JP2005088426A - Injection molding machine capable of adding additive - Google Patents

Injection molding machine capable of adding additive Download PDF

Info

Publication number
JP2005088426A
JP2005088426A JP2003326249A JP2003326249A JP2005088426A JP 2005088426 A JP2005088426 A JP 2005088426A JP 2003326249 A JP2003326249 A JP 2003326249A JP 2003326249 A JP2003326249 A JP 2003326249A JP 2005088426 A JP2005088426 A JP 2005088426A
Authority
JP
Japan
Prior art keywords
additive
raw material
material resin
resin
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003326249A
Other languages
Japanese (ja)
Inventor
Yoshifumi Okabe
佳史 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2003326249A priority Critical patent/JP2005088426A/en
Publication of JP2005088426A publication Critical patent/JP2005088426A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an injection molding machine which is capable of improving injection molding efficiency by adding a fluid additive to a raw material resin and continuously supplying the mixture to a plasticization device and controlling a foam molding process by adjusting a pressure to be applied to the raw material resin without the necessity of a pressurizing device. <P>SOLUTION: This injection molding machine comprises at least a multi-stage hopper 103 with the interior divided into not less than two stages; a plasticization cylinder 105 communicating with a bottom stage 152 of the multi-stage hopper 103; and a screw 1 rotatably arranged inside the plasticization cylinder 105. In addition, an additive injection hole is formed in the screw 1 and thus the fluid additive can be injected into the plasticization cylinder 105. Further, the fluid additive injected into the plasticization cylinder 105 flows into the multi-stage hopper 103 to be added to the raw material resin, and the spent fluid additive is recovered through an additive recovery circuit 180 while being subjected to a pressure adjustment. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、原料の樹脂に添加剤を添加可能な射出成形機に関し、更に詳しくは、可塑化シリンダ内及び原料樹脂を一時的に貯留するホッパー内において原料樹脂に流体状添加剤を添加し、かつ流体状添加剤を添加した原料樹脂を連続的に可塑化シリンダに供給でき、さらに不要となった流体状添加剤を可塑化シリンダ内の圧力を調整しつつ回収することができる添加剤を添加可能な射出成形機に関する。   The present invention relates to an injection molding machine capable of adding an additive to a raw material resin. More specifically, a fluid additive is added to a raw material resin in a plasticizing cylinder and a hopper that temporarily stores the raw material resin. In addition, raw material resin with fluid additive added can be continuously supplied to the plasticizing cylinder, and additives that can be recovered while adjusting the pressure inside the plasticizing cylinder are added. It relates to a possible injection molding machine.

樹脂成形品を得る射出成形においては、原料樹脂に着色するためや、溶融困難な原料樹脂のガラス転移温度を下げて原料樹脂の溶融を容易にするため、あるいは発泡のためなどの目的で種々の添加剤が添加される。原料樹脂に気体や液体などの流体状の添加剤(以下、流体状添加剤と記す)を添加する方法としては、(1)可塑化シリンダ(加熱筒)内に配設されるスクリューに流体状添加剤の注入経路及び注入孔を形成して注入添加する構成、(2)可塑化シリンダ内に流体状添加剤の注入ノズルを配設して注入添加する構成、(3)未溶融状態の原料樹脂と添加剤とを耐圧容器内に投入し、一定時間加圧条件下で放置して添加剤を原料樹脂に浸透拡散させる構成、などが採用されている。   In the injection molding to obtain a resin molded product, there are various purposes for coloring the raw material resin, for lowering the glass transition temperature of the difficult-to-melt raw material resin to facilitate melting of the raw material resin, or for foaming purposes. Additives are added. As a method of adding a fluid additive such as gas or liquid (hereinafter referred to as fluid additive) to the raw material resin, (1) a fluid is applied to a screw disposed in a plasticizing cylinder (heating cylinder). A structure for injecting and adding an additive injection path and injection hole, (2) a structure for injecting and adding a fluid additive injection nozzle in a plasticizing cylinder, and (3) an unmelted raw material A configuration in which a resin and an additive are put into a pressure resistant container and left under a pressurized condition for a certain period of time to allow the additive to permeate and diffuse into the raw material resin is employed.

(1)のスクリューに流体状添加剤の注入孔を形成して添加する構成としては、例えばスクリューの一端に形成されるガス導入孔から流体状添加剤を導入し、スクリューを貫通して撹拌部壁面に開口するガス供給孔から可塑化シリンダ内の原料樹脂に添加する構成(特許文献1参照)が提案されているほか、添加剤ではないが、スクリュー内部に形成されるガス導通孔にイナートガスを導入して原料樹脂がほぼ溶解している位置に放出し、その後加熱筒内を原料樹脂の流れと反対向きに流すことによって加熱筒内で発生した水分や分解ガスを除去するという構成(特許文献2参照)も提案されている。   For example, the fluid additive injection hole is formed and added to the screw of (1), for example, the fluid additive is introduced from a gas introduction hole formed at one end of the screw, and the screw is passed through the stirring unit. A configuration (see Patent Document 1) of adding to the raw material resin in the plasticizing cylinder from a gas supply hole that opens in the wall surface is proposed, and an inert gas is not added to the gas conduction hole formed inside the screw. Introduced and discharged to a position where the raw material resin is almost dissolved, and then removed moisture and decomposition gas generated in the heating cylinder by flowing in the heating cylinder in the opposite direction to the flow of the raw resin (Patent Document) 2) has also been proposed.

しかし特許文献2に記載の構成では加熱筒内のガス放出用孔に原料樹脂が侵入して目詰まりを起こすおそれがある。これを防止するために射出成形操作前にはあらかじめ高圧のガスを大量に流してガス放出用孔内の残留物を吹き飛ばし、射出成形操作終了後には原料樹脂の供給停止後も原料樹脂が残留して固化しないようにガスブローを行う必要があるなど、メンテナンス性に欠く。なお、特許文献1にはこのような記載はないものの、同様の操作が必要なものと考えられる。   However, in the configuration described in Patent Document 2, the raw material resin may enter the gas discharge hole in the heating cylinder to cause clogging. In order to prevent this, a large amount of high-pressure gas is flowed in advance before the injection molding operation to blow away the residue in the gas discharge holes, and after the injection molding operation is finished, the raw material resin remains even after the supply of the raw material resin is stopped. It is necessary to perform gas blow so that it does not solidify. In addition, although there is no such description in patent document 1, it is thought that the same operation is required.

前記操作の必要がない構成として、スクリューの中心に添加剤(着色剤)の経路を形成し、スクリューの先端に逆止弁を配設する構成(特許文献3参照)が提案されている。この構成によれば、逆止弁によりスクリュー内部への添加剤の流入を防止できるが、スクリューの先端に逆止弁を配設する必要があり、スクリュー構造が複雑となると共に可塑化シリンダの長さを長くする必要もあると考えられ、射出装置が大型化する。   As a configuration that does not require the operation, there has been proposed a configuration in which a route for an additive (colorant) is formed at the center of the screw and a check valve is disposed at the tip of the screw (see Patent Document 3). According to this configuration, the check valve can prevent the additive from flowing into the screw, but it is necessary to dispose the check valve at the tip of the screw, which complicates the screw structure and lengthens the plasticizing cylinder. It is thought that it is necessary to lengthen the length, and the injection apparatus becomes larger.

(2)の可塑化シリンダ内に流体状添加剤の注入ノズルを配設して注入添加する構成としては、例えば、フィード部、コンプレッション部、メータリング部からなるステージが複数形成される複数ステージタイプのスクリューについて、先端側ステージのフィード部と後端側ステージのメータリング部の間に溶融した樹脂の流動抵抗が高い流動制御部を形成し、先端側ステージのフィード部近傍にガス供給路を設けてここから気体状の添加剤を注入するという構成が提案されている(特許文献4参照)。このような構成によれば、ガス供給路近傍はスクリューの流動制御部により溶融樹脂の飢餓状態が発生していることから必要量の気体状の添加剤を再現性よく溶融した樹脂に添加することができる。しかしながら、流動制御部が形成された複数ステージタイプのスクリューはスクリュー構造が複雑であり、かつスクリュー長が長く射出成形機が大型化する。   (2) As a configuration for injecting and adding a fluid additive injection nozzle in a plasticizing cylinder, for example, a multi-stage type in which a plurality of stages including a feed portion, a compression portion, and a metering portion are formed. The flow control part with high flow resistance of the molten resin is formed between the feed part of the front end side stage and the metering part of the rear end side stage, and a gas supply path is provided near the feed part of the front end stage. From here, a configuration in which a gaseous additive is injected has been proposed (see Patent Document 4). According to such a configuration, since the starvation state of the molten resin is generated by the flow control unit of the screw in the vicinity of the gas supply path, the required amount of gaseous additive is added to the molten resin with reproducibility. Can do. However, the multi-stage type screw in which the flow control unit is formed has a complicated screw structure, and the screw length is long and the injection molding machine becomes large.

一般的に可塑化シリンダ内に注入ノズルを形成する構成では、原料樹脂の圧力による注入ノズルの圧壊を防止するため、原料樹脂の圧力を低下させる必要がある。このため注入ノズルの上流側に左ネジスクリューエレメントを形成したり、スクリューの谷径を急激に減少させるなどの構成が採られる。しかし、このためにはスクリュー長を長くする必要があり、可塑化シリンダが大型化する。また、注入ノズルが可塑化シリンダ内に突出する構成では、その折損を防止するためにスクリューフライトに切り欠きを形成する必要があるなど、可塑化シリンダやスクリューが特殊な構造となり、場合によっては射出成形機のベース長までも変更する必要がある。更に、スクリューに切り欠きを形成すると原料樹脂の逆流が生じて原料樹脂の可塑化シリンダ内の滞留時間が長くなり、原料樹脂の熱分解が促進されるおそれがある。反対に、注入ノズルを可塑化シリンダの内壁面から引っ込めた構成とすると、その窪みに原料樹脂が滞留して樹脂ヤケの発生を助長するおそれがある。   Generally, in the configuration in which the injection nozzle is formed in the plasticizing cylinder, it is necessary to reduce the pressure of the raw material resin in order to prevent the injection nozzle from being crushed by the pressure of the raw material resin. For this reason, a left-handed screw element is formed on the upstream side of the injection nozzle, or the valley diameter of the screw is rapidly reduced. However, this requires a longer screw length, which increases the size of the plasticizing cylinder. Also, in the configuration where the injection nozzle protrudes into the plasticizing cylinder, it is necessary to form notches in the screw flight in order to prevent breakage, and the plasticizing cylinder and screw have a special structure, depending on the case It is also necessary to change the base length of the molding machine. Furthermore, when a notch is formed in the screw, a back flow of the raw material resin occurs, the residence time of the raw material resin in the plasticizing cylinder becomes long, and there is a possibility that thermal decomposition of the raw material resin is promoted. On the other hand, if the injection nozzle is retracted from the inner wall surface of the plasticizing cylinder, the raw material resin may stay in the depression and promote the generation of resin burns.

(3)の未溶融状態の原料樹脂と添加剤とを耐圧容器内に投入して添加剤を原料樹脂に浸透拡散させる方法は、一般的には個別の容器を用いて添加剤の添加を行うため、射出成形機に対する原料樹脂の供給がバッチ方式にならざるを得ない。バッチ方式では設置された容器ごとにガス含浸されるため、材料替え、型替え等の場合に時間がかかり、樹脂成形品の生産性を著しく低下させる原因となる。また生産計画上、バッチ方式は管理の手間がかかり、残った材料の処理の問題もある。   In the method (3) in which the raw material resin and additive in an unmelted state are put into a pressure vessel and the additive is permeated and diffused into the raw material resin, the additive is generally added using a separate container. Therefore, the supply of the raw material resin to the injection molding machine must be a batch system. In the batch method, each installed container is impregnated with gas, so it takes time for material change, mold change, and the like, which causes a significant decrease in the productivity of the resin molded product. In addition, in the production plan, the batch method requires a lot of management, and there is a problem of processing the remaining material.

これに対し連続式とすれば、必要量のみの原料樹脂ペレット等を使用できることから前記の点について有利である。このため、例えば複数のチャンバーを直列に配設し、上部のチャンバーはホッパーから原料樹脂の供給を受けて原料樹脂にガス含浸を施し、下部のチャンバーは上部のチャンバーでガス含浸を施された原料樹脂の供給を受け、下部チャンバーから可塑化シリンダに原料樹脂を供給している間に上部チャンバーで原料樹脂にガス含浸を施すという構成が提案されている(特許文献5参照)。この構成によれば、射出成形操作中は下部チャンバー内に所定量以上の原料樹脂をガス含浸が施された飽和状態で貯留され、原料樹脂を可塑化シリンダに連続的に供給することができる。   On the other hand, if it is a continuous type, only the necessary amount of raw material resin pellets can be used, which is advantageous in terms of the above points. For this reason, for example, a plurality of chambers are arranged in series, the upper chamber is supplied with the raw material resin from the hopper, and the raw material resin is gas-impregnated, and the lower chamber is the raw material that is gas-impregnated in the upper chamber There has been proposed a configuration in which gas is impregnated in the upper chamber while the raw material resin is supplied from the lower chamber to the plasticizing cylinder (see Patent Document 5). According to this configuration, during the injection molding operation, a predetermined amount or more of the raw material resin is stored in a saturated state in which gas impregnation is performed, and the raw material resin can be continuously supplied to the plasticizing cylinder.

ところで、一定温度下での樹脂に対するガスの溶解度は圧力に比例する(ヘンリーの法則)が、温度が上昇すると溶解度は低下することが知られており、このため可塑化シリンダ内部で樹脂温度が上昇すると樹脂へのガスの溶解度が低下し、ガスは脱気されフィード部分へ排出されやすくなる。これを防止して溶融樹脂に対するガスの溶解度を確保するためには、シリンダ内でガスを樹脂へ加圧含浸する構造が必要となる。しかしながら、特許文献5には可塑化シリンダ内、特にコンプレッション部での溶融樹脂、半溶融樹脂、未溶融樹脂ペレットに対するガス含浸量をコントロールする構成は開示されるものではない。   By the way, the solubility of the gas in the resin at a constant temperature is proportional to the pressure (Henry's law), but it is known that the solubility decreases as the temperature rises. For this reason, the resin temperature rises inside the plasticizing cylinder. Then, the solubility of the gas in the resin decreases, and the gas is easily degassed and easily discharged to the feed portion. In order to prevent this and ensure the solubility of the gas in the molten resin, a structure in which the gas is pressure-impregnated into the resin in the cylinder is required. However, Patent Document 5 does not disclose a configuration for controlling the amount of gas impregnation with respect to molten resin, semi-molten resin, or unmelted resin pellets in the plasticizing cylinder, particularly in the compression portion.

また、例えば気体状添加剤等を原料樹脂に含浸して行う発泡成形などでは、射出成形時に不要となった気体状添加剤を除去して最終的な樹脂成形品の表面性状や構造を発現させる。この流体状添加剤の不要分の除去は、例えば金型内部など一般的には賦形装置内で溶融樹脂を減圧することで実施される。   For example, in foam molding performed by impregnating a raw material resin with a gaseous additive or the like, the surface additives and the surface properties and structure of the final resin molded product are developed by removing the gaseous additive that is no longer needed during injection molding. . The removal of the unnecessary part of the fluid additive is generally performed by, for example, depressurizing the molten resin in a shaping apparatus such as the inside of a mold.

溶融樹脂を減圧する構成としては、例えば発泡核を成長させるために射出ユニットの先端に配設されるギアポンプやノズルなどの溶融樹脂の流路に減圧機構を形成し、その後気泡を成長させるために大気圧にまで減圧するという構成が提案されている(特許文献6、7参照)。また、金型内に射出された溶融樹脂が金型の末端部に到達するまでの間は発泡を制御するために金型内部に圧力をかけるカウンタープレッシャー法が用いられているが、発泡サイズを制御するため金型内にあらかじめ樹脂の発泡を抑制しうる程度の圧力で超臨界状態の二酸化炭素を注入し、その後超臨界状態の二酸化炭素を添加した溶融樹脂を射出するという構成も提案されている(特許文献8、9参照)。   As a configuration for reducing the pressure of the molten resin, for example, a pressure reducing mechanism is formed in the flow path of the molten resin such as a gear pump or a nozzle arranged at the tip of the injection unit to grow the foam nuclei, and then the bubbles are grown. A configuration for reducing the pressure to atmospheric pressure has been proposed (see Patent Documents 6 and 7). In addition, the counter pressure method in which pressure is applied to the inside of the mold is used to control foaming until the molten resin injected into the mold reaches the end of the mold. In order to control, a configuration has been proposed in which supercritical carbon dioxide is injected into the mold in advance at a pressure that can suppress foaming of the resin, and then molten resin to which supercritical carbon dioxide is added is injected. (See Patent Documents 8 and 9).

これらの構成によれば、溶融樹脂に添加された流体状添加剤は、可塑化シリンダの先端に装着された機構や金型内部で圧力を調整しつつ溶融樹脂内から減圧され、樹脂成形品の表面性状や内部構造が制御されるが、この圧力の調整は可塑化シリンダ内やダイス、金型といった賦形装置内で別個に行っている。そして非発泡状態で金型に射出するときには、可塑化シリンダ内の圧力と金型内の圧力差を小さくするため金型内に圧力をかける(カウンタープレッシャーをかける)装置が必要となる。また発泡状態で金型に射出するときでも、発泡状態を制御するために金型内を加圧する装置が必要となる。このように、発泡成形おいては加圧装置が必要で設備が大がかりになるという問題点を有している。   According to these configurations, the fluid additive added to the molten resin is depressurized from the molten resin while adjusting the pressure in the mechanism or mold attached to the tip of the plasticizing cylinder, and the resin molded product Although the surface properties and internal structure are controlled, this pressure adjustment is performed separately in the plasticizing cylinder and in the shaping device such as a die and a mold. When injecting into a mold in a non-foamed state, a device for applying pressure (applying counter pressure) to the mold is required to reduce the pressure difference between the pressure in the plasticizing cylinder and the mold. Further, even when injecting into a mold in a foamed state, a device for pressurizing the inside of the mold is required to control the foamed state. As described above, the foam molding has a problem that a pressurizing device is required and the facility becomes large.

このような加圧装置を必要としない射出成形機として、例えば射出成形機に超臨界二酸化炭素の供給部と減圧部とを設けた上で両者をゲートバルブで区画した装置を用い、減圧部において減圧装置により二酸化炭素を穏やかに除去して発泡を防止する射出成形機が提案されているが(特許文献10参照)、射出成形機を2区分に分けるゲートバルブを配設したり、スクリューに逆ネジ方向のフライトを形成したりするなど構成が複雑となる。   As an injection molding machine that does not require such a pressurizing device, for example, a device in which a supercritical carbon dioxide supply unit and a decompression unit are provided in an injection molding machine and both are separated by a gate valve is used. An injection molding machine has been proposed in which carbon dioxide is gently removed by a decompression device to prevent foaming (see Patent Document 10). However, a gate valve that divides the injection molding machine into two sections is arranged, or the screw is reversed. The configuration is complicated, such as forming a flight in the screw direction.

