JP2005190813A - Electrolyte material for fuel cell electrode - Google Patents

Electrolyte material for fuel cell electrode Download PDF

Info

Publication number
JP2005190813A
JP2005190813A JP2003430515A JP2003430515A JP2005190813A JP 2005190813 A JP2005190813 A JP 2005190813A JP 2003430515 A JP2003430515 A JP 2003430515A JP 2003430515 A JP2003430515 A JP 2003430515A JP 2005190813 A JP2005190813 A JP 2005190813A
Authority
JP
Japan
Prior art keywords
group
fuel cell
electrode
electrolyte material
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003430515A
Other languages
Japanese (ja)
Inventor
Masayoshi Takami
昌宜 高見
Tatsuo Fujinami
達雄 藤波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003430515A priority Critical patent/JP2005190813A/en
Publication of JP2005190813A publication Critical patent/JP2005190813A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte material for a fuel cell electrode which is superior in gas permeability and vapor permeability, and especially superior in thermal resistance and chemical stability at high temperatures. <P>SOLUTION: This is an electrolyte material for the fuel cell electrode which is composed of an organic silicon polymer having as a main frame a linking group having Si-O bonds of ≤2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体高分子形燃料電池(PEFC)や直接メタノール形燃料電池(DMFC)など、燃料電池の発電セルを構成する電極の形成に好適な電極用電解質材に関する。   The present invention relates to an electrode electrolyte material suitable for forming an electrode constituting a power generation cell of a fuel cell, such as a polymer electrolyte fuel cell (PEFC) or a direct methanol fuel cell (DMFC).

近年、水素と酸素の電気化学反応によって発電する燃料電池がエネルギー供給源として注目されている。イオン交換樹脂膜を用いた燃料電池などでは、このイオン交換樹脂膜をアノード拡散電極とカソード拡散電極との間に狭持して構成されており、これら各電極の形成に用いる電解質材には、Nafionをはじめとするパーフルオロスルホン酸ポリマー(Nafion系電解質)が一般に使用されている(例えば、特許文献1参照)。   In recent years, fuel cells that generate electricity by electrochemical reaction between hydrogen and oxygen have attracted attention as an energy supply source. In a fuel cell or the like using an ion exchange resin membrane, the ion exchange resin membrane is sandwiched between an anode diffusion electrode and a cathode diffusion electrode, and the electrolyte material used for forming these electrodes includes Perfluorosulfonic acid polymers (Nafion electrolytes) including Nafion are generally used (see, for example, Patent Document 1).

このNafion系電解質は、一般に電極でイオン化されたイオンを伝導させる前記イオン交換樹脂膜にも用いられており、電極用の電解質材とイオン交換樹脂膜を構成する高分子電解質とが同成分となり、電極とイオン交換樹脂膜との間の馴染みがよいとされている。しかし、その欠点も多く、具体的には以下の問題点がある。   This Nafion-based electrolyte is generally also used for the ion exchange resin membrane that conducts ions ionized by the electrode, and the electrolyte material for the electrode and the polymer electrolyte constituting the ion exchange resin membrane are the same component, It is said that the familiarity between the electrode and the ion exchange resin membrane is good. However, there are many disadvantages, and specifically, there are the following problems.

Nafion系電解質のガラス転移点は100℃近傍にあるため、イオン交換樹脂膜が配されたセルの設定温度に対してさらに高温になることが予想される電極部(電極反応場)では耐熱性が大きく不足している。電極反応場は、セル内温度よりも高温になる傾向にあると予想されるが(例えば80℃に設定した場合、電極界面では120℃を超えることが予想される)、この傾向は電流をひいたときにより顕著となる。そして将来的には、燃料電池の作動時の設定温度は更に高くなる方向にあるものと考えられる。   Since the glass transition point of the Nafion-based electrolyte is in the vicinity of 100 ° C., the electrode portion (electrode reaction field) that is expected to be higher than the set temperature of the cell in which the ion exchange resin membrane is disposed has heat resistance. There is a big shortage. The electrode reaction field is expected to tend to be higher than the temperature inside the cell (for example, when set to 80 ° C., it is expected to exceed 120 ° C. at the electrode interface). It becomes more noticeable. In the future, it is considered that the set temperature during the operation of the fuel cell tends to be higher.

また、電極部では、電解質材は白金担持カーボン等の触媒を包み込むように存在している。このため、発電中に水が過剰に発生する環境下では水の排出性が低下し、Nafionが膨潤して電極中でのガス拡散が進まず、ガスが電極反応場まで到達できなくなり、結果的に大きな電圧低下(濃度過電圧)を生ずる。   Further, in the electrode portion, the electrolyte material exists so as to enclose a catalyst such as platinum-supported carbon. For this reason, in an environment where water is excessively generated during power generation, the water discharge performance is reduced, Nafion swells, gas diffusion in the electrode does not progress, and gas cannot reach the electrode reaction field, resulting in Cause a large voltage drop (concentration overvoltage).

ところが、現時点ではNafion以外の電極用電解質材についての開発報告はなく、研究事例すらないことからNafion系電解質材に頼らざるを得ない状況にある。   However, at present, there is no development report on electrode electrolyte materials other than Nafion, and there is no research case, so there is no choice but to rely on Nafion-based electrolyte materials.

一方、シリコーン系電解質材料については、耐熱性を有するものとしていくつかの報告がなされている(例えば、非特許文献1〜2参照)。しかしながら、一般に電解質材は非ガス透過性に構成されものであり、高いガス透過性に関する知見は認められない。
特開2000−228206号公報 I.G.-Luneau et al.Electrochim.Acta37(9)1615-1618(1992) M.Popall et al. Electrochim.Acta43(10,11)1155-1161(1998)
On the other hand, some reports have been made of silicone-based electrolyte materials as having heat resistance (for example, see Non-Patent Documents 1 and 2). However, in general, the electrolyte material is configured to be non-gas permeable, and knowledge about high gas permeability is not recognized.
JP 2000-228206 A I.G.-Luneau et al. Electrochim. Acta 37 (9) 1615-1618 (1992) M. Popall et al. Electrochim. Acta 43 (10, 11) 1155-1161 (1998)

以上のように、これまでNafion系電解質以外に燃料電池電極用として好適な電解質材は提供されておらず、燃料電池の耐熱性、発電性能を安定的に高めることができる技術は確立されていないのが現状である。   As described above, no electrolyte material suitable for a fuel cell electrode other than a Nafion-based electrolyte has been provided so far, and a technology that can stably improve the heat resistance and power generation performance of a fuel cell has not been established. is the current situation.

本発明は、上記に鑑み成されたものであり、ガス透過性及び水蒸気透過性、並びに高温時の耐熱性、化学的安定性に特に優れた燃料電池電極用電解質材を提供することを目的とし、該目的を達成することを課題とする。   The present invention has been made in view of the above, and an object thereof is to provide an electrolyte material for a fuel cell electrode that is particularly excellent in gas permeability and water vapor permeability, heat resistance at high temperatures, and chemical stability. An object is to achieve the object.

上記目的を達成するために、本発明の燃料電池電極用電解質材は、Si−O結合(シロキサン結合)が2以下の連結基を主骨格に有する有機ケイ素ポリマーで構成したものである。本発明の燃料電池電極用電解質材は、Si−O結合が2以下の連結基、すなわち1つのSi原子に1つ又は2つの酸素原子が結合して2以下のSi−O結合を含み、このSi−O結合で主骨格を形成したシリコーンポリマーである。   In order to achieve the above object, the fuel cell electrode electrolyte material of the present invention is composed of an organosilicon polymer having a linking group having 2 or less Si-O bonds (siloxane bonds) in the main skeleton. The electrolyte material for a fuel cell electrode of the present invention includes a linking group having 2 or less Si-O bonds, that is, one or two oxygen atoms bonded to one Si atom and 2 or less Si-O bonds. It is a silicone polymer in which the main skeleton is formed by Si—O bonds.

本発明に係る有機ケイ素ポリマーは、Si−O結合の回転エネルギー障壁が炭素−炭素結合等の他の結合群に比べて小さく、Nafion系電解質などにおいて一般に用いられるフッ素系樹脂に比べてガス透過性及び水蒸気透過性が2桁高い性質を示すので、ガス拡散性及び生成水の拡散・排出性が飛躍的に向上し、その結果電極での電気化学反応を律速なく進行させることができる。また、Si−O結合は、炭素−炭素結合に比べ原子間結合エネルギーも高く、耐熱性の点でも有利である。   The organosilicon polymer according to the present invention has a smaller rotational energy barrier for Si—O bonds than other bond groups such as carbon-carbon bonds, and has a gas permeability as compared with fluorine resins generally used in Nafion electrolytes and the like. In addition, since the water vapor permeability is two orders of magnitude higher, the gas diffusibility and the diffusive / exhaust properties of the generated water are remarkably improved, and as a result, the electrochemical reaction at the electrode can proceed without rate. In addition, the Si—O bond has higher interatomic bond energy than the carbon-carbon bond and is advantageous in terms of heat resistance.

燃料電池の電極は、従来一般にNafion系電解質溶液を白金担持カーボン(電極触媒)に添加して被覆した構造とされるが、本発明の有機ケイ素ポリマーの溶液を用いて該ポリマーで被覆された構造とすることにより、燃料(水素ガスやメタノール等)及び酸化剤(空気)を電極触媒に律速なく供給することが可能となり、高温耐性を有して電極反応場での反応が促進される結果、濃度過電圧が抑制され、安定的に高電流を得ることができる。   An electrode of a fuel cell is generally structured to be coated with a Nafion-based electrolyte solution added to platinum-supported carbon (electrode catalyst). The structure is coated with the polymer using the organosilicon polymer solution of the present invention. As a result, fuel (hydrogen gas, methanol, etc.) and oxidant (air) can be supplied to the electrode catalyst at a rateless rate, and the reaction at the electrode reaction field is promoted with high temperature resistance. Concentration overvoltage is suppressed, and a high current can be stably obtained.

また、本発明の有機ケイ素ポリマーは、上記のようにSi−O結合が2以下の連結基を主骨格とするものであるので、Si原子に3つの酸素原子が結合した3つのSi−O結合によって結合した従来のシリコーン系電解質材よりも優れた柔軟性、ガス透過性、水蒸気透過性を発揮し得る。   In addition, since the organosilicon polymer of the present invention has a main skeleton with a linking group having 2 or less Si-O bonds as described above, three Si-O bonds in which three oxygen atoms are bonded to Si atoms. It can exhibit superior flexibility, gas permeability, and water vapor permeability than conventional silicone electrolyte materials bonded together.

本発明に係る有機ケイ素ポリマーは、下記式(1)で表される構成単位及び下記式(2)で表される構成単位のいずれか一方を、あるいは両方を主骨格に有する構造に構成することができる。このとき、各式はSi−O結合の両末端の結合手で結合することによって主骨格が形成される。   The organosilicon polymer according to the present invention is composed of a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2), or a structure having both in the main skeleton. Can do. At this time, the main skeleton is formed by bonding each formula with bonds at both ends of the Si—O bond.

Figure 2005190813
Figure 2005190813

前記式(1)又は(2)において、R1及びR2は各々独立に、水素原子、脂肪族基、芳香族基を表す。また、式(1)中の二つのR1は同一でも異なっていてもよい。また、R1及びR2は各々、アミノ基を含んでいてもよい。各構成単位中のx、yは、それぞれ結合数を表し、各々独立に任意の数を表す。 In the formula (1) or (2), R 1 and R 2 each independently represent a hydrogen atom, an aliphatic group, or an aromatic group. Moreover, two R < 1 > in Formula (1) may be same or different. R 1 and R 2 may each contain an amino group. X and y in each structural unit represent the number of bonds, and each independently represents an arbitrary number.

上記の式(1)で表される構成単位及び/又は式(2)で表される構成単位を含んで構成される場合、一つの有機ケイ素ポリマーが少なくとも二種の構成単位を含むと共に、この二種の構成単位の一方がスルホ基(SO3H)を有し、かつ他方が炭素数1〜20の脂肪族基又は炭素数6〜20の芳香族基を有するように構成することができる。また、有機ケイ素ポリマーが、スルホ基と炭素数1〜20の脂肪族基及び/又は炭素数6〜20の芳香族基とを有する構成単位を用いて構成した構造も好適である。ポリマー中にスルホ基があると優れたイオン伝導(プロトンなど)が得られると共に、更に長鎖などの総炭素数の大きい基があると水への溶解防止に加え、塗布やスクリーン印刷等により膜状を形成し易く、電極形成を容易に行なうこともできる。 When configured to include the structural unit represented by the above formula (1) and / or the structural unit represented by the formula (2), one organosilicon polymer includes at least two types of structural units, One of the two structural units may have a sulfo group (SO 3 H), and the other may have an aliphatic group having 1 to 20 carbon atoms or an aromatic group having 6 to 20 carbon atoms. . Moreover, the structure comprised using the structural unit which an organosilicon polymer has a sulfo group, a C1-C20 aliphatic group, and / or a C6-C20 aromatic group is also suitable. If there is a sulfo group in the polymer, excellent ion conduction (protons, etc.) can be obtained, and if a group with a large total carbon number such as a long chain, in addition to preventing dissolution in water, the film can be applied by coating or screen printing. The shape can be easily formed, and the electrode can be formed easily.

本発明の燃料電池電極用電解質材は、燃料電池のセルを構成する燃料極(アノード)及び酸化剤極(カソード)の形成に好適であり、アノード及びカソードに挟持される高分子電解質膜(イオン交換樹脂膜)をガス非透過性とするのに対し、両電極をガス/水蒸気透過性に構成し得ると共に、耐熱性をも確保でき、電極でのガス拡散性及び生成水の拡散・排出性を有する優れた発電性能、及び高い耐熱性能を具えた燃料電池を構成することができる。   The electrolyte material for a fuel cell electrode of the present invention is suitable for forming a fuel electrode (anode) and an oxidant electrode (cathode) constituting a cell of a fuel cell, and a polymer electrolyte membrane (ion) sandwiched between the anode and the cathode. While the exchange resin membrane) is gas impermeable, both electrodes can be configured to be gas / water vapor permeable, and heat resistance can be secured. A fuel cell having excellent power generation performance and high heat resistance performance can be configured.

本発明によれば、ガス透過性及び水蒸気透過性、並びに高温時の耐熱性、化学的安定性に特に優れた燃料電池電極用電解質材を提供することができる。   According to the present invention, it is possible to provide an electrolyte material for a fuel cell electrode that is particularly excellent in gas permeability and water vapor permeability, heat resistance at high temperatures, and chemical stability.

以下、本発明の燃料電池電極用電解質材について詳述する。
本発明の燃料電池電極用電解質材は、Si−O結合(シロキサン結合)が2以下の連結基を主骨格に有する有機ケイ素ポリマーで構成される。具体的には、下記シロキサン結合(a)又は(b)のいずれか一方、あるいは両方で主骨格を構成するようにすることができる。
Hereinafter, the electrolyte material for fuel cell electrodes of the present invention will be described in detail.
The electrolyte material for a fuel cell electrode of the present invention is composed of an organosilicon polymer having a linking group having 2 or less Si—O bonds (siloxane bonds) in the main skeleton. Specifically, the main skeleton can be constituted by either one or both of the following siloxane bonds (a) and (b).

Figure 2005190813
Figure 2005190813

本発明の有機ケイ素ポリマーの主骨格は、Si−O結合を持つ部分で構成されるので、従来のNafion主鎖を構成する炭素−炭素結合に比べ、回転エネルギー障壁が小さくガスや水蒸気の透過性に優れ、より原子間結合エネルギーが高く耐熱性にも優れており、また、1つのSi原子に1つ又は2つの酸素原子が結合して2以下のSi−O結合を含む構成単位で連結された構造を持つので、柔軟でより前記透過性に優れる。したがって、燃料(水素ガスやメタノール等)の拡散及び生成水の拡散・排出性を向上でき、安定した発電性能が得られると共に、セル内の設定温度よりも大幅に高温であると予想される電極中での耐熱性を飛躍的に向上させることができる。   Since the main skeleton of the organosilicon polymer of the present invention is composed of a portion having a Si—O bond, the rotational energy barrier is smaller than the conventional carbon-carbon bond constituting the Nafion main chain, and the permeability of gas and water vapor is reduced. It has excellent interatomic bond energy and heat resistance, and one or two oxygen atoms are bonded to one Si atom and are linked by a structural unit containing 2 or less Si-O bonds. The structure is flexible and more transparent. Therefore, it is possible to improve the diffusion of fuel (hydrogen gas, methanol, etc.) and the diffusion / exhaust of produced water, obtain stable power generation performance, and electrodes that are expected to be significantly higher than the set temperature in the cell. The heat resistance in the inside can be dramatically improved.

本発明の有機ケイ素ポリマーは、好ましくは下記式(1)で表される構成単位及び下記式(2)で表される構成単位のいずれか一方を、あるいは両方を主骨格に有するように構成することができる。このとき、Si−O結合の両末端の結合手で結合することによって主骨格が形成される。   The organosilicon polymer of the present invention is preferably configured to have either one of the structural unit represented by the following formula (1) and the structural unit represented by the following formula (2), or both in the main skeleton. be able to. At this time, the main skeleton is formed by bonding with bonds at both ends of the Si—O bond.

Figure 2005190813
Figure 2005190813

前記式(1)又は(2)において、R1及びR2は各々独立に、水素原子、脂肪族基、芳香族基を表す。また、式(1)中の二つのR1は同一でも異なっていてもよく、R1及びR2は各々、アミノ基を含んでいてもよい。各構成単位中のx、yは結合数であり、各々独立に任意の整数を表す。 In the formula (1) or (2), R 1 and R 2 each independently represent a hydrogen atom, an aliphatic group, or an aromatic group. Moreover, two R < 1 > in Formula (1) may be same or different, and R < 1 > and R < 2 > may each contain an amino group. X and y in each structural unit are the number of bonds, and each independently represents an arbitrary integer.

前記R1、R2がアミノ基を有する場合の例としては、−(CH2)3NH2、−(CH2)4NH2、−(CH2)3NH(CH2)2NH2、−(CH2)3N(CH3)2、等が挙げられる。 Examples of the case where R 1 and R 2 have an amino group include — (CH 2 ) 3 NH 2 , — (CH 2 ) 4 NH 2 , — (CH 2 ) 3 NH (CH 2 ) 2 NH 2 , - (CH 2) 3 N ( CH 3) 2, include like.

前記R1又はR2で表される脂肪族基としては、総炭素数1〜20の脂肪族基が好ましく、具体的にはアルキル基、アルケニル基、アルキニル基、アラルキル基等が挙げられ、これらの基は更に置換基を有していてもよい。また、これら脂肪族基は、鎖状脂肪族基でも環状脂肪族基でもよく、鎖状脂肪族基は更に分岐を有していてもよい。中でも、アルキル基又は置換アルキル基が特に好ましい。 The aliphatic group represented by R 1 or R 2 is preferably an aliphatic group having 1 to 20 carbon atoms, and specifically includes an alkyl group, an alkenyl group, an alkynyl group, an aralkyl group, and the like. These groups may further have a substituent. These aliphatic groups may be a chain aliphatic group or a cyclic aliphatic group, and the chain aliphatic group may further have a branch. Among these, an alkyl group or a substituted alkyl group is particularly preferable.

前記アルキル基としては、直鎖状、分岐状、環状のアルキル基が挙げられ、該アルキル基の総炭素数としては、1〜20が好ましく、2〜10がより好ましい。置換アルキル基のアルキル部位の炭素数についても同様である。長鎖アルキル基など総炭素数を大きくすると、溶液状に調製したときに塗布等して膜状態を形成し易い等の利点がある。アルキル基又はアルキル部位の例としては、エチル、プロピル、ブチル、ペンチル、ヘキシル、オクチル、2−エチルヘキシル等が好適である。   Examples of the alkyl group include linear, branched, and cyclic alkyl groups, and the total carbon number of the alkyl group is preferably 1-20, and more preferably 2-10. The same applies to the carbon number of the alkyl moiety of the substituted alkyl group. Increasing the total number of carbon atoms such as a long-chain alkyl group has an advantage that a film state can be easily formed by coating or the like when prepared in a solution state. As examples of the alkyl group or the alkyl moiety, ethyl, propyl, butyl, pentyl, hexyl, octyl, 2-ethylhexyl and the like are preferable.

また、前記R1又はR2で表される芳香族基としては、総炭素数6〜20の芳香族基が好ましく、アリール基、置換アリール基等が挙げられ、これらの基は更に置換基を有していてもよい。該アリール基の炭素数としては、6〜20が好ましく、6〜10がより好ましい。置換アリール基のアリール部位の炭素数についても同様である。アリール基又はアリール部位の例としては、フェニル、ナフチル、トリル、キシリル等が好適である。 In addition, the aromatic group represented by R 1 or R 2 is preferably an aromatic group having 6 to 20 carbon atoms in total, and examples thereof include an aryl group and a substituted aryl group, and these groups are further substituted. You may have. As carbon number of this aryl group, 6-20 are preferable and 6-10 are more preferable. The same applies to the number of carbon atoms in the aryl moiety of the substituted aryl group. Preferred examples of the aryl group or aryl moiety include phenyl, naphthyl, tolyl, xylyl and the like.

また更に、前記置換アルキル基及び置換アリール基における置換基としては、スルホ基、カルボキシル基、ホスファイト基、ホスホン酸基等が好適である。   Furthermore, as a substituent in the substituted alkyl group and the substituted aryl group, a sulfo group, a carboxyl group, a phosphite group, a phosphonic acid group, and the like are preferable.

本発明においては特に、有機ケイ素ポリマーが少なくとも二種の構成単位を含んで構成され、これら二種の構成単位の一方がスルホ基を有し、他方が炭素数1〜20の脂肪族基(特に(置換)アルキル基)又は炭素数6〜20の芳香族基(特に(置換)アリール基)を有するように構成することが好ましい。   In the present invention, in particular, the organosilicon polymer includes at least two kinds of structural units, one of these two kinds of structural units has a sulfo group, and the other has an aliphatic group having 1 to 20 carbon atoms (particularly, (Substituted) alkyl group) or an aromatic group having 6 to 20 carbon atoms (particularly, (substituted) aryl group) is preferable.

以下、前記式(1)〜(2)で表される構成単位の具体例〔例示単位(1)〜(12)〕を示す。但し、本発明においてはこれらに制限されるものではない。   Specific examples of the structural units represented by the formulas (1) to (2) [Exemplary units (1) to (12)] are shown below. However, the present invention is not limited to these.

Figure 2005190813
Figure 2005190813

Figure 2005190813
Figure 2005190813

本発明に係る有機ケイ素ポリマーは、上記の式(1)又は式(2)に属する例示単位から任意に選択された単位を任意の結合数で適宜組合せて構成することができる。   The organosilicon polymer according to the present invention can be constituted by appropriately combining units arbitrarily selected from the exemplified units belonging to the above formula (1) or formula (2) with an arbitrary number of bonds.

本発明に係る燃料電池としては、固体高分子形燃料電池(PEFC)や直接メタノール形燃料電池(DMFC)などが含まれる。例えば、アノード拡散電極、カソード拡散電極、および前記アノード拡散電極と前記カソード拡散電極との間に狭持された高分子電解質膜(イオン交換樹脂膜)を有する膜電極接合体、並びに前記膜電極接合体を狭持すると共に、前記アノード拡散電極との間に燃料が通過する燃料流路と前記カソード拡散電極との間に酸化ガスが通過する酸化ガス流路とを形成する一対のセパレータを備えた単セルを含み、所望によりこの単セルを複数積層したスタック構造に構成したものが挙げられる。この場合、上記のアノード拡散電極及びカソード拡散電極は電気化学反応を担う触媒層と集電体として機能する拡散層とで構成され、このうち触媒層を本発明の係る有機ケイ素ポリマーを用いて好適に形成することができる。具体的な一例を以下に示す。   Examples of the fuel cell according to the present invention include a polymer electrolyte fuel cell (PEFC) and a direct methanol fuel cell (DMFC). For example, an anode diffusion electrode, a cathode diffusion electrode, a membrane electrode assembly having a polymer electrolyte membrane (ion exchange resin membrane) sandwiched between the anode diffusion electrode and the cathode diffusion electrode, and the membrane electrode junction And a pair of separators that form a fuel flow path through which fuel passes between the anode diffusion electrode and an oxidizing gas flow path through which oxidizing gas passes between the cathode diffusion electrode A structure including a single cell and a stack structure in which a plurality of the single cells are stacked as desired is included. In this case, the anode diffusion electrode and the cathode diffusion electrode are composed of a catalyst layer responsible for an electrochemical reaction and a diffusion layer functioning as a current collector, and among these, the catalyst layer is preferably formed using the organosilicon polymer according to the present invention. Can be formed. A specific example is shown below.

すなわち、触媒層は、例えばパーフルオロスルホン酸膜等のフッ素系のイオン交換樹脂膜(例えばデュポン社製のナフィオン膜)の表面に、触媒としての白金または白金と他の金属とからなる合金を塗布等して設けられる。具体的には、白金または白金と他の金属とからなる合金を担持したカーボン粉を作製し、このカーボン粉を適当な有機溶剤に分散させ、これに電解質溶液として本発明に係る有機ケイ素ポリマーの電解質溶液(Solution)を適量添加してペースト化し、イオン交換樹脂膜上に塗布、又はスクリーン印刷する等して形成することができる。また、前記カーボン粉を含有するペーストを膜成形してシートとし、このシートをイオン交換樹脂膜上にプレスするようにすることもできる。あるいは、白金または白金と他の金属とからなる合金を、イオン交換樹脂膜ではなく該イオン交換樹脂膜と対向する側の拡散層表面に塗布等するようにしてもよい。   That is, the catalyst layer is coated with platinum or an alloy of platinum and other metals as a catalyst on the surface of a fluorine-based ion exchange resin membrane such as a perfluorosulfonic acid membrane (for example, Nafion membrane manufactured by DuPont). Etc. are provided. Specifically, carbon powder carrying platinum or an alloy composed of platinum and another metal is prepared, and the carbon powder is dispersed in an appropriate organic solvent. An appropriate amount of electrolyte solution (Solution) can be added to form a paste, which can be formed on the ion exchange resin film by coating or screen printing. Further, the paste containing the carbon powder can be formed into a sheet to form a sheet, and the sheet can be pressed onto the ion exchange resin film. Alternatively, platinum or an alloy made of platinum and another metal may be applied to the surface of the diffusion layer facing the ion exchange resin film instead of the ion exchange resin film.

本発明に係る有機ケイ素ポリマーは、例えばゾル・ゲル法を用いて、一種又は二種以上のアルコキシド(好ましくは酸化処理でスルホ基が得られるアルコキシドと長鎖など総炭素数の大きい基含有のアルコキシドを含む二種以上)を単独系あるいは混合系にて加水分解した後、これに更に酸化処理を施すことにより電解質溶液として得ることができる。   The organosilicon polymer according to the present invention is obtained by using, for example, a sol-gel method, one or more alkoxides (preferably alkoxides having sulfo groups obtained by oxidation treatment and alkoxides having a large total carbon number such as long chains. Can be obtained as an electrolyte solution by subjecting it to hydrolysis in a single system or a mixed system and further subjecting it to an oxidation treatment.

二種以上のアルコキシドから電解質溶液を得る場合、予め二種以上のアルコキシドを混合した状態で加水分解すると共に酸化処理してランダム共重合した有機ケイ素ポリマーの電解質溶液としてもよいし、個々のアルコキシドを各々加水分解し酸化処理した後に混合してブロック共重合させた有機ケイ素ポリマーの電解質溶液としてもよい。   When obtaining an electrolyte solution from two or more kinds of alkoxides, it may be hydrolyzed in a state where two or more kinds of alkoxides are mixed in advance, and may be an organic silicon polymer electrolyte solution that is randomly copolymerized by oxidation treatment. It is good also as the electrolyte solution of the organosilicon polymer which mixed by block hydrolysis after hydrolyzing and oxidizing each.

以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to these Examples.

(実施例1)
以下に示すスキームIにしたがって、ゾル・ゲル法により本発明に係る有機ケイ素ポリマーの電解質溶液を得た。
(Example 1)
According to the scheme I shown below, an electrolyte solution of an organosilicon polymer according to the present invention was obtained by a sol-gel method.

Figure 2005190813
Figure 2005190813

上記の化合物(1)と化合物(2)とを、0.01N塩酸及び2−プロパノールの混合溶液中に1:3の割合となるように加えて加熱し、加水分解させて構成単位(3)及び(4)からなる重合体を得た。その後、この重合体をSH基を酸化するのに必要な過酸化水素を3倍モル程度加えて、化合物(1)又は(2)に各々由来する複数の構成単位(5)及び(6)がランダムに結合(重合比a:b=1:3)してなる有機ケイ素ポリマーが2−プロパノール中に分散されたシロキサン電解質2−プロパノール溶液(本発明に係る有機ケイ素ポリマーの電解質溶液)を得た。なお、上記の重合比については特に制限はなく、1:9〜9:1の範囲で適宜選択することが可能である。   The above compound (1) and compound (2) are added to a mixed solution of 0.01N hydrochloric acid and 2-propanol in a ratio of 1: 3, heated and hydrolyzed to form the structural unit (3). And the polymer which consists of (4) was obtained. Thereafter, hydrogen peroxide necessary to oxidize the SH group is added to this polymer in an amount of about 3 times moles, and a plurality of structural units (5) and (6) each derived from the compound (1) or (2) are obtained. A siloxane electrolyte 2-propanol solution (an electrolyte solution of the organosilicon polymer according to the present invention) in which an organosilicon polymer formed by random bonding (polymerization ratio a: b = 1: 3) was dispersed in 2-propanol was obtained. . In addition, there is no restriction | limiting in particular about said polymerization ratio, It is possible to select suitably in the range of 1: 9-9: 1.

−イオン伝導度の測定−
上記より得たシロキサン電解質2−プロパノール溶液をガラス上に乾燥膜厚50μmとなるように塗布し、乾燥させて電解質膜とし、この電解質膜の両端を白金電極の間に挟むようにしてSI1287/1255B(Solartron社製)と接続し、交流インピーダンス法にてイオン伝導度を測定した。測定結果を下記表1に示す。
-Measurement of ionic conductivity-
The above-obtained siloxane electrolyte 2-propanol solution was applied on glass so as to have a dry film thickness of 50 μm, dried to form an electrolyte membrane, and both ends of this electrolyte membrane were sandwiched between platinum electrodes. The ionic conductivity was measured by the AC impedance method. The measurement results are shown in Table 1 below.

Figure 2005190813
Figure 2005190813

上記表1に示すように、本発明に係る有機ケイ素ポリマーからなる電解質膜は良好なイオン伝導度を有していることを確認した。   As shown in Table 1 above, it was confirmed that the electrolyte membrane made of the organosilicon polymer according to the present invention had good ionic conductivity.

−加熱試験−
前記「−イオン伝導度の測定−」と同様にして得た電解質膜を400℃に加熱したときの電解質膜の状態を目視により観察し評価した結果、この温度では全く変化は認められなかった。したがって、電極用電解質として使用した場合の耐熱性の向上に有用であると評価した。
-Heating test-
As a result of visually observing and evaluating the state of the electrolyte membrane obtained when the electrolyte membrane obtained in the same manner as in “-Measurement of ion conductivity” was heated to 400 ° C., no change was observed at this temperature. Therefore, it was evaluated that it was useful for improving heat resistance when used as an electrode electrolyte.

−発電試験−
次に、図1に示す構成の単セル10を作製し、発電試験を行なった。
まず、高分子電解質膜11としてデュポン社製のナフィオン膜(パーフルオロスルホン酸膜)を準備し、このナフィオン膜の表面に、白金を担持したカーボン粉を2−プロパノールに分散した分散溶液(固形分6質量%)5部に更に電解質溶液として前記シロキサン電解質2−プロパノール溶液(有機ケイ素ポリマーの電解質溶液)5部を添加してペースト化して調製した触媒層形成用溶液を、乾燥膜厚が10〜30μmとなるように塗布して触媒層12,13を設けた。
-Power generation test-
Next, a single cell 10 having the configuration shown in FIG. 1 was produced and a power generation test was performed.
First, a DuPont Nafion membrane (perfluorosulfonic acid membrane) is prepared as the polymer electrolyte membrane 11, and a dispersion solution (solid content) in which carbon powder carrying platinum is dispersed in 2-propanol on the surface of the Nafion membrane. 6 parts by mass) A catalyst layer forming solution prepared by adding 5 parts of the siloxane electrolyte 2-propanol solution (electrolytic solution of organosilicon polymer) as an electrolyte solution to 5 parts, The catalyst layers 12 and 13 were provided by coating so as to be 30 μm.

そして更に、触媒層12,13の表面にカーボンペーパーからなる拡散層14,15を設け、高分子電解質膜11がアノード拡散電極16とカソード拡散電極17との間に狭持されてなる膜電極接合体20を形成し、この膜電極接合体20を更に狭持すると共に、アノード拡散電極16との間に水素ガスを給排する水素ガス流路23と、カソード拡散電極17との間に空気(エア)を給排するエア流路(酸化ガス流路)24とを形成する一対のセパレータ21、22を設けることにより単セル10を得た。   Further, diffusion layers 14 and 15 made of carbon paper are provided on the surfaces of the catalyst layers 12 and 13, and a membrane electrode joint in which the polymer electrolyte membrane 11 is sandwiched between the anode diffusion electrode 16 and the cathode diffusion electrode 17. The body 20 is formed, the membrane electrode assembly 20 is further sandwiched, and the hydrogen gas passage 23 for supplying and discharging hydrogen gas to and from the anode diffusion electrode 16 and the air ( A single cell 10 was obtained by providing a pair of separators 21 and 22 forming an air flow path (oxidizing gas flow path) 24 for supplying and discharging air.

以上のようにして得た単セルに対し、セル設定温度を80℃、バブラー温度をアノード/カソード=80℃/80℃として両極に水素ガス及び空気を供給し運転させ、発電運転時の限界電流値を求めた。   For the single cell obtained as described above, the cell set temperature is 80 ° C., the bubbler temperature is anode / cathode = 80 ° C./80° C., hydrogen gas and air are supplied to both electrodes, and the current is limited. The value was determined.

以上の結果、本発明に係る有機ケイ素電解質からなる電極を備えた単セルでは、限界電流値として1.3A/cm2を得ることができ、良好な発電性能を示した。また、このときのI−V曲線を図2に示す。また更に、この単セルを10時間断続運転したが、電圧低下などの支障を生ずることもなく安定しており、耐熱性の点でも優れていた。 As a result of the above, in the single cell provided with the electrode made of the organosilicon electrolyte according to the present invention, a limit current value of 1.3 A / cm 2 could be obtained, and good power generation performance was exhibited. Moreover, the IV curve at this time is shown in FIG. Furthermore, although this single cell was operated intermittently for 10 hours, it was stable without causing problems such as voltage drop, and was excellent in heat resistance.

実施例で作製した単セルを説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the single cell produced in the Example. 単セルにおける電流−電圧特性を示すI−V曲線である。It is an IV curve which shows the current-voltage characteristic in a single cell.

符号の説明Explanation of symbols

10…単セル(燃料電池)
12,13…触媒層
10 ... Single cell (fuel cell)
12, 13 ... catalyst layer

Claims (3)

Si−O結合が2以下の連結基を主骨格に有する有機ケイ素ポリマーからなることを特徴とする燃料電池電極用電解質材。   An electrolyte material for a fuel cell electrode, comprising an organosilicon polymer having a linking group having 2 or less Si-O bonds in the main skeleton. 前記連結基が、下記式(1)で表される構成単位及び下記式(2)で表される構成単位の少なくとも一方である請求項1に記載の燃料電池電極用電解質材。
Figure 2005190813
〔式中、R1及びR2は各々、水素原子、脂肪族基、芳香族基を表す。二つのR1は同一でも異なっていてもよい。また、R1及びR2は各々、アミノ基を含んでいてもよい。〕
The electrolyte material for a fuel cell electrode according to claim 1, wherein the linking group is at least one of a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2).
Figure 2005190813
[Wherein, R 1 and R 2 each represent a hydrogen atom, an aliphatic group, or an aromatic group. Two R 1 may be the same or different. R 1 and R 2 may each contain an amino group. ]
前記有機ケイ素ポリマーが少なくとも二種の構成単位を含み、前記二種の構成単位の一方がスルホ基を有し、他方が炭素数1〜20の脂肪族基又は炭素数6〜20の芳香族基を有する請求項2に記載の燃料電池電極用電解質材。   The organosilicon polymer includes at least two structural units, one of the two structural units has a sulfo group, and the other has an aliphatic group having 1 to 20 carbon atoms or an aromatic group having 6 to 20 carbon atoms. The electrolyte material for fuel cell electrodes according to claim 2, comprising:
JP2003430515A 2003-12-25 2003-12-25 Electrolyte material for fuel cell electrode Pending JP2005190813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003430515A JP2005190813A (en) 2003-12-25 2003-12-25 Electrolyte material for fuel cell electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003430515A JP2005190813A (en) 2003-12-25 2003-12-25 Electrolyte material for fuel cell electrode

Publications (1)

Publication Number Publication Date
JP2005190813A true JP2005190813A (en) 2005-07-14

Family

ID=34788866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003430515A Pending JP2005190813A (en) 2003-12-25 2003-12-25 Electrolyte material for fuel cell electrode

Country Status (1)

Country Link
JP (1) JP2005190813A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224299A (en) * 2006-02-21 2007-09-06 Samsung Sdi Co Ltd Polysiloxane compound, its preparation process, polymer electrolyte membrane, membrane electrode assembly and fuel cell
KR100790854B1 (en) * 2006-12-29 2008-01-03 삼성에스디아이 주식회사 Polymer electrolytic membrane, and fuel cell employing the same
JP2008269900A (en) * 2007-04-18 2008-11-06 National Univ Corp Shizuoka Univ Polymer electrolyte material, and membrane-electrode assembly for fuel cell using this
JP2009224133A (en) * 2008-03-14 2009-10-01 Jsr Corp Polymer electrolyte for direct methanol fuel cell, and its usage

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625420A (en) * 1992-05-15 1994-02-01 Tonen Chem Corp Sulfonated silicone
JPH11209472A (en) * 1998-01-22 1999-08-03 Mitsui Chem Inc Preparation of sulfonic group-containing organic macromolecular siloxane
JP2001118579A (en) * 1999-10-15 2001-04-27 Matsushita Electric Ind Co Ltd Method of manufacturing electrdoe catalyst layer for polymer electrolyte type fuel cell
JP2001325963A (en) * 2000-05-18 2001-11-22 Toyota Central Res & Dev Lab Inc Electrode electrolyte film bonding laminate and its manufacture method
JP2002015742A (en) * 2000-06-30 2002-01-18 Toshiba Corp Fuel cell and proton conducting material for fuel cell
JP2002105216A (en) * 2000-09-29 2002-04-10 Hitachi Ltd Solid polymer electrolyte, its membrane, its solution for catalytic coating electrode, membrane/electrode bonded material using it and fuel cell
JP2002184427A (en) * 2000-12-12 2002-06-28 Japan Science & Technology Corp Proton conductive substance
JP2003331645A (en) * 2002-05-17 2003-11-21 Toyota Motor Corp Proton-conductive material
JP2003331644A (en) * 2002-05-09 2003-11-21 Sekisui Chem Co Ltd Proton-conductive membrane, its manufacturing method and fuel cell using same
JP2003335818A (en) * 2002-05-17 2003-11-28 Toyota Motor Corp Proton conductive material
JP2005132996A (en) * 2003-10-31 2005-05-26 Jsr Corp Sulfonic acid group-containing aqueous dispersion

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625420A (en) * 1992-05-15 1994-02-01 Tonen Chem Corp Sulfonated silicone
JPH11209472A (en) * 1998-01-22 1999-08-03 Mitsui Chem Inc Preparation of sulfonic group-containing organic macromolecular siloxane
JP2001118579A (en) * 1999-10-15 2001-04-27 Matsushita Electric Ind Co Ltd Method of manufacturing electrdoe catalyst layer for polymer electrolyte type fuel cell
JP2001325963A (en) * 2000-05-18 2001-11-22 Toyota Central Res & Dev Lab Inc Electrode electrolyte film bonding laminate and its manufacture method
JP2002015742A (en) * 2000-06-30 2002-01-18 Toshiba Corp Fuel cell and proton conducting material for fuel cell
JP2002105216A (en) * 2000-09-29 2002-04-10 Hitachi Ltd Solid polymer electrolyte, its membrane, its solution for catalytic coating electrode, membrane/electrode bonded material using it and fuel cell
JP2002184427A (en) * 2000-12-12 2002-06-28 Japan Science & Technology Corp Proton conductive substance
JP2003331644A (en) * 2002-05-09 2003-11-21 Sekisui Chem Co Ltd Proton-conductive membrane, its manufacturing method and fuel cell using same
JP2003331645A (en) * 2002-05-17 2003-11-21 Toyota Motor Corp Proton-conductive material
JP2003335818A (en) * 2002-05-17 2003-11-28 Toyota Motor Corp Proton conductive material
JP2005132996A (en) * 2003-10-31 2005-05-26 Jsr Corp Sulfonic acid group-containing aqueous dispersion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224299A (en) * 2006-02-21 2007-09-06 Samsung Sdi Co Ltd Polysiloxane compound, its preparation process, polymer electrolyte membrane, membrane electrode assembly and fuel cell
US7833665B2 (en) 2006-02-21 2010-11-16 Samsung Sdi Co., Ltd. Polysiloxane compound containing sulfonic acid groups, method of preparing the same and fuel cell including the same
KR100790854B1 (en) * 2006-12-29 2008-01-03 삼성에스디아이 주식회사 Polymer electrolytic membrane, and fuel cell employing the same
JP2008269900A (en) * 2007-04-18 2008-11-06 National Univ Corp Shizuoka Univ Polymer electrolyte material, and membrane-electrode assembly for fuel cell using this
WO2008133177A1 (en) 2007-04-18 2008-11-06 National University Corporation Shizuoka University Polymer electrolyte material and membrane-electrode assembly for fuel cell using the same
JP2009224133A (en) * 2008-03-14 2009-10-01 Jsr Corp Polymer electrolyte for direct methanol fuel cell, and its usage

Similar Documents

Publication Publication Date Title
TWI289951B (en) Direct alcohol fuel cell and method for producing same
TWI242306B (en) Fuel cell and manufacturing method thereof
US20070092777A1 (en) Self-humidifying proton exchange membrane, membrane-electrode assembly, and fuel cell
BRPI0608135A2 (en) hydrophobic catalyst layer for a polymer electrolyte fuel cell, method of producing a hydrophobic catalyst layer for a polymer electrolyte fuel cell, polymer electrolyte fuel cell, and method for producing it
JP2006140152A (en) Electrode for fuel cell, and membrane/electrode assembly and fuel cell system including it
CA2582490C (en) Proton-conducting material, solid polymer electrolyte membrane, and fuel cell
JP2007528930A5 (en)
US8227137B2 (en) Polymer membrane for fuel cell and method of preparing the same
JP2002298867A (en) Solid polymer fuel cell
JP4823583B2 (en) Polymer membrane / electrode assembly for fuel cell and fuel cell including the same
JP2005190813A (en) Electrolyte material for fuel cell electrode
WO2006085619A1 (en) Fuel cell
JP2005339961A (en) Proton conductive membrane and fuel cell using it
TWI587564B (en) Proton exchange membrane fuel cell
JP2008269900A (en) Polymer electrolyte material, and membrane-electrode assembly for fuel cell using this
KR20060096610A (en) Membrane electrode assembly for fuel cell, and stack for fuel cell and full cell system comprising the same
Shim et al. Electrochemical acceleration of hydrogen transfer through a methanol impermeable metallic barrier
Han et al. A chemically regenerative redox fuel cell using (2, 2, 6, 6-tetramethylpiperidin-1-yl) oxyl redox reaction in acid medium
JP2008270062A (en) Evaluation method and evaluation device of membrane electrode assembly for fuel cell
US8318376B2 (en) Polymer electrolyte membrane with coating layer of anion binding agent and fuel cell using same
JP2008276990A (en) Electrode for fuel cell, and fuel cell
JP2006252845A (en) Solid polyelectrolyte film and its manufacturing method
JP2003142121A (en) Solid high polymer type fuel cell
JP2006134765A (en) Electrolyte material for catalytic electrode layer, membrane electrode complex using it, and solid polymer electrolyte fuel cell
JP2004247155A (en) Solid polymer electrolyte membrane and membrane electrode assembly for solid polymer fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518