JP2005194892A - 内燃機関の気筒判別装置 - Google Patents

内燃機関の気筒判別装置 Download PDF

Info

Publication number
JP2005194892A
JP2005194892A JP2003435686A JP2003435686A JP2005194892A JP 2005194892 A JP2005194892 A JP 2005194892A JP 2003435686 A JP2003435686 A JP 2003435686A JP 2003435686 A JP2003435686 A JP 2003435686A JP 2005194892 A JP2005194892 A JP 2005194892A
Authority
JP
Japan
Prior art keywords
cylinder
cylinder pressure
internal combustion
combustion engine
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003435686A
Other languages
English (en)
Inventor
Makoto Kobayashi
誠 小林
Masaki Ueno
将樹 上野
Hideki Sakamoto
英樹 坂本
Yuichi Shimazaki
勇一 島崎
Mamoru Hasegawa
衛 長谷川
Satoshi Yamaguchi
山口  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003435686A priority Critical patent/JP2005194892A/ja
Publication of JP2005194892A publication Critical patent/JP2005194892A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】筒内圧センサの出力に基づいて始動時に気筒をより迅速にかつ精度良く判別すると共に、その筒内圧センサの特性などに依存することなく、判別するようにした内燃機関の気筒判別装置を提供する。
【解決手段】気筒nのそれぞれの筒内圧(気筒内圧力)Pをサンプリングし(S12)、クランク角度6度当たりの筒内圧の変化率(圧力変化率)dP/dθ#nを気筒nごとに算出し(S14)、算出された変化率を基準値Aと比較し、それを超えるとき、当該気筒が圧縮行程にある気筒と判別する(S16,S18)。
【選択図】図3

Description

この発明は内燃機関の気筒判別装置に関し、より具体的には複数気筒を備えた内燃機関の始動時にその気筒を判別(特定)する装置に関する。
複数気筒を備えた内燃機関にあっては、始動時に気筒を迅速に判別し、気筒ごとに燃料噴射あるいは点火時期などを制御するのが望ましい。その意図から、下記の特許文献1に記載される如く、複数気筒のそれぞれに筒内圧センサ(圧力センサ)を配置し、筒内圧(気筒内圧力)を検出して所定の基準値と比較し、検出値が基準値を超えているとき、その気筒が圧縮行程にあると判別する技術が提案されている。
特開2000−45856号公報
しかしながら、上記した従来技術においては、検出された筒内圧そのものを基準値と比較して気筒を判別しているため、TDC前後の、筒内圧が十分に高くなる時点でしか判別できない不都合があった。さらに、TDC前後であっても、検出された筒内圧そのものを用いていることから、筒内圧センサの特性などに依存する不都合があった。
従って、この発明の目的は上記した課題を解決し、筒内圧センサの出力に基づいて始動時に気筒をより迅速にかつ精度良く判別すると共に、その筒内圧センサの特性などに依存することなく、判別するようにした内燃機関の気筒判別装置を提供することにある。
上記の目的を解決するために、請求項1にあっては、複数気筒を備えた内燃機関の始動時における気筒判別装置において、前記複数気筒のそれぞれに配置されて筒内圧(気筒内圧力)を検出する筒内圧検出手段(筒内圧センサ)、前記内燃機関のクランク角度を検出するクランク角度検出手段、前記筒内圧検出手段とクランク角度検出手段の出力に基づいて単位クランク角度当たりの筒内圧の変化率(圧力変化率)を気筒ごとに算出する圧力変化率算出手段、および前記気筒ごとに算出された筒内圧の変化率を基準値と比較し、前記気筒ごとに算出された筒内圧の変化率が前記基準値を超えるとき、当該気筒が圧縮行程にあると判別する気筒判別手段を備える如く構成した。
請求項2に係る内燃機関の気筒判別装置にあっては、さらに、前記内燃機関の運転状態および前記内燃機関の環境条件の少なくともいずれかに基づいて前記基準値を補正する補正手段を備える如く構成した。
請求項1にあっては、筒内圧検出手段(筒内圧センサ)とクランク角度検出手段の出力に基づいて単位クランク角度当たりの筒内圧の変化率を気筒ごとに算出して基準値と比較し、それが基準値を超えるとき、当該気筒が圧縮行程にあると判別する如く構成したので、換言すれば、検出された筒内圧そのものではなく、その変化率を基準値と比較して気筒を判別するようにしたので、内燃機関の始動時に気筒をより迅速にかつ精度良く判別することができる。
さらに、検出された筒内圧そのものを用いていないため、筒内圧検出手段(筒内圧センサ)の特性などに依存することがない。即ち、製造バラツキによって筒内圧検出手段(筒内圧センサ)の特性にバラツキがあるときも、その影響を受けることなく、気筒を精度良く判別することができる。
請求項2に係る内燃機関の気筒判別装置にあっては、さらに、前記内燃機関の運転状態および前記内燃機関の環境条件の少なくともいずれかに基づいて前記基準値を補正するように構成したので、上記した効果に加え、運転状態や環境条件からの影響を受け難くすることができ、判別精度を一層向上させることができる。
尚、上記で、「内燃機関の運転状態」は具体的には、機関回転数、吸気温度、機関冷却水温などを意味する。また「内燃機関の環境条件」は具体的には、大気圧、より正確には内燃機関が位置する場所の大気圧を意味する。
以下、添付図面に即してこの発明に係る内燃機関の気筒判別装置を実施するための最良の形態について説明する。
図1は、この発明の第1実施例に係る内燃機関の気筒判別装置を全体的に示す概略図、図2はその一部の説明ブロック図である。尚、図1および以下の説明においてディーゼル機関を例にとって内燃機関を説明する。
図1において、符号10は、4気筒(複数気筒)のディーゼル機関(以下「エンジン」という)を示す。エンジン10において、エアクリーナ12から吸入された空気は吸気管14とそれから分岐する吸気マニホルド16を流れ、それぞれの気筒の吸気バルブ(図示せず)が開弁すると共に、ピストン18(図2に示す)が下降するとき、燃焼室(図示せず)に吸入される。吸入された空気はピストン18が上昇するとき圧縮されて高温となる。
他方、燃料タンク内20に貯留された燃料(軽油)は低圧ポンプ22で汲み上げられて高圧ポンプ24に供給され、そこで加圧された燃料はコモンレール26に圧送される。
コモンレール26は、それぞれの気筒の燃焼室を臨む位置に配置されたインジェクタ28に接続され、よってコモンレール26に圧送された燃料はインジェクタ28に供給され、インジェクタ28が開弁されるとき、燃焼室に噴射され、高圧縮・高温となった吸入空気に触れて自然着火して燃焼する。それによってピストン18は下方に駆動された後、再び上昇し、排気バルブ(図示せず)が開弁するとき、排ガス(燃焼ガス)を排気する。このようなピストンの上下動によってクランク軸30(図2に示す)が回転させられる。尚、4個の気筒の燃焼順序は、第1(#1)、第3(#3)、第4(#4)、第2(#2)気筒の順とする。
排ガスはそれぞれの気筒燃焼室に接続された排気マニホルド32を通って排気管34を流れ、触媒装置(図示せず)で浄化されつつ、エンジン外に放出される。
排気管34と吸気管14とはEGR管(模式的に示す)36によって接続されると共に、EGR管36にはEGR制御バルブ36aが配置される。また、エンジン10にはターボチャージャ(模式的に示す)40が設けられる。ターボチャージャ40は、排気管34にEGR管36の接続位置の下流において配置されたタービン40aと、吸気管14に配置されてタービン40aの回転で駆動されるコンプレッサ40bとからなる。
また、エンジン10において、燃焼室にはグロープラグ42(図2に示す)が配置され、燃焼室を過熱して始動時の着火を補助する。グロープラグ42はシリンダヘッド44(図2に示す)を貫通して捻じ込まれ、燃焼室を臨む位置に配置される。
グロープラグ42の捻じ込み式の取り付け部には、取り付け座金状を呈する圧電素子からなる筒内圧センサ(圧力センサ。筒内圧検出手段)46が配置される。筒内圧センサ46は4個の気筒のそれぞれに配置され、グロープラグ42に作用する筒内圧(気筒内圧力)Pに比例した信号を出力する。
コモンレール26には燃圧センサ50が配置され、コモンレール26の燃料圧力(燃圧)Pfに比例した信号を出力する。クランク軸30の付近には複数組の電磁ピックアップからなるクランク角センサ(クランク角度検出手段)52が配置され、4気筒のそれぞれのTDCあるいはその付近でTDC信号を出力すると共に、クランク角度1度ごとにクランク角度信号を出力する。
また、車両運転席(図示せず)に配置されたアクセルペダル(図示せず)の付近にはアクセル開度センサ54が配置され、アクセル開度(アクセルペダル踏み込み量)APに応じた信号を出力すると共に、吸気管14においてエアクリーナ12の付近にはエアフローメータ56が配置され、そこを流れる吸気量Qに応じた信号を出力する。
さらに、エアフローメータ56の付近には吸気温センサ60が配置され、吸気温度TAに応じた信号を出力すると共に、エンジン10の冷却水通路(図示せず)の付近には水温センサ62が配置され、エンジン冷却水温TWに応じた信号を出力する。また、エンジン10の付近には大気圧センサ64が配置され、エンジン10が位置する場所の大気圧PAに応じた信号を出力する。
上記したセンサ群の出力は、ECU(電子制御ユニット)66に送られる。
図2はそのECU66の構成を示す説明ブロック図である。
図示の如く、ECU66はマイクロコンピュータ70、マルチプレクサ72、A/Dコンバータ74およびパルス生成回路76を備える。マイクロコンピュータ70はCPU70a,ROM70b,RAM70cおよび図示しない入出力回路およびカウンタなどからなる。
センサ群の出力の中、クランク角センサ52から出力されるクランク角度信号はパルス生成回路76に入力され、クランク角度1度当たりのパルス信号(「1度間隔」と示す)が生成され、A/Dコンバータ74に入力されてディジタル値に変換された後,マイクロコンピュータ70に入力される。マイクロコンピュータ70においてCPU70aはカウンタを介してクランク角度信号のディジタル値をカウントしてエンジン回転数NEを検出(算出)し、算出値をRAM70cに格納する。
また、パルス生成回路76はクランク角度信号から6度当たりのパルス(「6度間隔」と示す)を生成し、マイクロコンピュータ70に送出する。図示は省略するが、クランク角センサ52から出力されるTDC信号もパルス生成回路76に入力され、同様のパルスが生成されてマイクロコンピュータ70に入力される。
マルチプレクサ72は、CPU70aの指示に従ってクランク角度1度ごとに4個の筒内圧センサ46の出力を順次A/Dコンバータ74に入力(サンプリング)する。A/Dコンバータ74はその1度の区間内に入力された4個のセンサ出力を順次ディジタル値に変換する。このようにセンサ出力からサンプリングされてディジタル値に変換された筒内圧はマイクロコンピュータ70に入力され、RAM70cに格納される。アクセル開度センサ54などのアナログ出力も同様にA/Dコンバータ74に入力されてマイクロコンピュータ70に入力されてRAM70cに格納される。
マイクロコンピュータ70にあってCPU70aは、筒内圧センサ46の出力に基づいて後述するように気筒判別を行うと共に、クランク角度6度ごとに、検出されたエンジン回転数NEとアクセル開度APとから予め設定されたマップ値を検索して基本燃料噴射量を算出する。また、CPU70aは、筒内圧を検出して着火時期および図示平均有効圧を算出(検出)し、算出された図示平均有効圧に所定のゲインを乗じてエンジン10の実トルクを算出し、算出された実トルクに基づいて基本燃料噴射量を補正し、補正した燃料噴射量に基づいて駆動回路78を通じてインジェクタ28の開弁時間を制御する。
CPU70aはさらに、エンジン10の運転状態に応じてEGR制御バルブ36aの作動を通じてEGRを制御すると共に、ターボチャージャ40において過給圧が所定値を超えたとき、ウエストゲートバルブ(図示せず)の作動を通じて過給圧を制御する。
次いで、この内燃機関の気筒判別装置の動作を説明する。
図3はその動作を示すフロー・チャートである。この動作は具体的には、ECU66のマイクロコンピュータ70においてCPU70aが行う処理であり、所定のクランク角度(例えばクランク角度6度)ごとに実行される。
尚、マイクロコンピュータ70は、エンジン10においてイグニション・スイッチがOFF−ACC−ON−STARTの4位置からなるとき、キーをON位置に、あるいはON位置を越えてSTART位置に操作した時点でバッテリから動作電圧を供給されて起動する。
以下説明すると、S10においてエンジン10が始動モードにあるか否か判断する。始動モードは、キーがSTART位置まで廻されてスタータモータが回転を始めた時点から開始し、エンジン回転数NEが完爆回転数(例えば700rpm)に達したときに終了する。
S10で否定されるときは以降の処理をスキップすると共に、肯定されるときはS12に進み、筒内圧Pのサンプリング、即ち、クランク角度1度ごとにサンプリングされてディジタル値に変換されてRAM70cに格納された筒内圧センサ46の出力Pを読み出す。
次いでS14に進み、気筒ごとに圧力変化率(筒内圧の変化率)dP/dθ#1からdP/dθ#4を算出する。ここで、dθは単位クランク角度(例えば6度)を示し、dPはその単位クランク角度における当該気筒の筒内圧Pの変化量、具体的には前回算出値との差分値を示す。
即ち、図4に示す如く、従来技術においては筒内圧センサの出力そのものを用いて気筒判別を行っていたのに対し、この実施例においては単位クランク角度(6度)当たりの圧力変化率を用いて気筒判別を行うようにした。尚、図3フロー・チャートを初めてループするときは、前回値がないことから、2回目にループしたときから圧力変化率を算出する。
次いでS16に進み、気筒判別用の基準値(しきい値)Aの演算を行う。尚、この基準値Aは後述するように、気筒ごとに算出される圧力変化率と比較されるべき値であり、算出された圧力変化率がその基準値Aを超えるとき、その気筒が圧縮行程にあると識別することで、気筒を判別するために使用される値である。
図5はその処理を示すサブ・ルーチン・フロー・チャートである。
以下説明すると、S100において始動時用基準値(初期値)Asを取り込む。この始動時用基準値Asは、実験を通じて得た適宜な値に設定される。
次いでS102に進み、検出されたエンジン回転数NEを取り込み、S104に進み、取り込んだエンジン回転数NEから図6にその特性を示すマップを検索し、第1の筒内圧係数kNEを算出する。図6に示す如く、第1の筒内圧係数kNEは、エンジン回転数NEが増加するにつれて増加するように設定される。第1の筒内圧係数kNE(および以下に述べる第2、第3の筒内圧係数)は後述のように基準値Aに乗算され、基準値Aを補正するが、その特性をこのように設定したのは、エンジン回転数の上昇につれて筒内圧最大値Pmaxも増大するからである。尚、図6においてaで示す回転数(例えば50rpm)を基準とし、そのときの係数を1.0(即ち、補正なし)とする。
次いでS106に進み、検出されたエンジン冷却水温TWを取り込み、S108に進み、取り込んだエンジン冷却水温TWから図7にその特性を示すマップを検索し、第2の筒内圧係数kTWを算出する。図7に示すように、第2の筒内圧係数kTWは、1.0を中心としてエンジン冷却水温TWが増減するにつれて増減するように設定される。この特性をかく設定したのは、エンジン冷却水温TWの増減につれて筒内圧最大値Pmaxも増減するからである。尚、図7においてbで示す水温(例えば25℃)を基準とし、そのときの係数を1.0(即ち、補正なし)とする。
次いでS110に進み、検出された大気圧PAを取り込み、S112に進み、取り込んだ大気圧PAから図8にその特性を示すマップを検索し、第3の筒内圧係数kPAを算出する。図8に示すように、第3の筒内圧係数kPAも、1.0を中心として大気圧PAが増減するにつれて増減するように設定される。この特性をかく設定したのは、大気圧PAの増減につれて筒内圧最大値Pmaxも増減するからである。尚、図8においてcで示す大気圧(例えば標準大気圧(ほぼ0.1MPa))を基準とし、そのときの係数を1.0(即ち、補正なし)とする。
次いでS114に進み、算出した第1から第3の筒内圧係数を始動時用基準値(初期値)Asに乗算し、よって得た積を基準値(しきい値)Aとする。尚、上記に代え、第1から第3の筒内圧係数をまとめてマップ化し、それらから基準値Aを直ちに検索するようにしても良い。即ち、A=f(NE,TW,PA)の式から求めても良い。
図3フロー・チャートの説明に戻ると、次いでS18に進み、気筒判別を行う。
図9はその処理を示すサブ・ルーチン・フロー・チャートである。
以下説明すると、S200において気筒ごとに算出された圧力変化率dP/dθの中、第1気筒(#1)の圧力変化率dP/dθ#1を上記した基準値Aと比較してそれを超えているか否か判断する。そして、S200で肯定され、算出された第1気筒(#1)の圧力変化率が基準値Aを超えていると判断されるときはS202に進み、第1気筒が圧縮行程にあると判別する。尚、4個の気筒は燃焼順序が決まっていることから、圧縮行程にある気筒を判別(特定)すれば、残余の気筒もどの行程にあるか判別することができる。
S200で否定されるときはS204に進み、気筒ごとに算出された圧力変化率dP/dθの中、燃焼順位として次位の第3気筒(#3)の圧力変化率dP/dθ#3を上記した基準値Aと比較してそれを超えているか否か判断する。そして、S204で肯定され、算出された第3気筒(#3)の圧力変化率が基準値Aを超えていると判断されるときはS206に進み、第3気筒が圧縮行程にあると判別する。
S204で否定されるときはS208に進み、気筒ごとに算出された圧力変化率dP/dθの中、燃焼順位として次位の第4気筒(#4)の圧力変化率dP/dθ#4を上記した基準値Aと比較してそれを超えているか否か判断する。そして、S208で肯定され、算出された第4気筒(#4)の圧力変化率が基準値Aを超えていると判断されるときはS210に進み、第4気筒が圧縮行程にあると判別する。
S208で否定されるときはS212に進み、気筒ごとに算出された圧力変化率dP/dθの中、燃焼順位として最後の第2気筒(#2)の圧力変化率dP/dθ#2を上記した基準値Aと比較してそれを超えているか否か判断する。そして、S212で肯定され、算出された第2気筒(#2)の圧力変化率が基準値Aを超えていると判断されるときはS214に進み、第2気筒が圧縮行程にあると判別する。尚、S202,S206,S210およびS214の判別結果に基づいて燃料噴射開始気筒が決定され、燃料供給が開始される。
また、S212でも否定されるときは、図3フロー・チャートにおいてS10からの処理を繰り返す。
図10は、この実施例に係る内燃機関の気筒判別装置の動作を示すタイム・チャートである。
クランク角度(6度)当たりの圧力変化率を用いて気筒判別を行うようにしたことから、図10に示す如く、始動後(クランキング開始後)、迅速に気筒を判別することができ、最長でもクランキング開始後にクランク角度において180度回転するまでに気筒を判別することができる。それによって各気筒への燃料噴射をいち早く開始することができ、エンジン10の始動性を向上させることができる。
さらに、検出された筒内圧そのものを用いていないため、筒内圧センサ46の特性などに依存することがない。即ち、製造バラツキによって筒内圧センサ46の特性にバラツキがあるときも、その影響を受けることなく、気筒を精度良く判別することができる。
さらに、エンジン回転数NE、エンジン冷却水温TW、換言すればエンジン10の運転状態、および大気圧PA、換言すればエンジン10の環境条件に基づいて基準値Aを補正、より具体的には始動時用基準値を補正して基準値を算出するように構成したので、上記した効果に加え、エンジン10の運転状態やエンジン10が位置する場所の環境条件からの影響を受け難くすることができ、判別精度を向上させることができる。
上記の如く、この実施例においては、複数気筒を備えた始動時における内燃機関(エンジン10)の気筒判別装置において、前記複数気筒のそれぞれに配置されて筒内圧(気筒内圧力)Pを検出する筒内圧検出手段(筒内圧センサ46,マイクロコンピュータ70,S12)、前記内燃機関のクランク角度を検出するクランク角度検出手段(クランク角センサ52,マイクロコンピュータ70)、前記筒内圧検出手段とクランク角度検出手段の出力に基づいて単位クランク角度当たりの筒内圧の変化率(圧力変化率)dP/dθ#nを気筒ごとに算出する圧力変化率算出手段(マイクロコンピュータ70,S14)、および前記気筒ごとに算出された筒内圧の変化率を基準値Aと比較し、前記気筒ごとに算出された筒内圧の変化率が前記基準値を超えるとき、当該気筒が圧縮行程にあると判別する気筒判別手段(マイクロコンピュータ70,S16,S18,S200からS214)を備える如く構成した。
さらに、前記内燃機関の運転状態(NE,TW)および前記内燃機関の環境条件(PA)の少なくともいずれかに基づいて前記基準値Aを補正する補正手段(マイクロコンピュータ70,S16,S100からS114)を備える如く構成した。
尚、上記において、エンジン10の運転状態および環境条件の双方に基づいて基準値Aを補正、より具体的には始動時用基準値を補正して基準値を算出するように構成したが、運転状態および環境条件のいずれかのみを用いても良い。また、基準値Aを吸気温TA(エンジン10の運転状態)を用いて補正しても良い。さらに、基準値Aを4個の気筒について同一の値としたが、気筒によって相違させても良い。
また、上記において、圧電素子からなる筒内圧センサ46を、グロープラグ42の捻じ込み式の取り付け部に取り付け座金状を呈するように構成したが、グロープラグ42の内部に収容しても良い。さらには、筒内圧センサ46は圧電素子に限定されるものではなく、筒内圧を検出できるならばどのような種類のセンサであっても良い。このように、筒内圧センサ46の種類、構造および取り付けなどは、上記した実施例に限定されるものではない。
また、上記において、この発明をディーゼルエンジンを例にとって説明したが、この発明は火花点火式のガソリンエンジンにも妥当する。尚、ガソリンエンジンの場合、クランキング直後は全気筒同時に燃料を供給し、気筒が判別された後は燃焼気筒に対して順次燃料を供給するように切替えることになる。
さらに、上記において、この発明を車両用のエンジンを例にとって説明したが、この発明は、クランク軸を鉛直方向とした船外機などのような船舶用推進機関用エンジンにも適用が可能である。
この発明の第1実施例に係る内燃機関の気筒判別装置を全体的に示す概略図である。 図1に示すECU(電子制御ユニット)の構成を詳細に示す説明ブロック図である。 図1に示す装置の動作を示すフロー・チャートである。 図3の処理で使用される圧力(筒内圧の)変化率を従来技術と対比して示す説明グラフである。 図3の気筒判別用の基準値(しきい値)Aの演算処理を示すサブ・ルーチン・フロー・チャートである。 図5フロー・チャートで使用される第1の筒内圧係数kNEの特性を示す説明グラフである。 図5フロー・チャートで使用される第2の筒内圧係数kTWの特性を示す説明グラフである。 図5フロー・チャートで使用される第3の筒内圧係数kPAの特性を示す説明グラフである。 図3の気筒判別処理を示すサブ・ルーチン・フロー・チャートである。 図3に示す動作を説明するタイム・チャートである。
符号の説明
10 ディーゼル機関(エンジン。内燃機関)
14 吸気管
46 筒内圧センサ(圧力センサ。筒内圧検出手段)
52 クランク角センサ(クランク角度検出手段)
62 水温センサ
64 大気圧センサ
66 ECU(電子制御ユニット)
70 マイクロコンピュータ
74 A/Dコンバータ
76 パルス生成回路

Claims (2)

  1. 複数気筒を備えた内燃機関の始動時における気筒判別装置において、
    a.前記複数気筒のそれぞれに配置されて筒内圧を検出する筒内圧検出手段、
    b.前記内燃機関のクランク角度を検出するクランク角度検出手段、
    c.前記筒内圧検出手段とクランク角度検出手段の出力に基づいて単位クランク角度当たりの筒内圧の変化率を気筒ごとに算出する圧力変化率算出手段、
    および
    d.前記気筒ごとに算出された筒内圧の変化率を基準値と比較し、前記気筒ごとに算出された筒内圧の変化率が前記基準値を超えるとき、当該気筒が圧縮行程にある気筒と判別する気筒判別手段、
    を備えたことを特徴とする内燃機関の気筒判別装置。
  2. さらに、
    e.前記内燃機関の運転状態および前記内燃機関の環境条件の少なくともいずれかに基づいて前記基準値を補正する補正手段、
    を備えたことを特徴とする請求項1記載の内燃機関の気筒判別装置。
JP2003435686A 2003-12-26 2003-12-26 内燃機関の気筒判別装置 Withdrawn JP2005194892A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003435686A JP2005194892A (ja) 2003-12-26 2003-12-26 内燃機関の気筒判別装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003435686A JP2005194892A (ja) 2003-12-26 2003-12-26 内燃機関の気筒判別装置

Publications (1)

Publication Number Publication Date
JP2005194892A true JP2005194892A (ja) 2005-07-21

Family

ID=34815680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003435686A Withdrawn JP2005194892A (ja) 2003-12-26 2003-12-26 内燃機関の気筒判別装置

Country Status (1)

Country Link
JP (1) JP2005194892A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011036743A1 (ja) 2009-09-24 2011-03-31 トヨタ自動車株式会社 内燃機関の制御装置
JP2013015109A (ja) * 2011-07-06 2013-01-24 Honda Motor Co Ltd 内燃機関の制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011036743A1 (ja) 2009-09-24 2011-03-31 トヨタ自動車株式会社 内燃機関の制御装置
CN102549252A (zh) * 2009-09-24 2012-07-04 丰田自动车株式会社 内燃机的控制装置
EP2481907A1 (en) * 2009-09-24 2012-08-01 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP5229394B2 (ja) * 2009-09-24 2013-07-03 トヨタ自動車株式会社 内燃機関の制御装置
EP2481907A4 (en) * 2009-09-24 2014-03-12 Toyota Motor Co Ltd CONTROL DEVICE FOR A COMBUSTION ENGINE
US8744733B2 (en) 2009-09-24 2014-06-03 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JP2013015109A (ja) * 2011-07-06 2013-01-24 Honda Motor Co Ltd 内燃機関の制御装置

Similar Documents

Publication Publication Date Title
JP4861915B2 (ja) 内燃機関の制御装置
US20180320642A1 (en) Intake air temperature control device for engine
JP5229394B2 (ja) 内燃機関の制御装置
JP2002357156A (ja) 内燃機関用ノック制御装置
JP2007303294A (ja) 過給機付き内燃機関の制御装置
JP4475207B2 (ja) 内燃機関の制御装置
JP2012031735A (ja) 多気筒内燃機関の制御装置
JP5409538B2 (ja) 内燃機関の燃料噴射制御装置
JP4615501B2 (ja) 内燃機関の制御装置
JP4615503B2 (ja) 内燃機関の制御装置
JP2005194892A (ja) 内燃機関の気筒判別装置
US20130110378A1 (en) Control Device of Engine
US6978768B2 (en) Acceleration control method for engine
JP5182646B2 (ja) 筒内圧センサの感度劣化判定装置
JP3401131B2 (ja) 内燃機関の燃料性状検出装置
US6705288B2 (en) Starting control apparatus for internal combustion engine
JP4279690B2 (ja) 内燃機関の筒内圧検出装置
JP2005194893A (ja) 内燃機関の筒内圧検出装置
JP2014015913A (ja) 内燃機関のガス温度推定装置
JP7307760B2 (ja) 推定装置
JP2009174401A (ja) 内燃機関の制御装置
JP2005201163A (ja) 内燃機関の制御装置
JPH09144575A (ja) 過給機付エンジンの出力制限装置
JP2010133390A (ja) 内燃機関の始動制御装置
JPH08284710A (ja) エンジンの空燃比制御方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306