JP2005193670A - The formation method which enables the control of fine open cell core in fluid polymer material, and its apparatus - Google Patents

The formation method which enables the control of fine open cell core in fluid polymer material, and its apparatus Download PDF

Info

Publication number
JP2005193670A
JP2005193670A JP2004380647A JP2004380647A JP2005193670A JP 2005193670 A JP2005193670 A JP 2005193670A JP 2004380647 A JP2004380647 A JP 2004380647A JP 2004380647 A JP2004380647 A JP 2004380647A JP 2005193670 A JP2005193670 A JP 2005193670A
Authority
JP
Japan
Prior art keywords
polymer material
microbubble
nuclei
gas
bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004380647A
Other languages
Japanese (ja)
Other versions
JP4559846B2 (en
Inventor
Tsun Chan Chen
ツン チャン チェン
William Hind David
ウィリアム ハインド デイビット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EverFocus Worldwide Co Ltd
Original Assignee
EverFocus Worldwide Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EverFocus Worldwide Co Ltd filed Critical EverFocus Worldwide Co Ltd
Publication of JP2005193670A publication Critical patent/JP2005193670A/en
Priority to EP05027697A priority Critical patent/EP1676685B1/en
Priority to AT05027697T priority patent/ATE405398T1/en
Priority to DE602005009118T priority patent/DE602005009118D1/en
Priority to CN200510132769XA priority patent/CN1864981B/en
Application granted granted Critical
Publication of JP4559846B2 publication Critical patent/JP4559846B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/565Screws having projections other than the thread, e.g. pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/51Screws with internal flow passages, e.g. for molten material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/53Screws having a varying channel depth, e.g. varying the diameter of the longitudinal screw trunk

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate an unstable situation which occasionally occurs in the core formation method of conventional polymer materials where it is difficult to separate a member which does not accomplish cores from a member which accomplishes cores after fluid polymer material which is heat-melted within material pipe is impregnated into a former, further, where it is also quite difficult to control a proportional of a foaming agent and a connection of a non formation core zone to need. <P>SOLUTION: In this invention, a polymer material 13 in a material pipe is melted by a heater 12 being attached so that it surrounds the outside of a transportation screw 14, further, whether a high-pressure gas delivery operation of a pressurization pump or a high-pressure gas conservation cylinder is performed, is controlled and forming bubble nuclei or non-bubble nuclei in a fluid cylindrical polymer material zone is controlled by the set-up of a gas transport pipe 16 in the transportation screw 14 and its connection with a fine bubble generating part 18 at a tip of the transportation screw 14. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、流体ポリマー材料において微気泡核をコントロールできる生成方法及びその装置に関する。詳しくは、本発明の流体ポリマー材料において微気泡核をコントロールできる生成方法及びその装置は、輸送スクリューの外側に包み込むように加熱器が取り付けられていることにより、材料パイプ内のポリマー材料を溶化して、さらに、輸送スクリュー内に気体輸送管が設けられていることと、輸送スクリュー先端の微気泡発生パーツ(例:微穴通気金属ヘッド・微穴セラミックヘッド)に接続することによって、加圧ポンプあるいは高圧気体保存筒の高圧気体送出動作が行なわれるかどうかをコントロールして、成型される流体ポリマー材料区域に気泡核あるいは無気泡核を形成することをコントロールすることが可能な技術である。   The present invention relates to a production method and apparatus capable of controlling microbubble nuclei in a fluid polymer material. Specifically, the production method and apparatus capable of controlling microbubble nuclei in the fluid polymer material of the present invention has a heater attached so as to wrap outside the transport screw, so as to solubilize the polymer material in the material pipe. In addition, a pressure pump is provided by providing a gas transport pipe in the transport screw and connecting it to the micro-bubble generating parts (example: micro-hole ventilation metal head / micro-hole ceramic head) at the tip of the transport screw. Alternatively, it is a technique capable of controlling the formation of bubble nuclei or bubble-free nuclei in the fluid polymer material area to be molded by controlling whether or not the high-pressure gas delivery operation of the high-pressure gas storage cylinder is performed.

一般に、射出あるいは押出成型機に使用されるポリマー材料は、流体に溶化された後、ポリマー材料中に物理発泡剤が注入されて攪拌され、そのポリマーを発泡剤ユニットセルを含んだ混合物にして、さらに、混合物を成型ダイス内に注入して凝固させることで、混合物内の圧力を下降させて、ポリマー内のユニットセルを成長させる。   In general, a polymer material used in an injection or extrusion molding machine is dissolved in a fluid, and then a physical foaming agent is injected into the polymer material and stirred to make the polymer into a mixture including a foaming unit cell. Furthermore, the mixture is injected into a forming die and solidified, thereby lowering the pressure in the mixture and growing unit cells in the polymer.

しかしながら、ポリマー材料は化学反応を起こして、気体を形成した発泡剤となる。通常は有機化合物を使用し、その特性は臨界温度下で分解し、窒素、二酸化炭素、一酸化炭素等の気体を放出して、流体ポリマー内で気泡核を生成する効果を持つ。このため、この技術を応用したものとして、流体ポリマー内で核を成す既存の特許である特許文献1に示す「微孔質材料の射出成形」がある。この発明は、射出成型機あるいは押出機に応用したもので、ポリマー材料を原料としている。輸送スクリューによってその流体ポリマー材料を気体あるいは液体の発泡剤に注入し、この発泡剤が輸送スクリュー混合区域に注入され、流体ポリマー材料と攪拌混合される。そして、蓄積室から核形成器の通路に送られ圧力を下げ、流体ポリマー材料を急速に核にする。この発泡剤は二酸化炭素の気体あるいは液体が使用され、発泡剤は最初スクリューに進入して混合された後、スクリューによって発泡剤と流体ポリマー材料を攪拌して混合物にする。さらに、ノズルを通してこのポリマー材料が成型ダイス内に送られて核を作る。
台湾特許番号第87104336号
However, the polymer material undergoes a chemical reaction and becomes a foaming agent that forms a gas. Usually, an organic compound is used, and its characteristics are that it decomposes at a critical temperature and releases a gas such as nitrogen, carbon dioxide, carbon monoxide, etc., and has the effect of generating bubble nuclei in the fluid polymer. For this reason, as an application of this technique, there is "injection molding of microporous material" shown in Patent Document 1, which is an existing patent that forms a nucleus in a fluid polymer. This invention is applied to an injection molding machine or an extruder and uses a polymer material as a raw material. The fluid polymer material is injected into a gas or liquid blowing agent by a transfer screw, and the blowing agent is injected into the transfer screw mixing zone and stirred and mixed with the fluid polymer material. The pressure is then reduced from the accumulation chamber to the nucleator passage to rapidly nucleate the fluid polymer material. As the blowing agent, carbon dioxide gas or liquid is used. The blowing agent first enters the screw and is mixed, and then the blowing agent and the fluid polymer material are stirred by the screw to form a mixture. In addition, this polymeric material is fed through a nozzle into a molding die to create nuclei.
Taiwan Patent No. 87104336

1.従来のポリマー材料の核生成方法は、それによって得たポリマー材料核生成が、気体、液体あるいは固体発泡剤において微気泡穴のサイズが35ミクロン以下であることが不可能である。したがって、形成された気泡は平均ではなく、ミクロン発泡材料を使用する必要がある場合に可能であるものの、そのミクロン発泡材料の価格が非常に高価になり、コストが高くついて採算が取れない。   1. Conventional polymer material nucleation methods do not allow the resulting polymer material nucleation to have a microbubble size of 35 microns or less in a gas, liquid or solid blowing agent. Thus, although the air bubbles formed are not average and are possible when a micron foam material needs to be used, the price of the micron foam material becomes very expensive and expensive and unprofitable.

