JP2003191272A - Method for manufacturing thermoplastic resin foam - Google Patents

Method for manufacturing thermoplastic resin foam

Info

Publication number
JP2003191272A
JP2003191272A JP2001392102A JP2001392102A JP2003191272A JP 2003191272 A JP2003191272 A JP 2003191272A JP 2001392102 A JP2001392102 A JP 2001392102A JP 2001392102 A JP2001392102 A JP 2001392102A JP 2003191272 A JP2003191272 A JP 2003191272A
Authority
JP
Japan
Prior art keywords
gas
resin
cylinder
molten resin
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001392102A
Other languages
Japanese (ja)
Inventor
Satoshi Shimura
吏士 志村
Hitoshi Kawachi
斉 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2001392102A priority Critical patent/JP2003191272A/en
Publication of JP2003191272A publication Critical patent/JP2003191272A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • B29C44/3446Feeding the blowing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/42Feeding the material to be shaped into a closed space, i.e. to make articles of definite length using pressure difference, e.g. by injection or by vacuum
    • B29C44/422Feeding the material to be shaped into a closed space, i.e. to make articles of definite length using pressure difference, e.g. by injection or by vacuum by injecting by forward movement of the plastizising screw

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing thermoplastic resin foam which of supplies a sufficient amount of gas to a molten resin under relatively low pressure, dissolves the gas in the molten resin in such a state that the gas is uniformly dispersed in the molten resin, and stably obtains the uniform foam. <P>SOLUTION: The method for manufacturing the thermoplastic resin foam includes: a gas injection process of lowering the pressure of a resin in the vicinity of the gas supply port 6 in a cylinder 3 and injecting non-reactive gas in cylinder 3 from a gas supply port 6; and a gas dispersing and dissolving process of raising the pressure of the resin in a molten resin storage part while infiltrating the injected non-reactive gas in the resin by the shearing and kneading of the molten resin, and feeding the gas infiltrated molten resin to the molten resin storage part provided to the leading end of the cylinder. In the gas injection process, the non-reactive gas is introduced from the gas introducing port 11 provided to the rear end of a screw 4, and injected in the cylinder from the gas supply port communicating with the leading end of the gas supply passage 7, which communicates with the introducing port and is provided in a state piercing through the screw in the lengthwise direction thereof, and opened to the molten resin non-filling part of the screw through the gas supply passage 7. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、射出成形機のシリ
ンダー内にて回転するスクリューによって溶融状態にな
った樹脂に発泡剤として非反応性ガスを供給し含浸さ
せ、ガス含浸溶融樹脂を計量し、計量樹脂を金型キャビ
ティー内へ射出し発泡させて発泡成形品を得る熱可塑性
樹脂発泡体の製造方法、および同方法に用いる製造装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is to measure a gas-impregnated molten resin by supplying non-reactive gas as a foaming agent and impregnating the resin in a molten state by a screw rotating in a cylinder of an injection molding machine. The present invention relates to a method for producing a thermoplastic resin foam, in which a metering resin is injected into a mold cavity and foamed to obtain a foamed molded product, and a production apparatus used for the method.

【0002】本明細書全体を通して、前後関係について
は、スクリューが溶融樹脂を金型キャビティ内へ射出す
る方向を基準に、射出方向すなわち図1における左方向
を前または前方と、その逆方向を後または後方とする。
Throughout the present specification, with respect to the context, the injection direction, that is, the left direction in FIG. 1, is the front or the front, and the opposite direction is the rear, with the direction in which the screw injects the molten resin into the mold cavity as a reference. Or to the rear.

【0003】[0003]

【従来の技術】従来、不活性ガス等を用いた物理発泡に
よる発泡射出成形において同ガスを溶融樹脂に供給し溶
解させるには、特開2001−138371号公報に記
載のように、溶融樹脂の計量中に超臨界ガス圧、例えば
二酸化炭素ガスでは7.4MPaでガスを溶融樹脂中に
押し込むように供給しながらガスの溶解を行っていた。
2. Description of the Related Art Conventionally, in foaming injection molding by physical foaming using an inert gas or the like, in order to supply and dissolve the gas into a molten resin, as disclosed in Japanese Patent Laid-Open No. 2001-138371, During the measurement, the gas was melted while being supplied so as to be pushed into the molten resin at a supercritical gas pressure, for example, carbon dioxide gas of 7.4 MPa.

【0004】しかし、このような高圧でガス供給、溶解
を行うためには設備が大掛りになり、多額の設備費が必
要である。実用的には、ボンベ圧で6MPa程度以下の
比較的低圧でガスを供給することが望ましい。ただし、
ガスの供給圧が低過ぎるとガスの溶解量が不足したり、
ガスが全く供給できないことがある。また、低圧でのガ
ス供給の場合、高圧に比較して溶融樹脂中にガスが不均
一に分散し易く、セル分布の不均一な発泡品が得られが
ちである。
However, in order to supply and dissolve the gas at such a high pressure, the equipment becomes large and a large amount of equipment cost is required. Practically, it is desirable to supply gas at a relatively low pressure of about 6 MPa or less in cylinder pressure. However,
If the gas supply pressure is too low, the amount of dissolved gas will be insufficient,
Gas may not be supplied at all. Further, in the case of supplying gas at a low pressure, the gas tends to be non-uniformly dispersed in the molten resin as compared with high pressure, and a foamed product having a non-uniform cell distribution tends to be obtained.

【0005】従来、溶融樹脂中へのガス溶解の促進手段
として、特開平8−258096号公報に記載のよう
に、メインスクリューの先端部にミキシングスクリュー
を設けたものがある。しかしこの構造では、ミキシング
スクリューの径が小さいため樹脂に十分な剪断や混練が
加わらず、溶解促進効果は小さい。特開平11−341
30号公報には、計量のためのスクリュー後退後におい
てもスクリューの回転を継続し、スクリューが回転して
いる時間を長くする方法が記載されている。しかしこの
方法では、シリンダー先端の溶融樹脂貯留部に溜まった
溶融樹脂には溶解促進効果がない。
Conventionally, as a means for promoting gas dissolution in a molten resin, there is one in which a mixing screw is provided at the tip of a main screw as described in JP-A-8-258096. However, in this structure, since the diameter of the mixing screw is small, the resin is not sufficiently sheared or kneaded, and the dissolution promoting effect is small. Japanese Patent Laid-Open No. 11-341
Japanese Patent No. 30 discloses a method of continuing the rotation of the screw even after the screw is retracted for measuring, and lengthening the time during which the screw is rotating. However, in this method, the molten resin accumulated in the molten resin storage portion at the tip of the cylinder has no effect of promoting dissolution.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、上記
の実状に鑑み、比較的低圧で十分な量のガスを溶融樹脂
に供給できかつ、ガスを溶融樹脂に均一に分散した状態
で溶解でき、均一な発泡体を安定的に得ることができる
熱可塑性樹脂発泡体の製造方法を提供することにある。
In view of the above situation, an object of the present invention is to supply a sufficient amount of gas to a molten resin at a relatively low pressure and to dissolve the gas in a state where the gas is uniformly dispersed in the molten resin. Another object of the present invention is to provide a method for producing a thermoplastic resin foam capable of stably obtaining a uniform foam.

