductor layer 93, the third dye-sensitized transparent semiconductor electrode 95 including the sensitizing dye 94, and the glass substrate 99 were formed. A third carrier moving layer 96 is sandwiched between the third counter electrode 97.
[0034]
In this embodiment, an anthraquinone yellow dye is used as the first sensitizing dye 74, an anthraquinone magenta dye is used as the second sensitizing dye, and an anthraquinone cyan dye is used as the third sensitizing dye. . The absorption spectra of these sensitizing dyes are shown in the graph of FIG. In the graph of FIG. 4, a curve g represents an absorption spectrum of an anthraquinone yellow dye, a curve h represents an absorption spectrum of an anthraquinone magenta dye, and a curve i represents an absorption spectrum of an anthraquinone cyan dye.
[0035]
(Example 8)
A three-layer photochemical cell was obtained in the same manner as in Example 7 except that an anthraquinone cyan dye was used as the first sensitizing dye and an anthraquinone yellow dye was used as the third sensitizing dye.
[0036]
As shown in the graph of FIG. 4, the absorption spectrum of the anthraquinone yellow dye, the absorption spectrum of the anthraquinone magenta dye, and the absorption spectrum of the anthraquinone cyan dye have independent peaks, and are 10 5 cm. Since there is no -1 overlap, the order of the sensitizing dye layers can be changed.
[0037]
(Comparative Example 1)
A dye-sensitized transparent semiconductor electrode was prepared in the same procedure as in Example 6 described above, and platinum was deposited on the ITO substrate surface to prepare a counter electrode.
[0038]
The dye-sensitized transparent semiconductor electrode and the counter electrode thus obtained are sandwiched between an electrolyte solution and a microporous separator having the same composition as in Example 6 described above, and these side surfaces are sealed with resin, and then lead wires are attached. Thus, a photochemical battery of this comparative example was obtained.
[0039]
For each of the photochemical batteries of Examples 6 to 8 and Comparative Example 1, light irradiation was performed with a light amount of 750 mW / cm 2 using a simulated solar light source manufactured by Wacom, and the open-end voltage and photoelectric conversion efficiency were measured by Keithley. Measurement was performed by the source measure unit 236. About the photochemical battery of Examples 6-8, the open end voltage was also measured.
[0040]
The open circuit voltage and the short circuit current of the photochemical batteries of Examples 6 to 8 and the photochemical battery of Comparative Example 1 are summarized in Table 1 below together with the photoelectric conversion efficiency.
[0041]
[Table 1]
Figure 0004024942
As shown in Table 1, the laminated sensitized photochemical cell (Examples 6 to 8) of the present invention contains two or more kinds of sensitizing dyes, and thus has a higher photoelectricity than the conventional sensitized solar cell. Conversion efficiency is obtained.
[0042]
【The invention's effect】
As described above, according to the present invention, a dye amplification type photochemical cell capable of photoelectrically converting light in a wide wavelength range with high conversion efficiency is provided.
[0043]
The dye-sensitized photochemical cell of the present invention can effectively photoelectrically convert incident light energy, and its industrial value is tremendous.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the structure of an example of a dye-sensitized photochemical cell of the present invention.
2 is a graph showing the absorption wavelength of two types of sensitizing dyes used in the laminated sensitized photochemical battery of Example 6 and the relationship between the absorbances thereof. FIG.
FIG. 3 is a cross-sectional view showing the structure of another example of the dye-sensitized photochemical cell of the present invention.
4 is a graph showing the relationship between the absorption wavelength and absorbance of three types of sensitizing dyes used in the laminated sensitized photochemical battery of Example 7. FIG.
[Explanation of symbols]
70 ... Photochemical battery; 71, 81, 91 ... Transparent substrates 72, 82, 92 ... Transparent electrodes; 73, 83, 93 ... Transparent semiconductor layers 74, 84, 94 ... Sensitizing dyes; 75, 85, 95 ... Dye sensitization Transparent semiconductor electrodes 76, 86, 96 ... counter electrodes; 77, 87, 97 ... carrier transfer layers 78, 88, 98 ... photochemical cell units; 89, 99 ... glass substrate 100 ... photochemical cells.

Claims (4)

光の透過方向に積層された2つ以上の光化学電池ユニットを具備し、
前記光化学電池ユニットは、入射側に設けられた色素増感透明半導体電極、前記色素増感透明半導体電極に離間して配置され、透明導電性層からなる対向電極、および、前記色素増感透明半導体電極と前記対向電極とに挟持されたキャリア移動層を有し、
前記色素増感透明半導体電極は、透明基板上に設けられた透明電極、この透明電極上に形成された透明半導体層および、この透明半導体層に吸着されるとともに前記キャリア移動層に接触する増感色素により構成され、
各光化学電池ユニットの色素増感透明半導体電極に含まれる増感色素の吸収波長が異なることを特徴とする色素増感型透明半導体電池。
Comprising two or more photochemical battery units stacked in the light transmission direction;
The photochemical battery unit includes a dye-sensitized transparent semiconductor electrode provided on the incident side, a counter electrode made of a transparent conductive layer and spaced apart from the dye-sensitized transparent semiconductor electrode, and the dye-sensitized transparent semiconductor A carrier moving layer sandwiched between an electrode and the counter electrode;
The dye-sensitized transparent semiconductor electrode includes a transparent electrode provided on a transparent substrate, a transparent semiconductor layer formed on the transparent electrode, and a sensitization that is adsorbed to the transparent semiconductor layer and contacts the carrier moving layer. Composed of pigments,
A dye-sensitized transparent semiconductor battery, wherein the absorption wavelength of the sensitizing dye contained in the dye-sensitized transparent semiconductor electrode of each photochemical battery unit is different.
前記光の透過方向に積層された2つ以上の光化学電池ユニットは、第1の光化学電池ユニットと、この上に積層された第2の光化学電池ユニットとからなり、前記第1の光化学電池ユニットの色素増感透明半導体電極に含まれる増感色素は、ルテニウム錯体であり、第2の光化学電池ユニットの色素増感透明半導体電極に含まれる前記増感色素は、ペリレンジイミドであることを特徴とする請求項1に記載の色素増感型透明半導体電池。  The two or more photochemical cell units stacked in the light transmission direction include a first photochemical cell unit and a second photochemical cell unit stacked on the first photochemical cell unit. The sensitizing dye contained in the dye-sensitized transparent semiconductor electrode is a ruthenium complex, and the sensitizing dye contained in the dye-sensitized transparent semiconductor electrode of the second photochemical battery unit is perylene diimide. The dye-sensitized transparent semiconductor battery according to claim 1. 前記光の透過方向に積層された2つ以上の光化学電池ユニットは、第1の光化学電池ユニットと、この上に積層された第2の光化学電池ユニットと、この上に積層された第3の光化学電池ユニットとからなり、前記第1の光化学電池ユニットの色素増感透明半導体電極に含まれる増感色素は、アントラキノン系イエロー色素であり、前記第2の光化学電池ユニットの色素増感透明半導体電極に含まれる増感色素は、アントラキノン系マゼンタ色素であり、前記第3の光化学電池ユニットの色素増感透明半導体電極に含まれる増感色素は、アントラキノン系シアン色素であることを特徴とする請求項1に記載の色素増感型透明半導体電池。  The two or more photochemical cell units stacked in the light transmission direction include a first photochemical cell unit, a second photochemical cell unit stacked on the first photochemical cell unit, and a third photochemical cell stacked on the first photochemical cell unit. The sensitizing dye comprised of the battery unit and contained in the dye-sensitized transparent semiconductor electrode of the first photochemical battery unit is an anthraquinone yellow dye, and is used for the dye-sensitized transparent semiconductor electrode of the second photochemical battery unit. The sensitizing dye contained is an anthraquinone magenta dye, and the sensitizing dye contained in the dye-sensitized transparent semiconductor electrode of the third photochemical battery unit is an anthraquinone cyan dye. 2. A dye-sensitized transparent semiconductor battery according to 1. 前記光の透過方向に積層された2つ以上の光化学電池ユニットは、第1の光化学電池ユニットと、この上に積層された第2の光化学電池ユニットと、この上に積層された第3の光化学電池ユニットとからなり、前記第1の光化学電池ユニットの色素増感透明半導体電極に含まれる増感色素は、アントラキノン系シアン色素であり、前記第2の光化学電池ユニットの色素増感透明半導体電極に含まれる増感色素は、アントラキノン系マゼンタ色素であり、前記第3の光化学電池ユニットの色素増感透明半導体電極に含まれる増感色素は、アントラキノン系イエロー色素であることを特徴とする請求項1に記載の色素増感型透明半導体電池。  The two or more photochemical cell units stacked in the light transmission direction include a first photochemical cell unit, a second photochemical cell unit stacked on the first photochemical cell unit, and a third photochemical cell stacked on the first photochemical cell unit. And the sensitizing dye contained in the dye-sensitized transparent semiconductor electrode of the first photochemical battery unit is an anthraquinone cyan dye, and the dye-sensitized transparent semiconductor electrode of the second photochemical battery unit. The sensitizing dye contained is an anthraquinone magenta dye, and the sensitizing dye contained in the dye-sensitized transparent semiconductor electrode of the third photochemical battery unit is an anthraquinone yellow dye. 2. A dye-sensitized transparent semiconductor battery according to 1.
JP26129498A 1998-09-16 1998-09-16 Dye-sensitized photochemical cell Expired - Fee Related JP4024942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26129498A JP4024942B2 (en) 1998-09-16 1998-09-16 Dye-sensitized photochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26129498A JP4024942B2 (en) 1998-09-16 1998-09-16 Dye-sensitized photochemical cell