2.発泡剤の注入口は材料パイプの外側にあり、輸送スクリューの攪拌区域に連結していて、定点において注入される。さらに、輸送スクリューを通して、発泡剤を流体ポリマー材料と、材料パイプ内において攪拌混合する。しかしながら、発泡剤は流体ポリマー材料が攪拌される前は溶化したポリマー材料の表面にあって、それから攪拌されるため、気泡が流失して不均衡が生じやすい。さらに、発泡剤とポリマー材料を攪拌する方法は、発泡時間が長く、速度が遅い。それに相応してコストも高くなる。   2. The blowing agent inlet is outside the material pipe and is connected to the stirring area of the transport screw and is injected at a fixed point. In addition, the blowing agent is agitated and mixed with the fluid polymer material in the material pipe through the transport screw. However, since the blowing agent is on the surface of the dissolved polymer material before the fluid polymer material is agitated and then agitated, bubbles are likely to flow away and an imbalance is likely to occur. Furthermore, the method of stirring the foaming agent and the polymer material has a long foaming time and a low speed. Correspondingly, the cost increases accordingly.

3.材料パイプ内で加熱溶化した流体ポリマー材料は、成型機内に注入されてから核を成さない部分と核を成す部分を分離することが難しい。さらに、必要とする発泡剤の比例と非生成核区域の接続をコントロールすることもかなり困難で、往々にして不安定な状況が生じる。   3. The fluid polymer material heat-solubilized in the material pipe is difficult to separate a portion that does not form a nucleus and a portion that forms a nucleus after being injected into the molding machine. In addition, it is quite difficult to control the proportion of blowing agent required and the connection of the non-generated nuclei area, often resulting in an unstable situation.

4.発泡剤の注入口には、ポリマー材料が逆流するのを防ぐための弁を取り付ける必要がある。しかしながら、この装置は設備コストがかかり、故障もしやすい。   4). It is necessary to attach a valve to prevent the polymer material from flowing backward at the blowing agent inlet. However, this apparatus is expensive and is prone to failure.

上記の課題を解決するために、請求項1記載の発明は、射出あるいは押出成型において、気体が発泡剤であることを利用し、その気体が二酸化酸素、窒素、あるいは、その他の発泡させることが可能な気体で、ポリマー材料に微気泡核を形成し、その気泡核を形成する方法が、a.高圧気体が輸送スクリューの内部の気体輸送管を通過して、材料パイプ外縁の加熱器が前記高圧気体を間接的に加熱することを利用すること、b.前記加熱された高温気体が前記輸送スクリューの先端の微気泡発生パーツに進入し、気体が内から外に分布する不規則な微穴から均一に微気泡を放出すること、c.前述のその区域の微気泡とポリマー材料が前記輸送スクリューによって攪拌され、送り出されて、均一な微気泡ポリマー材料を形成することにより、微気泡核ポリマー材料を均一に形成すること、から構成される流体ポリマー材料において微気泡核をコントロールできる生成方法である。   In order to solve the above problems, the invention according to claim 1 utilizes the fact that gas is a foaming agent in injection or extrusion molding, and the gas can be expanded with oxygen dioxide, nitrogen or other. A method of forming microbubble nuclei in a polymer material with a possible gas and forming the bubble nuclei comprises: a. Utilizing the high pressure gas passing through a gas transport tube inside the transport screw and the heater on the outer edge of the material pipe indirectly heating the high pressure gas, b. The heated hot gas enters the microbubble generating part at the tip of the transport screw, and the gas is uniformly discharged from the irregular micropores distributed from the inside to the outside; c. The microbubbles in that area and the polymer material are agitated and pumped out by the transport screw to form a uniform microbubble polymer material, thereby uniformly forming the microbubble core polymer material. This is a production method capable of controlling microbubble nuclei in a fluid polymer material.

請求項2記載の発明は、射出あるいは押出機の材料パイプの外縁に加熱器を取り付けて、前記材料パイプ内に輸送スクリューを取り付けることで、ポリマー材料を加熱して溶化し、輸送スクリューに送り出し、気体輸送管が前記輸送スクリューの内部にあって、その進入口が加圧ポンプあるいは高圧気体貯蔵シリンダーに連なっていて、微気泡発生パーツが内から外に不規則に互いにつながった微穴から構成されていて、前記気体輸送管が微気泡発生パーツの内部に入り込んでいることにより、微気泡が前記微気泡発生パーツの不規則に分布する前記微穴から内から外へ放出され、逆流を防ぐ弁を使用する必要がなく、前記微気泡の生成、攪拌、ポリマー材料の送出が同時に進行して、迅速、均一に前記微気泡の混合ができる流体ポリマー材料において微気泡核をコントロールできる生成装置である。   The invention of claim 2 attaches a heater to the outer edge of the material pipe of the injection or extruder, attaches a transport screw in the material pipe, heats and melts the polymer material, and sends it to the transport screw. The gas transport pipe is inside the transport screw, and its inlet is connected to the pressurization pump or high-pressure gas storage cylinder, and the microbubble generation parts are composed of micro holes irregularly connected to each other from the inside to the outside. In addition, since the gas transport pipe enters the inside of the microbubble generation part, the microbubbles are discharged from the inside to the outside through the microholes irregularly distributed in the microbubble generation part, thereby preventing the backflow. A fluid polymer material that can rapidly and uniformly mix the fine bubbles by simultaneously generating, stirring, and feeding the polymer material. A generator capable of controlling the microbubble nuclei in.

請求項3記載の発明は、前記微気泡発生パーツが微穴通気金属ヘッドである請求項2に記載の流体ポリマー材料において微気泡核をコントロールできる生成装置である。   The invention described in claim 3 is the generating device capable of controlling the microbubble nuclei in the fluid polymer material according to claim 2, wherein the microbubble generating part is a microporous metal head.

請求項4記載の発明は、前記微気泡発生パーツが微穴セラミックヘッドである請求項2に記載の流体ポリマー材料において微気泡核をコントロールできる生成装置である。   According to a fourth aspect of the present invention, in the fluid polymer material according to the second aspect of the present invention, the microbubble nuclei can be controlled in the fluid polymer material.

請求項5記載の発明は、前記高圧気体のソースが加圧ポンプあるいは高圧気体貯蔵シリンダーである請求項1に記載の流体ポリマー材料において微気泡核をコントロールできる生成方法である。   According to a fifth aspect of the present invention, there is provided a production method capable of controlling microbubble nuclei in the fluid polymer material according to the first aspect, wherein the source of the high-pressure gas is a pressure pump or a high-pressure gas storage cylinder.

請求項6記載の発明は、高圧気体の輸送源のコントロールが、微気泡発生パーツの微気泡が持続放出あるいは間歇放出かをコントロールすることが可能で、流体ポリマー材料と微気泡発生区間において間隔を置いて混合あるいは持続的に混合できることにより、射出あるいは押出機の成型に提供することができる請求項1に記載の流体ポリマー材料において微気泡核をコントロールできる生成方法である。   According to the sixth aspect of the present invention, the control of the high pressure gas transport source can control whether the microbubbles of the microbubble generating part are continuously released or intermittently released, and the interval between the fluid polymer material and the microbubble generating section can be controlled. A production method capable of controlling microbubble nuclei in a fluid polymer material according to claim 1 which can be provided for injection or molding of an extruder by being able to be mixed or continuously mixed.