特開平10−278081号公報Japanese Patent Laid-Open No. 10-278081 特開2001−341152号公報JP 2001-341152 A 特開2003−48239号公報JP 2003-48239 A 特開2002−326259号公報JP 2002-326259 A 特開2000−127194号公報JP 2000-127194 A 米国特許第6284810号公報US Pat. No. 6,284,810 米国特許第3796779号公報U.S. Pat. No. 3,796,796 特開平11−245254号公報Japanese Patent Laid-Open No. 11-245254 特開2001−341152号公報JP 2001-341152 A 特開2000−187192号公報JP 2000-187192 A

本発明が解決しようとする課題は、簡単な構造で原料樹脂に流体状添加剤を添加し、かつ連続的に可塑化装置に供給できて射出成形の効率を向上及び生産管理等の附帯作業を軽減させることができる射出成形機を提供すること、又は、可塑化シリンダの構成を複雑化したり、賦形装置に対する流体の加圧注入装置を必要とすることなく原料樹脂中の添加剤の分圧を調整して添加剤の注入状態を制御することができる射出成形機を提供することである。   The problem to be solved by the present invention is that a fluid additive is added to a raw material resin with a simple structure and can be continuously supplied to a plasticizer to improve the efficiency of injection molding and to perform incidental operations such as production control. Providing an injection molding machine that can be reduced, or complicating the structure of the plasticizing cylinder, or without requiring a fluid pressure injection device for the shaping device, the partial pressure of the additive in the raw resin Is to provide an injection molding machine capable of controlling the injection state of the additive.

このような課題を解決するため、請求項1に記載の発明は、原料樹脂を可塑化する可塑化シリンダ内に配設される射出成形用のスクリューの軸心方向に長孔を形成すると共に、該長孔内に原料樹脂に添加する流体状添加剤を供給する添加剤供給管を遊挿し、前記スクリューの長孔の内壁面と外表面との間に、粘稠な溶融樹脂の浸入は不可能であるが、流体状添加剤の通過は可能な多孔質部材が貫挿された添加剤注入孔が形成されることを要旨とするものである。   In order to solve such a problem, the invention described in claim 1 forms a long hole in the axial direction of the screw for injection molding disposed in the plasticizing cylinder for plasticizing the raw material resin, An additive supply pipe for supplying a fluid additive to be added to the raw material resin is loosely inserted into the long hole so that viscous molten resin does not enter between the inner wall surface and the outer surface of the long hole of the screw. Although it is possible, the gist is that an additive injection hole in which a porous member capable of passing the fluid additive is inserted is formed.

また、請求項2に記載の発明は、溶融樹脂を可塑化する可塑化シリンダの溶融樹脂が射出される方向の先端近傍には、可塑化シリンダの内壁面と外部との間に、粘稠な溶融樹脂の浸入は不可能であるが、流体状添加剤の通過は可能な多孔質部材が貫挿された添加剤排出孔が形成されることを要旨とするものである。   Further, in the invention according to claim 2, in the vicinity of the tip in the direction in which the molten resin of the plasticizing cylinder for plasticizing the molten resin is injected, there is a viscous space between the inner wall surface of the plasticizing cylinder and the outside. Although the intrusion of the molten resin is impossible, the gist is that an additive discharge hole into which a porous member capable of passing the fluid additive is inserted is formed.

ここで、請求項3に記載のように、前記多孔質部材は、多孔質金属又は多孔質セラミックスからなることが望ましい。   Here, as described in claim 3, the porous member is preferably made of a porous metal or a porous ceramic.

請求項4に記載の発明は、原料樹脂を一時的に貯留可能な気密容器が、原料樹脂の経路及び原料樹脂に添加される流体状添加剤の経路により直列に連通して複数配設され、該複数の密閉容器のうち最下部に配設される密閉容器は原料樹脂を可塑化する可塑化シリンダに連通すると共に、該可塑化シリンダには原料樹脂に添加する流体状添加剤を添加する添加剤注入孔が形成される前記射出成形用のスクリューが配設され、射出成形用スクリューの添加剤注入孔から可塑化シリンダ内に注入された流体状添加剤は、最下部の気密容器から前記流体状添加剤の経路を通じて順次上側の密閉容器に注入され、前記可塑化シリンダ内及び各密閉容器内で原料樹脂に流体状添加剤を添加できることを要旨とするものである。   In the invention according to claim 4, a plurality of airtight containers capable of temporarily storing the raw material resin are arranged in series through the raw material resin route and the fluid additive route added to the raw material resin, Among the plurality of sealed containers, the sealed container disposed at the lowermost part communicates with a plasticizing cylinder that plasticizes the raw material resin, and the plasticizing cylinder is added with a fluid additive added to the raw material resin. The injection molding screw in which the agent injection hole is formed is disposed, and the fluid additive injected into the plasticizing cylinder from the additive injection hole of the injection molding screw is transferred from the lowermost airtight container to the fluid. The gist of the present invention is that the fluid additive is sequentially injected into the upper closed container through the path of the liquid additive, and the fluid additive can be added to the raw material resin in the plasticizing cylinder and in each closed container.

請求項1に記載の発明によれば、流体状添加剤はスクリューに形成される添加剤注入孔より可塑化シリンダ内に注入されるため、可塑化シリンダの構成を複雑化する必要がない。また、スクリューは開口部である添加剤注入孔に多孔質部材が挿着された構成を有するのみで構造は極めて簡単である。このため、射出成形機の構成を単純化することが可能となる。さらに、スクリューにノズルを配設する構成とは異なり添加剤注入孔の形成位置に制約がないことから、添加剤や樹脂の種類に応じて最適な位置に形成することができる。また、多孔質部材により添加剤供給経路への溶融樹脂の浸入が防止されることから、取扱いが容易でメンテナンス性が良い。   According to the first aspect of the present invention, since the fluid additive is injected into the plasticizing cylinder from the additive injection hole formed in the screw, it is not necessary to complicate the configuration of the plasticizing cylinder. Moreover, the screw has a very simple structure only by having a configuration in which a porous member is inserted into an additive injection hole which is an opening. For this reason, it becomes possible to simplify the structure of an injection molding machine. Further, unlike the configuration in which the nozzle is provided on the screw, there is no restriction on the position where the additive injection hole is formed, so that it can be formed at an optimal position according to the type of additive or resin. In addition, since the porous member prevents the molten resin from entering the additive supply path, it is easy to handle and has good maintainability.

請求項2に記載の発明によれば、添加剤の不要分を回収できるのみならず、可塑化シリンダの先端近傍で減圧して添加剤の不要分を除去できるため、溶融樹脂を射出する際に可塑化シリンダの先端からノズルにかけての溶融樹脂の添加剤の分圧を調整することにより、添加剤の注入状態を制御することが容易となる。例えば加圧状態で流体状添加剤を添加し、その後減圧して発泡させる発泡成形において、溶融樹脂の加圧圧力をなだらかに連続的に減少させることにより、カウンタープレッシャーをかけなくとも発泡制御が容易となる。このため、カウンタープレッシャーをかけるための設備が不要となり、射出成形設備の小型化・単純化を図ることができる。   According to the second aspect of the present invention, not only the unnecessary portion of the additive can be recovered, but also the unnecessary portion of the additive can be removed by reducing the pressure near the tip of the plasticizing cylinder. By adjusting the partial pressure of the molten resin additive from the tip of the plasticizing cylinder to the nozzle, it becomes easy to control the injection state of the additive. For example, in foam molding in which a fluid additive is added under pressure and then reduced in pressure to foam, the foam pressure can be easily controlled without applying counter pressure by gradually reducing the pressure applied to the molten resin. It becomes. For this reason, equipment for applying counter pressure is not required, and the injection molding equipment can be reduced in size and simplified.

ここで、請求項3に記載のように、添加剤注入孔や添加剤回収孔に多孔質部材を装着する構成であれば、構造が単純となり、スクリューや可塑化シリンダの加工が容易で設備の低廉化を図ることができる。また、原料樹脂の圧力・温度に対する耐性に優れると共に、適度な通孔が得られやすい。   Here, as described in claim 3, if the porous member is attached to the additive injection hole or additive recovery hole, the structure becomes simple, the processing of the screw and the plasticizing cylinder is easy, and the equipment Cost reduction can be achieved. Moreover, it is excellent in the tolerance with respect to the pressure and temperature of raw material resin, and an appropriate through-hole is easy to be obtained.

請求項4に記載の発明によれば、原料樹脂を添加剤が注入された多段ホッパー内を順次移送して添加剤を添加しつつ可塑化シリンダ内に供給するため、添加剤が添加された原料樹脂を可塑化シリンダ内に連続的に供給できる。このため射出成形加工における生産効率を向上させることができる。また、可塑化シリンダを含めて原料樹脂の経路はすべて添加剤が注入された状態にあるため、添加剤の飽和状態を維持することができる。   According to the fourth aspect of the present invention, the raw material resin is sequentially transferred through the multistage hopper into which the additive has been injected, and is supplied into the plasticizing cylinder while adding the additive. Resin can be continuously fed into the plasticizing cylinder. For this reason, the production efficiency in the injection molding process can be improved. In addition, since all the paths of the raw material resin including the plasticizing cylinder are in a state where the additive is injected, the saturated state of the additive can be maintained.

以下に、本発明に係る添加剤を添加可能な射出成形機について、図面を参照して詳細に説明する。図1は本実施の形態に係る射出成形機に適用されるスクリューの構造を示した図であり、(a)は外部構造を示した図、(b)は内部構造を示した断面図である。   Below, the injection molding machine which can add the additive which concerns on this invention is demonstrated in detail with reference to drawings. FIG. 1 is a view showing a structure of a screw applied to an injection molding machine according to the present embodiment, (a) is a view showing an external structure, and (b) is a cross-sectional view showing an internal structure. .

図1(a)に示すように、このスクリュー1には谷径の小なるフィード部17と谷径の大なるメータリング部7と、フィード部17とメータリング部7の間のテーパ状に谷径が変化するコンプレッション部15を有し、各部7、15、17の外周面には各部にわたってスクリューフライト5が形成される。   As shown in FIG. 1A, the screw 1 includes a feed portion 17 having a small valley diameter, a metering portion 7 having a large valley diameter, and a taper between the feed portion 17 and the metering portion 7. A compression portion 15 having a variable diameter is provided, and screw flights 5 are formed on the outer peripheral surfaces of the portions 7, 15, and 17 over the respective portions.

そして図1(b)に示すように、スクリュー1の内部には添加剤注入経路3が形成される。この添加剤注入経路3はスクリュー1の軸心方向に略同軸に形成される長孔状の経路であり、スクリューフライト5が形成されない一端(図中において右側端。以下、便宜上「後端」と記す)の端面が開口し、メータリング部7が形成される側(図中において左側端。以後、便宜上「先端」と記す)は閉鎖される非貫通の長孔である。そしてこの添加剤注入経路3の内壁面と、スクリュー1の外周面とを連通する添加剤注入孔9が形成され、この添加剤注入孔9には注入孔部材11が挿着される。   As shown in FIG. 1 (b), an additive injection path 3 is formed inside the screw 1. This additive injection path 3 is a long hole-shaped path formed substantially coaxially in the axial direction of the screw 1 and is one end (the right end in the figure. Hereinafter, the “rear end” for convenience). The side where the metering portion 7 is formed (the left end in the figure, hereinafter referred to as “tip” for convenience) is a non-through long hole that is closed. An additive injection hole 9 that communicates the inner wall surface of the additive injection path 3 and the outer peripheral surface of the screw 1 is formed, and an injection hole member 11 is inserted into the additive injection hole 9.

この注入孔部材11は、粘稠な溶融樹脂の浸入は不可能であるが、気体や粘度の低い液体などの流体の通過は許容する多孔質部材からなる。この機能を確保するために必要となる貫通孔や連続泡などの通孔の径は、使用する流体状添加剤や溶融樹脂の種類、特に粘度により相違するため、必要に応じて適宜選択される。例えばPBT(ポリブチレンテレフタレート)樹脂などの粘稠な樹脂の場合には孔径が50μm以下であれば良い。なおこの多孔質部材の材質としては多孔質金属や多孔質アルミニウムなどの多孔質金属、ゼオライトなどの多孔質セラミックスなどが適用でき、より具体的には、「メタポール−METAPOR(商品名)」(Pontc Ltd.スイス社製)、「ヒポラス(商品名)」((株)神戸製鋼所製)などを適用することができる。   The injection hole member 11 is made of a porous member that cannot allow a viscous molten resin to enter, but allows a fluid such as a gas or a liquid having a low viscosity to pass therethrough. The diameters of through-holes such as through holes and continuous bubbles required to ensure this function vary depending on the type of fluid additive and molten resin used, particularly the viscosity, and are therefore selected as necessary. . For example, in the case of a viscous resin such as PBT (polybutylene terephthalate) resin, the pore diameter may be 50 μm or less. As the material of the porous member, porous metals such as porous metals and porous aluminum, porous ceramics such as zeolite, and the like can be applied. More specifically, “Metapol-METAPOR (trade name)” (Pontc) Ltd., “Hyporus (trade name)” (manufactured by Kobe Steel, Ltd.), and the like can be applied.

前記添加剤注入孔9が形成される位置や数は、流体状添加剤の原料樹脂への拡散性を考慮して決定される。例えば拡散性が低い場合には、図2(a)に示すようにコンプレッション部15や混練用エレメント内、あるいはそれらのフィード部17寄りに形成される。一方、拡散性が高い場合には図2(b)に示すように、メータリング部7やスクリュー先端などに形成されることが望ましい。また、これらの添加剤注入孔9は、図2に示すようにスクリューの谷部表面に形成されるほか、スクリューフライト5の強度に問題がなければスクリューフライト5に形成して注入孔部材(多孔質部材)を挿着する構成であっても良い。   The position and number of the additive injection holes 9 are determined in consideration of the diffusibility of the fluid additive into the raw material resin. For example, when the diffusibility is low, it is formed in the compression portion 15 or the kneading element, or near the feed portion 17 as shown in FIG. On the other hand, when the diffusibility is high, as shown in FIG. 2B, it is desirable to form the metering portion 7 or the screw tip. Further, these additive injection holes 9 are formed on the surface of the valley of the screw as shown in FIG. 2, and are formed in the screw flight 5 if there is no problem in the strength of the screw flight 5 to form an injection hole member (porous). The material member) may be inserted.

そしてスクリュー1の添加剤供給経路3の内部には、添加剤供給管21が遊挿される。この添加剤供給管21は円管状の部材であって、この添加剤供給管21を通じて流体状添加剤をスクリュー1の添加剤供給経路3に供給できる。   An additive supply pipe 21 is loosely inserted into the additive supply path 3 of the screw 1. The additive supply pipe 21 is a tubular member, and a fluid additive can be supplied to the additive supply path 3 of the screw 1 through the additive supply pipe 21.

このようなスクリューによれば、スクリューから流体状添加剤を注入添加できるため、可塑化シリンダに流体状添加剤の注入ノズルを配設するなど、可塑化シリンダの構造を複雑化する必要がない。また、スクリュー1には注入孔9に多孔質部材が挿着されるのみであるから、スクリュー構造も複雑化する必要はなく、例えば逆止弁を配設するなどのようにスクリューが大型化することもない。   According to such a screw, since the fluid additive can be injected and added from the screw, it is not necessary to complicate the structure of the plasticizing cylinder such as disposing a fluid additive injection nozzle in the plasticizing cylinder. Further, since only a porous member is inserted into the injection hole 9 in the screw 1, there is no need to make the screw structure complicated. For example, the screw becomes large as a check valve is provided. There is nothing.

図3は、前記スクリューが好適に適用される射出ユニットの構造及び附帯的な設備と流体状添加剤の流れを模式的に示した断面図である。図中の矢印aは流体状添加剤の流れを、矢印bは原料樹脂の流れを示している。   FIG. 3 is a cross-sectional view schematically showing the structure of an injection unit to which the screw is suitably applied, ancillary equipment, and the flow of a fluid additive. The arrow a in the figure indicates the flow of the fluid additive, and the arrow b indicates the flow of the raw resin.

射出ユニット100の構成及び流体状添加剤の流れの概略を説明すると、この射出成形ユニット100は原料樹脂を一時的に貯留して流体状添加剤を添加する多段ホッパー103と、多段ホッパー103から供給を受けた原料樹脂を可塑化する可塑化シリンダ105とを有する。この可塑化シリンダ105の内部には前記スクリュー1が配設され、このスクリューが回転して原料樹脂を可塑化し、可塑化された溶融樹脂は可塑化シリンダ105の先端に配設されるノズル201から射出されるように構成される。   The outline of the configuration of the injection unit 100 and the flow of the fluid additive will be described. The injection molding unit 100 temporarily stores the raw resin and adds the fluid additive, and is supplied from the multi-stage hopper 103. And a plasticizing cylinder 105 for plasticizing the received raw material resin. The screw 1 is disposed inside the plasticizing cylinder 105, and the screw rotates to plasticize the raw material resin. The plasticized molten resin is supplied from a nozzle 201 disposed at the tip of the plasticizing cylinder 105. Configured to be injected.

また、流体タンク109などに貯留される流体状添加剤は、温調加圧循環装置107により温度と圧力を調整されて送り出され、スクリュー1の添加剤供給経路3を経て添加剤注入孔9から可塑化シリンダ105内に注入される。可塑化シリンダ105内に注入された流体状添加剤は多段ホッパー103に流入して原料樹脂に添加され、不要となった分は回収され再び温調加圧循環装置107で温度と圧力を調整されて送り出されるように構成される。   Further, the fluid additive stored in the fluid tank 109 or the like is sent out after its temperature and pressure are adjusted by the temperature control and pressure circulation device 107, and from the additive injection hole 9 through the additive supply path 3 of the screw 1. It is injected into the plasticizing cylinder 105. The fluid additive injected into the plasticizing cylinder 105 flows into the multi-stage hopper 103 and is added to the raw resin, and the unnecessary part is recovered and the temperature and pressure are adjusted again by the temperature control and pressure circulation device 107. Configured to be sent out.

なお、流体状添加剤を貯留する流体タンク109と、流体タンク109に貯留される流体状添加剤、及び添加剤回収回路を通じて回収された流体状添加剤の温度と圧力を調整して送り出す温調加熱循環装置107は、いずれも公知の温度調整手段、圧力調整手段又はこれらの組合せにより構成される。   Note that the temperature of the fluid tank 109 storing the fluid additive, the fluid additive stored in the fluid tank 109, and the temperature and pressure of the fluid additive recovered through the additive recovery circuit are adjusted and sent out. The heating circulation device 107 is configured by any known temperature adjusting means, pressure adjusting means, or a combination thereof.

次いで各構成要素について説明すると、多段ホッパー103は、内部が少なくとも2段以上に分けられた耐圧性の気密容器、あるいは単一の耐圧性の気密容器を複数組み合わせて構成されるものであり、ここでは、内部が上段150、中段151、下段152の3段に分けられた構成を有するものを例として示す。この多段ホッパー103の各段150、151、152は、隔壁153、154を介して垂直方向に直列に配設される。これらの隔壁153、154は矢印cの方向にスライド式に開閉可能であり、開放したときには各段は原料樹脂が移動可能に連通し、閉鎖したときには各段150、151、152ごとに気密状態に維持できる。   Next, each component will be described. The multi-stage hopper 103 is configured by combining a plurality of pressure-resistant airtight containers whose interior is divided into at least two stages or a single pressure-resistant airtight container. Here, an example in which the inside is divided into three stages of an upper stage 150, a middle stage 151, and a lower stage 152 is shown. The stages 150, 151, 152 of the multi-stage hopper 103 are arranged in series in the vertical direction via the partition walls 153, 154. These partition walls 153 and 154 can be slidably opened and closed in the direction of arrow c. When opened, each stage communicates so that the raw material resin can move, and when closed, each stage 150, 151, 152 is airtight. Can be maintained.

上段150は、このほか、それぞれ矢印cの方向にスライド式に開閉可能な隔壁159、160を介して原料供給経路161及び排気経路162と連通する。原料供給経路161は、多段ホッパー103の上段150に外部から原料樹脂を供給する経路であり、隔壁159を開放して送風式あるいは減圧吸引式によって上段150の内部に原料樹脂を供給する。排気経路162は外気と連通する経路であり、隔壁160を開いたときには上段150の内部の気体を外部に排出することができる。この排気経路162には塵埃や有害ガスなどを除去可能なフィルター163などの気体浄化手段が配設されることが望ましい。また、これらの隔壁159、160を閉じたときには上段150の内部を気密状態に維持できる。   In addition, the upper stage 150 communicates with the raw material supply path 161 and the exhaust path 162 via partition walls 159 and 160 that can be opened and closed in a sliding manner in the direction of arrow c. The raw material supply path 161 is a path for supplying the raw material resin from the outside to the upper stage 150 of the multistage hopper 103, and the raw material resin is supplied into the upper stage 150 by opening the partition wall 159 by a blower type or a vacuum suction type. The exhaust path 162 is a path communicating with outside air, and when the partition wall 160 is opened, the gas inside the upper stage 150 can be discharged to the outside. It is desirable that gas exhausting means such as a filter 163 capable of removing dust or harmful gas is disposed in the exhaust path 162. Moreover, when these partition walls 159 and 160 are closed, the inside of the upper stage 150 can be maintained in an airtight state.

中段151は、上段150との間に配設される隔壁153と下段152との間に配設される隔壁154との間に形成される空間(容器)であり、上段150の内部に原料樹脂が貯留されている状態で隔壁153を開放すると原料樹脂が重力落下して中段151の内部に貯留でき、中段151の内部に原料樹脂が貯留される状態で隔壁154を開放すると、中段151の内部の原料樹脂は下段152の内部に落下するように構成される。   The middle stage 151 is a space (container) formed between the partition wall 153 disposed between the upper stage 150 and the partition wall 154 disposed between the lower stage 152, and the raw resin is disposed inside the upper stage 150. When the partition wall 153 is opened in a state in which the raw material is stored, the raw resin drops by gravity and can be stored inside the middle stage 151. When the partition wall 154 is opened while the raw material resin is stored in the middle stage 151, the inside of the middle stage 151 The raw material resin is configured to fall into the lower stage 152.

下段152は、上方側が前記隔壁154を介して中段151と連通すると共に、下方側は可塑化シリンダ105の内部空間と連通する。そして中段151から落下して貯留された原料樹脂は下方から可塑化シリンダ105の内部に供給できるように構成される。   The lower stage 152 communicates with the middle stage 151 via the partition wall 154 on the upper side and communicates with the internal space of the plasticizing cylinder 105 on the lower side. The raw material resin dropped and stored from the middle stage 151 is configured to be supplied into the plasticizing cylinder 105 from below.

なお、多段ホッパー103の各段150〜152の間、及び上段150と原料供給経路161、排気経路162に配設されるスライド式に開閉可能な隔壁としては、エアシリンダなどで作動する公知の各種経路開閉手段を適用することができる。またこれらの隔壁は、開放したときに原料樹脂や流体が通過可能で、閉鎖したときには気密状態を維持できるものであれば前記スライド式に限られるものではなく、例えば気密性のバタフライ弁などであってもよい。   In addition, as the slidable openable and closable partitions disposed between the respective stages 150 to 152 of the multi-stage hopper 103 and the upper stage 150 and the raw material supply path 161 and the exhaust path 162, various well-known various types that are operated by an air cylinder or the like. A path opening / closing means can be applied. These partition walls are not limited to the slide type as long as they can pass the raw resin and fluid when opened, and can maintain an airtight state when closed, such as an airtight butterfly valve. May be.

さらに、上段150と中段151との間、及び中段151と下段152の間は流体が通過可能な圧力調整経路155、156により連通する。これらの圧力調整経路155、156には、圧力調整弁170が配設されており、この圧力調整弁は流入する流体の圧力が所定の圧力以上となったときに流体を通過させる(すなわち流入する側の流体の圧力を所定の圧力に維持する)。なお、上段150と中段151とを連通する圧力調整経路155は中間で分岐しており、分岐した側は図示しないが添加剤回収回路180aとして温調加熱循環装置107に連通する。   Further, the upper stage 150 and the middle stage 151 and the middle stage 151 and the lower stage 152 communicate with each other through pressure adjustment paths 155 and 156 through which fluid can pass. These pressure regulation paths 155 and 156 are provided with a pressure regulation valve 170, and this pressure regulation valve allows the fluid to pass therethrough (that is, to flow in) when the pressure of the fluid flowing in becomes higher than a predetermined pressure. Side fluid pressure is maintained at a predetermined pressure). Note that the pressure adjustment path 155 that connects the upper stage 150 and the middle stage 151 branches in the middle, and the branched side communicates with the temperature control heating circulation device 107 as an additive recovery circuit 180a (not shown).

可塑化シリンダ105には、内部に前記スクリュー1が配設される。温調加圧循環装置107から送り出される流体状添加剤は、スクリュー1の添加剤供給経路3に供給され、添加剤注入孔9から可塑化シリンダ105の内部に注入しなかった分は、添加剤回収回路180cから温調加圧循環装置107に回収されるように構成される。すなわち、スクリュー1が回転しても添加剤供給経路3に遊挿される添加剤供給管21は回転しないように固定されて温調加圧循環装置107に連通する。また、添加剤供給経路3はシールバルブ185及び添加剤回収回路180cを介して温調加圧循環装置107に連通する。シールバルブ185は、スクリュー1が回転しても回転部分の気密性を維持しつつ添加剤回収回路180cと連通することができる構成を有するものであり、公知の各種シールバルブを適用することができる。   In the plasticizing cylinder 105, the screw 1 is disposed. The fluid additive delivered from the temperature control and pressure circulation device 107 is supplied to the additive supply path 3 of the screw 1, and the amount not injected into the plasticizing cylinder 105 from the additive injection hole 9 is the additive. It is configured to be recovered from the recovery circuit 180c to the temperature control and pressurization circulation device 107. That is, the additive supply pipe 21 loosely inserted in the additive supply path 3 is fixed so as not to rotate even when the screw 1 rotates, and communicates with the temperature control and pressure circulation device 107. Further, the additive supply path 3 communicates with the temperature control and pressurization circulation device 107 via the seal valve 185 and the additive recovery circuit 180c. The seal valve 185 has a configuration capable of communicating with the additive recovery circuit 180c while maintaining the airtightness of the rotating portion even when the screw 1 rotates, and various known seal valves can be applied. .

可塑化シリンダ105のノズル201近傍及びノズル201には、外部と連通する貫通孔である添加剤排出孔202a〜202cがスクリュー1の軸線方向に複数並んで形成され(図3においては202a、202b、202cの3箇所に形成される構成を示す)、これらの添加剤排出孔202a〜202cには、排出孔部材205が挿着される。この排出孔部材205はスクリュー1の添加剤注入孔9に挿着される多孔質材料と同じ多孔質材料から形成される。   In the vicinity of the nozzle 201 of the plasticizing cylinder 105 and in the nozzle 201, a plurality of additive discharge holes 202a to 202c, which are through holes communicating with the outside, are formed side by side in the axial direction of the screw 1 (in FIG. 3, 202a, 202b, 202c is shown), the discharge hole member 205 is inserted into these additive discharge holes 202a to 202c. The discharge hole member 205 is formed of the same porous material as that inserted into the additive injection hole 9 of the screw 1.

これらの添加剤排出孔202a〜202cはそれぞれ圧力調整弁171a〜171cを介して添加剤回収回路180dにより温調加圧循環装置107に連通する。この圧力調整弁171a〜171cは、圧力調整経路155、156に配設される圧力調整弁170と同一の機能を有し、ノズル201の内部あるいは可塑化シリンダ105の先端近傍の内部の圧力をそれぞれ所定の圧力に維持する。   These additive discharge holes 202a to 202c communicate with the temperature control and pressure circulation device 107 by the additive recovery circuit 180d through the pressure regulating valves 171a to 171c, respectively. These pressure regulating valves 171a to 171c have the same function as the pressure regulating valve 170 disposed in the pressure regulating paths 155 and 156, and respectively control the pressure inside the nozzle 201 or inside the vicinity of the tip of the plasticizing cylinder 105. Maintain a predetermined pressure.

なお、可塑化シリンダ105に配設されるノズル201は、可塑化シリンダ105の内部圧力を調整する必要があることから、シャットオフノズルであることが望ましい。図においては回転子210を有するシャットオフノズルを示しているが、シャットオフノズルであればこの構成のものに限られるものではない。   The nozzle 201 disposed in the plasticizing cylinder 105 is desirably a shut-off nozzle because it is necessary to adjust the internal pressure of the plasticizing cylinder 105. In the drawing, a shut-off nozzle having a rotor 210 is shown, but the configuration is not limited to this as long as it is a shut-off nozzle.