Publications (2)

Publication Number Publication Date
JP2000090989A JP2000090989A (en) 2000-03-31
JP4024942B2 true JP4024942B2 (en) 2007-12-19

Family

ID=17359810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26129498A Expired - Fee Related JP4024942B2 (en) 1998-09-16 1998-09-16 Dye-sensitized photochemical cell

Country Status (1)

Country Link
JP (1) JP4024942B2 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4211120B2 (en) * 1999-02-19 2009-01-21 富士ゼロックス株式会社 Photo-semiconductor electrode, photoelectric conversion device, and photoelectric conversion method
JP3985381B2 (en) * 1999-03-10 2007-10-03 富士ゼロックス株式会社 Photoelectric conversion element and manufacturing method thereof
JP4155431B2 (en) * 1999-04-30 2008-09-24 株式会社リコー Photoelectric conversion element
JP2001053355A (en) * 1999-08-06 2001-02-23 Sharp Corp Optielectronic transducer, manufacture thereof and solar cell
JP4415482B2 (en) * 2000-03-28 2010-02-17 パナソニック電工株式会社 Photoelectric conversion element
JP2002075479A (en) * 2000-09-05 2002-03-15 Hiroshi Komiyama Pigment sensitized solar cell
EP1357607A1 (en) * 2000-12-26 2003-10-29 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Solar cell
US6677516B2 (en) 2001-01-29 2004-01-13 Sharp Kabushiki Kaisha Photovoltaic cell and process for producing the same
JP2002222971A (en) * 2001-01-29 2002-08-09 Sharp Corp Photoelectric converter
JP4617014B2 (en) * 2001-03-21 2011-01-19 富士フイルム株式会社 Method for manufacturing photoelectric conversion element
JP4345952B2 (en) * 2001-04-09 2009-10-14 富士フイルム株式会社 High sensitivity light receiving element and image sensor
JP2003333757A (en) * 2002-05-14 2003-11-21 Sony Corp Power source apparatus
TW200425530A (en) * 2002-09-05 2004-11-16 Nanosys Inc Nanostructure and nanocomposite based compositions and photovoltaic devices
JP4561069B2 (en) * 2003-09-10 2010-10-13 ソニー株式会社 Method for manufacturing photoelectric conversion element and method for manufacturing electronic device
JP2005129259A (en) * 2003-10-21 2005-05-19 Sumitomo Osaka Cement Co Ltd Photoelectric transfer element and solar cell
JP2005191137A (en) * 2003-12-24 2005-07-14 Kyocera Corp Stacked photoelectric converter
JP4710253B2 (en) * 2004-05-31 2011-06-29 カシオ計算機株式会社 Decoration equipment
JP5217074B2 (en) * 2004-07-23 2013-06-19 ジオマテック株式会社 Thin-film solid lithium ion secondary battery
KR100657949B1 (en) * 2005-02-05 2006-12-14 삼성전자주식회사 Flexible solar cells and process for preparing the same
JP4836473B2 (en) * 2005-03-23 2011-12-14 京セラ株式会社 PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOVOLTAIC POWER
JP2006339245A (en) * 2005-05-31 2006-12-14 Sumitomo Osaka Cement Co Ltd Photoelectric conversion element and photoelectric cell
JP5021200B2 (en) * 2005-11-08 2012-09-05 関西ペイント株式会社 P-type semiconductor dispersion, P-type semiconductor layer, PN junction and energy converter
JP2007234451A (en) * 2006-03-02 2007-09-13 Toyama Univ Photocatalyst type solar photovoltaic cell
JP2007299557A (en) * 2006-04-28 2007-11-15 Oki Electric Ind Co Ltd Dye-sensitized solar cell
US20090242027A1 (en) * 2006-07-05 2009-10-01 Teruhisa Inoue Dye-Sensitized Solar Cell
JP2008053042A (en) * 2006-08-24 2008-03-06 Univ Nagoya Pigment sensitized solar cell
KR100842265B1 (en) * 2006-11-21 2008-06-30 한국전자통신연구원 Method of manufacturing dye-sensitized solar cell module having vertically stacked unit cells
JP2008257895A (en) * 2007-03-31 2008-10-23 Shinshu Univ Manufacturing method of dye-sensitized solar cell, and dye-sensitized solar cell
EP2174329B1 (en) 2007-07-23 2011-02-09 Basf Se Photovoltaic tandem cell
FR2920254B1 (en) * 2007-08-23 2010-03-19 Commissariat Energie Atomique PHOTOVOLTAIC CELL WITH NON-MISCIBLE ELECTROLYTES
JP5240902B2 (en) * 2008-02-12 2013-07-17 セイコーインスツル株式会社 Solar cell
JP5548878B2 (en) * 2009-03-27 2014-07-16 独立行政法人産業技術総合研究所 Multi-junction optical element
JP4980479B2 (en) 2010-06-02 2012-07-18 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, and dye-sensitized solar cell
JP5580139B2 (en) * 2010-08-03 2014-08-27 富士フイルム株式会社 Photoelectric conversion element and photoelectrochemical cell using the same
JP5756772B2 (en) 2011-03-30 2015-07-29 富士フイルム株式会社 Photoelectric conversion element and photoelectrochemical cell
JP5245001B2 (en) 2011-09-29 2013-07-24 富士フイルム株式会社 Photoelectric conversion element, photoelectrochemical cell, and metal complex dye used therefor
JP5881578B2 (en) 2011-12-15 2016-03-09 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, and dye solution
JP2013161751A (en) 2012-02-08 2013-08-19 Fujifilm Corp Photoelectric conversion element, method of manufacturing the same, and dye-sensitized solar cell using the same
JP5925541B2 (en) 2012-03-16 2016-05-25 富士フイルム株式会社 Metal complex dye for photoelectric conversion element, photoelectric conversion element, dye-sensitized solar cell, dye-adsorbing composition liquid for dye-sensitized solar cell, semiconductor electrode for dye-sensitized solar cell, and method for producing dye-sensitized solar cell
JP2014082187A (en) 2012-09-28 2014-05-08 Fujifilm Corp Photoelectric conversion element and dye-sensitized solar cell
JP5913223B2 (en) 2012-09-28 2016-04-27 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution and dye-adsorbing electrode
JP5913222B2 (en) 2012-09-28 2016-04-27 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell
JP6063359B2 (en) 2012-09-28 2017-01-18 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye and dye solution formed by dissolving metal complex dye
JP5992389B2 (en) 2012-11-16 2016-09-14 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbing electrode, and method for producing dye-sensitized solar battery
JP5944372B2 (en) 2012-12-17 2016-07-05 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbing electrode, and method for producing dye-sensitized solar battery
JP5972811B2 (en) 2013-02-22 2016-08-17 富士フイルム株式会社 Photoelectric conversion element, method for producing photoelectric conversion element, and dye-sensitized solar cell
JP6047513B2 (en) 2013-03-25 2016-12-21 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, and dye solution containing metal complex dye
JP2015060820A (en) * 2013-09-20 2015-03-30 積水化学工業株式会社 Dye-sensitized solar cell and method of manufacturing the same
JP6821956B2 (en) * 2016-06-06 2021-01-27 日本精工株式会社 Photoelectric conversion element

Also Published As

Publication number Publication date
JP2000090989A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
JP4024942B2 (en) Dye-sensitized photochemical cell
Miyasaka et al. Low-temperature fabrication of dye-sensitized plastic electrodes by electrophoretic preparation of mesoporous TiO2 layers
CN1846288B (en) Tandem dye-sensitised solar cell and method of its production
Stergiopoulos et al. Minimizing Energy Losses in Dye‐Sensitized Solar Cells Using Coordination Compounds as Alternative Redox Mediators Coupled with Appropriate Organic Dyes
KR101553104B1 (en) Photoelectric conversion element, photoelectrochemical battery, dye for photoelectric conversion element, and dye solution for photoelectric conversion element
JP5084730B2 (en) Dye-sensitized solar cell
JP5285062B2 (en) Photosensitizer and solar cell using the same
EP2432069B1 (en) Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP3717506B2 (en) Dye-sensitized solar cell module
US20110048525A1 (en) Functional device and method for producing the same
FI130068B (en) A double sided solar cell assembly
US8604339B2 (en) Photoreceptive layer comprising metal oxide of core-shell structure and solar cell using the same
US8124869B2 (en) Dye-sensitized type solar cell
KR20080094021A (en) Dye sensitization photoelectric converter
JP2007095682A (en) Laminate type photovoltaic element and its manufacturing method
US9105409B2 (en) Dye-sensitized solar cell and manufacturing method for thereof
US20110315203A1 (en) Dye-sensitized solar cell
JP4448478B2 (en) Dye-sensitized solar cell module
EP1780827A1 (en) Semiconductor electrode, fabrication method thereof and solar cell comprising the same
KR101045849B1 (en) High Efficiency Flexible Dye-Sensitized Solar Cell and Manufacturing Method Thereof
JP4963165B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP4999334B2 (en) Dye compound, photoelectric conversion element and photoelectrochemical cell using the compound
KR101897918B1 (en) Hydrogen production element of energy independence by solar power and method of manufacturing the same
JP2007073198A (en) Dye-sensitized solar battery
JP4155431B2 (en) Photoelectric conversion element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071004

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees