JP2005195919A - 偏光インテグレータ - Google Patents

偏光インテグレータ Download PDF

Info

Publication number
JP2005195919A
JP2005195919A JP2004002696A JP2004002696A JP2005195919A JP 2005195919 A JP2005195919 A JP 2005195919A JP 2004002696 A JP2004002696 A JP 2004002696A JP 2004002696 A JP2004002696 A JP 2004002696A JP 2005195919 A JP2005195919 A JP 2005195919A
Authority
JP
Japan
Prior art keywords
polarized light
microlens
light
polarization
wave plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004002696A
Other languages
English (en)
Inventor
Toshihiko Ushiro
利彦 後
Soichiro Okubo
総一郎 大久保
Takashi Matsuura
尚 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004002696A priority Critical patent/JP2005195919A/ja
Priority to KR1020067013628A priority patent/KR20060132636A/ko
Priority to CNA2005800021346A priority patent/CN1910513A/zh
Priority to CA002550520A priority patent/CA2550520A1/en
Priority to PCT/JP2005/000426 priority patent/WO2005066710A1/ja
Priority to EP05703665A priority patent/EP1703319A4/en
Priority to US10/597,025 priority patent/US20070182931A1/en
Priority to TW094100531A priority patent/TW200528777A/zh
Publication of JP2005195919A publication Critical patent/JP2005195919A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0018Reflow, i.e. characterized by the step of melting microstructures to form curved surfaces, e.g. manufacturing of moulds and surfaces for transfer etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Microscoopes, Condenser (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Projection Apparatus (AREA)

Abstract

【課題】 軽量化と小型化が可能でかつ耐熱性に優れた偏光インテグレータを簡便にかつ低コストで提供する。
【解決手段】 偏光インテグレータは、光源1からの光をP偏光とS偏光とに分離する偏光ビームスプリッタ(PBS)51と、第1のマイクロレンズ52と、1/2波長板53と、第2のマイクロレンズ54とを含み、第1マイクロレンズはPBSによって分離されたP偏光とS偏光を互いに異なる位置に集光するように配置されており、1/2波長板はP偏光が集光される位置に配置されていてP偏光をS偏光に変換するように作用し、第2マイクロレンズは1/2波長板を通過して偏光変換された後のS偏光と1/2波長板を通過しなかったS偏光とを統合するように作用し、PBS、第1マイクロレンズ、1/2波長板、および第2マイクロレンズの少なくとも一つがDLC膜を利用して形成されている。
【選択図】 図1

Description

本発明は、無偏光光をP偏光とS偏光に分離しかつ一方の偏光を他方の偏光に変換して統合する偏光インテグレータの改善に関する。このような偏光インテグレータは、例えば液晶プロジェクタにおいて好ましく用いられ得るものである。
図7は、従来の液晶プロジェクタの一例を模式的なブロック図で図解している。この液晶プロジェクタは光源1を含んでおり、その光源1は光の利用効率を高めるためにドーム状またはパラボラ状の反射ミラー2内に配置されている。光源1から放射された光は、コリメータレンズ3によって平行光にされて、第1の全反射ミラーM1によって第1のダイクロイックミラーDM1に向けられる。第1ダイクロイックミラーDM1は、青色光Bのみを透過して他の色の光を反射する。第1ダイクロイックミラーDM1を透過した青色光Bは、第2の全反射ミラーM2と第1の集光レンズCL1を介して、第1の液晶パネルLC1上に集光される。
第1ダイクロイックミラーDM1によって反射された光は、第2のダイクロイックミラーDM2に向けられる。第2ダイクロイックミラーDM2は、緑色光Gのみを反射して残りの赤色光Rを透過させる。第2ダイクロイックミラーDM2によって反射された緑色光Gは、第2の集光レンズCL2によって第2の液晶パネルLC2上に集光される。第2ダイクロイックミラーを透過した赤色Rは、第3の全反射ミラーM3、第4の全反射ミラーM4、および第3の集光レンズCL3を介して、第3の液晶パネルLC3上に集光される。
第1液晶パネルLC1、第2液晶パネルLC2、および第3液晶パネルLC3に向けて集光された青色光B、緑色光G、および赤色光Rは、それぞれに対応する液晶パネルを透過した後にプリズム4によって統合される。そして、プリズム4によって統合された3原色光は、投射レンズ5によってスクリーン(図示せず)上に投影される。
周知のように、液晶パネルはマトリックス状に配置された多数の画素を含んでおり、画素ごとに電気信号を与えることによって光の透過と遮断を制御することができる。そして、光の透過と遮断を可能にするために、液晶層は2枚の偏光板に挟まれている。すなわち、液晶パネルが受け入れる光は、所定の直線方向に平行に偏光された光だけである。しかし、液晶プロジェクタにおいて通常用いられる光源から放射される光は無偏光光(またはランダム偏光光)である。したがって、光源から放射された光が液晶パネルを透過して投影光として利用され得る光の利用効率は、その光源光の1/2以下である。そこで、液晶プロジェクタにおいて、無偏光の光源光に起因する低い光の利用効率を改善するために、近年では偏光インテグレータが利用されている。
図8は、偏光インテグレータの基本的原理を図解する模式的断面図である(非特許文献1参照)。この偏光インテグレータにおいて、ドーム状反射ミラー2に覆われた光源1から放射された光は、コリメータレンズ(図示せず)によって平行光にされて、偏光分離プリズム11に照射される。このプリズム11は、PBS(偏光ビームスプリッタ)膜12を含んでいる。すなわち、PBS膜12は、光源光のうちでP偏光を透過してS偏光を反射するように作用する。そのようなPBS膜は、誘電多層膜で形成することができる。
PBS膜12を透過したP偏光は、1/2波長板13によって偏光方向が回転させられ、S偏光に変換される。他方、PBS膜12によって反射されたS偏光は、全反射ミラー14によって反射されて、1/2波長板13を通過したS偏光と平行にされる。そして、全反射ミラー14で反射されたS偏光と1/2波長板13を通過した後のS偏光とがレンズ(図示せず)で統合され、その統合されたS偏光が液晶パネル上に照射される。
なお、図8の例ではPBS膜12を透過したP偏光に対して1/2波長板13が適用されているが、逆にPBS膜12で反射されたS偏光に対して1/2波長板13を適用してもよいことが理解されよう。その場合には、光源光束がP偏光束とS偏光束に分離されて、そのS偏光束がP偏光束に変換された後に、それら2つのP偏光束が統合されて液晶パネル上に照射されることになる。
西田信夫編、「大画面ディスプレイ」、共立出版、2002年刊行
図8に示されているような偏光インテグレータは、偏光分離プリズム11を含んでいる。そのようなプリズムは、液晶プロジェクタの小型化にとって好ましくない。また、プリズムをガラスで作製する場合には、その重量が比較的重くなるし、その加工が容易ではない。他方、プリズムを樹脂で作製することも行われているが、プロジェクタの高輝度化に伴って、樹脂の耐熱性が問題になるであろう。さらに、PBS膜12は誘電多層膜による数十層もの偏光分離コーティングが必要なことから、高コストになるという問題がある。
このような従来の偏光インテグレータにおける課題に鑑みて、本発明は、軽量化と小型化が可能でかつ耐熱性に優れた偏光インテグレータを簡便にかつ低コストで提供することを目的としている。
本発明による偏光インテグレータは、光源からの光をP偏光とS偏光とに分離するための偏光ビームスプリッタと、第1のマイクロレンズと、1/2波長板と、第2のマイクロレンズとを含み、第1マイクロレンズは偏光ビームスプリッタによって分離されたP偏光とS偏光を互いに異なる位置に集光するように配置されており、1/2波長板はP偏光またはS偏光が集光される位置に配置されていてP偏光またはS偏光をS偏光またはP偏光に変換するように作用し、第2マイクロレンズは1/2波長板を通過して偏光変換された後のS偏光またはP偏光と1/2波長板を通過しなかったS偏光またはP偏光とを統合するように作用し、偏光ビームスプリッタ、第1マイクロレンズ、1/2波長板、および第2マイクロレンズの少なくとも一つがDLC(diamond-like carbon: ダイアモンド状カーボン)膜を利用して形成されていることを特徴としている。
なお、偏光ビームスプリッタと1/2波長板の少なくとも一方はDLC膜中に形成された屈折率変調型回折格子で形成され得る。また、第1マイクロレンズと第2マイクロレンズの少なくとも一方はDLC膜中に形成された屈折型レンズと屈折率変調型の回折型レンズとのいずれかであり得る。さらに、偏光ビームスプリッタ、第1マイクロレンズ、1/2波長板、および第2マイクロレンズの組の複数が、光源からの光束の断面内で周期的に配列され得る。そして、そのような偏光インテグレータは、液晶プロジェクタにおいて好ましく用いられ得る。
本発明によれば、軽量化と小型化が可能でかつ耐熱性に優れた偏光インテグレータを簡便にかつ低コストで提供することができる。そして、そのような偏光インテグレータは、液晶プロジェクタの軽量化と小型化と低コスト化をも可能にすることができる。
まず、本願発明をなすに際して、本発明者らは、透光性DLC(diamond-like carbon:ダイアモンド状カーボン)膜にエネルギビームを照射することによってその屈折率を高めることができることを確認している。そのようなDLC膜は、シリコン基板、ガラス基板、その他の種々の基体上にプラズマCVD(化学気相堆積)によって形成することができる。そのようなプラズマCVDによって得られる透光性DLC膜は、通常は1.55程度の屈折率を有している。
DLC膜の屈折率を高めるためのエネルギビームとしては、イオンビーム、電子ビーム、シンクロトロン放射(SR)光、紫外(UV)光などを用いることができる。これらのエネルギビーム照射の中でもHeイオン照射によって、DLC膜の最大の屈折率変化量をΔn=0.65程度まで高め得ることを現状において確認できている。また、SR光照射によっても、DLC膜の最大の屈折率変化量をΔn=0.50程度まで現状において高めることができる。さらに、UV光照射によっても、DLC膜の最大の屈折率変化量をΔn=0.20程度まで現状において高めることができる。これらの、DLC膜のエネルギビーム照射による屈折率変化量は、従来のガラスのイオン交換による屈折率変化量(最大でもΔn=0.17)または石英系ガラスのUV光照射による屈折率変化量(Δn=0.01以下程度)に比べて顕著に大きいことが分かる。
図1は、本発明による実施形態の一例としての偏光インテグレータを模式的な断面図で図解している。この偏光インテグレータにおいて、光源1はドーム状またはパラボラ状の反射ミラー2内に配置されている。光源1から放射された光はコリメータレンズ(図せず)によって平行光にされ、偏光ビームスプリッタ51に照射される。すなわち、偏光ビームスプリッタ51は、光源光をP偏光とS偏光に分離する。第1のマイクロレンズ52は、P偏光束を1/2波長板53上に集光するとともに、S偏光束を1/2波長板53の配置されていない領域に集光する。
1/2波長板53は、P偏光をS偏光に変換する。1/2波長板53を透過した後のS偏光束と1/2波長板53が配置されていない領域を通過したS偏光束とは、第2のマイクロレンズ54とレンズ55の作用によって統合されて、集光レンズCLによって液晶パネルLC上に照射される。もちろん、その液晶パネルLCに含まれる偏光板は、S偏光を受け入れるように設定されている。
なお、図1の例ではP偏光に対して1/2波長板53が適用されているが、逆にS偏光に対して1/2波長板53を適用してもよいことが理解されよう。すなわち、その場合には、光源光束が偏光ビームスプリッタ51によってP偏光束とS偏光束に分離されて、そのS偏光束が1/2波長板53でP偏光束に変換された後に、それら2つのP偏光束が統合されて液晶パネルLC上に照射されることになる。もちろん、その液晶パネルLCに含まれる偏光板は、P偏光を受け入れるように設定される。
以上のように、無偏光の光源光を偏光インテグレータによってS偏光またはP偏光のいずれか一方に統合することによって、液晶プロジェクタにおける光源光の利用効率を改善することができる。
ここで、本発明においては、偏光インテグレータに含まれる偏光ビームスプリッタ、第1マイクロレンズ、1/2波長板、および第2マイクロレンズの少なくとも一つがDLC膜を利用して形成される。もちろん、DLC膜は薄いものであり、軽くかつ優れた耐熱性を有している。したがって、偏光ビームスプリッタ、第1マイクロレンズ、1/2波長板、および第2マイクロレンズの少なくとも一つがDLC膜を利用して作製可能になれば、偏光インテグレータの小型化、軽量化、および低コスト化が可能になり、ひいては液晶プロジェクタの小型化、軽量化、および低コスト化が可能になる。
図2において、本発明による屈折型マイクロレンズアレイの作製方法の一例が、模式的な断面図で図解されている。このような屈折型マイクロレンズアレイは、図1中の第1マイクロレンズアレイ52または第2マイクロレンズアレイ54として用いることができる。
図2(a)において、DLC膜21上にマスク層22が形成されている。マスク層22としては、エネルギビーム23の透過を制限し得る機能を有する種々の材料を用いることができるが、金が好ましく用いられ得る。このマスク層22はアレイ状に配列された微小な凹部22aを有している。それらの凹部22aの各々は、概略球面の一部または概略円柱面の一部からなる底面を有している。それらの凹部22aのアレイを含むマスク層22を介して、エネルギビーム23がDLC膜21に照射される。
図2(b)において、エネルギビーム23の照射後にマスク層22を除去することによって、DLC膜21中に形成されたマイクロレンズアレイ21aが得られる。すなわち、エネルギビーム23の照射によって、マスク層22の凹部22aのアレイに対応して、DLC膜21内において高屈折率領域21aのアレイが形成されている。このとき、マスク層22の凹部22aは球面状または円柱面状の底面を有しているので、凹部21aの中央から周縁に向かうにしたがってマスク層の厚さが増大している。すなわち、エネルギビーム23は、凹部22aの周縁部に比べて中央部において透過しやすいことになる。したがって、高屈折率領域21aの深さは、その中央部において深くて周縁部において浅い球面状凸レンズまたは円柱面状凸レンズの形状を有している。その結果、それらの高屈折率領域21aの各々が、そのまま一つのマイクロレンズとして作用し得る。
なお、図2に示されているようなエネルギビーム23によってマイクロレンズアレイを作製する場合、概略球面状または概略円柱面状の凹部22aの深さを調節することによって、マイクロレンズ21aの厚さを調節することができ、すなわちその焦点距離を調節することができる。また、凹部22aの深さを変化させなくても、照射するエネルギビーム23の透過能を変化させることによってもマイクロレンズ21aの焦点距離を調節することができる。たとえば、エネルギビーム23としてHeイオンビームを用いる場合、そのイオンの加速エネルギを高めて透過能を高めることによって、マイクロレンズ21aの焦点距離を短くすることができる。また、DLC膜に対するエネルギビーム23のドース量が高いほど屈折率変化Δnが大きくなるので、そのドース量を調節することによってもマイクロレンズ21aの焦点距離を調節することも可能である。
図2(a)に示されているような概略球面状または概略円柱面状の底面を有する凹部22aを含むマスク層22は、種々の方法によって作製することができる。たとえば、DLC膜21上に均一な厚さのマスク層22を形成し、その上にアレイ状に配列された微小な穴または平行に配列された線状の開口を有するレジスト層を形成する。そして、そのレジスト層の微小な穴または線状の開口から等方的エッチングを行うことによって、その微小な穴の下のマスク層22内に概略半球状または概略半円柱状の凹部22aを形成することができる。
図2(a)に示されているような概略球面状または概略円柱面状の底面を有する凹部22aを含むマスク層22は、図3の模式的な断面図に図解されているような方法で作製され得る刻印型を用いて簡便に作製することもできる。
図3(a)において、例えばシリカの基板31上にレジストパターン32が形成される。このレジストパターン32は、基板31上でアレイ状に配列された複数の微小な円形領域上または平行に配列された複数の細い帯状領域上に形成されている。
図3(b)において、レジストパターン32が加熱溶融させられ、各微小円形領域上または細い帯状領域上で溶融したレジスト32は、その表面張力によって概略球面状または概略円柱面状の凸レンズ形状になる。
図3(c)において、概略凸レンズ状のレジスト32bとともにシリカ基板31aをRIEすれば、レジスト32bの径または幅がRIEで縮小しながらシリカ基板31aがエッチングされる。
その結果、図3(d)に示されているように、概略球面状または概略円柱面状の凸部31bが配列されたシリカの刻印型31cが最終的に得られる。なお、凸部31bの高さは、図3(c)におけるレジスト32bのエッチング速度とシリカ基板31aのエッチング速度との比率を調節することによって調節することができる。
こうして得られた刻印型31cは、図2(a)に示されているような凹部22aを含むマスク層22の作製に好ましく用いられ得る。すなわち、例えばマスク層22が金材料で形成されている場合、金は展延性に富んでいるので、その金マスク層22に刻印型31cで刻印することによって、簡便に凹部22aを形成することができる。また、刻印型31cは一度作製すれば繰り返し使用可能であるので、エッチングによってマスク層22中の凹部22aを形成する場合に比べて遥かに簡便かつ低コストで凹部22aを形成することを可能にする。
なお、本発明におけるようにDLC膜を用いた屈折型マイクロレンズアレイは、従来のガラス基板を用いる場合にくらべて、エネルギビーム照射によって高屈折率のレンズを形成することができるので、ガラス基板に比べて遥かに薄いDLC膜中に屈折型マイクロレンズアレイを形成することができる。しかし、DLC膜を用いた屈折型マイクロレンズであっても、次に述べる回折型マイクロレンズに比べれば厚いDLC膜を要し、10μmから20μm程度以上の厚さを要する(回折効果を利用したマイクロレンズの例としては、「マイクロレンズ(アレイ)の超精密加工と量産化技術」、技術情報協会出版、2003年、第71−81頁参照)。
図4(a)の模式的な平面図と図4(b)の模式的な断面図において、本発明の他の実施形態による回折型マイクロレンズが図解されている。特に、屈折率変調型の回折型マイクロレンズは屈折型マイクロレンズに比べて顕著に薄く作製することが可能であり、1〜2μm程度の厚さのDLC薄膜中に回折型マイクロレンズを作製することができる。すなわち、この屈折率変調型の回折型マイクロレンズ40も、DLC膜41を用いて作製されており、同心円状の複数の帯状リング領域Rmnを含んでいる。ここで、符号Rmnは、第m番目のリングゾーン中の第n番目の帯状リング領域を表すとともに、同心円の中心からその帯状リング領域の外周までの半径をも表すものとする。それらの帯状リング領域Rmnは、同心円の中心から遠いものほど、減少させられた幅を有している。
互いに隣接する帯状リング領域Rmnは、互いに異なる屈折率を有している。図4の回折型マイクロレンズは、それが2レベルの屈折率変調を含む回折型レンズである場合には、n=2番目までの帯状リング領域を含むリングゾーンをm=3番目まで含んでいることになる。そして、同じリングゾーン中では、外側に比べて内側の帯状リング領域の方が高い屈折率を有している。
このことから類推されるであろうように、4レベルの屈折率変調を含む回折型レンズでは、一つのリングゾーンがn=4番目までの帯状リング領域を含み、この場合にも同じリングゾーン中では同心円の中心に近い帯状リング領域ほど高い屈折率を有している。すなわち、一つのリングゾーン中で内周側から外周側に向かって4段階の屈折率変化が形成されている。そして、そのような4段階の屈折率変化の周期がリングゾーンごとにm回繰り返されることになる。
なお、帯状リング領域Rmnの外周半径は、スカラー近似を含む回折理論から次式(1)にしたがって設定することができる。この式(1)において、Lはレンズの回折レベルを表し、λは光の波長を表し、そしてfはレンズの焦点距離を表している。また、最大の屈折率変化量Δnは、最大の位相変調振幅Δφ=2π(L−1)/Lを生じさせ得るものでなければならない。
Figure 2005195919
図5の模式的な断面図において、図4に示されているような2レベルの回折型マイクロレンズの作製方法の一例が図解されている。
図5(a)において、DLC膜41上に、例えばNiの導電層42が周知のEB(電子ビーム)蒸着法によって形成される。このNi導電層42上には図4中のn=1に対応する帯状リング領域Rmn(m=1〜3)を覆うようにレジストパターン43が形成される。そのレジストパターン43の開口部に、電気めっきによって金マスク44が形成される。
図5(b)において、レジストパターン43が除去されて、金マスク44が残される。そして、その金マスク44の開口部を通して、エネルギビーム45がDLC膜41に照射される。その結果、エネルギビーム45に照射された帯状リング領域Rm1の屈折率が高められ、エネルギビーム45がマスクされた帯状リング領域Rm2は当初のDLC膜の屈折率を維持している。すなわち、図4に示されているような2レベルの回折型マイクロレンズが得られる。
なお、図5の例ではDLC膜ごとにその上にマスク層が形成されるが、別個に作製された独立のマスクを用いてDLC膜にエネルギビーム照射してもよいことは言うまでもない。また、順次パターンが調整されたマスクを用いてDLC膜にエネルギビーム照射を繰り返すことによって、多レベルの回折型マイクロレンズが形成され得ることが理解されよう。
さらに、図3(d)に示されているような刻印型の変わりに、多段階に厚さが変化さられた同心円状の帯状リング領域を含む刻印型を用いてDLC膜上の金マスク層に刻印し、その刻印された金マスク層を介してエネルギビーム照射することによって、一回のエネルギビーム照射で多レベルの回折型マイクロレンズを作製することも可能である。
さらにまた、回折型マイクロレンズに関する上述の実施形態では屈折型レンズの球面状凸レンズに対応する回折型マイクロレンズが説明されたが、本発明は屈折型レンズの柱面状凸レンズに対応する回折型マイクロレンズにも同様に適用し得ることが理解されよう。その場合には、屈折率変調された同心円状の複数の帯状リング領域の代わりに、屈折率変調された互いに平行な複数の帯状領域を形成すればよい。この場合、例えば図4(b)の断面図において、屈折率変調された互いに平行な複数の帯状領域は、その図の紙面に対して垂直に伸びていることになる。また、その場合において、図5(b)中の金マスク44もその図の紙面に対して垂直に伸びていればよい。
さらに、本発明においては、図1中の偏光ビームスプリッタ51が、DLC膜を利用して作製され得る。すなわち、この偏光ビームスプリッタ51は、DLC膜に形成された屈折率変調型回折格子を含んでいる。なお、回折格子によって偏光分離し得ることは、例えば Applied Optics, Vol.41, 2002, pp.3558-3566 において説明されている。
図6は、屈折率変調型回折格子を含むDLC膜からなる偏光ビームスプリッタ51Aを模式的な断面図で表している。すなわち、このDLC膜51Aは、相対的に低屈折率の領域51aと相対的に高屈折率の領域51bとを含んでいる。低屈折率領域51aはエネルギビーム照射されなかった領域であり、例えば1.55の屈折率を有している。他方、高屈折率領域51bは例えば620(mA/min/mm2)のシンクロトロン条件でSR(シンクロトロン放射)光照射されて、その屈折率が例えば1.90に高められている。また、高屈折率領域51bと低屈折率領域51aとの界面は、DLC膜の表面に対して例えば40度だけ傾斜させられている。
このような偏光ビームスプリッタ51Aは、以下のように作製することができる。例えば、DLC膜上に、幅0.5μmの金ストライプが周期1μmで繰り返し配列されたライン・アンド・スペースのパターンを有する金マスクが形成される。その後、DLC膜の表面に対して40度の傾斜角でかつ金ストライプの長さ方向に直交するの方向にSR光照射すればよい。
図6に示されているようなDLC膜の偏光ビームスプリッタ51にS偏光とP偏光を含む光が入射すれば、S偏光は0次回折光として透過し(TE波に相当)、P偏光は1次回折光として回折される(TM波に相当)。すなわち、P偏光とS偏光が、互いに分離されることになる。
さらに、本発明においては、図1中の1/2波長板53も、DLC膜を利用して作製され得る。すなわち、図6に示されている屈折率変調型回折格子に類似の回折格子を含むDLC膜によって、1/2波長板の作用を生じさせることができる。そのような1/2波長板53は、以下のように作製することができる。例えば、DLC膜上に、幅0.5μmの金ストライプが周期1μmで繰り返し配列されたライン・アンド・スペースのパターンを有する金マスクが形成される。その後、DLC膜の表面に対して垂直な方向にSR光照射すればよい。こうして得られる屈折率変調型回折格子を含むDLC膜の1/2波長板53に対して、例えばP偏光を通過させれば、その直線偏光面が90度回転されてS偏光に変換される。もちろん、そのような1/2波長板によって、S偏光をP偏光に変換することも可能である。
なお、図7においては透過型の液晶プロジェクタが示されているが、本発明による偏光インテグレータは反射型の液晶プロジェクタ(非特許文献1参照)にもそのまま適用し得ることは言うまでもない。
以上のように、本発明によれば、偏光インテグレータに含まれる偏光ビームスプリッタ、第1マイクロレンズ、1/2波長板、および第2マイクロレンズの少なくとも一つがDLC膜を利用して形成され、軽量化されかつ小型化された偏光インテグレータを簡便にかつ低コストで提供することが可能となる。
本発明による偏光ビームスプリッタは、軽量化かつ小型化が可能で、簡便かつ低コストで提供され得る。また、そのような偏光ビームスプリッタは、液晶プロジェクタの軽量化と小型化と低コスト化を可能にする。
本発明による偏光インテグレータの一例を模式的に図解する断面図である。 図1の偏光インテグレータに含まれる屈折型マイクロレンズアレイをDLC膜を利用して作製する方法を模式的に図解する断面図である。 図2の屈折型マイクロレンズの作製方法に利用し得る刻印型の形成方法を模式的に図解する断面図である。 図1の偏光インテグレータに含まれるDLC膜の回折型マイクロレンズを模式的に図解する断面図である。 図4の回折型マイクロレンズの作製方法を模式的に図解する断面図である。 図1の偏光インテグレータに含まれるDLC膜の偏光ビームスプリッタを模式的に図解する断面図である。 従来の液晶プロジェクタを図解する模式的断面図である。 従来の偏光インテグレータの基本原理を模式的に図解する断面図である。
符号の説明
1 光源、2 ドーム状またはパラボラ状の反射ミラー、3 コリメータレンズ、M1、M2、M3、M4 全反射ミラー、DM1、DM2 ダイクロイックミラー、B 青色光、G 緑色光、R 赤色光、CL1、CL2、CL3 集光レンズ、LC1、LC2、LC3 液晶パネル、4 プリズム、5 投影レンズ、11 偏光分離プリズム、12 PBS膜、13 1/2波長板、14 全反射ミラー、P P偏光、S S偏光、21 DLC膜、21a 高屈折領域、22 金マスク層、22a 凹部、23 エネルギビーム、31 シリカ基板、32 レジスト、32a 溶融されたレジスト、31a RIEされているシリカ基板、32b RIEされているレジスト、31c シリカ製刻印型、31b 凸部、40 回折型マイクロレンズ、f 焦点距離、41 DLC膜、41a 高屈折率領域、41b 低屈折率領域、42 Ni層、43 レジスト、44 金マスク、45 エネルギビーム、51 偏光ビームスプリッタ、51A DLC膜、51a 低屈折率領域、51b 高屈折率領域、52 第1マイクロレンズアレイ、53 1/2波長板、54 第2マイクロレンズアレイ、55 レンズ、CL 集光レンズ、LC 液晶パネル。

Claims (5)

  1. 光源からの光をP偏光とS偏光とに分離するための偏光ビームスプリッタと、第1のマイクロレンズと、1/2波長板と、第2のマイクロレンズとを含み、
    前記第1マイクロレンズは前記偏光ビームスプリッタによって分離されたP偏光とS偏光を互いに異なる位置に集光するように配置されており、
    前記1/2波長板は前記P偏光または前記S偏光が集光される位置に配置されていてP偏光またはS偏光をS偏光またはP偏光に変換するように作用し、
    前記第2マイクロレンズは前記1/2波長板を通過して偏光変換された後のS偏光またはP偏光と前記1/2波長板を通過しなかったS偏光またはP偏光とを統合するように作用し、
    前記偏光ビームスプリッタ、前記第1マイクロレンズ、前記1/2波長板、および前記第2マイクロレンズの少なくとも一つがDLC膜を利用して形成されていることを特徴とする偏光インテグレータ。
  2. 前記偏光ビームスプリッタと前記1/2波長板の少なくとも一方はDLC膜中に形成された屈折率変調型回折格子で形成されていることを特徴とする請求項1に記載の偏光インテグレータ。
  3. 前記第1マイクロレンズと前記第2マイクロレンズの少なくとも一方は、DLC膜中に形成された屈折型レンズと屈折率変調型の回折型レンズとのいずれかであることを特徴とする請求項1または2に記載の偏光インテグレータ。
  4. 前記偏光ビームスプリッタ、前記第1マイクロレンズ、前記1/2波長板、および前記第2マイクロレンズの組の複数が、前記光源からの光束の断面内で周期的に配列されていることを特徴とする請求項1から3のいずれかに記載の偏光インテグレータ。
  5. 請求項1から4のいずれかに記載された偏光インテグレータを含むことを特徴とする液晶プロジェクタ。
JP2004002696A 2004-01-08 2004-01-08 偏光インテグレータ Pending JP2005195919A (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004002696A JP2005195919A (ja) 2004-01-08 2004-01-08 偏光インテグレータ
KR1020067013628A KR20060132636A (ko) 2004-01-08 2005-01-07 편광 인티그레이터
CNA2005800021346A CN1910513A (zh) 2004-01-08 2005-01-07 偏振积分器
CA002550520A CA2550520A1 (en) 2004-01-08 2005-01-07 Polarization integrator
PCT/JP2005/000426 WO2005066710A1 (ja) 2004-01-08 2005-01-07 偏光インテグレータ
EP05703665A EP1703319A4 (en) 2004-01-08 2005-01-07 POLARIZATION INTEGRATOR
US10/597,025 US20070182931A1 (en) 2004-01-08 2005-01-07 Polarization integrator
TW094100531A TW200528777A (en) 2004-01-08 2005-01-07 Polarization integrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004002696A JP2005195919A (ja) 2004-01-08 2004-01-08 偏光インテグレータ

Publications (1)

Publication Number Publication Date
JP2005195919A true JP2005195919A (ja) 2005-07-21

Family

ID=34747054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004002696A Pending JP2005195919A (ja) 2004-01-08 2004-01-08 偏光インテグレータ

Country Status (8)

Country Link
US (1) US20070182931A1 (ja)
EP (1) EP1703319A4 (ja)
JP (1) JP2005195919A (ja)
KR (1) KR20060132636A (ja)
CN (1) CN1910513A (ja)
CA (1) CA2550520A1 (ja)
TW (1) TW200528777A (ja)
WO (1) WO2005066710A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056577A1 (fr) 2006-11-10 2008-05-15 Sumitomo Electric Industries, Ltd. Film de carbone hydrogéné contenant si-o, dispositif optique incluant celui-ci, et procédé de fabrication du film hydrogéné contenant si-o et du dispositif optique
US11002893B2 (en) 2017-04-25 2021-05-11 Nichia Corporation Transmission grating and laser device using the same, and method of producing transmission grating

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7411735B2 (en) * 2005-12-06 2008-08-12 3M Innovative Property Company Illumination system incorporating collimated light source
JP2010140888A (ja) * 2008-11-14 2010-06-24 Seiko Epson Corp 照明装置、プロジェクタ
WO2011146267A2 (en) * 2010-05-19 2011-11-24 3M Innovative Properties Company Polarized projection illuminator
CN102402017A (zh) * 2010-09-08 2012-04-04 华新丽华股份有限公司 偏振光转换系统
JP6413421B2 (ja) * 2014-07-17 2018-10-31 船井電機株式会社 光学系及び光学系を有する光学機器
US9448415B2 (en) * 2015-02-25 2016-09-20 Omnivision Technologies, Inc. Spatially interleaved polarization converter for LCOS display
CN114114814A (zh) * 2021-10-21 2022-03-01 成都派斯光学有限公司 一种适用于汽车的动态投影系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225926A (en) * 1991-09-04 1993-07-06 International Business Machines Corporation Durable optical elements fabricated from free standing polycrystalline diamond and non-hydrogenated amorphous diamond like carbon (dlc) thin films
JP3504683B2 (ja) * 1993-04-12 2004-03-08 日東電工株式会社 レンズ領域の形成方法並びにレンズ及びレンズアレイ板
WO1996020422A1 (fr) * 1994-12-28 1996-07-04 Seiko Epson Corporation Appareil d'eclairage en lumiere polarisee et dispositif d'affichage du type a projection
US6104454A (en) * 1995-11-22 2000-08-15 Hitachi, Ltd Liquid crystal display
US6930835B2 (en) * 2000-05-25 2005-08-16 Atomic Telecom Atomic layer controlled optical filter design for next generation dense wavelength division multiplexer
GB2368133A (en) * 2000-10-13 2002-04-24 Sharp Kk Polarisation conversion system, optical lens array and projection display system
JP2002372626A (ja) * 2001-06-15 2002-12-26 Minolta Co Ltd 偏光変換素子とそれを用いた表示装置
JP2003090916A (ja) * 2001-09-19 2003-03-28 Seiko Epson Corp 波長板および投射型表示装置
JP3979138B2 (ja) * 2001-12-20 2007-09-19 住友電気工業株式会社 光アイソレータおよび偏光子
JP3888223B2 (ja) * 2002-05-13 2007-02-28 ソニー株式会社 液晶表示素子の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056577A1 (fr) 2006-11-10 2008-05-15 Sumitomo Electric Industries, Ltd. Film de carbone hydrogéné contenant si-o, dispositif optique incluant celui-ci, et procédé de fabrication du film hydrogéné contenant si-o et du dispositif optique
US8047653B2 (en) 2006-11-10 2011-11-01 Sumitomo Electric Industries, Ltd. Si-O containing hydrogenated carbon film, optical device including the same, and method for manufacturing the Si-O containing hydrogenated carbon film and the optical device
US11002893B2 (en) 2017-04-25 2021-05-11 Nichia Corporation Transmission grating and laser device using the same, and method of producing transmission grating

Also Published As

Publication number Publication date
TW200528777A (en) 2005-09-01
CA2550520A1 (en) 2005-07-21
US20070182931A1 (en) 2007-08-09
KR20060132636A (ko) 2006-12-21
WO2005066710A1 (ja) 2005-07-21
EP1703319A4 (en) 2008-10-29
EP1703319A1 (en) 2006-09-20
CN1910513A (zh) 2007-02-07

Similar Documents

Publication Publication Date Title
US11579456B2 (en) Transmissive metasurface lens integration
KR20060132636A (ko) 편광 인티그레이터
US8047653B2 (en) Si-O containing hydrogenated carbon film, optical device including the same, and method for manufacturing the Si-O containing hydrogenated carbon film and the optical device
US10126466B2 (en) Spatially multiplexed dielectric metasurface optical elements
JP4811825B2 (ja) 複合光分割デバイス
KR100511543B1 (ko) 마이크로 렌즈 기판의 제작 방법 및 마이크로 렌즈 노광광학계
JP2007109801A (ja) 固体撮像装置とその製造方法
US7511784B2 (en) Hologram color filter, method for fabricating the same, and color liquid crystal display comprising it
JPWO2006027934A1 (ja) 透光型表示パネルとその製造方法
JP2004347693A (ja) マイクロレンズアレイ、空間光変調装置、プロジェクタ及びマイクロレンズアレイの製造方法
JPH1096807A (ja) ホログラフィック光学素子及びその作製方法
WO2005062083A1 (ja) 平板型マイクロレンズとその製造方法
JP5417815B2 (ja) 回折素子、光ヘッド装置および投射型表示装置
JP2006053992A (ja) 光ピックアップ装置およびその製造方法
CN100427972C (zh) 平板型微透镜及其制造方法
JP2005077545A (ja) 偏光変換光学系とその製造方法及び液晶表示装置
JPH1164617A (ja) 位相型回折レンズ及びレーザ記録装置
JP2003156688A (ja) 均一分布照明装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104