【0007】[0007]

【課題を解決するための手段】請求項1記載の発明は、
射出成形機のシリンダー内にて回転するスクリューによ
って溶融状態になった樹脂に非反応性ガスを供給し含浸
させ、ガス含浸溶融樹脂を計量し、計量樹脂を金型キャ
ビティー内へ射出して発泡成形品を得る方法において、
シリンダー内のガス供給口近傍の樹脂圧力を低下させ、
ガス供給口から非反応性ガスをシリンダー内に注入する
ガス注入工程と、注入した非反応性ガスを溶融樹脂の剪
断と混練により同樹脂に含浸させながらガス含浸溶融樹
脂をシリンダー先端の溶融樹脂貯留部に送りつつ同貯留
部の樹脂圧力を高くするガス分散溶解工程とを含むこと
を特徴とする熱可塑性樹脂発泡体の製造方法である。
The invention according to claim 1 is
Non-reactive gas is supplied and impregnated into the molten resin by the screw rotating in the cylinder of the injection molding machine, the gas-impregnated molten resin is measured, and the measured resin is injected into the mold cavity and foamed. In the method of obtaining a molded article,
Reduce the resin pressure near the gas supply port in the cylinder,
Gas injection step of injecting non-reactive gas into the cylinder from the gas supply port, and gas impregnated molten resin is stored at the tip of the cylinder while impregnating the injected non-reactive gas into the same resin by shearing and kneading the molten resin. And a gas dispersion / melting step of increasing the resin pressure in the storage part while sending the resin to the storage part.

【0008】請求項2記載の発明は、ガス注入工程にお
いて、非反応性ガスを、スクリューの後端部に設けられ
たガス導入口から導入し、同導入口に連通しかつスクリ
ュー内部に長さ方向に貫通状に設けられたガス供給路を
経て、同供給路先端に連通しかつスクリューの溶融樹脂
未充満化部分に開口したガス供給口からシリンダー内に
注入することを特徴とする請求項1記載の熱可塑性樹脂
発泡体の製造方法である。
According to a second aspect of the invention, in the gas injection step, the non-reactive gas is introduced from a gas introduction port provided at the rear end of the screw, communicates with the introduction port, and has a length inside the screw. 2. The gas is introduced into the cylinder from a gas supply port that is communicated with the tip of the gas supply passage through a gas supply passage that is provided so as to penetrate in the direction and that is opened in the molten resin unfilled portion of the screw. It is a method for producing the thermoplastic resin foam described.

【0009】請求項3記載の発明は、ガス注入工程にお
いて、背圧を低くすることによりシリンダー内のガス供
給口近傍の樹脂圧力を低下させ、ガス分散溶解工程にお
いて、背圧を高くし、注入した非反応性ガスを溶融樹脂
の剪断と混練により同樹脂に含浸させながらガス含浸溶
融樹脂をシリンダー先端の溶融樹脂貯留部に送りつつ同
貯留部の樹脂圧力を高くすることを特徴とする請求項1
または2記載の熱可塑性樹脂発泡体の製造方法である。
According to the third aspect of the invention, in the gas injecting step, the back pressure is lowered to lower the resin pressure in the vicinity of the gas supply port in the cylinder, and in the gas dispersion and melting step, the back pressure is increased to inject. The resin pressure in the reservoir is increased while the gas-impregnated molten resin is sent to the molten resin reservoir at the tip of the cylinder while the molten resin is impregnated with the non-reactive gas by shearing and kneading. 1
Alternatively, it is the method for producing a thermoplastic resin foam described in 2.

【0010】請求項4記載の発明は、ガス注入工程にお
いて、サックバックによりシリンダー内のガス供給口近
傍の樹脂圧力を低下させ、ガス分散溶解工程において、
背圧を高くし、注入した非反応性ガスを溶融樹脂の剪断
と混練により同樹脂に含浸させながらガス含浸溶融樹脂
をシリンダー先端の溶融樹脂貯留部に送りつつ同貯留部
の樹脂圧力を高くすることを特徴とする請求項1または
2記載の熱可塑性樹脂発泡体の製造方法である。
According to a fourth aspect of the invention, in the gas injection step, the resin pressure near the gas supply port in the cylinder is lowered by suck back, and in the gas dispersion and dissolution step,
Increase the back pressure and increase the resin pressure in the gas-impregnated molten resin while sending the gas-impregnated molten resin to the molten resin reservoir at the tip of the cylinder while impregnating the injected non-reactive gas into the molten resin by shearing and kneading. It is a manufacturing method of the thermoplastic resin foam according to claim 1 or 2 characterized by things.

【0011】請求項5記載の発明は、ガス注入工程にお
いて、シリンダー内への樹脂供給量を少なくすることに
より、シリンダー内のガス供給口近傍の樹脂圧力を低下
させ、ガス分散溶解工程において、シリンダー内への樹
脂供給量を多くし、注入した非反応性ガスを溶融樹脂の
剪断と混練により同樹脂に含浸させながらガス含浸溶融
樹脂をシリンダー先端の溶融樹脂貯留部に送りつつ同貯
留部の樹脂圧力を高くすることを特徴とする請求項1ま
たは2記載の熱可塑性樹脂発泡体の製造方法である。
According to a fifth aspect of the invention, in the gas injecting step, the resin pressure in the vicinity of the gas supply port in the cylinder is reduced by reducing the amount of resin supplied into the cylinder, and in the gas dispersing and dissolving step, the cylinder is The amount of resin supplied to the inside is increased, and while the injected non-reactive gas is impregnated into the molten resin by shearing and kneading the molten resin, the gas-impregnated molten resin is sent to the molten resin storage portion at the tip of the cylinder 3. The method for producing a thermoplastic resin foam according to claim 1, wherein the pressure is increased.

【0012】請求項6記載の発明は、スクリュー(4) の
後端部に設けられたガス導入口(11)に連通したガス供給
路(7) がスクリュー内部に長さ方向に貫通状に設けら
れ、同供給路先端に連通したガス供給口がスクリューの
溶融樹脂未充満化部分に開口し、同未充満化部分は、ス
クリューの軸径を小さくするかまたはスクリューのフラ
イトピッチを大きくすることにより、フライトとシリン
ダーとスクリューに囲まれる空間を増大する部分である
ことを特徴とする、請求項2記載の方法の実施に用いら
れる熱可塑性樹脂発泡体の製造装置である。
According to a sixth aspect of the invention, a gas supply passage (7) communicating with a gas introduction port (11) provided at the rear end of the screw (4) is provided inside the screw so as to penetrate in the longitudinal direction. The gas supply port communicating with the tip of the supply path opens in the molten resin unfilled portion of the screw, and the unfilled portion is reduced by decreasing the screw shaft diameter or increasing the flight pitch of the screw. The thermoplastic resin foam manufacturing apparatus used for carrying out the method according to claim 2, wherein the apparatus is a portion that increases a space surrounded by the flight, the cylinder, and the screw.

【0013】請求項7記載の発明は、シリンダー(3) の
後端部に立設された原料ホッパー(21)の下端部に、シリ
ンダー(3) 内への原料樹脂の供給量を調整する供給量調
製バルブ(22)が設けられていることを特徴とする、請求
項5記載の方法の実施に用いられる熱可塑性樹脂発泡体
の製造装置である。
According to a seventh aspect of the present invention, the supply is provided at the lower end of the raw material hopper (21) provided upright at the rear end of the cylinder (3) for adjusting the amount of the raw material resin fed into the cylinder (3). An apparatus for producing a thermoplastic resin foam used for carrying out the method according to claim 5, characterized in that a quantity adjusting valve (22) is provided.

【0014】本発明方法が適用される熱可塑性樹脂は特
に限定されないが、たとえば、ポリプロピレン、ポリエ
チレン等のポリオレフィン、またはPET、ABS、P
C、PS、PBT等である。溶融粘度が高いため溶融成
形が困難な樹脂、熱分解し易い樹脂、低沸点の添加剤も
しくは熱分解し易い添加剤を含有する難成形樹脂なども
使用できる。
The thermoplastic resin to which the method of the present invention is applied is not particularly limited, but examples thereof include polyolefins such as polypropylene and polyethylene, or PET, ABS and P.
C, PS, PBT, etc. Resins that are difficult to melt-mold because of high melt viscosity, resins that are easily decomposed by heat, and low-boiling additives or difficult-molding resins that contain additives that are easily decomposed by heat can be used.

【0015】溶融粘度が高いため溶融成形が困難な樹脂
としては、例えば、超高分子量ポリエチレン、超高重合
度ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリ
イミドなどのエンジニアリングプラスチック用の樹脂が
挙げられる。
Examples of the resin which is difficult to be melt-molded due to its high melt viscosity include resins for engineering plastics such as ultrahigh molecular weight polyethylene, ultrahigh polymerization degree polyvinyl chloride, polytetrafluoroethylene, and polyimide.

【0016】熱分解し易い樹脂としては、ポリ乳酸、ポ
リヒドロキシブチレート等の生分解性樹脂や、ポリ塩化
ビニル、高塩素化度ポリ塩化ビニル、ポリアクリロニト
リルなどが挙げられる。
Examples of the resin that is easily decomposed by heat include biodegradable resins such as polylactic acid and polyhydroxybutyrate, polyvinyl chloride, polyvinyl chloride having a high degree of chlorination, and polyacrylonitrile.

【0017】本発明で用いられる非反応性ガスは、樹脂
と反応せず、かつ樹脂を劣化させるなどの悪影響を樹脂
に及ぼさないものであれば特に限定されないが、たとえ
ば、二酸化炭素、窒素、アルゴン、ネオン、ヘリウム、
酸素等の無機系ガス、フロン、低分子量の炭化水素など
の有機系ガスが挙げられる。
The non-reactive gas used in the present invention is not particularly limited as long as it does not react with the resin and does not adversely affect the resin such as degrading the resin. For example, carbon dioxide, nitrogen and argon. , Neon, helium,
Examples thereof include inorganic gases such as oxygen, and fluorocarbons and organic gases such as low molecular weight hydrocarbons.

【0018】これらのうち、環境に与える悪影響が低
く、そしてガスの回収が必要でない点で無機ガスが好ま
しく、難成形樹脂に対する溶解度が高く、樹脂の溶融効
果が大きく、そして直接大気中に放出してもほとんど害
がないという観点から、二酸化炭素がより好ましい。な
お、非反応性ガスは、単独で用いても良く、あるいは2
種類以上のガスを併用してもよい。
Of these, inorganic gases are preferred because they have a low adverse effect on the environment and do not require gas recovery, have a high solubility in difficult-to-mold resins, have a great effect of melting resins, and release them directly into the atmosphere. However, carbon dioxide is more preferable from the viewpoint of causing almost no harm. The non-reactive gas may be used alone or 2
You may use together more than one kind of gas.

【0019】非反応性ガス含浸溶融樹脂を得るために
は、以下の2つの要件を満たす必要がある。
In order to obtain a non-reactive gas-impregnated molten resin, it is necessary to satisfy the following two requirements.

【0020】1)溶融状態の樹脂に所望量の非反応性ガ
スを供給する。
1) A desired amount of non-reactive gas is supplied to the molten resin.

【0021】2)溶融樹脂を混練しながら同樹脂に非反
応性ガスを溶かすために、溶融樹脂圧力を高くする。
2) The pressure of the molten resin is increased in order to dissolve the non-reactive gas in the resin while kneading the molten resin.

【0022】要件1)を実現するためには、ガス供給口
近傍の樹脂圧力をガスの供給圧力よりできるだけ低くす
る必要がある。しかし、発泡射出成形では多数のゾーン
が一連になっているシリンダー内部において樹脂を溶融
し、これに非反応性ガスを含浸せしめるように、ガス供
給口近傍の樹脂圧力を低くするということは、必然的に
シリンダー内全体の樹脂圧力を低くすることになる。こ
れは、要件2)と合い入れない結果となる。このよう
に、要件1)と2)は二律背反の関係にある。本発明に
よる方法は、ガス注入工程とガス分散溶解工程に時間的
に分けることで、これら2つの要件を共に満たすように
したものである。
In order to achieve the requirement 1), it is necessary to make the resin pressure near the gas supply port as low as possible than the gas supply pressure. However, in foam injection molding, it is inevitable to lower the resin pressure in the vicinity of the gas supply port so that the resin is melted inside the cylinder where many zones are in series and impregnated with non-reactive gas. Therefore, the resin pressure in the entire cylinder is lowered. This results in a failure to meet requirement 2). Thus, requirements 1) and 2) are in a trade-off relationship. The method according to the present invention is designed to satisfy both of these two requirements by temporally separating the gas injection step and the gas dispersion and dissolution step.

【0023】[0023]

【作用】請求項1または2記載の熱可塑性樹脂発泡体の
製造方法により、安定的な成形が実現できる。
By the method for producing a thermoplastic resin foam according to the first or second aspect, stable molding can be realized.

【0024】その理由を以下に示す。射出成形において
樹脂可塑化時にはスクリューがシリンダーに対して相対
的に前方へ移動する。ガス供給口がシリンダー側に設け
られていると、図7に示すように、時間方向にガス注入
工程とガス分散溶解工程に分離したとしても、スクリュ
ーが移動すると非反応性ガス供給口近傍の樹脂圧力が上
昇することになり非反応性ガスの安定した供給を阻害す
る。
The reason is as follows. In injection molding, the resin moves forward relative to the cylinder during plasticization of the resin. When the gas supply port is provided on the cylinder side, as shown in FIG. 7, even if the gas injection process and the gas dispersion / melting process are separated in the time direction, the resin near the non-reactive gas supply port moves when the screw moves. The pressure rises and hinders the stable supply of non-reactive gas.

【0025】これに対し、請求項2記載のように、ガス
供給口はスクリュー側にあると、図2に示すように、移
動するスクリューに対してガス供給口が固定されている
ので、背圧が一定であればガス供給口近傍の樹脂圧力が
上昇することがなく、非反応性ガスを安定的に供給でき
る。
On the other hand, when the gas supply port is on the screw side as described in claim 2, the gas supply port is fixed to the moving screw as shown in FIG. Is constant, the resin pressure in the vicinity of the gas supply port does not rise and the non-reactive gas can be stably supplied.

【0026】しかも、ガス供給口はスクリューの溶融樹
脂未充満化部分に開口しているので、シリンダー内のガ
ス供給口近傍の樹脂圧力が低下され、ガス供給口からシ
リンダー内に非反応性ガスを容易に注入することができ
る。
Moreover, since the gas supply port is opened in the molten resin unfilled portion of the screw, the resin pressure in the vicinity of the gas supply port in the cylinder is reduced, and non-reactive gas is introduced from the gas supply port into the cylinder. Can be easily injected.

【0027】さらに、請求項3、4および5記載の熱可
塑性樹脂発泡体の製造方法では、既存の成形機の条件設
定機能を用いることができ、また、ガス分散溶解工程に
おいて非反応性ガスの分散を促進するためにスクリュー
回転数を上げることもできる。
Furthermore, in the method for producing a thermoplastic resin foam according to claims 3, 4 and 5, the condition setting function of an existing molding machine can be used, and in the gas dispersion and dissolution step, a non-reactive gas is used. It is also possible to increase the screw rotation speed in order to promote dispersion.

【0028】[0028]

【発明の実施の形態】以下、本発明の実施形態を図によ
り具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be specifically described below with reference to the drawings.

【0029】実施例1 この実施例は請求項2および3の発明に相当するもので
ある。
Embodiment 1 This embodiment corresponds to the inventions of claims 2 and 3.

【0030】射出成形装置(A) は、図1に示すように、
射出成形機(1) と、これにガスを送るガス注入装置(2)
とからなる。射出成形機(1) は、シリンダー(3) と、そ
の内部に配されたスクリュー(4) と、シリンダー(3) の
前端に連設された金型(10)と、シリンダー(3) の後端上
部に立設された原料ホッパー(21)とから主に構成されて
いる。
The injection molding apparatus (A) is, as shown in FIG.
Injection molding machine (1) and gas injection device (2) that sends gas to it
Consists of. The injection molding machine (1) consists of a cylinder (3), a screw (4) arranged inside the cylinder (3), a mold (10) connected to the front end of the cylinder (3), and a rear of the cylinder (3). It is mainly composed of a raw material hopper (21) erected on the upper end.

【0031】スクリュー(4) は、図1(b) に示すよう
に、後端から先端に、樹脂溶融部分、溶融樹脂未充満化
部分およびガス含浸部分から構成される。
As shown in FIG. 1 (b), the screw (4) is composed of a resin melting portion, a molten resin unfilled portion and a gas impregnated portion from the rear end to the tip.

【0032】溶融樹脂未充満化部分とは、スクリューの
軸径を小さくするかまたはスクリューのフライトピッチ
を大きくすることにより、フライトとシリンダーとスク
リューに囲まれる空間を増大させ(この実施例では後述
のようにスクリューの軸径を小さくする)、結果として
ここでの樹脂圧力を落とすことによりガス供給時に溶融
樹脂未充満化を実現する部分である。
The unfilled portion of the molten resin is to increase the space surrounded by the flight, the cylinder and the screw by decreasing the shaft diameter of the screw or increasing the flight pitch of the screw (this embodiment will be described later). As described above, the shaft diameter of the screw is made small), and as a result, the resin pressure is reduced here, so that the molten resin is not filled when the gas is supplied.

【0033】ガス含浸部分では、再び、スクリューの軸
径が大きくされるかまたはスクリューのフライトピッチ
が小さくされ、フライトとシリンダーとスクリューに囲
まれる空間は溶融樹脂未充満化部分より減少され溶融樹
脂で充満され、その結果、樹脂圧力は下流方向に上昇す
る。
In the gas-impregnated portion, the screw shaft diameter is again increased or the flight pitch of the screw is reduced, and the space surrounded by the flight, the cylinder and the screw is reduced from the molten resin unfilled portion by the molten resin. It is full and as a result the resin pressure rises in the downstream direction.

【0034】樹脂溶融部分は、後端から先端に、粉体輸
送ゾーン、圧縮溶融ゾーンおよび溶融樹脂輸送ゾーンか
らなる。
The resin melting portion comprises, from the rear end to the front end, a powder transportation zone, a compression melting zone and a molten resin transportation zone.

【0035】この実施例では、溶融樹脂未充満化部分
は、スクリューの長さ中央からやや先端寄りに設けら
れ、この部分ではスクリュー(4) は他の部分より深いス
クリュー溝を有し、すなわちスクリューの軸径が小さく
され、その結果、シリンダー(3)の内面とスクリュー軸
の外面との距離が大きくなされている。
In this embodiment, the molten resin unfilled portion is provided slightly toward the tip from the center of the length of the screw, and in this portion, the screw (4) has a screw groove deeper than the other portions, that is, the screw. The shaft diameter is reduced, and as a result, the distance between the inner surface of the cylinder (3) and the outer surface of the screw shaft is increased.

【0036】スクリュー(4) の後端部は、計量装置を備
えたスクリュー駆動装置(13)に連結され、スクリュー
(4) の内部に長さ方向に貫通状にガス供給路(7) が設け
られている。ガス供給路(7) の先端にあるガス供給口
(6) は、スクリュー(4) の溶融樹脂未充満化部分におい
て、最小軸径部から先端方向に径大化するコーン部にて
その周面に開口している。ガス供給口(6) の開口位置は
溶融樹脂未充満化部分であればどこでもよい。このよう
に、スクリュー(4) は溶融樹脂未充満化部分を有するの
で、ここで溶融樹脂未充満状態が形成され、その状態の
箇所にスクリュー側からガス供給口を設けることによ
り、溶融樹脂をガスを安定的に供給することができる。
The rear end of the screw (4) is connected to a screw driving device (13) equipped with a weighing device,
A gas supply passage (7) is provided in the inside of (4) so as to extend through it in the longitudinal direction. Gas supply port at the tip of the gas supply path (7)
The portion (6) is opened in the peripheral surface of the screw (4) in the portion where the molten resin is not filled, at the cone portion which increases in diameter from the minimum shaft diameter portion toward the tip. The opening position of the gas supply port (6) may be anywhere as long as it is a portion not filled with the molten resin. As described above, the screw (4) has the molten resin unfilled portion, so that the molten resin unfilled state is formed here, and the molten resin is gasified by providing the gas supply port from the screw side in the state. Can be stably supplied.

【0037】スクリュー(4) の後端部には、ガス注入装
置(2) から二酸化炭素をガス供給路(7) へ導入するガス
導入口(11)が設けられている。ガス注入装置(2) は温調
機(18)を備えた二酸化炭素ガスボンベ(19)と、圧力調整
弁(14)、流量計(15)および電磁弁(16)を有するガス導入
管(9) と、流量計(15)および電磁弁(16)を制御する制御
装置(17)とからなる。ガス導入管(9) の下流端はガス導
入口(11)を覆うシールボックス(12)に接続され、シール
ボックス(12)内の密閉空間はガス導入口(11)に連通して
いる。ガス導入管(9) から来るガスはシールボックス(1
2)内の密閉空間からガス導入口(11)を経てガス供給路
(7) に入り次いでガス供給口(6) からシリンダー(3) 内
へ注入される。
A gas introduction port (11) for introducing carbon dioxide from the gas injection device (2) to the gas supply passage (7) is provided at the rear end of the screw (4). The gas injection device (2) is a carbon dioxide gas cylinder (19) equipped with a temperature controller (18) and a gas introduction pipe (9) having a pressure regulating valve (14), a flow meter (15) and a solenoid valve (16). And a control device (17) for controlling the flow meter (15) and the solenoid valve (16). The downstream end of the gas introduction pipe (9) is connected to a seal box (12) that covers the gas introduction port (11), and the sealed space inside the seal box (12) communicates with the gas introduction port (11). Gas coming from the gas inlet pipe (9) is sealed box (1
2) Gas supply path from the enclosed space through the gas inlet (11)
It enters into (7) and is then injected into the cylinder (3) from the gas supply port (6).

【0038】ガス含浸部分の前端部および樹脂溶融部分
の前端部には、スクリュー軸径より大径のチェックリン
グ(5) (20)がそれぞれ設けられ、溶融樹脂が後方へ逆流
するのを防いている。
Check rings (5) and (20) each having a diameter larger than the screw shaft diameter are provided at the front end of the gas-impregnated portion and the front end of the resin melting portion to prevent the molten resin from flowing backward. There is.

【0039】ガス供給路(7) の前端近くには、ガス供給
口(6) から溶融樹脂が入り込みのを防ぐ逆流防止弁(8)
が設けられている。
Near the front end of the gas supply passage (7), a check valve (8) for preventing backflow that prevents molten resin from entering from the gas supply port (6)
Is provided.

【0040】シリンダー(3) の内径は50mm、金型(1
0)のキャビティ形状は内径200mmの円盤形状であ
る。熱可塑性樹脂として日本ポリケム社製ポリプロピレ
ンのペレット(グレード:ノバテックPP MA2)を
用い、これをホッパー(21)からシリンダー(3) 内へ供給
した。ボンベ温調機(18)および圧力調整弁(14)で二酸化
炭素ガスの温度および圧力を調整し、ガス供給口(6) で
の二酸化炭素ガス圧力を6MPaに制御した。
The inner diameter of the cylinder (3) is 50 mm, and the die (1
The cavity shape of 0) is a disk shape with an inner diameter of 200 mm. Polypropylene pellets (grade: Novatec PP MA2) manufactured by Nippon Polychem Co., Ltd. were used as the thermoplastic resin, and this was supplied from the hopper (21) into the cylinder (3). The temperature and pressure of carbon dioxide gas were adjusted by the cylinder temperature controller (18) and the pressure control valve (14), and the carbon dioxide gas pressure at the gas supply port (6) was controlled to 6 MPa.

【0041】成形条件を以下に示す値に設定した。The molding conditions were set to the values shown below.

【0042】計量値:100mm スクリュー回転数:60rpm 背圧条件段数:2段 背圧切り替え計量位置:60mm 1段目背圧:7MPa 2段目背圧:10MPa サックバック量:0mmMeasurement value: 100 mm Screw rotation speed: 60 rpm Back pressure condition Number of steps: 2 steps Back pressure switching weighing position: 60 mm First stage back pressure: 7 MPa Second stage back pressure: 10 MPa Suck back amount: 0mm

【0043】二酸化炭素ガスの供給量と、成形機先端に
設けられた圧力センサーで測定した計量完了時の樹脂圧
力、得られた熱可塑性樹脂発泡体から、金型キャビティ
内での発泡樹脂の充填状態を調べ、発泡状態を観察し
た。この結果を表1に示す。
The amount of carbon dioxide gas supplied, the resin pressure at the time of completion of measurement, measured by a pressure sensor provided at the tip of the molding machine, and the thermoplastic resin foam obtained, filling the foam resin in the mold cavity. The state was examined and the foaming state was observed. The results are shown in Table 1.

【0044】発泡樹脂の充填状態は、円盤状の発泡体の
射出方向に見た面の面積を相当する面積の円に換算し
て、発泡体の直径を求めることにより、調べた。樹脂を
発泡により金型キャビティに完全に充填すると、発泡体
の直径は200mmとなり、発泡倍率2倍の発泡体が得
られる。
The filling state of the foamed resin was investigated by converting the area of the surface of the disk-shaped foam seen in the injection direction into a circle having a corresponding area and determining the diameter of the foam. When the resin is completely filled in the mold cavity by foaming, the diameter of the foam becomes 200 mm, and a foam having a foaming ratio of 2 is obtained.

【0045】実施例1の樹脂圧力分布の時間的な変化を
図2に模式的に示す。
FIG. 2 schematically shows the change over time in the resin pressure distribution of Example 1.

【0046】実施例2 この実施例は請求項2および4の発明に相当するもので
ある。
Embodiment 2 This embodiment corresponds to the inventions of claims 2 and 4.

【0047】成形条件を以下に示す値に変えた以外は、
実施例1と同様の操作を行った。
Except that the molding conditions were changed to the values shown below,
The same operation as in Example 1 was performed.

【0048】計量値:100mm スクリュー回転数:60rpm 背圧条件段数:1段 背圧切り替え計量位置:− 1段目背圧:10MPa 2段目背圧:− サックバック量:30mmMeasurement value: 100 mm Screw rotation speed: 60 rpm Back pressure condition Number of steps: 1 step Back pressure switching weighing position: − First stage back pressure: 10 MPa Second stage back pressure:- Suck back amount: 30mm

【0049】実施例2における二酸化炭素ガスの供給量
と、成形機先端に設けられた圧力センサーで測定した計
量完了時の樹脂圧力、得られた熱可塑性樹脂発泡体か
ら、金型キャビティ内での発泡樹脂の充填状態を調べ、
発泡状態を観察した。この結果を表1に示す。
The amount of carbon dioxide gas supplied in Example 2, the resin pressure at the time of completion of measurement, which was measured by the pressure sensor provided at the tip of the molding machine, and the thermoplastic resin foam thus obtained, Check the filling state of the foam resin,
The foaming state was observed. The results are shown in Table 1.

【0050】実施例2の樹脂圧力分布の時間的な変化を
図3に模式的に示す。
FIG. 3 schematically shows the change over time in the resin pressure distribution of Example 2.

【0051】実施例3 この実施例は請求項2および5の発明に相当するもので
ある。
Embodiment 3 This embodiment corresponds to the invention of claims 2 and 5.

【0052】図4に示すように、シリンダー(3) の後端
部に立設された原料ホッパー(21)の下端垂直部に供給量
調製バルブ(22)を設けて、これによってシリンダー(3)
内への原料樹脂の供給量を調整できるようにし、成形条
件を以下に示す値に設定した。それ以外は、実施例1と
同様の操作を行った。
As shown in FIG. 4, a feed amount adjusting valve (22) is provided at a lower end vertical portion of a raw material hopper (21) standing upright at the rear end of the cylinder (3), whereby the cylinder (3) is provided.
The amount of the raw material resin supplied to the inside was adjusted, and the molding conditions were set to the values shown below. Otherwise, the same operation as in Example 1 was performed.

【0053】計量値:100mm スクリュー回転数:60rpm 背圧条件段数:1段 背圧切り替え計量位置:− 1段目背圧:10MPa 2段目背圧:− サックバック量:0mm フィーダー回転数切り替え段数:2段 フィーダー回転数切り替え計量位置:60mm 1段目フィーダー回転数:20rpm 2段目フィーダー回転数:40rpm 実施例3における二酸化炭素ガスの供給量と、成形機先
端に設けられた圧力センサーで測定した計量完了時の樹
脂圧力、得られた熱可塑性樹脂発泡体から、金型キャビ
ティ内での発泡樹脂の充填状態を調べ、発泡状態を観察
した。この結果を表1に示す。
Measured value: 100 mm Screw rotation speed: 60 rpm Back pressure condition step number: 1 step back pressure switching measurement position:-1st step back pressure: 10 MPa 2nd step back pressure:-suck back amount: 0 mm Feeder rotation speed switching step number : 2 stage feeder rotation number switching Weighing position: 60 mm 1st stage feeder rotation number: 20 rpm 2nd stage feeder rotation number: 40 rpm Measured with the supply amount of carbon dioxide gas in Example 3 and the pressure sensor provided at the tip of the molding machine The filling state of the foamed resin in the mold cavity was examined from the resin pressure upon completion of the measurement and the obtained thermoplastic resin foam, and the foamed state was observed. The results are shown in Table 1.

【0054】実施例3の樹脂圧力分布の時間的な変化を
図5に模式的に示す。
FIG. 5 schematically shows the change over time in the resin pressure distribution of Example 3.

【0055】比較例1 図6において、ガス注入装置(2) から来るガス供給路(2
3)の先端にあるガス供給口(24)は、スクリュー(4) の溶
融樹脂未充満化部分において、最小軸径部から先端方向
に径が増すコーン部にてシリンダー(3) を貫通してその
内面に開口している。ガス供給口(24)からシリンダー
(3) 内に二酸化炭素ガスが供給され、溶融樹脂に混合含
浸させる。
Comparative Example 1 In FIG. 6, the gas supply path (2) coming from the gas injection device (2)
The gas supply port (24) at the tip of (3) passes through the cylinder (3) at the cone part where the diameter increases from the smallest shaft diameter part toward the tip in the molten resin unfilled part of the screw (4). It has an opening on its inner surface. Gas supply port (24) to cylinder
(3) Carbon dioxide gas is supplied into the mixture to mix and impregnate the molten resin.

【0056】スクリュー(4) に溶融樹脂未充満化部分を
設けることにより、溶融樹脂の未充満状態が形成され、
その状態の箇所に二酸化炭素ガス供給口を設けることで
計量初期においてはガスを供給することができる。
By providing the screw (4) with a portion not filled with molten resin, an unfilled state of molten resin is formed,
By providing a carbon dioxide gas supply port at a position in that state, gas can be supplied in the initial stage of measurement.

【0057】成形条件を以下に示す値に設定した。The molding conditions were set to the values shown below.

【0058】計量値:100mm スクリュー回転数:60rpm 背圧条件段数:1段 背圧切り替え計量位置:− 1段目背圧:7MPa 2段目背圧:− サックバック量:0mmMeasurement value: 100 mm Screw rotation speed: 60 rpm Back pressure condition Number of steps: 1 step Back pressure switching weighing position: − First stage back pressure: 7 MPa Second stage back pressure:- Suck back amount: 0mm

【0059】上記条件において射出樹脂量は金型キャビ
ティ空間の1/2となる。
Under the above conditions, the amount of injected resin is 1/2 of the mold cavity space.

【0060】比較例1における二酸化炭素ガスの供給量
と、成形機先端に設けられた圧力センサーで測定した計
量完了時の樹脂圧力、得られた熱可塑性樹脂発泡体か
ら、金型キャビティ内での発泡樹脂の充填状態を調べ、
発泡状態を観察した。この結果を表1に示す。
The amount of carbon dioxide gas supplied in Comparative Example 1, the resin pressure at the time of completion of measurement measured by a pressure sensor provided at the tip of the molding machine, and the thermoplastic resin foam obtained were used to measure Check the filling state of the foam resin,
The foaming state was observed. The results are shown in Table 1.

【0061】比較例1の樹脂圧力分布の時間的な変化を
図7に模式的に示す。
FIG. 7 schematically shows the change over time in the resin pressure distribution of Comparative Example 1.

【0062】[0062]

【表1】 [Table 1]

【0063】実施例1、実施例2および実施例3ではい
ずれも比較例1と比較して二酸化炭素ガスの供給量が多
く、且つ、樹脂貯留部の樹脂圧が高いため、ガスの含浸
を十分に行うことができる。したがって、上述した2つ
の要件、すなわち、 1)溶融状態の樹脂に所望量の非反応性ガスを供給す
る。
In each of Examples 1, 2 and 3, the supply amount of carbon dioxide gas was large and the resin pressure in the resin reservoir was high as compared with Comparative Example 1, so that gas impregnation was sufficient. Can be done. Therefore, the above-mentioned two requirements, that is, 1) supply a desired amount of non-reactive gas to the resin in a molten state.

【0064】2)溶融樹脂を混練しながら同樹脂に非反
応性ガスを溶かすために、溶融樹脂圧力を高くする。
2) Increase the pressure of the molten resin in order to dissolve the non-reactive gas in the resin while kneading the molten resin.

【0065】を共に満足させることができる。It is possible to satisfy both.

【0066】その結果、実施例ではいずれも発泡により
金型キャビティ内に樹脂を充填することができ、発泡率
2倍の発泡体を得ることができた。このことから、実施
例では良好な非反応性ガス含浸溶融樹脂を得ることがで
きたといえる。
As a result, in each of the examples, it was possible to fill the resin into the mold cavity by foaming, and to obtain a foam having a foaming ratio of 2 times. From this, it can be said that good non-reactive gas-impregnated molten resin could be obtained in Examples.

【0067】[0067]

【発明の効果】本発明によれば、比較的低圧で十分な量
のガスを溶融樹脂に供給できかつ、ガスを溶融樹脂に均
一に分散した状態で溶解でき、均一な発泡体を安定的に
得ることができる。
According to the present invention, a sufficient amount of gas can be supplied to a molten resin at a relatively low pressure, and the gas can be dissolved in the molten resin in a uniformly dispersed state, so that a uniform foam can be stably obtained. Obtainable.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は実施例1で用いた射出成形装置を示す切
欠側面図である。
FIG. 1 is a cutaway side view showing an injection molding apparatus used in a first embodiment.

【図2】図2は実施例1の樹脂圧力分布の時間的な変化
を模式的に示す図である。
FIG. 2 is a diagram schematically showing a temporal change of a resin pressure distribution of Example 1.

【図3】図3は実施例2の樹脂圧力分布の時間的な変化
を模式的に示す図である。
FIG. 3 is a diagram schematically showing a temporal change in a resin pressure distribution of Example 2.

【図4】図4は実施例3で用いた射出成形装置を示す切
欠側面図である。
FIG. 4 is a cutaway side view showing an injection molding device used in a third embodiment.

【図5】図5は実施例3の樹脂圧力分布の時間的な変化
を模式的に示す図である。
FIG. 5 is a diagram schematically showing a temporal change of a resin pressure distribution of Example 3.

【図6】図6は比較例1で用いた射出成形装置を示す切
欠側面図である。
6 is a cutaway side view showing the injection molding apparatus used in Comparative Example 1. FIG.

【図7】図7は比較例1の樹脂圧力分布の時間的な変化
を模式的に示す図である。
FIG. 7 is a diagram schematically showing a temporal change in resin pressure distribution of Comparative Example 1.

【符号の説明】[Explanation of symbols]

(A) :射出成形装置 (1) :射出成形機 (2) :ガス注入装置 (3) :シリンダー (4) :スクリュー (6) :ガス供給口 (7) :ガス供給路 (10):金型 (11):ガス導入口 (21):ホッパー (22):供給量調製バルブ (A): Injection molding machine (1): Injection molding machine (2): Gas injection device (3): Cylinder (4): Screw (6): Gas supply port (7): Gas supply path (10): Mold (11): Gas inlet (21): Hopper (22): Supply amount adjustment valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B29K 105:04 B29K 105:04 C08L 101:00 ZBP C08L 101:00 ZBP Fターム(参考) 4F074 AA08A AA08B AA16 AA17 AA24 AA32 AA32A AA32B AA49A AA49B AA66 AA70 BA31 BA32 BA33 BA35 BA53 CA22 CA26 4F206 AA11 AB02 AG20 AL16 AR02 JA04 JD03 JF04 JF11 JF13 JF47 JM01 JM04 JN06 JQ02 JQ11 JQ17 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // B29K 105: 04 B29K 105: 04 C08L 101: 00 ZBP C08L 101: 00 ZBP F term (reference) 4F074 AA08A AA08B AA16 AA17 AA24 AA32 AA32A AA32B AA49A AA49B AA66 AA70 BA31 BA32 BA33 BA35 BA53 CA22 CA26 4F206 AA11 AB02 AG20 AL16 AR02 JA04 JD03 JF04 JF11 JF13 JF47 JM01 JM04 JN06 JQ17 JQ11 JQ02 JQ11 JQ11

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 射出成形機のシリンダー内にて回転する
スクリューによって溶融状態になった樹脂に非反応性ガ
スを供給し含浸させ、ガス含浸溶融樹脂を計量し、計量
樹脂を金型キャビティー内へ射出して発泡成形品を得る
方法において、 シリンダー内のガス供給口近傍の樹脂圧力を低下させ、
ガス供給口から非反応性ガスをシリンダー内に注入する
ガス注入工程と、 注入した非反応性ガスを溶融樹脂の剪断と混練により同
樹脂に含浸させながらガス含浸溶融樹脂をシリンダー先
端の溶融樹脂貯留部に送りつつ同貯留部の樹脂圧力を高
くするガス分散溶解工程とを含むことを特徴とする熱可
塑性樹脂発泡体の製造方法。
1. A non-reactive gas is supplied and impregnated into a resin in a molten state by a screw rotating in a cylinder of an injection molding machine, the gas-impregnated molten resin is weighed, and the weighing resin is placed in a mold cavity. In the method of obtaining a foam-molded article by injecting into, the resin pressure near the gas supply port in the cylinder is lowered,
Gas injection step of injecting non-reactive gas into the cylinder from the gas supply port, and gas impregnated molten resin is stored at the tip of the cylinder while impregnating the injected non-reactive gas into the same resin by shearing and kneading the molten resin. And a gas dispersion / melting step of increasing the resin pressure in the storage section while sending the resin to the storage section.
【請求項2】 ガス注入工程において、非反応性ガス
を、スクリューの後端部に設けられたガス導入口から導
入し、同導入口に連通しかつスクリュー内部に長さ方向
に貫通状に設けられたガス供給路を経て、同供給路先端
に連通しかつスクリューの溶融樹脂未充満化部分に開口
したガス供給口からシリンダー内に注入することを特徴
とする請求項1記載の熱可塑性樹脂発泡体の製造方法。
2. In the gas injection step, a non-reactive gas is introduced through a gas introduction port provided at the rear end of the screw, communicated with the introduction port, and provided in the screw in a longitudinally penetrating manner. 2. The thermoplastic resin foaming according to claim 1, wherein the thermoplastic resin foam is injected into the cylinder through a gas supply passage, which is communicated with the tip of the supply passage and is opened in the molten resin unfilled portion of the screw. Body manufacturing method.
【請求項3】 ガス注入工程において、背圧を低くする
ことによりシリンダー内のガス供給口近傍の樹脂圧力を
低下させ、ガス分散溶解工程において、背圧を高くし、
注入した非反応性ガスを溶融樹脂の剪断と混練により同
樹脂に含浸させながらガス含浸溶融樹脂をシリンダー先
端の溶融樹脂貯留部に送りつつ同貯留部の樹脂圧力を高
くすることを特徴とする請求項1または2記載の熱可塑
性樹脂発泡体の製造方法。
3. In the gas injection step, the back pressure is lowered to reduce the resin pressure in the vicinity of the gas supply port in the cylinder, and in the gas dispersion and dissolution step, the back pressure is increased.
The resin pressure in the reservoir is increased while sending the gas-impregnated molten resin to the molten resin reservoir at the tip of the cylinder while impregnating the injected non-reactive gas into the molten resin by shearing and kneading the molten resin. Item 3. A method for producing a thermoplastic resin foam according to Item 1 or 2.
【請求項4】 ガス注入工程において、サックバックに
よりシリンダー内のガス供給口近傍の樹脂圧力を低下さ
せ、ガス分散溶解工程において、背圧を高くし、注入し
た非反応性ガスを溶融樹脂の剪断と混練により同樹脂に
含浸させながらガス含浸溶融樹脂をシリンダー先端の溶
融樹脂貯留部に送りつつ同貯留部の樹脂圧力を高くする
ことを特徴とする請求項1または2記載の熱可塑性樹脂
発泡体の製造方法。
4. The gas injection step reduces the resin pressure in the vicinity of the gas supply port in the cylinder by suck back, and the back pressure is increased in the gas dispersion / melting step to shear the injected non-reactive gas of the molten resin. 3. The thermoplastic resin foam according to claim 1 or 2, wherein the resin pressure in the reservoir is increased while the gas-impregnated molten resin is sent to the molten resin reservoir at the tip of the cylinder while impregnating the same resin by kneading. Manufacturing method.
【請求項5】 ガス注入工程において、シリンダー内へ
の樹脂供給量を少なくすることにより、シリンダー内の
ガス供給口近傍の樹脂圧力を低下させ、ガス分散溶解工
程において、シリンダー内への樹脂供給量を多くし、注
入した非反応性ガスを溶融樹脂の剪断と混練により同樹
脂に含浸させながらガス含浸溶融樹脂をシリンダー先端
の溶融樹脂貯留部に送りつつ同貯留部の樹脂圧力を高く
することを特徴とする請求項1または2記載の熱可塑性
樹脂発泡体の製造方法。
5. The amount of resin supplied to the cylinder is reduced in the gas injection step to reduce the resin pressure in the vicinity of the gas supply port in the cylinder, and the amount of resin supplied to the cylinder in the gas dispersion and dissolution step. To increase the resin pressure in the gas-impregnated molten resin while sending the gas-impregnated molten resin to the molten resin reservoir at the tip of the cylinder while impregnating the injected non-reactive gas into the molten resin by shearing and kneading. The method for producing a thermoplastic resin foam according to claim 1 or 2, which is characterized in that.
【請求項6】 スクリュー(4) の後端部に設けられたガ
ス導入口(11)に連通したガス供給路(7) がスクリュー内
部に長さ方向に貫通状に設けられ、同供給路先端に連通
したガス供給口がスクリューの溶融樹脂未充満化部分に
開口し、同未充満化部分は、スクリューの軸径を小さく
するかまたはスクリューのフライトピッチを大きくする
ことにより、フライトとシリンダーとスクリューに囲ま
れる空間を増大する部分であることを特徴とする、請求
項2記載の方法の実施に用いられる熱可塑性樹脂発泡体
の製造装置。
6. A gas supply passage (7) communicating with a gas introduction port (11) provided at the rear end of the screw (4) is provided inside the screw in a lengthwise penetrating manner, and the tip of the supply passage is provided. A gas supply port that communicates with the screw opens into the molten resin unfilled portion of the screw, and the unfilled portion of the screw can be reduced by reducing the screw shaft diameter or increasing the flight pitch of the screw, and the flight, cylinder, and screw. An apparatus for producing a thermoplastic resin foam used for carrying out the method according to claim 2, which is a portion for increasing a space surrounded by.
【請求項7】 シリンダー(3) の後端部に立設された原
料ホッパー(21)の下端部に、シリンダー(3) 内への原料
樹脂の供給量を調整する供給量調製バルブ(22)が設けら
れていることを特徴とする、請求項5記載の方法の実施
に用いられる熱可塑性樹脂発泡体の製造装置。
7. A feed amount adjusting valve (22) for adjusting a feed amount of a raw material resin into the cylinder (3) at a lower end portion of a raw material hopper (21) provided upright at a rear end portion of the cylinder (3). 6. The apparatus for producing a thermoplastic resin foam used for carrying out the method according to claim 5, wherein:
JP2001392102A 2001-12-25 2001-12-25 Method for manufacturing thermoplastic resin foam Withdrawn JP2003191272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001392102A JP2003191272A (en) 2001-12-25 2001-12-25 Method for manufacturing thermoplastic resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001392102A JP2003191272A (en) 2001-12-25 2001-12-25 Method for manufacturing thermoplastic resin foam

Publications (1)

Publication Number Publication Date
JP2003191272A true JP2003191272A (en) 2003-07-08

Family

ID=27599507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001392102A Withdrawn JP2003191272A (en) 2001-12-25 2001-12-25 Method for manufacturing thermoplastic resin foam

Country Status (1)

Country Link
JP (1) JP2003191272A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306296A (en) * 2003-04-02 2004-11-04 Mitsui Chemicals Inc Method for molding foamed molded product comprising thermoplastic resin composition
JP2005001388A (en) * 2003-06-13 2005-01-06 Southco Inc Screw for injection molding
JP2005074794A (en) * 2003-08-29 2005-03-24 Mitsui Chemicals Inc Apparatus for molding foamed thermoplastic resin composition molding
JP2005193670A (en) * 2004-01-02 2005-07-21 Everfocus Worldwide Co Ltd The formation method which enables the control of fine open cell core in fluid polymer material, and its apparatus
JP2007055033A (en) * 2005-08-23 2007-03-08 Ube Machinery Corporation Ltd Mold for multi-layer molding of thermoplastic resin and multi-layer molding method
JP2009166463A (en) * 2008-01-21 2009-07-30 Toyo Mach & Metal Co Ltd Gas foam injection molding machine
ITBO20100601A1 (en) * 2010-10-11 2012-04-12 Sistemi Plastici Emiliani S R L FEEDING AGENT FOR EXPANDING AGENT FOR A MACHINE FOR PROCESSING POLYMERIC MATERIAL, AND MACHINE FOR PROCESSING POLYMERIC MATERIAL
EP2746025A1 (en) * 2011-08-19 2014-06-25 Hitachi Maxell, Ltd. Kneading device, method for producing thermoplastic resin molded body, and foam injection molding method
WO2014170932A1 (en) * 2013-04-15 2014-10-23 三菱重工プラスチックテクノロジー株式会社 Injection molding apparatus and injection molding method
WO2016068268A1 (en) * 2014-10-31 2016-05-06 日立マクセル株式会社 Process and device for producing foamed molded object
WO2017007032A1 (en) * 2015-07-08 2017-01-12 日立マクセル株式会社 Process and device for producing molded foam
JP2017024333A (en) * 2015-07-24 2017-02-02 日立マクセル株式会社 Injection molding process
JP2017061060A (en) * 2015-09-24 2017-03-30 エバーフォーカス インターナショナル カンパニー リミテッド Processing method for generating fine air bubble in polymer by processing molding machine
WO2019003748A1 (en) * 2017-06-26 2019-01-03 マクセル株式会社 Method for manufacturing foam molded body and foam molded body

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306296A (en) * 2003-04-02 2004-11-04 Mitsui Chemicals Inc Method for molding foamed molded product comprising thermoplastic resin composition
JP2005001388A (en) * 2003-06-13 2005-01-06 Southco Inc Screw for injection molding
JP2005074794A (en) * 2003-08-29 2005-03-24 Mitsui Chemicals Inc Apparatus for molding foamed thermoplastic resin composition molding
JP2005193670A (en) * 2004-01-02 2005-07-21 Everfocus Worldwide Co Ltd The formation method which enables the control of fine open cell core in fluid polymer material, and its apparatus
JP4559846B2 (en) * 2004-01-02 2010-10-13 エバーフォーカス ワールドワイド カンパニー リミテッド Generation method and apparatus capable of controlling microbubble nuclei in fluid polymer material
JP2007055033A (en) * 2005-08-23 2007-03-08 Ube Machinery Corporation Ltd Mold for multi-layer molding of thermoplastic resin and multi-layer molding method
JP2009166463A (en) * 2008-01-21 2009-07-30 Toyo Mach & Metal Co Ltd Gas foam injection molding machine
ITBO20100601A1 (en) * 2010-10-11 2012-04-12 Sistemi Plastici Emiliani S R L FEEDING AGENT FOR EXPANDING AGENT FOR A MACHINE FOR PROCESSING POLYMERIC MATERIAL, AND MACHINE FOR PROCESSING POLYMERIC MATERIAL
US9718217B2 (en) 2011-08-19 2017-08-01 Hitachi Maxell, Ltd. Kneading apparatus, method for producing thermoplastic resin molded product, and foam injection molding method
EP2746025A4 (en) * 2011-08-19 2015-02-25 Hitachi Maxell Kneading device, method for producing thermoplastic resin molded body, and foam injection molding method
US9186634B2 (en) 2011-08-19 2015-11-17 Hitachi Maxell, Ltd. Kneading apparatus, method for producing thermoplastic resin molded product, and foam injection molding method
EP2746025A1 (en) * 2011-08-19 2014-06-25 Hitachi Maxell, Ltd. Kneading device, method for producing thermoplastic resin molded body, and foam injection molding method
WO2014170932A1 (en) * 2013-04-15 2014-10-23 三菱重工プラスチックテクノロジー株式会社 Injection molding apparatus and injection molding method
US9669573B2 (en) 2013-04-15 2017-06-06 Mitsubishi Heavy Industries Plastic Technology Co., Ltd. Injection molding apparatus and injection molding method
US10703029B2 (en) 2014-10-31 2020-07-07 Maxell, Ltd. Process and device for producing foamed molded object
WO2016068268A1 (en) * 2014-10-31 2016-05-06 日立マクセル株式会社 Process and device for producing foamed molded object
JP2016087887A (en) * 2014-10-31 2016-05-23 日立マクセル株式会社 Manufacturing method and manufacturing device for foam molded body
JP6139038B1 (en) * 2015-07-08 2017-05-31 日立マクセル株式会社 Method for producing foam molded article
JP2017100459A (en) * 2015-07-08 2017-06-08 日立マクセル株式会社 Manufacturing apparatus of foam compact
JP2017206031A (en) * 2015-07-08 2017-11-24 マクセルホールディングス株式会社 Production apparatus of foamed molded product
US11241816B2 (en) 2015-07-08 2022-02-08 Maxell, Ltd. Process and device for producing molded foam
WO2017007032A1 (en) * 2015-07-08 2017-01-12 日立マクセル株式会社 Process and device for producing molded foam
JP2019151115A (en) * 2015-07-08 2019-09-12 マクセル株式会社 Method for manufacturing foamed product
JP2020157774A (en) * 2015-07-08 2020-10-01 マクセル株式会社 Foam molded body production device
US10632663B2 (en) 2015-07-08 2020-04-28 Maxell, Ltd. Process and device for producing molded foam
JP2017024333A (en) * 2015-07-24 2017-02-02 日立マクセル株式会社 Injection molding process
JP2017061060A (en) * 2015-09-24 2017-03-30 エバーフォーカス インターナショナル カンパニー リミテッド Processing method for generating fine air bubble in polymer by processing molding machine
JP2019006026A (en) * 2017-06-26 2019-01-17 マクセル株式会社 Method for manufacturing foam molded body, and foam molded body
CN110691680A (en) * 2017-06-26 2020-01-14 麦克赛尔株式会社 Method for producing foamed molded article and foamed molded article
KR20210084670A (en) * 2017-06-26 2021-07-07 마쿠세루 가부시키가이샤 Method for manufacturing foam body and foam molded body
JP2022000350A (en) * 2017-06-26 2022-01-04 マクセル株式会社 Manufacturing method of foam molding body
CN110691680B (en) * 2017-06-26 2022-01-11 麦克赛尔株式会社 Method for producing foamed molded article and foamed molded article
WO2019003748A1 (en) * 2017-06-26 2019-01-03 マクセル株式会社 Method for manufacturing foam molded body and foam molded body
JP7021406B2 (en) 2017-06-26 2022-02-17 マクセル株式会社 Manufacturing method of foam molded product
US11260564B2 (en) 2017-06-26 2022-03-01 Maxell, Ltd. Method for manufacturing foam molded body and foam molded body
CN114454375A (en) * 2017-06-26 2022-05-10 麦克赛尔株式会社 Method for producing foam molded body
KR102440933B1 (en) 2017-06-26 2022-09-07 맥셀 주식회사 Method for manufacturing foam body and foam molded body
JP7249391B2 (en) 2017-06-26 2023-03-30 マクセル株式会社 Method for producing foamed molded article and foamed molded article
US11648713B2 (en) 2017-06-26 2023-05-16 Maxell, Ltd. Method for manufacturing foam molded body and foam molded body
US11945140B2 (en) 2017-06-26 2024-04-02 Maxell, Ltd. Method for manufacturing foam molded body and foam molded body

Similar Documents

Publication Publication Date Title
JP2003191272A (en) Method for manufacturing thermoplastic resin foam
JP6139038B1 (en) Method for producing foam molded article
EP1475208B1 (en) Method for forming a molded polymeric part
KR102185341B1 (en) Method and apparatus for manufacturing foam molded body
EP0799853B2 (en) Thermoplastic resin product and production thereof
CN101612774B (en) Blowing agent introduction method
EP2746025A1 (en) Kneading device, method for producing thermoplastic resin molded body, and foam injection molding method
JP6045386B2 (en) Method for producing foam molded article
JP2002540979A (en) Method for producing a foam material including a system having a pressure limiting element
JP2004524992A (en) Material processing method
CA2402620C (en) Injection molding process and injection molding apparatus for thermoplastic resin molded articles
JP3425559B2 (en) Injection molding equipment for thermoplastic resin molded products
WO2020184486A1 (en) Foam molded body production device, foam molded body production method and screw for use in foam molded body production device
JP7101471B2 (en) Manufacturing method and manufacturing equipment for foam molded products
JP4047107B2 (en) Foam injection molding screw
US20230021266A1 (en) Manufacturing method and manufacturing device for foam molded article
JP2004237522A (en) Injection molding machine
JP3819708B2 (en) Injection molding equipment for thermoplastic resin molded products
JP2003305757A (en) Gas seal mechanism in manufacturing device for thermoplastic resin foam
JP4550646B2 (en) Method for producing foamed molded article made of thermoplastic resin or mixture thereof
JP6997847B2 (en) Manufacturing method and manufacturing equipment for foam molded products
JP7128015B2 (en) Manufacturing method and manufacturing apparatus for foam molded product
JP2023069583A (en) Weighing control method for injection foam molding
JP4279651B2 (en) Screw, injection molding apparatus and foam manufacturing method
JP2020142502A (en) Foam mold product producing apparatus, foam mold product producing method and screw for foam mold product producing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060329

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060412