このような構成における流体状添加剤の流れは次のとおりである。流体状添加剤は温調加熱循環装置107から温度と圧力を調整して送り出され、添加剤供給管21を介してスクリュー1の添加剤注入経路3に供給される。添加剤供給経路3に供給された流体状添加剤は、添加剤注入孔9から可塑化シリンダ105に注入され、可塑化シリンダ105の内部に充満しつつ、多段ホッパー103の下段152の内部に流入する。   The flow of the fluid additive in such a configuration is as follows. The fluid additive is sent out from the temperature control heating circulation device 107 with the temperature and pressure adjusted, and is supplied to the additive injection path 3 of the screw 1 through the additive supply pipe 21. The fluid additive supplied to the additive supply path 3 is injected from the additive injection hole 9 into the plasticizing cylinder 105 and flows into the lower stage 152 of the multistage hopper 103 while filling the plasticizing cylinder 105. To do.

ここで、温調加熱循環装置107から送り出される流体状添加剤の温度は、少なくとも添加剤注入孔9から可塑化シリンダ105の内部に注入されるときに可塑化シリンダ105の内部の原料樹脂(溶融樹脂)の流動性を大きく阻害しない温度以上であることが望ましく、このような温度となるように温調加熱循環装置107で加熱される。   Here, the temperature of the fluid additive sent out from the temperature control heating circulation device 107 is at least the raw material resin (melted) inside the plasticizing cylinder 105 when injected into the plasticizing cylinder 105 from the additive injection hole 9. It is desirable that the temperature be higher than the temperature that does not significantly impair the fluidity of the resin), and the temperature is adjusted by the temperature-regulating heating circulation device 107 so as to reach such a temperature.

また、添加剤注入経路3に供給された流体状添加剤のうち、添加剤注入孔9から可塑化シリンダ105の内部に流入しなかった分は添加剤回収回路180cを通じて温調加熱循環装置107に回収され、温度と圧力を調整して再び送り出される。   Of the fluid additive supplied to the additive injection path 3, the amount of the fluid additive that has not flowed into the plasticizing cylinder 105 from the additive injection hole 9 passes through the additive recovery circuit 180 c to the temperature control heating circulation device 107. It is recovered and sent out again after adjusting the temperature and pressure.

なお、所定の温度に調整された流体状添加剤がスクリュー1の内部を循環することから、スクリュー1や可塑化シリンダ105の内部を所定の温度に維持する温度調整の効果も得られる。   In addition, since the fluid additive adjusted to a predetermined temperature circulates inside the screw 1, the effect of temperature adjustment that maintains the inside of the screw 1 and the plasticizing cylinder 105 at a predetermined temperature is also obtained.

また、コンプレッション部15あるいはフィード部17に注入孔を設けたスクリューを用いると、流体状添加剤はスクリュー1の添加剤供給経路3の内壁面で温められてから可塑化シリンダ105内に注入されることになるため、樹脂の流動性を阻害することがない。このため、温調加熱循環装置107において、添加剤の温度を調整する温調機が不要となるか、温調機の能力が低くとも問題が生じなくなる。あるいは繊細な温度コントロールが不要となる。また、流体状添加剤はスクリュー内部から注入されるため、多段ホッパー103寄りのフィード部近傍から注入されるものであれば、添加剤の温度と溶融樹脂の温度とを近い温度にしやすい。   When a screw having an injection hole in the compression unit 15 or the feed unit 17 is used, the fluid additive is warmed on the inner wall surface of the additive supply path 3 of the screw 1 and then injected into the plasticizing cylinder 105. Therefore, the fluidity of the resin is not hindered. For this reason, in the temperature control heating circulation device 107, a temperature controller for adjusting the temperature of the additive becomes unnecessary, or a problem does not occur even if the temperature controller has a low capacity. Or delicate temperature control becomes unnecessary. In addition, since the fluid additive is injected from the inside of the screw, if it is injected from the vicinity of the feed portion near the multi-stage hopper 103, the temperature of the additive and the temperature of the molten resin are easily brought close to each other.

流体状添加剤が多段ホッパー103の下段152に流入して、下段152の内部圧力が所定の圧力に達すると、流体状添加剤は下段152と中段151を連通する圧力調整経路156の圧力調整弁170を通過し中段151に流入する。このため下段152の所定の内部圧力に維持される。そして流入した流体状添加剤により中段151が所定の内部圧力に達すると、流体状添加剤は、中段151と上段150を連通する圧力調整経路155の圧力調整弁170を通過し上段150に流入する。これにより中段151は所定の内部圧力に維持される。さらに流入した流体状添加剤により上段150が所定の内部圧力に達すると、添加剤回収回路180aの圧力調整弁170を通過し、温調加熱循環装置107に回収される。このため上段150の内部が所定の圧力に維持され、回収された流体状添加剤は温度及び圧力を調整して再び送り出される。   When the fluid additive flows into the lower stage 152 of the multi-stage hopper 103 and the internal pressure of the lower stage 152 reaches a predetermined pressure, the fluid additive is a pressure regulating valve of the pressure regulating path 156 that connects the lower stage 152 and the middle stage 151. It passes through 170 and flows into the middle stage 151. For this reason, the predetermined internal pressure of the lower stage 152 is maintained. When the middle stage 151 reaches a predetermined internal pressure due to the fluid additive that has flowed in, the fluid additive passes through the pressure regulation valve 170 of the pressure regulation path 155 that communicates the middle stage 151 and the upper stage 150 and flows into the upper stage 150. . Thereby, the middle stage 151 is maintained at a predetermined internal pressure. Further, when the upper stage 150 reaches a predetermined internal pressure due to the fluid additive that has flowed in, it passes through the pressure regulating valve 170 of the additive recovery circuit 180 a and is recovered by the temperature control heating circulation device 107. For this reason, the inside of the upper stage 150 is maintained at a predetermined pressure, and the recovered fluid additive is sent out again after adjusting the temperature and pressure.

このように、流体タンク109から供給された流体状添加剤は、可塑化シリンダ105及び多段ホッパー103の各段に充填され、可塑化シリンダ105及び多段ホッパー103の各段は所定の内部圧力に維持される。ここで、流体状添加剤は可塑化シリンダ105を経て多段ホッパーの下段152、中段151、上段150の順に流入するものであり、各段の内部圧力は下段152が最も高く、次いで中段151、上段150の順に低くなるように設定され、上段150の内部圧力が最も大気圧に近い圧力に維持される。   In this way, the fluid additive supplied from the fluid tank 109 is filled in each stage of the plasticizing cylinder 105 and the multistage hopper 103, and each stage of the plasticizing cylinder 105 and the multistage hopper 103 is maintained at a predetermined internal pressure. Is done. Here, the fluid additive flows through the plasticizing cylinder 105 in the order of the lower stage 152, the middle stage 151, and the upper stage 150 of the multistage hopper, and the internal pressure of each stage is highest in the lower stage 152, and then the middle stage 151, the upper stage. The internal pressure of the upper stage 150 is maintained at a pressure closest to the atmospheric pressure.

そして原料樹脂の流れ及び流体状添加剤を添加する動作は以下の通りである。   The flow of the raw resin and the operation of adding the fluid additive are as follows.

上段150と原料供給経路161との間及び排気経路162との間の隔壁159、160を開放し、外部から原料供給経路161を経て上段150に原料樹脂を供給しつつ、流入する気体を排気経路162から大気中に放出する。原料樹脂が供給された後に原料供給経路161との間の隔壁159を閉鎖すると、上段150の内部の気体(主に大気成分)は圧力調整経路155を通じて流入する流体状添加剤に押し出されて排気経路162から大気中に排出され、上段150の内部は流体状添加剤が充填される。その後排気経路162との間の隔壁160を閉鎖すると、上段150の内部は流入する流体状添加剤により所定の圧力に維持される。   The partition walls 159 and 160 between the upper stage 150 and the raw material supply path 161 and the exhaust path 162 are opened, and the raw material resin is supplied from the outside to the upper stage 150 through the raw material supply path 161, and the inflowing gas is exhausted. 162 is released into the atmosphere. When the partition wall 159 between the raw material resin and the raw material supply path 161 is closed, the gas (mainly atmospheric components) in the upper stage 150 is pushed out by the fluid additive flowing in through the pressure adjustment path 155 and exhausted. The gas is discharged from the path 162 to the atmosphere, and the upper stage 150 is filled with a fluid additive. After that, when the partition wall 160 between the exhaust passage 162 is closed, the inside of the upper stage 150 is maintained at a predetermined pressure by the flowing fluid additive.

そして上段150と中段151との間の隔壁153を一時的に開放して、上段150の内部に貯留された原料樹脂を中段151の内部に落下させる。この隔壁153を一時的に開放すると上段150と中段151の内部気圧が一時的に同じとなるが、隔壁153を閉鎖すると再びそれぞれ所定の圧力に維持される。そして中段151に原料樹脂を落下させた後に所定の時間放置しておくと、原料樹脂に流体状添加剤が浸透拡散して添加工程が進行する。その後、中段151と下段152との間の隔壁154を一時的に開放して流体状添加剤が添加された原料樹脂を下段152の内部に落下させ、下段152から可塑化シリンダ105内に供給されて可塑化される。下段152の内部も流体状添加剤が充満しているため、原料樹脂は流体状添加剤が添加された状態が維持される。   Then, the partition wall 153 between the upper stage 150 and the middle stage 151 is temporarily opened, and the raw material resin stored in the upper stage 150 is dropped into the middle stage 151. When the partition wall 153 is temporarily opened, the internal pressures of the upper stage 150 and the middle stage 151 are temporarily the same, but when the partition wall 153 is closed, the predetermined pressure is again maintained. If the raw resin is dropped on the middle stage 151 and left for a predetermined time, the fluid additive penetrates and diffuses into the raw resin, and the addition process proceeds. Thereafter, the partition wall 154 between the middle stage 151 and the lower stage 152 is temporarily opened to drop the raw material resin added with the fluid additive into the lower stage 152, and is supplied from the lower stage 152 into the plasticizing cylinder 105. To be plasticized. Since the inside of the lower stage 152 is also filled with the fluid additive, the raw material resin is maintained in a state where the fluid additive is added.

中段151で流体状添加剤の拡散工程を進行させている間に、前記動作により上段150の内に原料樹脂を供給する。上段150と中段151との間の隔壁153が閉じていれば、上段150と原料供給経路161及び排気経路162との間の隔壁159、160を開放しても、大気成分が中段151の内部に流入することはなく、また隔壁153に隙間があったとしても、中段151の内部は大気圧よりも高い圧力に維持されているため、やはり大気成分が中段151の内部に流入することはない。このように上段150への原料樹脂の供給作業が中段151での流体状添加剤の添加工程の進行に影響を与えることはない。   While the fluid additive diffusion process is proceeding in the middle stage 151, the raw material resin is supplied into the upper stage 150 by the above operation. If the partition wall 153 between the upper stage 150 and the middle stage 151 is closed, even if the partition walls 159 and 160 between the upper stage 150 and the raw material supply path 161 and the exhaust path 162 are opened, atmospheric components are contained in the middle stage 151. Even if there is a gap in the partition wall 153, the inside of the middle stage 151 is maintained at a pressure higher than the atmospheric pressure, so that atmospheric components do not flow into the middle stage 151. Thus, the operation of supplying the raw material resin to the upper stage 150 does not affect the progress of the fluid additive addition process in the middle stage 151.

可塑化シリンダ105内でスクリュー1が回転すると、原料樹脂が可塑化され、ノズル201から金型(図示せず)に射出される。このときに不要となった流体状添加剤は、ノズル201や可塑化シリンダ105のノズル近傍に形成される添加剤排出孔202から排出され、添加剤回収経路180dを通じて温調加熱循環装置107に回収される。そして温調加熱循環装置107により温度と圧力を調整されて再び送り出される。   When the screw 1 rotates in the plasticizing cylinder 105, the raw material resin is plasticized and injected from the nozzle 201 into a mold (not shown). The fluid additive which is no longer needed at this time is discharged from the additive discharge hole 202 formed in the vicinity of the nozzle 201 and the nozzle of the plasticizing cylinder 105, and is recovered by the temperature control heating circulation device 107 through the additive recovery path 180d. Is done. Then, the temperature and pressure are adjusted by the temperature control heating circulation device 107 and sent out again.

射出成形操作が進行し、下段152に供給された原料樹脂が減少してある一定量以下となると、下段152に配設される原料レベルセンサ207がこれを検知し、中段151と下段152の間の隔壁154を再び開放して原料樹脂を下段152の内部に供給する。中段151に貯留される原料樹脂が少量となるか空となったときには、上段150と下段152との間の隔壁153を一時的に開放して中段151に原料樹脂を供給する。そして上段150に貯留される原料樹脂が少量となるか空になったときには、上段150に原料樹脂を供給する。   When the injection molding operation proceeds and the raw material resin supplied to the lower stage 152 decreases to a certain amount or less, the raw material level sensor 207 disposed in the lower stage 152 detects this, and between the middle stage 151 and the lower stage 152. The partition wall 154 is opened again to supply the raw material resin into the lower stage 152. When the amount of raw resin stored in the middle stage 151 is small or empty, the partition wall 153 between the upper stage 150 and the lower stage 152 is temporarily opened to supply the raw resin to the middle stage 151. When the amount of raw material resin stored in the upper stage 150 becomes small or empty, the raw material resin is supplied to the upper stage 150.

このようにすると、上段150への原料樹脂の供給と中段151での流体状添加剤の添加工程を互いに影響を受けることなく独立的に並行して行うことができるから、流体状添加剤が添加された原料樹脂を下段152に連続的に供給することができ、かつ下段152には常に一定量以上の原料樹脂が貯留された状態を維持することができる。このため連続的に可塑化シリンダ105に原料樹脂を供給することができ射出成形加工の効率を向上させることができる。   In this way, the supply of the raw material resin to the upper stage 150 and the process of adding the fluid additive in the middle stage 151 can be performed independently and in parallel without being affected by each other. The raw material resin thus obtained can be continuously supplied to the lower stage 152, and a state where a predetermined amount or more of the raw material resin is always stored in the lower stage 152 can be maintained. Therefore, the raw material resin can be continuously supplied to the plasticizing cylinder 105, and the efficiency of the injection molding process can be improved.

なお、上段150も原料樹脂を供給する間以外は流体状添加剤が充填された状態が維持されるから、上段150においても並行して添加剤の添加が可能となる。また、上段150に原料樹脂を供給している間は、流体状添加剤の無駄を少なくするため、圧力調整経路155から上段に流体状添加剤を送らず、添加剤回収回路180bから回収するようにしてもよい。   Since the upper stage 150 is also maintained in a state filled with the fluid additive except during the supply of the raw resin, the additive can be added in the upper stage 150 in parallel. Further, while the raw material resin is being supplied to the upper stage 150, in order to reduce the waste of the fluid additive, the fluid additive is not sent from the pressure adjustment path 155 to the upper stage, and is recovered from the additive recovery circuit 180b. It may be.

また、多段ホッパー103の各段の内部は大気圧より高い圧力に維持されるため、仮に隔壁に隙間があったとしても、そこから大気成分や塵埃などの不純物が侵入することはない。特に流体状添加剤の最上流は可塑化シリンダ105であり、可塑化シリンダ105の内部圧力が最も高くなることから、可塑化シリンダ105の内部においては溶融状態の高温の樹脂に触れさせたくない大気成分(例えば酸素)はほとんど存在せず、樹脂成形品の品質の向上を図ることができる。   Further, since the inside of each stage of the multistage hopper 103 is maintained at a pressure higher than atmospheric pressure, even if there is a gap in the partition wall, impurities such as atmospheric components and dust do not enter from there. In particular, the uppermost stream of the fluid additive is the plasticizing cylinder 105, and since the internal pressure of the plasticizing cylinder 105 is the highest, the atmosphere in the plasticizing cylinder 105 where it is not desired to touch the molten high-temperature resin. There is almost no component (for example, oxygen), and the quality of the resin molded product can be improved.

そして原料樹脂に添加された流体状添加剤のうち、不要となった分の回収は以下のようにして行われる。図3に示すように、添加剤排出孔202はノズル201及び可塑化シリンダ105のノズル201の近傍にスクリュー1の軸線方向に複数が直列的に並んで形成されるが、これら添加剤排出孔202に連通する添加剤回収回路180dに配設される圧力調整弁171a〜171cは、ノズル201の先端に向かうほど、すなわち図においては171a、171b、171cの順に、可塑化シリンダ105あるいはノズル201の内部圧力が低く維持されるように調整される。   Of the fluid additive added to the raw resin, the unnecessary part is collected as follows. As shown in FIG. 3, a plurality of additive discharge holes 202 are formed in the axial direction of the screw 1 in the vicinity of the nozzle 201 and the nozzle 201 of the plasticizing cylinder 105. The pressure regulating valves 171a to 171c disposed in the additive recovery circuit 180d communicating with the inside of the plasticizing cylinder 105 or the nozzle 201 are arranged in the order of 171a, 171b, and 171c in the order toward the tip of the nozzle 201. The pressure is adjusted to be kept low.

このため、スクリュー1により送り出される溶融樹脂はこれら添加剤排出孔202a、202b、202cから徐々に圧力が低くなるように流体状添加剤が除去されることになり、カウンタープレッシャー法でいうところの可塑化シリンダ内部の圧力と金型内部の圧力差を徐々に小さくするという制御を行ったものと同じ効果が得られる。したがって、発泡成形において別個加圧装置を設けることなく原料樹脂の発泡状態の制御ができる。   For this reason, the molten resin sent out by the screw 1 is removed from the additive discharge holes 202a, 202b, 202c so that the pressure of the fluid additive gradually decreases. The same effect as that obtained by controlling to gradually reduce the pressure difference inside the control cylinder and the pressure inside the mold can be obtained. Therefore, the foaming state of the raw material resin can be controlled without providing a separate pressure device in foam molding.

なお、各添加剤回収回路に配設される圧力調整弁の所定の圧力は溶融樹脂の射出中に変化させるように制御するものであってもよい。すなわち例えば射出開始時おいては所定の圧力を高く設定して発泡を抑制して未発泡の状態で射出し、射出が進行するに従って所定の圧力を低くするように制御する構成によれば、未発泡の状態で金型内へ樹脂を射出することが可能となる。また、同時に金型内での発泡状態を制御することも可能となる。   It should be noted that the predetermined pressure of the pressure regulating valve disposed in each additive recovery circuit may be controlled so as to change during injection of the molten resin. That is, for example, at the start of injection, a predetermined pressure is set high to suppress foaming and inject in an unfoamed state, and the control is performed so that the predetermined pressure is lowered as injection proceeds. It becomes possible to inject the resin into the mold in a foamed state. At the same time, the foaming state in the mold can be controlled.

以上、本発明の実施の形態について説明したが、本発明は前記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の改変が可能である。例えば前記実施の形態においては、射出成形機に組み付けられる射出ユニットを示しているが、押出成形機に配設されるものであってもよい。また、多段ホッパーは3段に分けられる構成を示しているが、2段であってもあるいは4段以上であってもよく、段数が限定されるものではない。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, in the said embodiment, although the injection unit assembled | attached to an injection molding machine is shown, you may arrange | position to an extrusion molding machine. Moreover, although the multistage hopper shows the structure divided into three stages, it may be two stages or four stages or more, and the number of stages is not limited.

本発明に係る射出成形機に適用されるスクリューの構造を示した図であり、(a)は外部構造を示した平面図、(b)は内部構造を示した断面図である。It is the figure which showed the structure of the screw applied to the injection molding machine which concerns on this invention, (a) is the top view which showed the external structure, (b) is sectional drawing which showed the internal structure. スクリューの添加剤注入孔が形成される位置を示した図であり、(a)はコンプレッション部に形成される構成を、(b)メータリング部及びスクリュー先端形成される構成を示した図である。It is the figure which showed the position where the additive injection hole of a screw is formed, (a) is the figure which showed the structure formed in a compression part, (b) The structure which formed a metering part and a screw front-end | tip. . 射出ユニット、附帯設備の構成及び流体状添加剤の流れを模式的に示した図である。It is the figure which showed typically the structure of an injection unit, incidental equipment, and the flow of the fluid additive.

符号の説明Explanation of symbols

1 スクリュー
103 多段ホッパー
105 可塑化シリンダ
180 添加剤回収回路
1 screw 103 multi-stage hopper 105 plasticizing cylinder 180 additive recovery circuit

Claims (4)

原料樹脂を可塑化する可塑化シリンダ内に配設される射出成形用のスクリューの軸心方向に長孔を形成すると共に、該長孔内に原料樹脂に添加する流体状添加剤を供給する添加剤供給管を遊挿し、前記スクリューの長孔の内壁面と外表面との間に、粘稠な溶融樹脂の浸入は不可能であるが、流体状添加剤の通過は可能な多孔質部材が貫挿された添加剤注入孔が形成されることを特徴とする添加剤を添加可能な射出成形機。   Addition of forming a long hole in the axial direction of an injection molding screw disposed in a plasticizing cylinder for plasticizing the raw material resin and supplying a fluid additive to be added to the raw material resin into the long hole A porous member in which a viscous molten resin cannot be infiltrated between the inner wall surface and the outer surface of the long hole of the screw, but through which the fluid additive can pass is inserted. An injection molding machine capable of adding an additive, characterized in that an additive injection hole inserted therein is formed. 溶融樹脂を可塑化する可塑化シリンダの溶融樹脂が射出される方向の先端近傍には、可塑化シリンダの内壁面と外部との間に、粘稠な溶融樹脂の浸入は不可能であるが、流体状添加剤の通過は可能な多孔質部材が貫挿された添加剤排出孔が形成されることを特徴とする添加剤を添加可能な射出成形機。   In the vicinity of the tip in the direction of injection of the molten resin of the plasticizing cylinder that plasticizes the molten resin, it is impossible to enter the viscous molten resin between the inner wall surface and the outside of the plasticizing cylinder. An injection molding machine to which an additive can be added, wherein an additive discharge hole into which a porous member capable of passing a fluid additive is inserted is formed. 前記多孔質部材は、多孔質金属又は多孔質セラミックスからなることを特徴とする請求項1又は2に記載の添加剤を添加可能な射出成形機。   The injection molding machine according to claim 1 or 2, wherein the porous member is made of porous metal or porous ceramics. 原料樹脂を一時的に貯留可能な気密容器が、原料樹脂の経路及び原料樹脂に添加される流体状添加剤の経路により直列に連通して複数配設され、該複数の密閉容器のうち最下部に配設される密閉容器は原料樹脂を可塑化する可塑化シリンダに連通すると共に、該可塑化シリンダには原料樹脂に添加する流体状添加剤を添加する添加剤注入孔が形成される前記射出成形用のスクリューが配設され、射出成形用スクリューの添加剤注入孔から可塑化シリンダ内に注入された流体状添加剤は、最下部の気密容器から前記流体状添加剤の経路を通じて順次上側の密閉容器に注入され、前記可塑化シリンダ内及び各密閉容器内で原料樹脂に流体状添加剤を添加できることを特徴とする添加剤を添加可能な射出成形機。   A plurality of airtight containers capable of temporarily storing the raw material resin are arranged in series through the path of the raw material resin and the path of the fluid additive added to the raw material resin, and the bottom of the plurality of sealed containers The airtight container disposed in the cylinder communicates with a plasticizing cylinder that plasticizes the raw material resin, and the plasticizing cylinder is formed with an additive injection hole for adding a fluid additive to be added to the raw material resin. A molding screw is disposed, and the fluid additive injected into the plasticizing cylinder from the additive injection hole of the injection molding screw is sequentially passed through the fluid additive route from the lowermost airtight container to the upper side. An injection molding machine capable of adding an additive, wherein the additive is injected into a sealed container and a fluid additive can be added to the raw material resin in the plasticizing cylinder and in each sealed container.
JP2003326249A 2003-09-18 2003-09-18 Injection molding machine capable of adding additive Pending JP2005088426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003326249A JP2005088426A (en) 2003-09-18 2003-09-18 Injection molding machine capable of adding additive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003326249A JP2005088426A (en) 2003-09-18 2003-09-18 Injection molding machine capable of adding additive

Publications (1)

Publication Number Publication Date
JP2005088426A true JP2005088426A (en) 2005-04-07

Family

ID=34456484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003326249A Pending JP2005088426A (en) 2003-09-18 2003-09-18 Injection molding machine capable of adding additive

Country Status (1)

Country Link
JP (1) JP2005088426A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193670A (en) * 2004-01-02 2005-07-21 Everfocus Worldwide Co Ltd The formation method which enables the control of fine open cell core in fluid polymer material, and its apparatus
JP2011158566A (en) * 2010-01-29 2011-08-18 Kyocera Mita Corp Optical scanner and image forming apparatus
KR101220012B1 (en) 2005-08-11 2013-01-18 엘지이노텍 주식회사 Epoxy supply control apparatus
JPWO2013129659A1 (en) * 2012-03-02 2015-07-30 日立マクセル株式会社 Method of manufacturing molded body, method of manufacturing molded body having plated film, method of manufacturing resin pellet, foam molded body having plated film, foam injection molding method, nozzle unit, and injection molding apparatus
KR20210060761A (en) * 2019-11-19 2021-05-27 한국생산기술연구원 Smelting equipment for the production of tantalum powder
CN115595695A (en) * 2022-11-10 2023-01-13 富尔美技术纺织(苏州)有限公司(Cn) Processing technology of high-uniformity anti-ultraviolet ring spun yarn

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193670A (en) * 2004-01-02 2005-07-21 Everfocus Worldwide Co Ltd The formation method which enables the control of fine open cell core in fluid polymer material, and its apparatus
JP4559846B2 (en) * 2004-01-02 2010-10-13 エバーフォーカス ワールドワイド カンパニー リミテッド Generation method and apparatus capable of controlling microbubble nuclei in fluid polymer material
KR101220012B1 (en) 2005-08-11 2013-01-18 엘지이노텍 주식회사 Epoxy supply control apparatus
JP2011158566A (en) * 2010-01-29 2011-08-18 Kyocera Mita Corp Optical scanner and image forming apparatus
JPWO2013129659A1 (en) * 2012-03-02 2015-07-30 日立マクセル株式会社 Method of manufacturing molded body, method of manufacturing molded body having plated film, method of manufacturing resin pellet, foam molded body having plated film, foam injection molding method, nozzle unit, and injection molding apparatus
KR20210060761A (en) * 2019-11-19 2021-05-27 한국생산기술연구원 Smelting equipment for the production of tantalum powder
KR102376778B1 (en) * 2019-11-19 2022-03-21 한국생산기술연구원 Smelting equipment for the production of tantalum powder
CN115595695A (en) * 2022-11-10 2023-01-13 富尔美技术纺织(苏州)有限公司(Cn) Processing technology of high-uniformity anti-ultraviolet ring spun yarn

Similar Documents

Publication Publication Date Title
EP2746025B1 (en) Kneading device and method for producing thermoplastic resin molded body
RU2569092C2 (en) Mixing extrusion machine
JP6045386B2 (en) Method for producing foam molded article
KR20180114142A (en) Manufacturing method and manufacturing apparatus of expanded molded article
WO2020184486A1 (en) Foam molded body production device, foam molded body production method and screw for use in foam molded body production device
JP2005088426A (en) Injection molding machine capable of adding additive
US11318646B2 (en) Method and apparatus for manufacturing foamed product
JP2019104125A (en) Production method and production apparatus for foamed molded article
JP6296842B2 (en) Production method and molding machine
JPH04314509A (en) Plastic injection molding method and device for which fluid compression unit is used
JP7021406B2 (en) Manufacturing method of foam molded product
JP7270501B2 (en) Extrusion manufacturing device for foam molded product, extrusion manufacturing method, and screw for extrusion manufacturing device for foam molded product
JP7390585B2 (en) Foam molding manufacturing equipment
JP2019199011A (en) Foam injection molding apparatus
JP5362389B2 (en) Oxygen substitution die casting apparatus and casting method
JP6846243B2 (en) Manufacturing method and manufacturing equipment for foam molded products
KR101054720B1 (en) Liquid Resin Injector
US20220402177A1 (en) Injection molding machine for foam molding
JP6997847B2 (en) Manufacturing method and manufacturing equipment for foam molded products
JP2001341186A (en) Method and apparatus for extrusion molding of foam
JP7128015B2 (en) Manufacturing method and manufacturing apparatus for foam molded product
KR20240046436A (en) Filter for introducing physical foaming agent, manufacturing device and method of foam molded body
KR101054719B1 (en) A method for manufacturing composites of using liquid resin infusion apparatus
JP2001162660A (en) Method and apparatus for manufacturing foam
JP5170655B2 (en) Control method for plasticizing apparatus