請求項7記載の発明は、前記微気泡発生パーツが35ミクロン以下の微気泡を供給することができるため、ポリマー材料が35ミクロン以下の前記微気泡核を生成することが可能であることを特徴とする請求項2に記載の流体ポリマー材料において微気泡核をコントロールできる生成装置である。   The invention according to claim 7 is characterized in that since the microbubble generating part can supply microbubbles of 35 microns or less, the polymer material can generate the microbubble nuclei of 35 microns or less. The production | generation apparatus which can control a microbubble nucleus in the fluid polymer material of Claim 2.

請求項8記載の発明は、微気泡発生パーツがソリッド金属パーツからなり、その横中心を気体輸送通路が貫通し、前記輸送スクリュー内の前記気体輸送管とつながり、さらに、前記ソリッド金属パーツの周辺に数個の通気穴があって、該通気穴が前記気体輸送通路とつながっていて、各通気穴の口の内側に微穴通気塊があり、該微穴通気塊が不規則な微穴を持つ請求項2に記載の流体ポリマー材料において微気泡核をコントロールできる生成装置である。   The invention according to claim 8 is characterized in that the microbubble generating part is made of a solid metal part, a gas transport passage passes through the lateral center thereof, is connected to the gas transport pipe in the transport screw, and further, the periphery of the solid metal part There are several ventilation holes, the ventilation holes are connected to the gas transport passage, and there are minute ventilation holes inside the openings of the ventilation holes. It is a production | generation apparatus which can control a microbubble nucleus in the fluid polymer material of Claim 2 which has.

請求項9記載の発明は、前記微気泡発生パーツが非ソリッドパーツからなり、その内部にエアルームが形成されていて、その非ソリッド金属パーツ後方に穴が開いていて、前記輸送スクリュー内の前記気体輸送管とつながっていて、さらに、前記非ソリッド金属パーツの周辺に数個の通気穴があって、各通気穴の口の内側に微穴通気塊があり、該微穴通気塊が不規則な微穴を持つ請求項2に記載の流体ポリマー材料において微気泡核をコントロールできる生成装置である。   The invention according to claim 9 is characterized in that the microbubble generating part is made of a non-solid part, an air room is formed therein, a hole is opened behind the non-solid metal part, and the inside of the transport screw is It is connected to the gas transport pipe, and there are several ventilation holes around the non-solid metal parts, and there are minute ventilation holes inside the mouth of each ventilation hole, and these ventilation holes are irregular. It is a production | generation apparatus which can control a microbubble nucleus in the fluid polymer material of Claim 2 which has a simple micropore.

請求項10記載の発明は、押出機の微気泡発生パーツの外縁に分流リングがあって、その周辺に軸向突起があり、材料パイプの内側に固定されていて、前記分流リングの外縁とパイプ内の軸向突起との間の高度が、無気泡ポリマー材料通路を形成し、さらに、前記分流リングの内縁と前記微気泡発生パーツの間に、微気泡ポリマー材料通路を形成することにより、ポリマー材料が非気泡核が微気泡核を包む請求項2に記載の流体ポリマー材料において微気泡核をコントロールできる生成装置である。   In the invention according to claim 10, there is a flow dividing ring at the outer edge of the fine bubble generating part of the extruder, and there is an axial projection around the periphery, which is fixed inside the material pipe, and the outer edge of the flow dividing ring and the pipe The height between the axial projections in the inside forms a bubble-free polymer material passage, and further, a polymer cell passage is formed between the inner edge of the diverting ring and the micro-bubble generating part. 3. The generating device capable of controlling microbubble nuclei in the fluid polymer material according to claim 2, wherein the material is non-bubble nuclei enveloping the microbubble nuclei.

請求項11記載の発明は、前記微気泡発生パーツが必要とする微穴のサイズの微穴通気金属ヘッドあるいは微穴セラミックヘッドと同様な材質を選択することが可能なことにより、必要とする微気泡核のサイズが得られることを特徴とする請求項2に記載の流体ポリマー材料において微気泡核をコントロールできる生成装置である。   According to the eleventh aspect of the present invention, since it is possible to select the same material as that of the fine hole ventilation metal head or the fine hole ceramic head having the size of the fine hole required by the fine bubble generating part, the required fine value is obtained. 3. The generating device capable of controlling microbubble nuclei in the fluid polymer material according to claim 2, wherein the size of the bubble nuclei is obtained.

本発明は各種の提供可能な媒介の気体が流体ポリマー材料内に微気泡を形成し、ポリマー材料が成型後、微気泡核を形成し、さらに、直接、微気泡をポリマー材料内部で混合させることで、成型時に混合物内部において微気泡核が均一に生成され、微気泡発生パーツ(例えば、微穴通気金属ヘッド・微穴セラミックヘッドが好ましい)の微穴サイズを選択することで、微気泡核のサイズを提供して、同時に微気泡の送出をコントロールすることによって、異なった区域において異なった混合が可能で、異なるポリマー材料の成型に必要な条件に対応でき、スピーディーに、均一に核を生成することが可能なので、品質向上が可能で、構造がシンプルで、コストが低く押さえられる。   The present invention provides a variety of mediator gases that can form microbubbles in a fluid polymer material, and after the polymer material has been molded, form microbubble nuclei, and further directly mix microbubbles within the polymer material. In the molding, microbubble nuclei are uniformly generated inside the mixture, and by selecting the microhole size of the microbubble generating part (for example, a microhole ventilation metal head / microhole ceramic head is preferable), By providing size and controlling the delivery of microbubbles at the same time, different mixing is possible in different areas, can meet the conditions required for molding different polymer materials, speedily and uniformly nucleate The quality can be improved, the structure is simple, and the cost can be kept low.

本発明は、微気泡発生パーツ(例えば、微穴通気金属ヘッド・微穴セラミックヘッドが好ましい)を輸送スクリューに取り付け、その気体輸送管が輸送スクリュー内部に設けられて、前述の微気泡発生パーツに接続することによって、気体が加圧ポンプあるいは高圧気体保存筒に送られ、材料パイプ外側に取り付けられた加熱器を経てポリマー材料を溶化し、同時に、間接的に気体輸送管をあらかじめ加熱して、微気泡発生パーツによって、内から外へ不規則に分布する微穴から微気泡を放出し、直接流体ポリマー材料内部に拡散し、同時に、輸送スクリューの攪拌及び伝送によって、成型ダイス内に注入して臨界温度まで下げ、圧力も下げる。ポリマー材料が微気泡核を形成するのに伴い、微気泡の生成、攪拌、送出が同時に進行して、微気泡がポリマー材料内で均一に分散し、その微気泡核のサイズを微気泡発生パーツの微穴に応じて必要とする35ミクロン以下にすることが可能である。   In the present invention, a fine bubble generating part (for example, a fine hole ventilation metal head or a fine hole ceramic head is preferable) is attached to a transport screw, and its gas transport pipe is provided inside the transport screw. By connecting, gas is sent to a pressure pump or high-pressure gas storage cylinder, and the polymer material is melted via a heater attached to the outside of the material pipe, and at the same time, the gas transport pipe is preheated indirectly, Microbubbles are released from microholes randomly distributed from inside to outside by the microbubble generation parts, diffused directly into the fluid polymer material, and simultaneously injected into the molding die by stirring and transmission of the transport screw. Lower to critical temperature and lower pressure. As the polymer material forms microbubble nuclei, the generation, agitation, and delivery of microbubbles proceed simultaneously, and the microbubbles are uniformly dispersed in the polymer material. It is possible to reduce the required size to 35 microns or less depending on the microhole.

本発明の微気泡発生パーツは、輸送スクリューの先端に取り付けられていて、その微気泡が供給される区域は、間歇的に供給することが可能で、成型ダイス内で核生成及び、非核生成ポリマーの接続部分がはっきりしていてコントロールしやすい。さらに、成型ダイス表面に付着するのが非核ポリマーであることも可能で、その非核生成ポリマー材料内部が微気泡核のポリマー材料であることで、表面に光沢を持ち、細かい穴のない状況を作り出すことが可能で、内部が微気泡核を持った構造である。   The micro-bubble generating part of the present invention is attached to the tip of the transport screw, and the area to which the micro-bubble is supplied can be supplied intermittently, and nucleation and non-nucleation polymer in a molding die The connection part is clear and easy to control. Furthermore, it is possible for non-nuclear polymer to adhere to the surface of the molding die, and the inside of the non-nucleating polymer material is a polymer material of microbubble nuclei, creating a situation where the surface is glossy and there are no fine holes. It is possible to have a structure with microbubble nuclei inside.

本発明の微気泡発生パーツは、内から外に不規則な微穴があり、ポリマー材料が微穴から流入することがなく、その輸送スクリューは高温で、ポリマー材料が溶化した流体であることから、つまることがない。高圧で微気泡が押し出されるので、逆流を防ぐ弁を取り付ける必要がないため、設備コストの節約が可能で、故障発生率を低く押さえることも可能である。   The microbubble generating part of the present invention has irregular micropores from the inside to the outside, the polymer material does not flow from the microholes, and the transport screw is a high-temperature fluid in which the polymer material is dissolved. It wo n’t get clogged. Since fine bubbles are pushed out at high pressure, there is no need to install a valve to prevent backflow, so that the equipment cost can be saved and the failure rate can be kept low.

以下、本発明の流体ポリマー材料の攪拌区域において微気泡核を生成する方法、及び流体ポリマー材料において微気泡核をコントロールできる生成装置を実施形態を用いて説明する。
(実施形態1)
図1及び図2に示すように、本発明の実施形態1では、射出あるいは押出機1、1’内にある材料パイプ11の外側に加熱器12を取り付けることによって、溶化ポリマー材料13が輸送スクリュー14の攪拌によって溶化した流体ポリマー材料15(図5参照)を注入する。この発泡源は全ての応用可能な気体がポリマー材料の発泡反応を進行させるのに応用することができる。輸送スクリュー14内に気体輸送管16があって、後部にスクリュー軸ユニット141が取り付けられていて、トランスミッション145に固定されている。そして、ブラインドチップ144によって気体輸送管16の後部を塞いでいる。このスクリュー軸ユニット141内にはリング型空気槽142、ならびに、このリング型空気槽142とつながっている進入口17がある。さらに、このリング型空気槽142内の輸送スクリュー14に数個の貫通穴143が開いていて、この貫通穴143はその気体輸送管16につながっている。したがって、前述の進入口17、リング型空気槽142、貫通穴143が相互につながっていることにより、輸送スクリュー14が回転する時、このスクリュー軸ユニット141は固定して動かず、気体の輸送を妨げることがない。進入口17は外側に加圧ポンプあるいは高圧気体貯蔵シリンダーが取り付けられていて、輸送スクリュー14の先端に微気泡発生パーツ18(例えば、微穴通気金属ヘッド・微穴セラミックヘッド等が好ましい)が取り付けられている。この微気泡発生パーツ18には内から外に互いにつながった微穴が分布している。さらに、その微穴のサイズは生成する微気泡核のサイズに応じて微気泡発生パーツ18を交換することで変更が可能である。そして、微気泡発生パーツ18を前述の気体輸送管16に接続させ、気体輸送管16が微気泡発生パーツ18と連結させている。
Hereinafter, a method for generating microbubble nuclei in a stirring zone of a fluid polymer material of the present invention and a generation apparatus capable of controlling microbubble nuclei in a fluid polymer material will be described using embodiments.
(Embodiment 1)
As shown in FIGS. 1 and 2, in Embodiment 1 of the present invention, the solubilized polymer material 13 is transferred to the transport screw by attaching a heater 12 outside the material pipe 11 in the injection or extruder 1, 1 ′. Fluid polymer material 15 (see FIG. 5) solubilized by 14 agitation is injected. This foaming source can be applied to allow all applicable gases to proceed with the foaming reaction of the polymer material. A gas transport pipe 16 is provided in the transport screw 14, and a screw shaft unit 141 is attached to the rear part and is fixed to the transmission 145. The rear part of the gas transport pipe 16 is blocked by the blind tip 144. In the screw shaft unit 141, there are a ring type air tank 142 and an entrance port 17 connected to the ring type air tank 142. Further, several through holes 143 are opened in the transport screw 14 in the ring type air tank 142, and the through holes 143 are connected to the gas transport pipe 16. Therefore, when the transportation screw 14 rotates due to the connection between the entrance port 17, the ring-type air tank 142, and the through hole 143, the screw shaft unit 141 is not fixed and does not move. There is no hindrance. A pressure pump or a high-pressure gas storage cylinder is attached to the entrance 17 on the outside, and a micro-bubble generating part 18 (for example, a micro-hole ventilation metal head or a micro-hole ceramic head is preferable) is attached to the tip of the transport screw 14. It has been. In the fine bubble generating part 18, fine holes connected to each other from the inside to the outside are distributed. Furthermore, the size of the microhole can be changed by exchanging the microbubble generating part 18 according to the size of the microbubble nucleus to be generated. The fine bubble generating part 18 is connected to the gas transport pipe 16 described above, and the gas transport pipe 16 is connected to the fine bubble generating part 18.

図1、図5に示すように、加圧ポンプあるいは高圧気体貯蔵シリンダーの高圧気体が、進入口17を経て、気体輸送管16に進入する過程において、材料パイプ11の外側の加熱器12がポリマー材料13を溶化することによって、同時に間接的に輸送スクリュー14を加熱し、気体輸送管16内の気体が熱を受けて、さらに微気泡発生パーツ18に送られ、その熱い気体がその上の微穴によって内から外に向かって放出される。その微気泡は直接その区域の流体ポリマー材料15内部に進入し、輸送スクリュー14によって攪拌融合され、同時に、均一に混合された微気泡ポリマー材料15’を先端の射出材貯蔵部分19内に押し出し、微気泡発生、攪拌、送出が同時に進行して、均一に混合した微気泡ポリマー材料15’が、射出口20を通って成型機21内(図6参照)に進入して圧力が下がり、温度が臨界温度に達して、ポリマー材料を硬化させて成型させる際に、微気泡核が均一にポリマー材料内に存在する微気泡核ポリマー材料15’’の生成方法を提供することが出来る。
実施形態1では、微気泡発生パーツ18の内から外に不規則な微穴が分布し、表面に微穴があることでは逆流現象が発生しないため、逆流を防ぐための弁が不要である上に故障率が低くなるので、コストの削減が可能である。
As shown in FIGS. 1 and 5, in the process in which the high-pressure gas of the pressurization pump or the high-pressure gas storage cylinder enters the gas transport pipe 16 through the inlet 17, the heater 12 outside the material pipe 11 is polymerized. By dissolving the material 13, the transport screw 14 is indirectly heated at the same time, and the gas in the gas transport pipe 16 receives heat and is further sent to the micro-bubble generating part 18. The holes are discharged from the inside to the outside. The microbubbles enter directly into the fluid polymer material 15 in the area and are agitated and fused by the transport screw 14, and at the same time, extrude the uniformly mixed microbubble polymer material 15 ′ into the tip injection material storage portion 19, Generation of fine bubbles, agitation, and delivery proceed simultaneously, and the uniformly mixed fine bubble polymer material 15 ′ enters the molding machine 21 (see FIG. 6) through the injection port 20, the pressure decreases, and the temperature increases. When the critical temperature is reached and the polymer material is cured and molded, a method of producing a microbubble core polymer material 15 ″ in which microbubble nuclei are uniformly present in the polymer material can be provided.
In the first embodiment, irregular fine holes are distributed from the inside of the fine bubble generating part 18 to the outside, and the presence of the fine holes on the surface does not cause a reverse flow phenomenon, so that a valve for preventing the reverse flow is unnecessary. In addition, since the failure rate is low, the cost can be reduced.

図5、図6に示すように、微気泡が核を成す区域のコントロールは、気体の輸送の可否によって、微気泡発生パーツ18の微穴が微気泡の放出を停止し、間歇的に気体を供給あるいは停止するタイミングを有し、流体ポリマー材料15が貯蔵部分19内に進入し、微気泡流体ポリマー材料15’あるいは無微気泡流体ポリマー材料15を提供し、成型ダイス21内に進入させて、前述の微気泡の連続供給あるいは間歇供給を選択することにより、成型ダイス21内の表面に無気泡核ポリマー材料15を形成して、内部に微気泡核を持つ微気泡核ポリマー材料15’’あるいは全体が微気泡核を持つ微気泡核ポリマー材料15’’とする。
当然、前述の微気泡発生パーツ18は輸送スクリュー14の適度な位置に接続されていて、流体ポリマー材料15が成型ダイス21の成型体積に対応するようになっている。
As shown in FIGS. 5 and 6, the control of the area where the microbubbles form the nucleus is based on whether or not the gas can be transported. With the timing to supply or stop, the fluid polymer material 15 enters the storage portion 19, provides the microbubble fluid polymer material 15 ′ or the microbubble fluid polymer material 15 and enters the molding die 21, By selecting the above-mentioned continuous supply or intermittent supply of microbubbles, the cell-free core polymer material 15 is formed on the surface in the molding die 21, and the microbubble core polymer material 15 '' having microbubble nuclei inside is formed. It is assumed that the whole is a microbubble core polymer material 15 ″ having a microbubble core.
Naturally, the aforementioned fine bubble generating part 18 is connected to an appropriate position of the transport screw 14 so that the fluid polymer material 15 corresponds to the molding volume of the molding die 21.

前述の説明は図5からもわかる。無微気泡ポリマー材料15はまず成型ダイス21内に注入され、ポリマー材料成型の特性によって、無微気泡ポリマー材料15がまず成型ダイス21の表面に付着することにより、光沢のあるすべすべした面を形成する。さらに、続いて微気泡のある微気泡ポリマー材料15’が成型ダイス21内に注入されて、微気泡核を持つ微気泡核ポリマー材料15’’を形成することで、無気泡核流体ポリマー材料15が微気泡核ポリマー材料15’’を包むという効果がある。   The above description can also be seen from FIG. The microbubble polymer material 15 is first injected into the molding die 21, and the microbubble polymer material 15 first adheres to the surface of the molding die 21 due to the characteristics of the polymer material molding, thereby forming a glossy and smooth surface. To do. Further, a fine-bubble polymer material 15 ′ having fine bubbles is subsequently injected into the molding die 21 to form a fine-bubble nucleus polymer material 15 ″ having fine-bubble nuclei. Has the effect of enclosing the microbubble core polymer material 15 ″.

(実施形態2)
本発明の実施形態2は図3に示すように、前述の微気泡発生パーツ18がソリッド金属パーツ18’からできていて、輸送スクリュー14に固定されている。微気泡発生パーツ18の横中心を気体輸送通路181’が貫通していて、輸送スクリュー14内の気体輸送管16とつながっている。さらに、そのソリッド金属パーツ18’の周辺には数個の通気穴182’があって、この通気穴182’は気体輸送通路181’と互いに通じている。そして、各通気穴の口1821’の位置に、内側に微穴通気塊183’が固定されている。この微穴通気塊183’は実施形態1の微気泡発生パーツ18の材質と同様である。微気泡は気体輸送管16から気体輸送通路181’に進入し、さらに、それぞれ通気穴182’を経て微穴通気塊183’の微穴から微気泡を放出することで、前述の実施形態1と同様の効果が得られる。
(Embodiment 2)
In the second embodiment of the present invention, as shown in FIG. 3, the aforementioned fine bubble generating part 18 is made of a solid metal part 18 ′ and fixed to the transport screw 14. A gas transport passage 181 ′ passes through the horizontal center of the microbubble generating part 18 and is connected to the gas transport pipe 16 in the transport screw 14. Further, there are several ventilation holes 182 'around the solid metal part 18', and these ventilation holes 182 'communicate with the gas transport passage 181'. And the fine hole ventilation lump 183 'is being fixed inside at the position of the mouth 1821' of each ventilation hole. This fine hole ventilation block 183 ′ is the same as the material of the fine bubble generating part 18 of the first embodiment. The microbubbles enter the gas transport passage 181 ′ from the gas transport pipe 16, and further discharge the microbubbles from the microholes of the microhole vent block 183 ′ through the vent holes 182 ′, respectively. Similar effects can be obtained.

(実施形態3)
本発明の実施形態3は図4に示すように、前述の微気泡発生パーツ18は非ソリッド金属パーツ18’’からできていて、内部にエアルーム184’’を形成する。さらに、この非ソリッド金属パーツ18’’後方に穴185’’が開いていて、前述の輸送スクリュー14内の気体輸送管16に連なっている。そして、その非ソリッド金属パーツ18’’の周辺には数個の通気穴182’’が貫通している。さらに、その通気穴182’’内には微穴通気塊183’’が固定されている。その微穴通気塊183’’は実施形態1の微気泡発生パーツ18の材質と同様であることにより、微気泡は気体輸送管16からエアルーム184’’内に進入し、さらに、それぞれ微穴通気塊183’’の微穴から微気泡が放出されるので、これもまた前述の実施形態1と同様の効果が得られる。
(Embodiment 3)
In the third embodiment of the present invention, as shown in FIG. 4, the fine bubble generating part 18 is made of a non-solid metal part 18 '', and an air room 184 '' is formed therein. Further, a hole 185 '' is opened behind the non-solid metal part 18 '' and is connected to the gas transport pipe 16 in the transport screw 14 described above. Several vent holes 182 '' pass through the periphery of the non-solid metal part 18 ''. Further, a fine hole air mass 183 '' is fixed in the air hole 182 ''. The fine hole vent 183 ″ is the same as the material of the fine bubble generating part 18 of the first embodiment, so that the fine bubbles enter the air room 184 ″ from the gas transport pipe 16, and further each fine hole. Since the microbubbles are released from the microhole of the ventilation block 183 ″, the same effect as in the first embodiment can be obtained.

(実施形態4)
本発明の実施形態4は図7、図8,図9に示すように、押出機のポリマー材料が押し出される時、その押し出されたポリマー材料は外部の無気泡核を保ち、表面を滑らかな光沢面にし、内部に気泡核を生成する装置を持つ。それは微気泡発生パーツ18の先端に分流リング22があって、その分流リング22の外縁に軸向突起221があることにより、分流リング22外縁と材料パイプ11の間の軸向突起221の高度差が、無気泡ポリマー材料通路222を形成し、分流リング22内縁と微気泡発生パーツ18が微気泡ポリマー材料通路223(気泡のあるポリマー材料通路)を形成する。
(Embodiment 4)
In Embodiment 4 of the present invention, as shown in FIGS. 7, 8, and 9, when the polymer material of the extruder is extruded, the extruded polymer material keeps the external bubble-free nuclei, and the surface has a smooth gloss. It has a device that generates bubble nuclei on the inside. That is, there is a diverting ring 22 at the tip of the microbubble generating part 18, and an axial protrusion 221 at the outer edge of the diverting ring 22. However, a bubble-free polymer material passage 222 is formed, and the inner edge of the diverting ring 22 and the micro-bubble generating part 18 form a micro-bubble polymer material passage 223 (a polymer material passage having bubbles).

図10、図11に示すように、この流体ポリマー材料15は押し出されて、一部は前述の無気泡ポリマー材料通路222から、一部は微気泡ポリマー材料通路223から進入することで、無気泡流体ポリマー材料15が気泡のある微気泡流体ポリマー材料15’を包み、同時に押出口224から押し出して、外部に無気泡核ポリマー材料15を、内部に微気泡核のあるポリマー材料15’’を形成するので、気泡核のないポリマー材料15が微気泡核ポリマー材料15’’を包むという効果が得られる。   As shown in FIGS. 10 and 11, the fluid polymer material 15 is extruded and partly enters from the above-described cell-free polymer material passage 222, and part enters from the micro-bubble polymer material passage 223, so that there is no bubble. The fluid polymer material 15 encloses the microbubble fluid polymer material 15 ′ with bubbles and is simultaneously extruded from the extrusion port 224 to form the cell-free core polymer material 15 on the outside and the polymer material 15 ″ with the microbubble core inside. Therefore, the effect that the polymer material 15 without bubble nuclei wraps the fine bubble nucleus polymer material 15 '' is obtained.

以上説明したように、本発明の実施形態の流体ポリマー材料において微気泡核をコントロールできる生成方法及びその装置は、輸送スクリュー14の外側に包み込むように加熱器12が取り付けられていることにより、材料パイプ内のポリマー材料13を溶化して、さらに、輸送スクリュー14内に気体輸送管16が設けられていることと、輸送スクリュー14先端の微気泡発生パーツ18(例えば、微穴通気金属ヘッド・微穴セラミックヘッド)に接続することによって、加圧ポンプあるいは高圧気体保存筒の高圧気体送出動作が行なわれるかどうかをコントロールして、成型される流体筒ポリマー材料区域に気泡核あるいは無気泡核を形成することをコントロールすることが可能な技術を提供するものである。   As described above, the production method and apparatus capable of controlling the microbubble nuclei in the fluid polymer material according to the embodiment of the present invention can be obtained by attaching the heater 12 so as to be wrapped outside the transport screw 14. The polymer material 13 in the pipe is melted, and further, a gas transport pipe 16 is provided in the transport screw 14 and a micro-bubble generating part 18 (for example, a micro-hole ventilation metal head / micro By connecting to a hole ceramic head), it is controlled whether the high-pressure gas delivery operation of the pressurization pump or high-pressure gas storage cylinder is performed, and bubble nuclei or bubble-free nuclei are formed in the fluid cylinder polymer material area to be molded The technology which can control what is done is provided.

本発明における実施形態1の微気泡発生パーツ及び発生装置の部分断面で示す見取り図である。It is a sketch shown in the partial cross section of the microbubble generation | occurrence | production part and generator of Embodiment 1 in this invention. 同実施形態1の微気泡発生パーツの表面微口の拡大図である。It is an enlarged view of the surface fine mouth of the microbubble generation | occurrence | production part of the Embodiment 1. 本発明における実施形態2の微気泡発生パーツ構造の断面図である。It is sectional drawing of the microbubble generation | occurrence | production part structure of Embodiment 2 in this invention. 本発明における実施形態3の微気泡発生パーツ構造の断面図である。It is sectional drawing of the microbubble generation | occurrence | production part structure of Embodiment 3 in this invention. 本発明の気泡生成及び無気泡ポリマー材料の区域間隔輸送の断面模式図である。It is a cross-sectional schematic diagram of the bubble production | generation of this invention, and the area space | interval transport of a cell-free polymer material. 図5のポリマー材料が成型ダイス内に注入されて核となったものと、核となっていないものの状態を示した断面図である。It is sectional drawing which showed the state of what the polymer material of FIG. 5 was inject | poured in the shaping | molding die | dye, and became the nucleus, and what is not the nucleus. 本発明における実施形態4の微気泡発生パーツ及び発生装置の押出機に応用してポリマー材料に気泡核を生成する成型方法を示した断面模式図である。It is the cross-sectional schematic diagram which showed the shaping | molding method which produces | generates the bubble nucleus in a polymer material by applying to the extruder of the microbubble generation | occurrence | production part and generator of Embodiment 4 in this invention. 同実施形態4を押出機に応用した際の分流リングの斜視図である。It is a perspective view of a diversion ring at the time of applying the embodiment 4 to an extruder. 同実施形態4の分流リングの正面図である。It is a front view of the diversion ring of Embodiment 4. 同実施形態4の分流リングと微気泡発生パーツの断面組立図である。It is a cross-sectional assembly drawing of the flow dividing ring and microbubble generation | occurrence | production part of Embodiment 4. 同実施形態4の押出機における微気泡発生パーツに分流リングを取り付け、気泡核生成及び非気泡核ポリマー材料の分離構造及び方法を示した断面図である。It is sectional drawing which attached the shunt ring to the microbubble generation | occurrence | production part in the extruder of the same Embodiment 4, and showed the separation structure and method of bubble nucleus production | generation and non-bubble nucleus polymer material.

符号の説明Explanation of symbols

1、1’…射出あるいは押出機、11…材料パイプ、12…加熱器、13…ポリマー材料、14…輸送スクリュー、141…スクリュー軸ユニット、142…リング型空気槽、
143…貫通穴、144…ブラインドチップ、145…トランスミッション、
15…流体ポリマー材料、16…気体輸送管、17…進入口、18…微気泡発生パーツ、15’…微気泡ポリマー材料、19…射出材貯蔵部分、20…射出口、21…成型機、
15’’…微気泡核ポリマー材料、18’…ソリッド金属パーツ、
181’…気体輸送通路、182’…通気穴、1821’…通気穴の口、
183’…微穴通気塊、18’’…非ソリッド金属パーツ、184’’…エアルーム、
185’’…穴、22…分流リング、221…軸向突起、
222…無気泡ポリマー材料通路、223…微気泡ポリマー材料通路、224…押出口
DESCRIPTION OF SYMBOLS 1, 1 '... Injection or extrusion machine, 11 ... Material pipe, 12 ... Heater, 13 ... Polymer material, 14 ... Transport screw, 141 ... Screw shaft unit, 142 ... Ring type air tank,
143 ... through hole, 144 ... blind tip, 145 ... transmission,
DESCRIPTION OF SYMBOLS 15 ... Fluid polymer material, 16 ... Gas transport pipe, 17 ... Entrance, 18 ... Microbubble generation part, 15 '... Microbubble polymer material, 19 ... Injection material storage part, 20 ... Injection port, 21 ... Molding machine,
15 ″… Microbubble core polymer material, 18 ′… Solid metal parts,
181 '... gas transport passage, 182' ... vent hole, 1821 '... vent hole mouth,
183 '... Micro-hole ventilation block, 18 "... Non-solid metal parts, 184" ... Air room,
185 '' ... hole, 22 ... shunt ring, 221 ... axial projection,
222 ... Bubble-free polymer material passage, 223 ... Micro-bubble polymer material passage, 224 ... Extrusion port

Claims (11)

射出あるいは押出成型において、気体が発泡剤であることを利用し、その気体が二酸化酸素、窒素、あるいは、その他の発泡させることが可能な気体で、ポリマー材料に微気泡核を形成し、その気泡核を形成する方法が、
a.高圧気体が輸送スクリューの内部の気体輸送管を通過して、材料パイプ外縁の加熱器が前記高圧気体を間接的に加熱することを利用すること、
b.前記加熱された高温気体が前記輸送スクリューの先端の微気泡発生パーツに進入し、気体が内から外に分布する不規則な微穴から均一に微気泡を放出すること、
c.前述のその区域の微気泡とポリマー材料が前記輸送スクリューによって攪拌され、送り出されて、均一な微気泡ポリマー材料を形成することにより、微気泡核ポリマー材料を均一に形成すること、
から構成される流体ポリマー材料において微気泡核をコントロールできる生成方法。
In injection or extrusion molding, the gas is a foaming agent, and the gas is oxygen dioxide, nitrogen, or other gas that can be foamed. The method of forming nuclei is
a. Making use of the fact that the high pressure gas passes through the gas transport pipe inside the transport screw and the heater at the outer edge of the material pipe indirectly heats the high pressure gas;
b. The heated high-temperature gas enters the micro-bubble generating part at the tip of the transport screw, and the gas is uniformly discharged from irregular micro holes distributed from the inside to the outside;
c. The microbubbles and polymer material in that area are agitated and pumped out by the transport screw to form a uniform microbubble polymer material, thereby forming the microbubble core polymer material uniformly;
A production method capable of controlling microbubble nuclei in a fluid polymer material comprising:
射出あるいは押出機の材料パイプの外縁に加熱器を取り付けて、前記材料パイプ内に輸送スクリューを取り付けることで、ポリマー材料を加熱して溶化し、輸送スクリューに送り出し、
気体輸送管が前記輸送スクリューの内部にあって、その進入口が加圧ポンプあるいは高圧気体貯蔵シリンダーに連なっていて、
微気泡発生パーツが内から外に不規則に互いにつながった微穴から構成されていて、前記気体輸送管が微気泡発生パーツの内部に入り込んでいることにより、
微気泡が前記微気泡発生パーツの不規則に分布する前記微穴から内から外へ放出され、逆流を防ぐ弁を使用する必要がなく、前記微気泡の生成、攪拌、ポリマー材料の送出が同時に進行して、迅速、均一に前記微気泡の混合ができる流体ポリマー材料において微気泡核をコントロールできる生成装置。
By attaching a heater to the outer edge of the material pipe of the injection or extruder, and attaching a transport screw in the material pipe, the polymer material is heated and melted, and sent to the transport screw.
A gas transport pipe is inside the transport screw, and its inlet is connected to a pressure pump or a high-pressure gas storage cylinder;
The micro-bubble generating parts are composed of micro holes that are irregularly connected to each other from the inside to the outside, and the gas transport pipe enters the inside of the micro-bubble generating parts,
Microbubbles are discharged from the inside of the microholes randomly distributed in the microbubble generating parts to the outside, and it is not necessary to use a valve to prevent backflow, and the generation of the microbubbles, stirring, and delivery of the polymer material are performed simultaneously. A generator capable of controlling microbubble nuclei in a fluid polymer material that is capable of proceeding and mixing the microbubbles quickly and uniformly.
前記微気泡発生パーツが微穴通気金属ヘッドである請求項2に記載の流体ポリマー材料において微気泡核をコントロールできる生成装置。   The generating device capable of controlling the microbubble nuclei in the fluid polymer material according to claim 2, wherein the microbubble generating part is a microporous metal head. 前記微気泡発生パーツが微穴セラミックヘッドである請求項2に記載の流体ポリマー材料において微気泡核をコントロールできる生成装置。   The generating device capable of controlling the microbubble nuclei in the fluid polymer material according to claim 2, wherein the microbubble generating part is a microhole ceramic head. 前記高圧気体のソースが加圧ポンプあるいは高圧気体貯蔵シリンダーである請求項1に記載の流体ポリマー材料において微気泡核をコントロールできる生成方法。   The production method capable of controlling microbubble nuclei in the fluid polymer material according to claim 1, wherein the source of the high-pressure gas is a pressure pump or a high-pressure gas storage cylinder. 高圧気体の輸送源のコントロールが、微気泡発生パーツの微気泡が持続放出あるいは間歇放出かをコントロールすることが可能で、流体ポリマー材料と微気泡発生区間において間隔を置いて混合あるいは持続的に混合できることにより、射出あるいは押出機の成型に提供することができる請求項1に記載の流体ポリマー材料において微気泡核をコントロールできる生成方法。   Control of the high-pressure gas transport source can control whether the microbubbles in the microbubble generation part are sustained release or intermittent release. Mixing or continuous mixing at intervals in the fluid polymer material and microbubble generation section The production method capable of controlling the microbubble nuclei in the fluid polymer material according to claim 1, which can be provided for injection or molding of an extruder. 前記微気泡発生パーツが35ミクロン以下の微気泡を供給することができるため、ポリマー材料が35ミクロン以下の前記微気泡核を生成することが可能であることを特徴とする請求項2に記載の流体ポリマー材料において微気泡核をコントロールできる生成装置。   The microbubble generation part can supply microbubbles of 35 microns or less, so that a polymer material can generate the microbubble nuclei of 35 microns or less. A generator that can control microbubble nuclei in fluid polymer materials. 微気泡発生パーツがソリッド金属パーツからなり、その横中心を気体輸送通路が貫通し、前記輸送スクリュー内の前記気体輸送管とつながり、さらに、前記ソリッド金属パーツの周辺に数個の通気穴があって、該通気穴が前記気体輸送通路とつながっていて、各通気穴の口の内側に微穴通気塊があり、該微穴通気塊が不規則な微穴を持つ請求項2に記載の流体ポリマー材料において微気泡核をコントロールできる生成装置。   The micro-bubble generating part is made of solid metal part, the gas transport passage penetrates the center of the part, and it is connected to the gas transport pipe in the transport screw, and there are several vent holes around the solid metal part. 3. The fluid according to claim 2, wherein the vent hole is connected to the gas transport passage, and there is a minute vent hole inside the mouth of each vent hole, and the minute hole vent has irregular minute holes. A generator that can control microbubble nuclei in polymer materials. 前記微気泡発生パーツが非ソリッドパーツからなり、その内部にエアルームが形成されていて、その非ソリッド金属パーツ後方に穴が開いていて、前記輸送スクリュー内の前記気体輸送管とつながっていて、さらに、前記非ソリッド金属パーツの周辺に数個の通気穴があって、各通気穴の口の内側に微穴通気塊があり、該微穴通気塊が不規則な微穴を持つ請求項2に記載の流体ポリマー材料において微気泡核をコントロールできる生成装置。   The microbubble generation part is made of a non-solid part, an air room is formed therein, a hole is opened behind the non-solid metal part, and connected to the gas transport pipe in the transport screw, Furthermore, there are several ventilation holes around the non-solid metal part, and there are minute ventilation holes inside the mouth of each ventilation hole, and the ventilation holes have irregular minute holes. A generator capable of controlling microbubble nuclei in the fluid polymer material described in 1. 押出機の微気泡発生パーツの外縁に分流リングがあって、その周辺に軸向突起があり、材料パイプの内側に固定されていて、前記分流リングの外縁とパイプ内の軸向突起との間の高度が、無気泡ポリマー材料通路を形成し、さらに、前記分流リングの内縁と前記微気泡発生パーツの間に、微気泡ポリマー材料通路を形成することにより、ポリマー材料が非気泡核が微気泡核を包む請求項2に記載の流体ポリマー材料において微気泡核をコントロールできる生成装置。   There is a diverting ring on the outer edge of the microbubble generating part of the extruder, and there is an axial protrusion around it, fixed to the inside of the material pipe, between the outer edge of the diverting ring and the axial protrusion in the pipe The formation of a bubble-free polymer material passage, and further, the formation of a fine-bubble polymer material passage between the inner edge of the flow dividing ring and the fine-bubble generating part makes the polymer material non-bubble nuclei fine. A generator capable of controlling microbubble nuclei in a fluid polymer material according to claim 2 wrapping the nuclei. 前記微気泡発生パーツが必要とする微穴のサイズの微穴通気金属ヘッドあるいは微穴セラミックヘッドと同様な材質を選択することが可能なことにより、必要とする微気泡核のサイズが得られることを特徴とする請求項2に記載の流体ポリマー材料において微気泡核をコントロールできる生成装置。   By selecting the same material as the fine hole ventilation metal head or fine hole ceramic head of the fine hole size required by the fine bubble generating part, the required fine bubble nucleus size can be obtained. The production | generation apparatus which can control a microbubble nucleus in the fluid polymer material of Claim 2 characterized by these.
JP2004380647A 2004-01-02 2004-12-28 Generation method and apparatus capable of controlling microbubble nuclei in fluid polymer material Expired - Fee Related JP4559846B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05027697A EP1676685B1 (en) 2004-12-28 2005-12-17 Apparatus and method for controlling microscopic bubble nucleation in fluid polymer material production
AT05027697T ATE405398T1 (en) 2004-12-28 2005-12-17 APPARATUS AND METHOD FOR CONTROLLING NUCLATION OF MICROSCOPIC BUBBLES IN THE PRODUCTION OF LIQUID POLYMERIC MATERIALS
DE602005009118T DE602005009118D1 (en) 2004-12-28 2005-12-17 Apparatus and method for controlling the nucleation of microscopic bubbles in the manufacture of liquid polymeric materials
CN200510132769XA CN1864981B (en) 2004-12-28 2005-12-26 Method for controlling microscopic bubble nucleation in fluid polymer material production and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW093100134A TWI233877B (en) 2004-01-02 2004-01-02 Forming method for controlling fine open cell core in fluid polymer and its apparatus

Publications (2)

Publication Number Publication Date
JP2005193670A true JP2005193670A (en) 2005-07-21
JP4559846B2 JP4559846B2 (en) 2010-10-13

Family

ID=34825356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004380647A Expired - Fee Related JP4559846B2 (en) 2004-01-02 2004-12-28 Generation method and apparatus capable of controlling microbubble nuclei in fluid polymer material

Country Status (2)

Country Link
JP (1) JP4559846B2 (en)
TW (1) TWI233877B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017061060A (en) * 2015-09-24 2017-03-30 エバーフォーカス インターナショナル カンパニー リミテッド Processing method for generating fine air bubble in polymer by processing molding machine
CN115319997A (en) * 2022-10-13 2022-11-11 泉州迪特工业产品设计有限公司 Plastic forming device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339360A (en) * 1976-09-22 1978-04-11 Furukawa Electric Co Ltd Method of producing bridged polyolefin mold
JPS60202722A (en) * 1984-03-26 1985-10-14 Ikegai Corp Method and apparatus for hydrating and dehydrating raw material supplied into cylinder in extruder
JPH09277298A (en) * 1996-04-10 1997-10-28 Hitachi Ltd Manufacture of fine foamed body and device therefor
JPH10305477A (en) * 1997-05-07 1998-11-17 Toshiba Mach Co Ltd Method for control of barrel temperature of double-screw extruding machine
JPH10309745A (en) * 1997-05-13 1998-11-24 I K G Kk Screw type extruder
JP2000000871A (en) * 1998-06-18 2000-01-07 Sekisui Chem Co Ltd Apparatus for manufacture of resin molding
JP2001198961A (en) * 2000-01-19 2001-07-24 Meiki Co Ltd Injection apparatus for gas dissolved resin and injection molding apparatus
JP2003191272A (en) * 2001-12-25 2003-07-08 Sekisui Chem Co Ltd Method for manufacturing thermoplastic resin foam
JP2005088426A (en) * 2003-09-18 2005-04-07 Auto Network Gijutsu Kenkyusho:Kk Injection molding machine capable of adding additive

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339360A (en) * 1976-09-22 1978-04-11 Furukawa Electric Co Ltd Method of producing bridged polyolefin mold
JPS60202722A (en) * 1984-03-26 1985-10-14 Ikegai Corp Method and apparatus for hydrating and dehydrating raw material supplied into cylinder in extruder
JPH09277298A (en) * 1996-04-10 1997-10-28 Hitachi Ltd Manufacture of fine foamed body and device therefor
JPH10305477A (en) * 1997-05-07 1998-11-17 Toshiba Mach Co Ltd Method for control of barrel temperature of double-screw extruding machine
JPH10309745A (en) * 1997-05-13 1998-11-24 I K G Kk Screw type extruder
JP2000000871A (en) * 1998-06-18 2000-01-07 Sekisui Chem Co Ltd Apparatus for manufacture of resin molding
JP2001198961A (en) * 2000-01-19 2001-07-24 Meiki Co Ltd Injection apparatus for gas dissolved resin and injection molding apparatus
JP2003191272A (en) * 2001-12-25 2003-07-08 Sekisui Chem Co Ltd Method for manufacturing thermoplastic resin foam
JP2005088426A (en) * 2003-09-18 2005-04-07 Auto Network Gijutsu Kenkyusho:Kk Injection molding machine capable of adding additive

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017061060A (en) * 2015-09-24 2017-03-30 エバーフォーカス インターナショナル カンパニー リミテッド Processing method for generating fine air bubble in polymer by processing molding machine
CN115319997A (en) * 2022-10-13 2022-11-11 泉州迪特工业产品设计有限公司 Plastic forming device

Also Published As

Publication number Publication date
TW200523095A (en) 2005-07-16
TWI233877B (en) 2005-06-11
JP4559846B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
CN1864981B (en) Method for controlling microscopic bubble nucleation in fluid polymer material production and its apparatus
US6902693B2 (en) Expanded porous thermoplastic polymer membranes and method for the production thereof
JP3998374B2 (en) Method for adding supercritical carbon dioxide and method for producing thermoplastic resin foam using the addition method
KR100216396B1 (en) Process for preparing expanded product of thermoplastic resin
JP4885480B2 (en) Method for producing foamed polymer
EP2822748A1 (en) Apparatus and method for producing microcellular foams
JP4559846B2 (en) Generation method and apparatus capable of controlling microbubble nuclei in fluid polymer material
KR100279082B1 (en) Method for manufacturing continuous casting foamed aluminum metal and its apparatus
JP2002307530A (en) Degassing method using extruder and degassing device
JP3655436B2 (en) Thermoplastic resin foam and method for producing the same
US7264757B2 (en) Controllable microscopic bubble nucleation in fluid polymer material production method and its apparatus
JP2017061060A (en) Processing method for generating fine air bubble in polymer by processing molding machine
JP3577260B2 (en) Extrusion molding method and extrusion molding apparatus for foam
WO2012057491A2 (en) Method and apparatus for molding foam
US6960616B2 (en) Expanded porous thermoplastic polymer membranes
EP2015913A1 (en) Method and apparatus for forming articles from mouldable materials
JP4298725B2 (en) Method and apparatus for molding sheet foam sheet
CN105235170A (en) Production device for manufacturing polylactic acid porous plates
CN114131826A (en) Mixing method and system thereof
JP2003062892A (en) Extrusion-molding method for expansion-molding by double-screw extruder
US20220063136A1 (en) Mixing method and system thereof
KR20090081836A (en) Continuous manufacturing apparatus of foam metal and manufacturing method of the same
CN100588677C (en) Solid CO2 supercritical foaming process
TWI604934B (en) The use of processing and forming machine in the polymer generated micro-bubble processing methods
TWM611998U (en) Hybrid system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090820

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091120

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091126

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091214

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091217

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100106

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100723

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees